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Abstract and storage systems [17].

Commodity file systems trust disks to either work or fail com- Developers of high-end systems have realized the na-
pletely, yet modern disks exhibit more complex failure modeture of these disk faults and built mechanisms into their
We suggest a nevractured failure modefor disks, which in- Systems to handle them. For example, many redundant
corporates realistic localized faults such as latent semtors Storage systems incorporatiéesk scrubbing[27, 50] to
and block corruption. We then develop and apply a novel fauRroactively detect and subsequently correct latent sector
injection framework, to investigate how commodity file gyss €ITOrs by creating a new copy of inaccessible blocks; some
react to a range of more realistic disk failures. We clagigir recent storage arrays incorporate extra levels of redun-
failure policies in a new taxonomy that measures theiernal dancy to lessen the potential damage of undiscovered la-
RObustNess (IRONvhich includes both failure detection andent errors [13]. Similarly, highly-reliable systems.d,
recovery techniques. We show that commodity file system fafidndem NonStop) have long utilized end-to-end check-
ure policies are often inconsistent, sometimes buggy, @nd gSUMSs to detect when block corruption occurs [3].
erally inadequate in their ability to recover from locatizéisk ~ Unfortunately, such technology has not filtered down
failures. Finally, we design, implement, and evaluate &qtype t0 the realm of commodity file systems, including Linux
IRON file system, ixt3, showing that techniques such as #i-difile systems such as ext3 [61], ReiserFS [42], and IBM’s
checksumming and replication greatly enhance file system &S [7], or Windows file systems such as NTFS [53].
bustness while incurring minimal time and space overheads. Such file systems are not only pervasive in the home en-
. vironment, storing valuable (and often non-archived) user
1 Introduction data such as photos, home movies, and tax returns, but
Disks fail — but not in the way most commodity file sysalso in many internet services such as Google [19].
tems expect. For many years, file system and storage sysn this paper, the first question we posetisw do mod-
tem designers have assumed that disks operate in a ‘€l commodity file systems react to failures that are com-
stop” manner [49]; within this classic model, the disk&on in modern disksPo answer this query, we aggregate
either are working perfectly, or fail absolutely and in aknowledge from the research literature, industry, and field
easily detectable manner. experience to form a new model for disk failure. We label
The fault model presented by modern disk drives, ho@ur model thefractured failure model (FFM}o empha-
ever, is much more complex. For example, modern driveige thatpiecesof the disk can fail.
can exhibitiatent sector fault§28, 13, 50], where a block  With the model in place, we develop and apply an au-
or set of blocks is inaccessible. Worse, blocks sontemated framework to inject more realistic disk faults be-
times becomesilently corrupted5, 21, 63]. Finally, disks neath a file system. Our goal is to unearthféiture pol-
sometimes exhibiransientperformance problems [57]. icy of each system: how it detects and recovers from disk
There are many reasons for these complex failuresfailures. To better characterize failure policy, we depelo
disks. For example, a buggy disk controller could issueaa Internal RObustNess (IRONaxonomy, which cata-
“misdirected” write [63], placing the correct data on dislogs a broad range of detection and recovery techniques.
but in the wrong location. Interestingly, while these fail- Our study focuses on three important and substantially
ures exist in disks today, simply “waiting” for disk techdifferent open-source file systems, ext3, ReiserFS, and
nology to improve will not remove these errors: indeetBM’s JFS, and one commercial file system, Windows
these errors maworsenover time, due to the increasingNTFS. Across all platforms, we find a great dealif
complexity [4], immense cost pressures in the drive indusmsnsistencyin failure policy, often due to the diffusion
try, and the escalated use of less reliable ATA drives, raftfailure handling code through the kernel; such incon-
only in desktop PCs but also in large-scale clusters [1€$tency leads to substantially different detection and re
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covery strategies under similar fault scenarios. We also Generic Fi
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find that most systems implement portions of their failure N Specific File System

policy incorrectly, the presence of bugs in the implemen- =3 iaieieieiieaiety 1

tations demonstrates the difficulty and complexity of cor- = G%ErifeBl';S;y ©

rectly handling certain classes of disk failure. Finallg w Device Controller

show that none of the file systems can recover from local- 5

ized disk failures, due to a lack of-disk redundancy >
This behavior under realistic disk failures leads us to BT _f%

our second questiorhow can we change file systems to Electrical o

better handlg modern disk failure&ve agvocateya single % | Mechanical g

guiding principle for the design of file systenton’t trust = w @

the disk The file system should not view the disk as an .,

utterly reliable component. For example, if blocks can ) |

become corrupt, the file system should apply measures to

both detect and recover from such corruption even wh 'ﬁure 1. The Storage Stack. We present a schematic of the entire
. . . . " stgrage stack. Atthe top is the file system; beneath are thg fagers of

running on a single disk. Our approach is an InStancetQ%r“storage subsystem”. Gray shading implies a softwardironware

the age-old end-to-end argument [46]: at the top of tR@mponent, whereas white (unshaded) is hardware.

storage stack, the file system is fundamentally responsigigie embedded within the drive to control most of its
for reliable management of its data and meta-data.  hjgher-level functions, including caching, disk schedul-
In our initial efforts, we focus on one specific “sweghg, and error handling. This firmware code is substantial
spot” in the IRON taxonomy: an IRON version of ext3nd complexe.g, a modern drive from Seagate contains
(ixt3) that uses redundancy within a single disk for itgughly 400,000 lines of low-level code [16].
meta-data structures. We show that ixt3 incurs little OVer-Connecting the drive to the main host is the transport
head while greatly increasing the robustness of modegger. In low-end systems, the transport medium is often a
file systems to latent sector errors and corruption. By,g €.g, IDE/ATA or SCSI), whereas networks are com-
implementing detection and recovery technigques from theyn in higher-end systeme.{), FibreChannel).
IRON taxonomy, a system can implement a well-defined ot the top of this “storage stack” is the host. At a low
failure policy and subsequently provide increased levglge| in the host is hardware: a device controller that is
of protection against the broader range of disk failures. ;sed to communicate with the device. Above this layer is
The rest of this paper is structured as follows. First, W@tware: a low-level device driver to communicate with
present a detailed examination of how disks fail and th§ hardware. Block-level software is layered on top of
fractured failure models@). Then, we discuss detectionpjs, to provide a generic interface to clients and imple-
and recovery techniques within our IRON taxonom§)(  ment various optimization®(g, request reordering).
present our fault-injection methog4), and our analysis  Note that the file system that operates above the storage
of failure policy under such fault$g). We then propose, sypsystem is often split into two pieces: a generic compo-
implement, and evaluate IRON ext$], discuss related hen that is common to all file systems, and a specific com-
work (§7), and concludesg). ponent that maps generic operations onto the data struc-
. . tures of the particular file system. A generic interface
2 Disk Failure (e.g, Vnode/VFS [30]) is positioned between the two.
There are many reasons that the file system may see er-
rors in the storage system below. In this section, we fidt2 Why Do Disks Fail?
discuss common causes of disk failure. We then presefficemotivate our failure model, we first describe how errors
new, more realistiéractured failure modefor disks and in the layers of the storage stack can cause failures.

discuss various aspects of this model. Media: There are two primary errors that occur in the
magnetic media. First, the classic problem of “bit rot” oc-
2.1 The Storage Subsystem curs when the magnetism of a single bit or a few bits is

