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Abstract 

 
ZFS has been touted by Sun Microsystems as the 

“last word in file systems”.  It is a revolutionary file 
system with several new features that improve its 
reliability, manageability, and performance.   ZFS also 
contains RAID-Z, an integrated software RAID system 
that claims to solve the RAID-5 write hole without 
special hardware.  While these claims are impressive, 
very little information about ZFS and RAID-Z has been 
published and no work has been done to verify these 
claims.  In this work, we investigate RAID-Z and ZFS 
by examining the on-disk file layout.  We also use a 
kernel extension to intercept reads and writes to the 
backing store and use this temporal information to 
further understand the file system’s behavior. With 
these tools, we were able to discover how RAID-Z lays 
files out on the disk.  We also verified that RAID-Z 
both solved the RAID-5 write hole and maintains its 
full-stripe write semantics even when the volume is full 
or heavily fragmented.  Finally, during our testing, we 
uncovered serious performance degradation and 
erratic behavior in ZFS when the disk is near full and 
heavily fragmented. 
 
1. Introduction 
 

ZFS, a file system recently developed by Sun 
Microsystems, promises many advancements in 
reliability, scalability, and management.  It stores 
checksums to detect corruption and allows for the easy 
creation of mirrored or RAID-Z volumes to facilitate 
correcting errors.  It is a 128-bit file system, providing 
the ability to expand well beyond inherent limitations 
in existing file systems.  Additionally, ZFS breaks the 
traditional barriers between the file system, volume 
manager, and RAID controller, allowing file systems 
and the storage pool they use to grow flexibly as 
needed.  

RAID-Z was also developed by Sun as an integral 
part of ZFS.  It is similar to RAID-5, with one parity 
block per stripe, rotated among the disks to prevent any 
one disk from being a bottleneck.  There is also the 
double-parity RAID-Z2, which is similar to RAID-6 in 
that it can recover from two simultaneous disk failures 
instead of one.  However, unlike the standard RAID 
levels, RAID-Z allows a variable stripe width.  This 
allows data that is smaller than a whole stripe to be 
written to fewer disks.  Along with the copy-on-write 
behavior of ZFS, this allows RAID-Z to avoid the 
read-modify-write of parity that RAID-5 performs 
when updating only a single block on disk.  Because of 
the variable stripe width, recovery necessitates 
reconstructing metadata in order to find where the 
parity blocks are located.  Although RAID-Z requires a 
more intelligent recovery algorithm, this also means 
that recovery time is much shorter when a volume has 
a lot of free space.  In RAID-5, because the RAID 
controller is separate from the file system and has no 
knowledge of what is on the disk, it must recreate data 
for the entire drive, even if it is unallocated space.  

While RAID-Z and ZFS make several exciting 
claims, very little information is published on ZFS, and 
even less on RAID-Z.  Sun has published a draft On-
Disk Specification [3], however it barely mentions 
RAID-Z.  Nothing is published to indicate how data is 
spread out across disks or how parity is written.  Our 
objective in this paper is to show some of the behavior 
of RAID-Z that has not yet been documented. 

In this paper, we cover a variety of topics relating to 
the behavior of RAID-Z.  We look at file and parity 
placement on disk, including how RAID-Z always 
performs full-stripe writes, preventing RAID-5’s read-
modify-write when writing a single block of data.  We 
discuss the RAID-5 write hole, and show how RAID-Z 
avoids this problem.  Additionally, we investigate the 
behavior of RAID-Z when full or when free space is 
fragmented, and we show how performance can 
degrade for a full or fragmented volume. 
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2. RAID-Z and ZFS Background 
Information 
 

There are two pieces of ZFS’s and RAID-Z’s 
architecture that are important to this work.  The first is 
ZFS’s Copy-on-Write (CoW) transactional model.  In 
this model any update to the file system, including both 
metadata and data, is written in a CoW fashion to an 
empty portion of disk.  Old data or metadata is never 
immediately overwritten in ZFS when it is being 
updated.  Once the updates have been propagated up 
the file system tree and eventually committed to disk, 
the 512-byte uberblock (akin to the superblock in ext3) 
is updated in a single atomic write.  This ensures that 
the updates are applied atomically to the file system, 
solving many consistent update problems.  RAID-Z 
must also follow this model and therefore guarantees to 
always perform full-stripe writes of new data to empty 
locations on the disk.   