Figure 1 presents a typical layered storage subsystemflipped. This type of problem can often (but not always)
low the file system. An error can occur in any of thedge detected and corrected with low-level ECC embedded
layers and propagate itself to the file system above. in the drive. Second, physical damage can occur on the
At the bottom of the “storage stack” is the drive itselfimedia. The quintessential “head crash” is one culprit,
beyond the magnetic storage media, there are mechanida¢re the drive head contacts the surface momentarily.
(e.g, the motor and arm assembly) and electrical comp&-media scratch can also occur when a particle is trapped
nents é.g, power, buses, and so forth). A particularlpetween the drive head and the media [50]. Such dangers
important component of the drive is its firmware — thare well-known to drive manufacturers, and hence modern
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disks “park” the drive head when the drive is not in us2.3 The Fractured Failure Model

to reduce the number of head crashes; SCSI disks epedm our discussion of the many root causes for failure,
sometimes include various filters to remove particles [4}e are now ready to put forth a more realistic model of
Media errors most often lead to permanent failure or cafisk failure. In our model, failures in the storage subsys-
ruption of individual disk blocks. tem manifest themselves in three ways:

Mechanical: “Wear and tear” eventually leads to the faile Entire disk failure: The entire disk is no longer acces-
ure of moving parts. The drive motor can spin irregulariible. If permanent, this is the classic “fail-stop” fagur

or fail completely. Erratic arm movements can lead 9 Block failure; One or more blocks are not accessible;
head crashes and media flaws. Inaccurate arm movengn referred to as “latent sector errors” [28, 27].

can position the disk poorly upon a write, making blockg g|ck corruption: The data within individual blocks
inaccessible or corrupted for subsequent reads. is altered. This failure is perhaps the most insidious error

Electrical: A power spike or surge can damage in-driy@anifestation because it is silent — the storage subsystem
circuits and hence lead to drive failure [58]. Thus, elect§iMPply returns “bad” data upon a read.

cal problems can lead to entire disk failure. We term this model th&actured failure model (FFM)

Drive fi - . ise in the dri to emphasize that pieces of the storage subsystem can fail.
i nl\l/e |rrrr11\_/vare. n_tetres]Elng err(t)rr]s arlsedm tf? rlvefcon\-ﬁ/e now discuss some other key elements of FFM, includ-
rofier, which consists of many thousands of fines otreg I%; the transience, locality, and frequency of failures.
time, concurrent firmware. For example, disks have bee

known to return correct data but circularly shifted by 8 3 1 Transience of Failures

byte [31] or have “memory leaks” that lead to errors [58],

. : . our model, failures can be “sticky” (permanent) or
Some firmware bugs are well-enough known in the fie o . 4 ; .
” ] s 1 ransient” (temporary). Which behavior manifests itself
that they have specific names; for example, “misdirecte

writes are writes that place the correct data on the disk bl%o Znﬁ;vl.ﬂz?,gfz]eeé?;tpfgg; ?nolfilge]lil ?r:git::l;trg s tl;(;rt iﬁzm

in the wrong location, and “phantom” writes are Writes uent requests will continue to fail. In contrast, a trans
that the drive reports as completed but that never reach) q ' '

. . . ort or higher-level software issue could at first cause a
the media [63]; phantom writes can be caused by a bu . - :
! . : . L ck failure or corruption; however, the operation could
or even misconfigured cachee(, write-back caching is . .
o siibsequently succeed if retried.
enabled). In summary, errors in drive firmware often lea

to sticky or transient block corruption. 232 Locality of Failures

Transport: The transport connecting the drive and ho&ecause multiple blocks of a disk can fail, one must con-
can also be problematic. For example, a study of a largider whether such block failures are dependent. The root
disk farm [57] reveals that most of the systems tested healises of block failure indicate that some forms of block
interconnect problems, such as bus timeouts. Parity failure do indeed exhibit spatial locality [28]. For exam-
rors also occurred with some frequency, either causing pde, a scratched surface can render a number of contiguous
quests to succeed (slowly) or fail altogether. Thus, thdocks inaccessible. However, all failures do not exhibit
transport often causes transient errors for the entiredrilocality; for example, a corruption due to a misdirected

. write may impact only a single block.
Bus controller: The main bus controller can also be prob- yimp y g

Iemat|c. For example, the EIDE co_ntrpller ona partlcuI%r.&3 Frequency of Failures

series of motherboards incorrectly indicates completfong K fail d " d

a disk request before the data has reached the main m ¢ tal ures ant corcrjup I(I)ns 0 occgr—tlas (t)rlegoTDmir'

ory of the host, leading to data corruption [62]. A simil f'a skor?gte Syﬁ em e\{[e oper Slfj.cf.mc,, yzg a?—l » DISKS

problem causes some other controllers to return status bit ax a ot — all guarantees are fiction [23]. However,
e must also consider how frequently such errors occur,

as data if the floppy drive is in use at the same time as . : 7o X
hard drive [21]. Others have also observed IDE protoc%‘?rt'cu'a”y when modeling overall reliability and decid-
g which failures are most important to handle. Unfortu-

version problems that yield corrupt data [19]. Thus, prow—

lems with the bus controller can lead to transient bloa?tmyf' ast Talagala flmdtrI]Dattterson %0”?‘]9“‘ [53]’ disk (érlvl(e
failure and data corruption. manufacturers are loathe to provide information on dis

failures; indeed, people within the industry refer to an im-
Low-level Drivers: Recent research has shown that delicit industry-wide agreement to not publicize such de-
vice driver code is more likely to contain bugs than thails [3]. Not surprisingly, the actual frequency of drive
rest of the operating system [12, 18, 56]. While some efrors, especially errors that do not cause the whole disk
these bugs will likely crash the operating systems, othéeosfail, is not well-known in the literature. Previous work
can issue disk requests with bad parameters, data, or bothlatent sector errors indicate that such errors occur more
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commonly than absolute disk failure [28], and more re-

cent research estimates that such errors may occur fi‘v'!'—"e;’eI ,\Tg‘;i’:gfiin Assu?g";;itworks
. . . ero
times more often than absolute disk fallur.es [50]. D irrorCode Check return codes | Assumes lower level
In terms of relative frequency, block failures are more from lower levels can detect errors
likely to occur on reads than writes, due to internal error Psanity Check data structures  May require extra
handling common in most disk drives. For example, failed— F:g;ﬁﬁg;':g”gger ;;22‘:5;::;‘;‘;';
. . Redundancy
writes to a given sector are often remapped to another one or more blocks |  in end-to-end way

(distant) sector, allowing the drive to transparently Hand Table 1:The Levels of the IRON Detection Taxonom
such problems [25]. However, remapping does not imply o ) oo

that writes cannot fail. A failure in a component aboV/gxonomies, respectively. Note that the taxonomy is by

the media ¢.g, a stuttering transport), can lead to an ufil® means complete. Many other techmq_ues are likely to
successful write attempt. Also, for remapping to succe&tiSt: just as many different RAID variations have been

free blocks must be available; a large scratch could rdfoPosed over the years [2, 10, 47, 64].

der many blocks unwritable and quickly use up reserved! ne detection and recovery mechanisms employed by a
space. Reads are more problematic: if the media is (i System define itiilure policy. Currently, itis difficult

readable, the drive has no choice but to return an error 10 discuss the failure policy of a system. We believe that
with the IRON taxonomy, one will be able to describe the

2.3.4 Trends failure policy of a file system, much as one can already

In many other areas(g, processor perfprmance),_ techgescribe a cache replacement or a file layout policy.
nology and market trends combine to improve different

aspects of computer systems. In contrast, we beli®gl Levels of Detection

that technology trends and market forces may combine f8ye| 1 techniques are used by a file system to detect that
make storage system failures ocenorefrequently over 4 proplem has occurreie., that a block cannot currently