The second relevant part of ZFS to this work is how 
it manages free space.  Since ZFS is a 128-bit file 
system, it can scale to extremely large volumes.  
Traditional methods of managing free space, such as 
bitmaps, do not scale to these large volumes due to 
their large space overhead.  ZFS therefore uses a 
different structure called a space map to manage free 
space [9].  Each device in a ZFS volume is split into 
several hundred metaslabs, and each metaslab has an 
associated space map that contains a log of all 
allocations and frees performed within that metaslab.  
At allocation time, this log is replayed in order to find 
free space available in the metaslab.  The space map is 
also condensed at this time and written to disk.  Space 
maps save significant space, especially when the 
metaslab is nearly full; a completely full metaslab is 
represented by a single entry in the log.  Their 
downside, however, is the time overhead needed to 
replay the log to find free space and condense it for 
future use.  This overhead becomes noticeable when 
the disk is nearly full. 

 
3. Methodology 
 

In order to investigate the properties of RAID-Z we 
used binary files as backing stores, instead of actual 
disks.  This had several advantages.  First, we did not 
need to use separate disks or disk partitions to create 
our RAID-Z volumes.  This allowed us to easily test 
configurations with different numbers or sizes of 
backing stores.  Second, it also allowed us to easily 
observe the backing stores while they were in use with 
a normal binary editor.  Finally, the use of binary files 

as backing stores allowed us to place them on a special 
disk image and write a kernel extension to intercept all 
reads and writes to this disk image.   

Our kernel extension fits in the storage driver 
hierarchy pictured in Figure 1 and is based off of 
sample code from the Apple Developer Connection 
website [7].  It acts as a media filter driver, consuming 
and producing a media object which represents a single 
write or read on the disk.  It sits below the file system, 
so there is no concept of files or directories.  The 
kernel matches this type of driver based on one of 
several properties of the media objects.  Our kernel 
extension matched on the content hint key, which is set 
by the disk formatting utility when the volume is 
created.  We then created a custom disk image with our 
content hint so that the kernel extension would be 
called only for traffic to this disk image. 

This kernel extension allowed us to easily monitor 
file system activity to the ZFS backing stores.  
However, it does have various limitations.  Because 
writing to a file from within the kernel is very difficult 
due to the potential for deadlock, we used the system 
logging facility to record the output of our kernel 
extension.  However, this has a limited buffer size, 
causing some events to get missed during high periods 
of activity.  To avoid this, we only printed messages 
relevant to our reads and writes, which we recognized 
from a repeating data pattern.  Also, because the driver 
is in the direct path of all reads and writes, if the 
extension takes too long to run, it can cause the file 
system to become too slow to even mount in a 
reasonable amount of time.  In one particular example, 
we attempted to scan through all the data being written 
to the disk image, but this caused the mount operation 
to take longer than an hour. 

In order to facilitate directly examining the backing 
stores, we wrote repeating data patterns to the disk that 

Figure 1: Storage Driver Stack [1]  
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we could search for using a binary file editor.  We 
always wrote the pattern in multiples of 512-byte 
chunks to match the logical block size of the “disks” in 
our system.  In order to be able to distinguish the parity 
blocks from the data blocks in our test files, we used a 
32-bit pattern that was rotated and periodically 
incremented after each write to guarantee that the 
parity block would always be unique.  The use of a 32-
bit repeating pattern also allowed us to filter the reads 
and writes reported by our kernel extension by looking 
for writes or reads that had a 4-byte pattern repeating 
for at least 512 bytes. 