F(;rst., rellabl_lltyl|s a grezter challenge wf;;_atn drives ACErrorCode: The most basic detection that an IRON file
made increasingly more dense, as more bils are pac gtem can perform is to check the return codes provided

Into smaller spaces, drive logic (and hence °°”_‘p'ex' the disk and lower levels of the storage system. Given
increases [4]. Second, at the low-end of the drive may-

. at disks currently only report that a block is unavailable
ket, cost-per-bytg dqmlnates, and_ hence many COrners,are .. ol cannot detect corruption.

cut to save pennies in IDE/ATA drives [4]. Low-cost “PC , . . ) o

class” drives tend to be tested less and have less intefhaf"ity: With sanity checks, the file system verifies that
machinery to prevent failures from occurring [25]. Th S on-disk data_ struct_ur_es are consistent. This check can
result, in the field, is that ATA drives are observably le performed e.|therW|.th|n asingle blockor across bIOCk,S'
reliable [57]; however, cost pressures serve to increaséNhen_ chec_kl_ng a s_|ngle block, the '_C'Ie system can el-
their usage, even in server environments [19]. Finally, tH%G_r verify |nd|V|du§I fields €.9, that pointers are within
amount of software is increasing in storage systems allid ranges) or verify thg/peof the block. For example,
as others have noted, software is often the root causd§St file system superblocks include a “magic number
errors [20]. In the storage system, hundreds of thousa some older file systems such as.Pllot even include a
of lines of software are present in the lower-level drivefgader per data block [41]. B_y checl_<|ng whether a block
and firmware. This low-level code is generally the type g@s_the correct type information, a f_|Ie system can guard
code that is difficult to write and debug [18, 56] — hence@gainst some forms of block corruption.

likely source of increased errors in the storage stack.  Checking across blocks can involve verifying only a
few blocks €.g, that a bitmap corresponds to allocated

3 The IRON Taxonomy blocks) or can involve periodically scanning all structure
In this section, we outline strategies for developing 4@ determine if they are intact and consistesg( simi-
IRON file systemj.e., a file system that detects and relar to fsck [35]). Even journaling file systems can benefit
covers from a range of modern disk failures. Our maffem periodic integrity checks; journaling does not pre-
focus is to develop different strategies, ratrossdisks Vventa buggy system from corrupting on-disk structures.
as is common in storage arrays, ithin a single disk. e Redundancy: The final level of the detection taxon-
Such Internal RObustNess (IRON) provides much of tleeny is redundancy. Many forms of redundancy can be
needed protection within a file system. used to detect block corruption. For exampmleecksum-

To cope with the failures in modern disks, an IROKiinghas been used in reliable systems for years to detect
file system includes machinery to badletect(Level D) corruption [5] and has recently been applied to improve
fractured faults andecover(Level R) from them. Ta- security as well [37, 54]. Checksums are useful for a num-
bles 1 and 2 present our IRON detection and recovdrgr of reasons. First, they assist in detecting classic “bit
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e Propagate: The simplest recovery mechanism is to

Il_%e;io Jscrr;:'(?vﬁy Assu(r:noe”;n;g;tworks propagate errors up.th rough the file system; the file system
Reropagate Propagate error Informs user informs the application that an error occurred and assumes
Rstop Stop activity Limit amount the user will respond appropriately to the problem.
(crash, prevent writes of damage _ e Stop: One way to recover from a disk failure is to stop
Rauess Return “guess” at Could be wrong; . .. . .
block contents failure hidden the current file system activity. This action can be taken at
RRetry Retry read or write Handles failures many different levels of granularity. At the coarsest level
_ that are transient one can crash the entire machine. One positive feature is
RRepair Repair data structs Could lose data that this recovery mechanism turns aditecteddisk fail-
RRemap Remaps block or file | Assumes disk informs . . . . .
to different locale ES of failures ures into fail-stop failures and likely preserves file syste
R Redundancy Block replication Enables recovery integrity. However, crashing assumes the problem is tran-
or other forms from loss/corruption  sjent; if the faulty block contains repeatedly-access¢a da
Table 2:The Levels of the IRON Recovery Taxonomy. (e.g, a .login file), the system may repeatedly reboot, at-

tempt to access the unavailable data, and crash again. At

rot”, where the bits of the media have been flipped. Howin intermediate level, one can kill only the process that
ever, in-media ECC often catches and corrects such tiggered the disk fault and subsequently mount the file
rors. Checksums are therefore particularly well-suited feystem in a read-only mode. This approach is advanta-
detecting corruption in higher levels of the storage systejgous in that it does not take down the entire system and
stack,e.g, a buggy controller that “misdirects” disk upthus allows other processes to continue. At the finest level,
dates to the wrong location or does not write a given blogKournaling file system can abort only the current transac-
to disk at all. However, checksums must be carefully inion. This approach is likely to lead to the most available
plemented to detect these problems [5, 63]; specificallysgstem, but may be more complex to implement.
checksum that is stored along with the data it checksug,,,.ss: As recently suggested by Rinaed al. [44],
will not detect such misdirected or phantomwrites. 5 qher possible reaction to a failed block read would be

Higher levels of redundancy, such as block mify manufacture a response, perhaps allowing the system
roring [8], parity [36, 39] and other error-correction, keep running in spite of a failure. The negative is that

codes [32], can also detect corruption. For examplegg ariificial response may be less desirable than failing.

file system could keep three copies of each block, reaod]_%etry: A simple response to failure is to retry the failed

ing and comparing all three to determine if one has been " ° ; .
9 paring ration. Retry can appropriately handle transient syror

corrupted. However, such techniques are truly desig o ) E . o
. ) ) ut wastes time retrying if the failure is indeed permanent.
for correction (as discussed below); they often assume the

presence of a lower-overhead detection mechanism [39]. Bepair: If an IRON file system can detect an incon-
sistency in its internal data structures, it can likely iepa

3.2 Detection Frequency thgm, just as fsgk would. For example,.a bloc;k that is not
All detection techniques discussed above can be applRfinted to, but is marked as allocated in a bitmap, could
lazily, upon block access, @agerly perhaps scanningbe fre_ed. As dlscusse_d aboye, s_uch techniques are useful
the disk during idle time. We believe an IRON file systeffVen in the context of journaling file systems, as bugs may
should always contain some form of lazy detection afffid to corruption of file system integrity.
should consider additional eager methods. e Remap: IRON file systems can perform block remap-
For exampleglisk scrubbingds a classic eager techniquding. This technique can be used to fix errors that oc-
used by RAID systems to scan a disk and thereby dgir when writing a block, but cannot recover failed reads.
cover latent sector errors [28]. Disk scrubbing is parti&pecifically, when a write to a given block fails, the file
ularly valuable if a means for recovery is available; thaystem could choose to simply write the block to another
is, if a replica exists to repair the now-unavailable blockcation. More sophisticated strategies could remap an
To detect whether an error occurred, scrubbing typicafjtire “semantic unit” at a timee(g, a user file, the jour-
leverages the return codes explicitly provided by the diRl, and so forth), thus preserving logical contiguity.
and hence discovers block failure but not corruption. ¥ Redundancy: Finally, redundancy (in its many forms)
combined with other detection techniques (such as checkin be used to recover from block loss. The simplest form
sums), scrubbing can discover block corruption as wellis replication, in which a given block has two (or more)
copies in different locations within a disk. Another redun-
3.3 Levels of Recovery dancy approach employs parity to facilitate error correc-
Level R of the IRON taxonomy facilitates recovery frontion. Similar to RAID 4/5 [39], by adding a parity block
block failure within a single disk drive. These techniqugser block group, a file system can tolerate the unavailabil-
handle both latent sector errors and block corruptions. ity or corruption of one block in each such group. More
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complex encodingse(g, Tornado codes [32]) could alsdferent low-level strategies in current systems.

be used, forming a rich space for future exploration. Finally, it should be noted that while most of this dis-
However, redundancy within a disk can have negatieassion focuses on the case of a single disk, IRON tech-

consequences. First, replicas must account for the spatiglies may be useful even when multiple drives are used

locality of failure .g, a surface scratch that corrupts @ a RAID-like manner. Specifically, in-disk parity or

sequence of neighboring blocks); hence, copies shouldrbplication can be another useful technique that storage

allocated across remote parts of the disk, which can lovegrays employ to combat the increasingly common sector

performance. Second, in-disk redundancy techniques ¢amlt and corruption errors they encounter.

incur a high space cost; however, in many desktop set- . .

tings, drives have sufficient available free space [15]. 4 Failure Policy: Methodology

. We now describe our methodology to uncover thigure
3.4 Why The File System? policy of file systems. Our main objective is to determine
One natural question to ask is: why should the file systeghich detection and recovery techniques each file system
implement detection and recovery instead of the disk? Afses and the assumptions each makes about how the un-
ter all, modern disks do contain a number of mechanisanerlying storage system can fail. By comparing the failure
for detecting and recovering from errors. policies across file systems, we can learn not only which
In our view, the primary reason for detection and recofile systems are the most robust to disk failures, but also
ery within the file system is found in the classic end-tauggest improvements for each. Our analysis will also be
end argument [46]; even if the lower-levels of the systehelpful for inferring which IRON techniques can be im-
implement some forms of fault tolerance, the file systeplemented the most effectively.
must implement them as well to guard against all forms of Our basic approach is to inject faults just beneath the
failure. For example, the file system is thely place that file system and then observe how the file system reacts
can detect corruption of data in higher levels of the storagethose faults. If the fault policy is entirely consistent
stack €.g, within the device driver or drive controller). within a file system, then this can be done very simply;
A second reason for implementing detection and risr example, we can run any workload, fail one of the
covery in the file system is that the file system has exdmbcks that is read or written, and then conclude that the
knowledge of how blocks are currently being used. Thusay the file system reacts to this block failure is the way
the file system can apply detection and recovery intelii-reacts to all block failures. However, the file system
gently across different block types. For example, the filright have different failure policies depending upon the
system can provide a higher level of replication for its owmperation performed and the type of the faulty block.
meta-data, perhaps leaving failure detection and correcTherefore, to explore the complete failure policy of a
tion of user data to applications (indeed, this is a specifie system, we must trigger all interesting cases. Our
solution that we explore). Similarly, the file system caghallenge is to coerce the file system down its different
provide machinery to enable application-controlled replinternal code paths in order to observe how each path han-
cation of “important” data, thus enabling an explicit pedles failure. This requires that we run workloads exercis-
formance/reliability trade-off. ing all relevant code paths in combination with faults on
A third reason is performance: file systems and st@l blocks containing different types of file system meta-
age systems have an “unwritten contract” [48] that allovéata. We now describe how we create workloads, inject
the file system to lay out blocks to achieve high banéaults, and infer the reaction of the file system.
width. For example, the unwritten contract stipulates that
adjacent blocks in the logical disk address space are p§sl  Applied Workload
ically proximate. Disk-level recovery mechanisms, sudbur goal when applying workloads is to exercise the file
as remapping, break this unwritten contract and cause mtstem as thoroughly as possible. Although we do not
formance problems. If the file system instead remaglsim to stress every code path, we do strive to execute
blocks, it can move an entire logically-related urdtg, many of the interesting internal cases.
a file) and hence avoid such problems. Our workload suite contains some general programs
However, there are some complexities to placing IRONat are common for all file systems. For example, the
functionality in the file system. First, some of these techuite contains a separate program for each function of the
niques require new persistent data structuees,to track file system API €.g, mkdir, truncategtc), a set of pro-
where redundant copies or parity blocks are located. Sgtams to stress journal recovery, and programs to exercise
ond, some mechanisms require control of the underlyingmmon functionality such as path traversal.
drive mechanisms. For example, to recover on-disk datan addition to the general functionality, each file system
modern drives will attempt different positioning and rea@iso has a number of special cases that must be stressed.
ing strategies [4]; no interface exists to control these dfor example, the Linux ext3 inode uses a standard im-



Draft: Please do not distribute.

balanced tree with indirect, doubly-indirect, and triply4.3 Failure Policy Inference
indirect pointers to track file blocks; hence, our workloaglfter running a workload and injecting a fault, the final
ensures that sufficiently large files are created to handtep is to determine how the file system behaved. To in-
these different cases. Other file systems have similar pg&-how a fault affected the file system, we compare the
culiarities that must be exerciseglg, the B+-tree balanc- results of running with and without the fault. We per-
ing code of ReiserFS). form this comparison across all observable outputs from
the system: the errors codes and data returned by the file
system API, the contents of the system log, and the low-
4.2 Type-Aware Fault Injection level I/0 traces recorded by the fault-injection layer.

kIn summary, we believe that we have constructed a

Our second step is to inject faults that emulate a di ; . .
adhering to the fractured failure model. Many standa%i'rly comprehensive set of workloads and possible disk
aults to exercise file system code. Our workload suite

fault injectors [9, 52] fail disk blocks in &ype oblivious . ;
manner; that is, a block is failed regardless of how it fontains about 30 programs, each file system has between

being used by the file system. However, repeatedly i\zl a(;]d 14 dlﬁgrent blop K typhes, a_nd deach block c(;:\ane
jecting faults into random blocks and waiting to uncov giled on a read or a write or have its data corrupted. For

new aspects of the failure policy would be a laborious aﬁ&Ch f'lte sylstem,t g:ls I?;noftfj_nts to about 400 tests which
time-consuming process, likely yielding little insight oiyenerate relevant block tratic.

the failure handling policy. 5 Failure Policy: Results

The keyidea that allows us to test a file system in a r%e now present the results of our failure policy analy-

gt!vely eff.|C|ent. and thorough mann.e.rtyspe aware fault sis for four commodity file systems: ext3, ReiserFS (ver-
injection, in which a block of a specific type(g, inode, . , . i

. - X . ; sion 3), and IBM’s JFS on Linux and NTFS on Windows.
directory data, or indirect block) is explicitly failed. peg : ) : )
) L o ) g . For each file system, we first present basic background in-
information is crucial in reverse-engineering the failur

policy, allowing us to discern the different strategiestthgormaltlon and then discuss the general failure policy we

a file system applies for its different data structures. THQcovered along with bugs and inconsistencies; where ap-

i : ropriate and available, we also look at source code to
disadvantage of our type-aware approach is that the faﬁjlf . .
ter explain the problems we discover.