We performed our testing on two separate 
environments.  The first was Mac OS 10.5 using the 
recently released ZFS beta version 1.1.  We also 
developed our kernel extension described above for 
MacOS 10.5, which was enabled during nearly all of 
our tests.  The second environment we used was 
OpenSolaris 10 Developer Edition running inside a 
VMWare Workstation 6.0.1 virtual machine.  We 
repeated several of our tests within this environment to 
try and eliminate any effects that could be caused by 
implementation-specific details or bugs.  This 
environment did not have the benefit of the kernel 
extension and so all tests done here simply examined 
the backing store.  

 
 

4. Investigating File Placement in 
RAID-Z 
 

The first aspect of RAID-Z that we investigated 
was how it places the file data on disk.  Here we 
wanted to see how RAID-Z laid out data and parity on 
blocks on the disk, how it chose to rotate parity across 
the disks, and how it guaranteed to always perform 
full-stripe writes.  To investigate this, we tried writing 
files with known data patterns to the RAID-Z volume 
and examined the resulting on-disk contents.  We 
experimented with writing small, medium, and large 
files using the rotating pattern described above in a 
simple C program using a single write() system call.  
We also tested using several write() system calls, but 
this had no effect on our results due to the caching 
within ZFS.  Most of our testing was performed using 
a 5-disk system, however we also verified our results 
using 3-disk and 7-disk systems. 
 
4.1. Results 
 

The basic layout of a medium-sized file on a 5-disk 
RAID-Z system is depicted in Figure 2.  In this 
particular example, we wrote a single file with sixteen 
512-byte blocks.  As can be seen in the figure, the data 
for the file is split evenly across the 4 data disks in the 

 
Figure 2: Medium File Layout 

 

 
Figure 3: Realistic Medium File Layout 
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system.  On each disk, the data is written using 
sequential 512-byte blocks from the file. The final disk 
contains all of the file’s parity blocks.  The first parity 
block protects data blocks 1, 5, 9, 13, the second 
protects data blocks 2, 6, 10, 14, and so on.   

While the file depicted in Figure 2 was written with 
the first blocks on the first disk, the more common case 
is for the file to start on one of the other disks in the 
RAID-Z volume as depicted in Figure 3.  In this case, 
the data is again split equally across all disks and 
written in a sequential fashion on each disk.  However, 
since we now start writing on a different disk, when the 
data wraps around to the first disk in the system a 512-
byte offset is introduced as shown in the figure.  
Generally, this small offset area is filled with other 
data or metadata, and hence the data on these disks is 
offset by one sector.  These small chunks of data are 
possible in RAID-Z due to its partial-stripe write 
policy where a write does not need to span all disks in 
the system.  The other diagrams in this paper will 
ignore this small offset for simplicity. 

Next, Figure 4 depicts how a small file with six 
512-byte blocks is laid out on a RAID-Z volume.  An 
important feature to notice about this example is that 
the number of blocks in the file is not a multiple of the 
number of data disks used and hence illustrates how 
RAID-Z does partial stripe writes.  Here, RAID-Z 
divides the data blocks as evenly as possible among all 
data disks and any remaining data blocks are spread 
evenly across a subset of the data disks.  Within each 
data disk, data is again written as sequentially as 
possible, with data blocks 1 and 2 being written 
sequentially to disk 1 in this example.  Here, parity 
block 1 covers data blocks 1, 3, 5, and 6 while parity 
block 2 covers blocks 2 and 4 only.  This second parity 
block represents a partial stripe write that covers disks 
1, 2, and 5 while allowing disks 3 and 4 to be used for 
a different stripe. 

Finally, the results of writing a single large file can 
be seen in Figure 5.  Please note that in this figure, the 
size of a single block has changed from 512 bytes to 32 
kilobytes.  Another important observation is that if 

 
 

 
Figure 4: Small File Layout 

 
Figure 5: Large File Layout 
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sufficient data is written to a RAID-Z volume, it will 
perform writes in multiples of 128KB chunks which 
coincides with the default logical block size of ZFS.  
These 128KB chunks are split evenly across the data 
disks in the system.  For 5 disks, this implies that each 
disk receives a 32KB sequential piece of the chunk.  If 
the 128KB chunk is not evenly divisible across the 
number of disks, some of the data disks will have 
pieces that are 512 bytes shorter than other disks in the 
system in order to handle the remainder from the 
division across the disks.  Also, even though each 
128KB chunk is written sequentially, separate 128KB 
chunks can be scattered across the disk.  We were 
unable to determine any pattern of how these 128KB 
chunks were distributed on disk, but we presume that 
128KB are placed around the disk to ensure that no 
single metaslab becomes too full.   

Another important feature to notice in Figure 5 is 
that parity is rotated around the disks, but without any 
distinguishable pattern.  We ran several tests to 
investigate how the parity disk was chosen and 
determined that it does not directly relate to either the 
current disk offset or the current file offset.  We also 
examined the source code for RAID-Z found on the 
OpenSolaris website [8] and the code seems to imply 
that the parity disk should rotate based on the disk 
offset of the write.  However, there were also in-line 
comments implying that the algorithm in the code was 
incorrect and had created an “implicit on-disk format” 
of rotating the parity disk if a write was larger than 1 
MB.  Thus the chosen parity disk depends on both the 
offset of a write and the size of the write.  We believe 
that since data and metadata may be combined into a 
single write to disk, the location of the parity disks 
depends on how RAID-Z structures writes internally 
and hence that is why the parity disk seems to be 
randomly selected when looking only at the output of 
data blocks on disk. 
 
4.2. Derived File Layout Algorithm 
 

From the figures above as well as additional testing, 
we believe we are able to accurately describe RAID-
Z’s algorithm for placing file data onto the disk.  First, 
we assume that for each write we know the currently 
selected parity disk number and which disk and disk 
offset where we want to start writing.  There are three 
cases based on the number of 512-byte blocks that 
must be written.  After the execution of each case, the 
current disk, disk offset, and parity disk may need to be 
updated before performing the next write. 

The first case is if the number of blocks to be 
written is less than the number of data disks in the 
system, where the number of data disks is the total 

number of disks in the system minus the one disk for 
parity.  In this case, we check and see if we will reach 
the current parity disk during our write of this small 
file.  If not, we write the parity to our current disk, 
otherwise we start writing the file data to the disks in 
the system in succession and write the parity when we 
reach the current parity disk.   

The second case is when the number of blocks to 
write is greater than the number of disks in the system 
but less than 128KB.  In this case, we do an integer 
division of the number of blocks in the write with the 
number of data disks.  This gives us the number of data 
blocks N we will write sequentially to each disk.  We 
also calculate the remainder from this division and use 
this number to handle writing out any extra blocks.  
Next we loop through the disks starting with the 
currently selected disk.  If the current disk matches the 
current parity disk number, we simply write the parity 
information for the entire file.  If not, we write the data 
blocks.  If there are any blocks left from our remainder 
calculation, we write N+1 data blocks from the file to 
the current disk and decrement the remainder number, 
otherwise we write just N data blocks.  If, while 
looping through the disks, we wrap around to the first 
disk, we increment the current disk address by 512 
bytes to avoid overwriting any data that was written 
previously. 

The final case is when the write is larger than 
128KB.  Here we write the first 128KB split as evenly 
as possible across the data disks in the system using an 
algorithm similar to case 2.  Once this first 128KB is 
written we then check the number of blocks that still 
need to be written and use either case 1, case 2, or case 
3 to complete the write.    
 
5. Investigating the RAID-5 Write 
Hole  
 

Next, we wanted to investigate the claim that 
RAID-Z solves the so called RAID-5 write hole.  The 
next two sections describe the RAID-5 write hole, our 
methodology for investigating it with RAID-Z, and our 
results and conclusions.   
 