injector must be tailored to each file system tested an%Due o the sheer volume of experimental data, it is dif-
requires a solid understanding of the on-disk structur?s. - .
. ' icult to present all results for the reader’s inspectior. Fo
However, we believe that the benefits of type-awareness | S
: . each file system that we studied in depth, we present a
clearly outweigh these complexities. . - X
) T ) graphical depiction of our results, showing for each work-
Our mechanism for injecting faults is to use a softwafgad/plocktype pair how a given detection or recovery
layer directly beneath the file systene(, a pseudo-device tgchnique is used. Figure 2 presents a (complex) graph-
driver). This software layer injects both block failureslanca| depiction of our results — see the caption for interpre-
block corruption. To emulate a block failure, we simplyation details. We now provide a qualitative summary of
return the appropriate error code and do not issue the gfs results that are presented within the figure.
eration to the underlying disk. To emulate block corrup-

tion, we change bits within the block before returningth®,1  Linux ext3

data; in some cases we inject random noise, whereas iijux ext3 is the most similar to many classiolx file
other cases we use a block similar to the expected one@gtems such as the Berkeley Fast File system [34]. Ext3
with some number of corrupted fields. The software laygfides the disk into a set of block groups; within each are
also models both transient and sticky faults and operaigstically-reserved spaces for bitmaps, inodes, and data
on either read or write operations. blocks. The major addition in ext3 over ext2 is journal-
By injecting failures just below the file system, we ening [61]; hence, ext3 includes a new set of on-disk struc-
ulate faults that could be caused by any of the layerstirres to manage its write-ahead log.
the storage subsystem. Therefore, unlike approaches etection: To detect read failures, ext3 primarily uses
emulate faulty disks using additional hardware [9], we camror codes D g.rorcode). HOWever, when a write fails,
capture faults introduced by buggy device drivers and caxt3 does not record the error codeA...,); hence, write
trollers. A drawback of our approach is that it does netrors are often ignored, potentially leading to seriows fil
model how lower-layers of the system handle disk faultsystem problemse(g, when checkpointing a transaction
for example, some SCSI drivers retry certain commantsthe fixed-location). Ext3 also performs a fair amount of
after a failure [43]. However, given that we are charasanity checking Dsqnit,). For example, ext3 explicitly
terizing how file systems react to faults, we believe this ferforms type checks for certain blocks such as the su-
the correct layer for fault injection. perblock and many of its journal blocks. However, little
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type checking is done for many important blocks, such #¢hen ReiserFS callzani c, the file system crashes, usu-
directories, bitmap blocks, and indirect blocks. Ext3 alsdly leading to a reboot and recovery sequence. By do-
performs numerous other sanity checks in type-specifig so, ReiserFS attempts to ensure that its on-disk struc-
ways;e.g, when the file size field in an inode contains tres are not corrupted. ReiserFS recovers from read and
very large valueppen detects this and reports an error. write failures differently. For most read failures, ReB8r
Recovery: For most detected errors, ext3 propagates thgopagates the error to the usétropagatc) and some-
error to the userR p,opagate)- FOr read failures, ext3 alsotimes performs a single retry?(g..,) (€., when a data
often aborts the journaHs,,,); aborting the journal usu- block read fails, or when an indirect block read fails dur-
ally leads to a read-only remount of the file system, priggunl i nk,truncat e, andw i t e operations). How-
venting future updates without explicit administrator irever, ReiserFS never retries upon a write failure.
teraction. Ext3 also uses retriR g.:,,); when a prefetch Bugs and Inconsistencies: ReiserFS also exhibits in-
read fails, ext3 retries only the originally requested klocconsistencies and bugs. For example, when an ordered
Bugs and Inconsistencies: We found a number of bugsdata block write fails, ReiserFS journals and commits the
and inconsistencies in the ext3 failure policy. First, esrotransaction without handling the errak ., instead of

are not always propagated to the useg(truncate the expectedRs,.,), which can lead to corrupted data
andr ndi r fail silently). Second, there are importanblocks since the metadata blocks now point to invalid
cases when ext3 does not immediately abort the jourdata contents. Second, while dealing with indirect blocks,
on failure {.e, does not implemenRs;,,). For exam- ReiserFS detects but ignores a read failure; hence, on a
ple, when a journal write fails, ext3 still writes the rest dfr uncat e orunl i nk, it updates the bitmaps and super
the transaction, including the commit block, to the joublock incorrectly, leaking space. Third, ReiserFS some-
nal; thus, if the journal is later used for recovery, the filémes callspani ¢ on failing a sanity check, instead of
system can easily become corrupted. Third, ext3 does awnply returning an error code. Finally, there is no sanity
always perform sanity checking; for examplel i nk or type checking to detect corrupt journal data; therefore,
does not check thkei nkscount field before modifying replaying a corrupted journal block can make the file sys-
it and therefore a corrupted value can lead to a systé®m unusable, if for example, the block is written as the
crash. Finally, although ext3 has redundant copies of thigper block or a bitmap block.

superblock R redundancy), these copies are never updated

after file system creation. 5.3 IBMJFS
. JFS uses modern techniques to manage data, block allo-
5.2 ReiserkS cation and journaling, with B+ trees to manage files and

ReiserFS [42] is quite different in its internal structurdirectories in addition to using a tree structure for block
than ext3. Virtually all meta-data and data are placedafiocation maps. Unlike ext3 and ReiserFS, JFS uses
a balanced tree, similar to a database index. The majecord-level journaling to reduce journal traffic.
advantage of tree-like structuring is scalability [55]; aDetection: Error codes are used to detect read fail-
lowing large numbers of files to co-reside in a directoryures QO g, rorcode), DUt Most write errors are ignored
Detection: Our analysis reveals that ReiserFS pay®z...)(like ext3), with the exception of journal su-
close attention to error codes across reads and wripesblock writes. JFS employs only minimal type check-
(DErrorcode). ReiSErFS also performs a great deal of imag; the superblock and journal superblock have magic
ternal sanity checkingl{sa.nity). FOr example, all inter- and version numbers that are checked. Other sanity
nal and leaf nodes in the balanced tree have a block headw®rcks Dgsqnityy) are used for different block types. For
containing information about the level of the block in thexample, internal tree blocks, directory blocks, and in-
tree, the number of items, and the available free spaodg blocks contain the number of entries (pointers) in the
the super block and journal metadata blocks have “magiock; JFS checks to make sure this number is less than
numbers” which identify them as valid; the journal dethe maximum possible for each block type. As another ex-
scriptor and commit blocks also have additional informample, an equality check on a field is performed for block
tion; finally, inodes and directory blocks have known fomllocation maps to verify that the block is not corrupted.
mats. ReiserFS checks whether each of these blocks Rasovery: The recovery strategies of JFS vary dramat-
the expected values in the appropriate fields. Howevigally depending on the block type. For example, when
not all blocks are checked this carefully. For examplan error occurs during a journal superblock write, JFS
bitmaps and data blocks do not have associated typedrashes the systenkg:,,); however, other write errors
formation and hence are never type-checked. are ignored entirelyRz..,). On a block read failure to
Recovery: The most prominent aspect of the recovethe primary superblock, JFS accesses the alternate copy
policy of ReiserFS is its tendency fwani ¢ the sys- (Rgredundancy) t0 COMplete the mount operation; how-
tem upon detection of virtually any write failur&g:.,). ever, a corrupt primary results in a mount failufest,,).
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Explicit crashesRs..p) are used when a block allocatiorations. The main problem with ext3 is its failure handling
map or inode allocation map read fails. Error codes for &ir write errors, which are ignored and cause serious prob-
meta-data reads are handled by generic file system ctates including possible file system corruption.

called by JFS; this generic code attempts to recover franReiserFS: First, do no harm. ReiserFS is the most
read errors by retrying the read a single tinfs(:,). concerned about disk failure. This concern is particularly
Finally, the reaction for a failed sanity check is to prop&vident upon write failures, which often induceani c;

gate the errorf propagate) @and remount the file system aReiserFS takes this action to ensure that the file system is
read-only Rs:.p); during journal replay, a sanity-checknot corrupted. ReiserFS also uses a great deal of sanity
failure causes the replay to aboRdz,p). and type checking. These behaviors combine to form a
Bugs and InconsistenciesWe also found problems with Hippocratic failure policy: first, do no harm.

the JFS failure policy. First, while JFS has some built ©JFS: The kitchen sink. JFS is the least consistent and
redundancy, it does not always use it as one would exost diverse in its failure detection and recovery tech-
pect; for example, JFS does not use its secondary copiRfues. For detection, JFS sometimes uses sanity, some-
of aggregate inode tables (special inodes used to desctiles checks error codes, and sometimes does nothing at
the file system) when an error code is returned for an agt.  For recovery, JFS sometimes uses available redun-
gregate inode read. Second, a blank page is sometiiggcy, sometimes crashes the system, and sometimes re-
returned to the user{g..ss), although we believe thistries operations, depending on the block type that faits, th

is not by designi(e. it is a bug); for example, this oc-error detection and the API that was called.

curs when a read to an internal tree block does not pgSSTFS: Persistence is a virtue. Compared to the Linux

its sanity check. Third, some bugs limit the utility of JF§le systems, NTFS is the most persistent, retrying failed
recovery; for example, although generic code detects reaguests many times before giving up. It also seems to
errors and retries, a bug in the JFS implementation leggtgpagate errors to the user quite reliably. However, more
to ignoring the error and corrupting the file system.  thorough testing of NTFS is needed in order to broaden

54 Windows NTES these conclusions (a part of our ongoing work).

NTFS [53] is the only commercial file system in ourstudyj 6 Technique Summary

Because our analysis requires detailed knowledge of on- . . .
etection and Recovery: Inconsistency is common.

disk structures, our NTFS analysis requires more effort . . . .
! ucty . ysis requl found a high degree of inconsistency (observable in

first reverse-engineer such information; hence, we hat & " in Fi 2Yin fail " il
not yet run the full set of tests. e patterns in Figure 2) in failure policy across all file-sys

We find that NTFS uses error codeB f,,orcod) 10 tems. For example, ReiserFS performs a great deal of san-

detect both block read and write failures. Similar to exg checking; however, in one important case it does not

and JFS, when a data write fails, NTFS records the er orurnal replay), and the result is that a single corrupted
code but, does not use iDiyery) v’vhich can corrupt the ock in the journal can corrupt the entire file system. JFS
file system eron is the least consistent across all file systems, employing

NTFS performs strong sanity checkinganic,) on different techniques across block types and routines.

meta-data blocks; the file system becomes unmountabld? Our estimation, the root cause of inconsistendgits

if any of its meta-data blocks (except the journal) are cd'€ Policy diffusionthe code that implements the failure
rupted. NTFS surprisingly does not always perform Saﬂ_(_)hc_y is spread throughout the kgrnel. Indeed, the diffu-
ity checking,e.g, a corrupted block pointer can point telon is encouraged by some architectural features of mod-

important system structures and hence corrupt them wité f||_e systems, such as the splitbetween generic and spe-
the block pointed to is updated. cific file systems. Further, we have observed some cases

In most cases, NTFS propagates the error to the uMhere different developers implement different portions
(Rp .). NTFS aggressively uses retrR i) of the code and hence implement different failure policies
ropagate)- eiry

when operations fail. For example, NTFS retries up ES'Q,’ one Of the_few Cases In which -Re|serFS does
seven times under read failures. In the case of write fai2"'c On write failure arises due to this); perhaps r_necha—
ures, the number of retries variesd, three times for data nisms need to be putinto place to encourage consistency.

blocks, two times for MFT blocks). e Detection and Recovery: Bugs are common/e also
’ . found numerous bugs across the file systems we tested,
5.5 File System Summary some of which are serious, and many of which are not

e Ext3: Overall simplicity. Ext3 implements a simplefound by other sophisticated techniques [65]. We believe
and mostly reliable failure policy, matching the gener#iis is generally indicative of the difficulty of implement-
design philosophy found in the ext family of file systeméng a correct failure policy; it certainly hints that more
It checks error codes, uses a modest level of sanity cheeloert needs to be put into testing and debugging of such
ing, and recovers by propagating errors and aborting operde. One suggestion in the literature that could be help-
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ful would be to periodically inject faults in normal operablock failure is observed.

tion as part of a “fire drill” [38]. Our method reveals thas Recovery: Automatic repair is rare. Automatic repair
testing needs to be broad and cover as many code paths ased rarely by the file systems; instead, after using an
possible; for example, only by testing the indirect-blockg;,, technique, most of the file systems require man-
handling of ReiserFS did we observe certain classesuall intervention to attempt to fix the observed problem
fault mishandling. (i.e, running fsck). We believe that more effort should be
e Detection: Error codes are sometimes ignored. placed into developing automatic repair strategies.
Amazingly (to us), error codes were sometimes clearly ig-Detection and Recovery: Redundancy is not used.
nored by the file system. This was most common in JRSnally, and perhaps most importantly, while virtually all
but found occasionally in the other file systems. Perhaiie systems include some machinery to detect disk fail-
a testing framework such as ours should be a part of tes, none of them apphedundancyto enable recovery
file system developer’s toolkit; with such tools, this clagsom such failures. The lone exception is the minimal
of error is easily discovered. amount of superblock redundancy found in JFS; even this
o Detection: Sanity checking is of limited utility. Many redundancy is used inconsistently. Also, JFS places the
of the file systems use sanity checking to ensure that ttapies close, endangering them to spatial locality of er-
meta-data they are about to use meets the expectation®us. As it is the least explored and potentially most use-
the code. However, modern disk failure modes such fa$ in handling the failures common in drives today, we
misdirected and phantom writes lead to cases where ti&xt investigate the inclusion of redundancy into the fail-
file system could receive a properly formatted (but incowre policy of a file system.

rect) block; the bad block thus passes sanity checks, is )

used, and can corrupt the file system. Indeed, all file sf@- AN IRON File System

tems we tested exhibit this behavior. Hence, we belieyg now describe our implementation and evaluation of
stronger tests (such as checksums) should be used. |RON ext3 (ixt3) Within ixt3, we implement recovery

o Recovery: Stop is useful (if used correctly). Most techniques that most single-disk file systems do not cur-
file systems employed some form &fs;,, in order to rently provide: checksumming (to detect corruption) and
limit damage to the file system when some types of én-disk replication (to recover from block failure or cor-
rors arose; ReiserFS is the best example of this, as it callption). We apply these mechanisms to theta-data
pani ¢ on virtually any write error to prevent corruptiorof the file system; by doing so, ixt3 can detect and re-
of its structures. However, one has to be careful with suctiver from block failures and corruptions to its inodes,
techniques. For example, upon a write failure, ext3 trigifrectories, and other important file system structures.
to abort the transaction, but does not correctly squelch@Hus, in our taxonomy, ixt3 employ® z,rorcode @nd
writes to the file system, leading to corruption. Perhapsg.,naane, (Checksumming) to detect block failure and
this indicates that fine-grained rebooting is difficult t8 R g gunaancy (replication) to recover from any detected
ply in practice [11]. loss or corruption.

e Recovery: Stop should not be overused.One down-

side to halting file system activity in reaction to failure i§.1  Implementation

the inconvenience it causes: recovery takes time and offenimplement checksumming within ixt3, we borrow
requires administrative involvement to fix. However, atechniques from other recent research in checksumming
of the file systems used some form®§:,, when some- in file systems [54, 37]. Specifically, we place meta-data
thing as innocuous as a read failure occurred; insteadcbkcksums firstinto the journal (with the meta-data blocks
simply returning an error to the requesting process, tti&t are covered by the checksums), and then checkpoint
entire system stops. Such draconian reactions to possthigse checksums to their final location, distant from the
temporary failures should be avoided. meta-data blocks. Checksums are very small and can be
¢ Recovery: Retry is underutilized. Most of the file sys- cached for read verification. In our current implementa-
tems assume that failures are not transient, and hencdido, we use SHA-1 to compute the checksums. By in-
not retry the request at a later time (this could be statedd@rporating checksumming into existing transactional ma-
an alternate fashion: they assume that retry has been dgtigery, ixt3 cleanly integrates into the ext3 framework.