5.1. Problem Statement and 
Methodology 
 

The RAID-5 write hole or consistent update 
problem is a well known problem with RAID designs.  
A good description of this problem along with an 
investigation into the vulnerability of RAID system to 
this problem can be found in [4].  The problem stems 
from the inability of RAID systems to update all disks 
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in the system atomically.  Therefore, if there is a 
system crash or power failure during an update to a 
RAID system, the parity information in the RAID 
system can become inconsistent with the data.  To 
solve this problem, RAID system manufacturers often 
include expensive hardware such as NVRAM or 
battery-backed caches to ensure that all issued writes 
actually reach the disk platters in the case of a system 
crash. 

RAID-Z, on the other hand, is supposed to solve the 
consistent update problem without the need for 
expensive hardware solutions.  It does so by leveraging 
the Copy-on-Write (CoW) transactional semantics of 
ZFS.  RAID-Z will write all the needed data, metadata, 
and parity information to new locations on disk using 
full-stripe writes, never performing a read-modify-
write as is done in RAID-5.  Once this data has reached 
the disk, the uberblock is then written to disk.  Since 
the uberblock is only a single 512-byte structure that is 
written to only one device in the system, this can be 
done atomically, also making the updated data live in a 
single atomic action.  If we have a system crash at any 
point before the uberblock is written, then the file 
system is still consistent because the updated data did 
not overwrite live data.   

To verify that RAID-Z maintains the necessary 
CoW semantics and always performs full-stripe writes, 
we ran tests to observe how RAID-Z handled the CoW 
semantics of ZFS.  To perform this investigation, we 
added additional fsync() calls in between calls to 
write() in our C program.  The program also waited for 
30 seconds after each fsync() call to ensure we 
bypassed any internal buffering within ZFS.  We ran 

this program for various file sizes to ensure that full-
stripe write and the CoW semantics were maintained in 
all cases. 
 
5.2. Results and Conclusions 
 

The results from one of our experiments can be 
seen in Figure 6.  In this experiments, we called fsync() 
after writing each 512-byte block of an eight block file.  
The figure shows only four of the CoW copies for 
brevity.  Region 1 shows the copy of the file that 
resulted from calling fsync() after writing only one 
data block, region 2 is after writing blocks one through 
four, region 3 is after writing blocks one through five, 
and region 4 is the final live version of the data placed 
on disk after writing all eight data blocks.   

In both the example above and in our other tests, 
RAID-Z always maintained its full-stripe write 
semantics even when fsync() is called often, using 
partial stripes to handle writes smaller than the number 
of disks.  Also, we always found all of the copies of the 
data that would be expected given the CoW semantics 
of ZFS.  These tests, as well as information published 
about ZFS [2,3], indicate that RAID-Z appears to solve 
the consistent update problem without the need for 
expensive hardware solutions. 

 
6. Investigating Disk Fragmentation 
and Full Disk Behavior  
 

Finally, we wanted to investigate how RAID-Z 
maintained its guarantee of full-stripe writes when the 

 
Figure 6: Medium File Layout with Multiple fsync() Calls 
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disk was heavily fragmented or nearly full.  In order to 
see how RAID-Z handled a fragmented file system, we 
first created a new empty RAID-Z volume.  We then 
wrote several thousand small files to the disk, usually 
512 bytes or 1 KB in size.  Once these files had been 
copied onto the volume, we then went back and deleted 
a widely-scattered subset of these files.  This left many 
small holes of free space throughout the file system.  
We then attempted to write several larger files to the 
volume to investigate how ZFS maintained its full-
stripe write semantics.  We repeated this experiment 
for different size volumes, different numbers of small 
files, and different levels of fullness. 
 
6.1. Fragmentation Results 
 

The primary result from our tests is that RAID-Z 
does in fact maintain full-stripe writes in all of our 
fragmentation tests by reordering the data on the disks.  
Using our kernel extension, we were able to observe 
that RAID-Z rewrote the previously fragmented data to 
different locations on disk in order to create space for 
the new write.  In our tests, RAID-Z always created 
holes in multiples of 128KB, the logical block size of 
the volume, and wrote the new data using full-stripe 
writes to these locations. 