at a lower level in the system). The systems that employWe apply a similar approach in adding meta-data repli-
retry generally assume read retry is useful, but write reggtion to ixt3. All meta-data blocks are written to a sep-
is not; however, transient faults due to device drivers aratereplica log they are later checkpointed to a fixed
transport issues are equally likely to occur on reads aedation in a block group distant from the original meta-
writes. Hence, retry should be applied more uniformigiata. We again use transactions to ensure that either both
NTFS is the lone file system that embraces retry; it ¢®pies reach disk consistently, or that neither do.

willing to issue a much higher number of requests when aNote that “cleaning overhead”, which can be a large
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problem in pure log-structured file systems [45, 51], is

not a major performance issue for journaling file systems, .4 | cs | r ((:&S TC Tgf: T&C Al
even with ixt3-style replication. Journaling file systems R cs | R

already incorporate “cleaning” into their on-line mainte-SSH-Build | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01
nance costs; for example, ext3 first writes all meta-data to, V‘ﬁ‘;’ ) i-gg i-gg i-gg 1-88 1-88 i-(l)g i-gg

: “ ” . . ostiviari . . . . . . .
_the journal and then _cleans the journal by checkp_omt- pcB | 100! 130 | 145 081 | 080 | 113 | 127
ing the data to a final fixed location. Hence, the additional

cleaning of meta-data checksums and the replica log Trgble 3: The Costs of Redundancy. Results from running different
variants of ixt3 under the SSH-Build, Web Server, PostManki, TPC-

creases total traffic only by a small amount. B benchmarks are presented. The SSH-Build time measuréisthéo

i i ack, configure, and build the SSH source tree (the taridcsnis
. \N.e also .eXpI.ore a new idea for leveraglng CheCksurglyf)MBin size); we run a web server on top of ixt3 and transfeME
in a journaling file system; specifically, checksums can Bedata using http requests; we run 1500 PostMark transastiwith

used to relax ordering constraints and thus to improve p#g-sizes ranging from 4 KB to 1 MB, with 10 subdirectories 4500
9 P p%es; with TPC-B, we run 1000 randomly generated debit-treens-

formance. In particular, when updating its journal, stagetions. Along the columns, we vary which redundancy tegtenis im-

dard ext3 ensures that all previous journal data reachgented, in all possible combinations; “CS” implies meltata check-
. . . . . _summing is enabled, “R” that replication of meta-data isrted on, and
disk before the commit block; to enforce this orderingrc that transactional checksums are in use. Al resulte aormalized

standard ext3 induces an extra wait before writing tftfethe performance of standard Linux ext3; for the interéseader, run-
ing times for standard ext3 on SSH-Build, Web, PostMar, EPC-B

i . . in
commit block, and thus incurs extra rotational delay. -Q?e118.5, 52.6, 153.0, and 58.8 seconds, respectiveljesiihg is done

avoid this wait, ixt3 implements what we callt@nsac- on the Linux 2.6.9 kernel on a 2.4 GHz Intel P4 with 1 GB of mgmor
. . . The disk is a Western Digital WDC WD1200BB-00DAAO.
tional checksumwhich is a checksum over the contents

of a transaction. By placing this checksum in the journgdibeit simple) model of a “typical” action of a developer
commit block, ixt3 can safely issue all blocks of the trangr administrator; the web server is read intensive with
action concurrently. If a crash occurs during the comméioncurrency; PostMark is meta-data intensive, with many
the recovery procedure can reliably detect the crash ané creations and deletions; TPC-B induces a great deal of
not replay the transaction, because the checksum overgfgchronous update traffic to the file system.

journal data will not match the checksum in the commit Taple 3 reports the relative performance of the variants
block. Note that a transactional checksum provides theixt3 for the four workloads, as compared to stock Linux
same crash semantics as in the original ext3 and thus g&f8. From these numbers, we draw four conclusions.

be used even without other IRON extensions. First, for workloads similar to SSH-Build, there is virtu-
) ally no time overhead with higher levels of redundancy.
6.2 Evaluation Hence, if SSH-Build is indicative of the “typical” activity

We now evaluate our prototype implementation of ixt3ising IRON for meta-data robustness incurs little cost.
We focus on three major axes of assessment: robustnessecond, for the web server benchmark, we again see
to modern disk failures, and both the time and space oveé- observable degradation. Hence, for highly read and
head of the additional redundancy mechanisms. CPU intensive applications such as the web server, the
Robustness:To test the robustness of ixt3, we harness oadditional cost due to checksumming is not substantial.
fault injection framework. Under most failure and corrup- Third, the synchronous workload of TPC-B demon-
tion tests (not shown), ixt3 successfully detects errots agtrates the possible benefit of a transactional checksum.
recovers all metadata. Compared to ext3 in Figure 2, iXiBthe base case, this technique improves standard ext3
eliminates 184 problems out of the 191 observed (all gxerformance by 20%, and in combination with meta-data
cept data block corruption). The result is a consistent agitecksumming and replication reduces overall overhead
well-defined failure policy. from roughly 45% to 27%. Hence, even when not used
Time Overhead: We now assess the performance oveier additional robustness, checksums can be applied to
head of the IRON mechanisms used within ixt3. We isagnprove theperformanceof journaling file systems.
late the overhead of each mechanism by enabling metaFinally, for meta-data intensive workloads such as Post-
data checksumming, meta-data replication, and transitark and TPC-B, the overhead is more noticeable — 22%
tional checksumming separately and in all combinationfor PostMark and 27% for TPC-B. Since these workloads
We use four standard file system benchmarks: SSate very meta-data intensive, these results represent the
Build, which unpacks and compiles the SSH source digerst-case performance that we expect. Given our rel-
tribution; a web server benchmark, which responds taatively untuned implementation of ixt3, we believe this
set of static HTTP GET requests; PostMark [29], whidtlemonstrates that even in the worst case, the costs of
emulates file system traffic of an email server; and TP@eta-data robustness are not prohibitive.
B [59], which runs a series of debit-credit transactiorpace Overhead:To evaluate space overhead, we mea-
against a simple database. These benchmarks exhilstieed a number of local file systems and computed the
broad set of behaviors. Specifically, SSH-Build is a godadicrease in space required if all meta-data was replicated
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and room for checksums included. Overall, we found thapproach can be applied to large file systems.
the space overhead of checksumming and meta-data rdRON File Systems: Our work on IRON file systems

cation is small, in the 2% to 5% range. was partially inspired by work within Google. Therein,
Acharya suggests that when using cheap hardware, one
6.3 Summary should “be paranoid” and assume it will fail often and

Our implementation of ixt3 represents a middle-groural unpredictable ways [1]. However, Google (perhaps
in the space of IRON file systems. By applying IRONith good reason) treats this as an application-level prob-
techniques solely to its meta-data, ixt3 lowers the costlem, and therefore builds checksumming on top of the file
redundancy, both in terms of space and time overheasigstem; disk-level redundancy is kept across drives (on
In doing so, ixt3 leaves detection and recoveryusér different machines) but not within a drive [19]. We ex-

data to the applications themselves, which can implemetd this approach by incorporating such techniques into
application-appropriate strategies. However, we beliet file system, where all applications can benefit from
that ixt3 represents just a single point in a large spagem. Note that our techniques are complimentary to
of possible IRON file systems. Many different desigregpplication-level approaches; for example, if a file sys-
should be explored in order to better understand the beten meta-datablock becomes corrupted or inaccessible,

fits and costs of the IRON approach. user-level checksums and replicas do not enable recovery
of the now-corrupted volume.
7 Related Work Another related approach is the “driver hardening” ef-