In order to investigate if there was a threshold after 
which this cleaning was done, we performed a similar 
experiment in which we started with a fragmented 
volume and slowly filled it with files a few megabytes 
in size.  After writing each large file we examined the 
output of our kernel extension to see if cleaning had 
been performed.  We performed this experiment for a 
few different volume sizes.   

As the result of these experiments, we determined 
that there is no single threshold point after which 
cleaning is performed.  The cleaning process was 
always performed when space for the new file was 
being allocated; we never observed the cleaning 
process working in the background while the disk 
volume was idle.  There was very little pattern as to 
when cleaning was performed and appeared to happen 
regardless of how full the disk was, although it was 
more likely to happen as disk got near full.  It appears 
that cleaning is performed if the metaslab where space 
is allocated is heavily fragmented, and is not based on 
how full the disk is. 

 
6.2. Full Disk Results 
 

We also investigated how RAID-Z and ZFS 
behaved as the disk became full.  We first ran a very 
basic performance test of copying a 100 MB file to 
both a fragmented and unfragmented volume, varying 

how full the RAID-Z volume was.  The results of these 
tests can be found in Figures 7 and 8.  In the 
unfragmented case in Figure 7 we can see that it can 
take up to twice as long to perform the copy when the 
disk is 99% full as compared to when the disk is 
empty.  When the disk is fragmented, however, this 
can take up to four times as long as when the disk is 
empty as shown in Figure 8.  We believe that the 
lengthy copy times are most likely due to the need to 
replay the allocation log in order to find the many 
small chunks of free space, as well as overheads in 
moving data to make space for full-stripe writes.  In 
addition to the lengthened copy time, when the disk is 
fragmented the copy times become extremely erratic as 
seen in Figure 8, ranging from 10.9 to 19.5 seconds 
when the disk is 99% full.  We believe this erratic 
behavior stems from the need to move varying 
amounts of fragmented data around in order to make 
space for full-stripe writes. 

An additional performance problem that we noticed 
is that failed writes can take an extremely long time to 

Figure 7: Time to Complete 100MB Copy on an 
Unfragmented Disk 

 

Figure 8: Time to Complete 100MB Copy on a 
Fragmented Disk 

0

2.5

5

7.5

10

empty 80% 95% 99%

Se
co

nd
s

Space Filled

0

5

10

15

20

empty 80% 95% 99%

Se
co

nd
s

Space Filled



 

8 

return with a failure message.  In one case, we 
attempted to write a 1 MB file to a nearly full 
fragmented volume and the file system took 14 
minutes to return a failure message.  During this time 
we noticed several tens of megabytes of writes to the 
disk as the file system tried to find space for the file.  
Other failed writes, while not as extreme, also took a 
significant amount of time to fail.  Performing a large 
write on a standard Mac OS 10.5 HFS+ volume with a 
small amount of fragmented free space caused the 
write to fail immediately. 

Finally, during all of our tests when the disk was 
nearly full, we also noticed that the free space reported 
was extremely erratic and often did not match the 
actual space available.  Specifically, any failed write 
always caused the file system to report that it had no 
free space available.  Despite this, subsequent small 
writes actually succeeded and reset the free space to be 
a non-zero value.  This made it extremely difficult to 
judge the actual amount of free space available.  Noël 
Dellofano, a developer on Apple’s ZFS team, indicated 
that this may be a result of assumptions made 
elsewhere in the OS that doesn’t apply to ZFS’s pool-
based storage model.  However, ZFS itself reports 
more free space than can be filled with user data.  We 
also observed a single write of 50 KB failing 
repeatedly, while we were able to successfully write 
six 25 KB files to the file system afterwards.  
Furthermore, some of these writes did not reduce the 
amount of space reported to be available.  From these 
tests, we conclude that ZFS has difficulty determining 
the exact amount of free space available on a volume.  
This may be a performance optimization, since there is 
no central data structure keeping track of free space, 
and replaying hundreds of logs is probably not a 
reasonable way to determine the free space remaining. 
 
7. Recurring Data Pattern 
Investigation 
 

During the course of our investigations, we also 
discovered a recurring data pattern on disk, written 
almost every time any operation was performed on the 
disk.  The pattern was a series of 16 bytes of 0xFC42 
repeating, followed by a single byte of 0xFF.  This 
pattern would usually repeat several times.  We never 
saw more than several hundred bytes of this pattern, 
however, it was scattered widely across the disk.  A 
very lightly-used test disk used in a 5-disk RAID-Z 
had over 28 thousand copies of the 0xFC42 pattern.  
By corrupting these, then scrubbing the volume to 
restore consistency, we found that about 7 thousand of 
these were part of active data. 

There is no published work that mentions this 
pattern in ZFS, nor is there any reference to it on the 
public internet.  According to Jeff Bonwick, who leads 
Sun’s ZFS development, this pattern is an artifact of 
the ZFS compression algorithm he designed, LZJB.  In 
the current implementation, metadata written to disk is 
always compressed, and a series of zeros is compressed 
to this particular pattern.  He also noted that this is an 
area that is still being developed, and that they are 
working on improving the algorithm to compress a 
long series of zeros more efficiently. 
 
8. Related Work 
 

There is relatively little published academic work 
on ZFS at this time.  However, there are several papers 
that discuss reliability issues that are interesting in a 
RAID-Z context. 

A presentation [2] written by Sun’s CTO of Storage 
Systems, Jeff Bonwick, gives a good introduction of 
ZFS and RAID-Z.  It covers administration, reliability, 
and several important concepts about the ZFS design 
that differ from existing storage systems.  The ZFS On-
Disk Specification [3] includes many details of ZFS, 
but is limited to the on-disk format, so the actual 
behavior of ZFS is not discussed. 

In [4], a number of failure modes are enumerated.  
They discuss some commonly used protections against 
corruption, including RAID, checksums, and 
scrubbing, all of which are part of ZFS.  They do not 
specifically address the mechanisms that ZFS uses, 
however RAID-Z would appear to solve many of the 
issues related to consistency by writing checksums 
separately from data, and by replicating important 
metadata.  Sun has reported that they have forced over 
a million crashes without losing data integrity or 
leaking a single block [2].  They do not claim zero data 
loss, however.  We expect that occasional data loss 
from ZFS is possible, such as when data has been 
written to disk, but the uberblock or other metadata in 
the tree of pointers leading to the new data has not 
been rewritten.  The CoW mechanisms of ZFS simply 
prevent such a scenario from corrupting the existing 
data. 

The insertion of kernel-level code to intercept traffic 
between the file system and disk has been performed 
by others, such as [5]. This paper also demonstrates 
how a disk with more knowledge about what the file 
system is doing can implement additional features.  
This is similar in many ways to the way ZFS breaks 
the usual barriers between a file system, volume 
manager, and RAID controller, sharing information 
that might not be shared in other systems to enable 
improved features, performance and reliability. 
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9. Conclusions 
 

We have uncovered some of the details about the 
algorithm that ZFS uses to place data and parity on a 
RAID-Z volume.  These details have not been exposed 
through Sun’s specifications or other sources.  We 
verified the use of full-stripe writes for a variety of 
data sizes and verified that RAID-Z only writes as 
many blocks of data as are needed using partial stripe 
writes.  Although it does not perform a read-modify-
write of parity, it will read a data block smaller than 
128 KB if adding data to it to avoid writing too many 
small fragments on disk.  When a volume’s remaining 
free space is too fragmented to allow a whole 128 KB 
block to be written as a stripe, we found that the file 
system will clean up the fragments to get larger 
fragments of free space.  Finally, we also discovered 
that ZFS performance can degrade when the storage 
pool is nearly full.  This performance degradation is 
especially severe when the free space is very 
fragmented.  Performance on a fragmented volume is 
also highly variable when full.  These observations 
shed some light on the behaviors of RAID-Z, which 
were previously largely unpublished. 
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