Fault Injection and Robustness Testing: The fault- fort within Linux. As stated therein: “A ‘hardened’ driver
tolerance community has worked for many years on tegxtends beyond the realm of ‘well-written’ to include
niques for injecting faults into a system to determine itgrofessional paranoia’ features to detect hardware and
robustness [6, 14, 22, 33, 52, 60]. For example, Flsbftware problems” (page 5) [26]. However, while such
simulates the occurrence of hardware errors by alterifigvers would generally improve system reliability, we be-
the contents of memory or registers [6]; similarly, FINHeve that most faults should be handled by the file system
can be used to inject software faults into an operating syse. the end-to-end argument [46]).

tem [33]. More recent work develops techniques to testThe fractured failure model for disks is likely better
the Linux kernel behavior under errors [22]. understood by the high-end storage and high-availability

One major difference with most of this previous workystems communities. For example, Network Appliance
and ours is that our approach focuses on how file systeimisoduced “Row-Diagonal” parity, which can tolerate
handle the broad class of modern disk failure modes; #Weo disk faults and can continue to operate, in order to
know of no previous work that does so. Our approach aleasure recovery despite the presence of latent sector er-
assumes implicit knowledge of file-system block typegrs [13]. Further, virtually all Network Appliance prod-
by doing so, we ensure that we test many different patigs use checksumming to detect block corruption [24].
of the file system code. Much of the previous work inSimilarly, systems such as the Tandem NonStop kernel [5]
serts faults in a “blind” fashion and hence is less likely tticlude end-to-end checksums, to handle problems such
uncover the problems we have found. as misdirected writes [5].

Our work is similar to Brown and Patterson’s work on Interestingly, redundancy has been ugéithin a single
RAID failure analysis [9]. Therein the authors suggesisk in a few instances. For example, FFS uses internal
that hidden policies of RAID systems are worth undefeplication in a limited fashion, specifically by making
standing, and demonstrate (via fault injection) that threepies of the superblock across different platters of the
different software RAID systems have qualitatively differdrive [34]. As we noted earlier, some commodity file sys-
ent failure-handling and recovery policies. We also wisems have similar provisions.
to discover such “failure policy”, but target the file sys- Yu et al. suggest making replicas within a disk in a
tem instead of the RAID, hence requiring a more compl&AID array to reduce rotational latency [66]. Hence, al-
type-aware approach. though not the primary intention, such copies could be

Finally, recent work by Yangt al. [65] uses model- used for recovery. However, within a storage array, it
checking to find a host of file system bugs. Their tecould be difficult to apply said techniques in a selective
niques are well-suited to finding certain classes of bugsanner €.g, for meta-data). Yiet al's work also indi-
whereas our approach is aimed at the discovery of file sgates that replication can be useful for improvinoth
tem failure policy. Interestingly, our approach also uncoperformance and fault-tolerance, something that future in
ers some serious file system bugs that Yahgl. do not. vestigation of IRON strategies should consider.

One reason for this may be that our more focused testChecksumming is also becoming more commonplace
ing is better under scale; whereas model-checking mtstimprove system security. For example, both Petil
be limited to small file systems to reduce run-time, oat. [37] and Steiret al.[54] suggest, implement, and eval-
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uate methods for incorporating checksums into file Sy$s] w.Burkhard and J. Menon. Disk Array Storage Systemadity. In FTCS-

tems. Both systems aim to make the corruption of fi%lel] is,é)aggs 4332‘;41‘ T°“'°”;eF' Fﬂf”ée':f";e 1993. A Adicroreb
sec . Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A.Rdicroreboot —
SyStem data by an attacker more difficult. A Technique for Cheap Recovery. @SDI '04 pages 31-44, San Francisco,

Finally, the Dynamic File System from Sun is a good CA. December2004.

. : ] A.Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Englen Bmpirical Study
example of a file SyStem that uses IRON teChmques [6§f of Operating System Errors. IBOSP '01 pages 73-88, Banff, Canada,
DFS uses checksums to detect block corruption and em- October 2001.

. : P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleimdn,Leong, and
ploya .redundancy across muItlpIe .drlves to ansure rec&\?l S. Sankar. Row-Diagonal Parity for Double Disk Failure @otion. In
erability. In contrast, we emphasize the utility of repli- FAST ‘04 pages 1-14, San Francisco, CA, April 2004.

i ithi i ial J. DeVale and P. Koopman. Performance Evaluation okftion Handling
?atl,on \lNlthm a drlve, ﬁ'nddSUngeSt and e\;]aluate tehChnlﬂU]éb in 1/0 Libraries. INDSN-2001 Goteborg, Sweden, June 2001.
orimp ementlng suchredundancy. Furt er, we show ?yg] J. R. Doucer and W. J. Bolosky. A Large-Scale Study oéf8ystem Con-

to embellish an existing commodity file system, whereas tents. INSIGMETRICS "99pages 59-69, Atlanta, GA, May 1999.

DFS is written from scratch, perhaps ||m|t|ng its impactIlG] J. E. Dykes. 'A modern disk has roughly 400,000 lines ode within it'.
Personal Communication, 2005.

1 [17] EMC. EMC Centera: Content Addressed Storage System.
8 ConCI usions http://www.emc.com/, 2004.

Commodity operating systems have grown to assume {18 D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. g8as Deviant
Behavior: A General Approach to Inferring Errors in Syste@wmde. In

presence of fairly reliable hardware. The result, in the sosp '01pages 57-72, Banff, Canada, October 2001.
case of file systems, is that most commodity file systems s. Ghemawat, H. Gobioff, and S.-T. Leung. The Google Estem. In

do not include machinery to handle the types of faults one SOSP '03pages 29-43, Bolton Landing, NY, October 2003.

. . ] J. Gray. A Census of Tandem System Availability Betw&685 and 1990.
can expect from modern disk drives. Technical Report 90.1, Tandem Computers, 1990.

We believe it is time to reexamine how file systemsiy r.  Green. EIDE  Controller  Flaws  Version  24.

handle failure. One excellent model is already available] \r;\tltpé’mi;dl‘z’?s'°°m’|f"rﬂzwl'htm" th;“iry 200; _—
e . . . . Gu, Z. Kalbarczyk, R. K. lyer, and Z. Yang. Charactetion of Linux
to us within the Operatmg SyStem kernel: the netWOI’klﬁZ& Kernel Behavior Under Error. IDSN-2003pages 459-468, San Francisco,

subsystem. Indeed, as network hardware has long beenCA. June 2003.
f ; ; V. Henson. A Brief History of UNIX File Systems.
considered an unreliable hardware_ medmr_n, the softvx_/ hitp://infohost.nmt. edubvallfs. slides. pdf, 2004.
stacks above them have been deS|gned with We”'deﬂr[‘ﬁﬁj D. Hitz, J. Lau, and M. Malcolm. File System Design forMRS File Server
policies to cope with common failure modes [40]. Appliance. INUSENIX Winter '94 San Francisco, CA, January 1994.
H H 25] G. F. Hughes and J. F. Murray. Reliability and SecurityR&\ID Storage
As disks C?‘n now be viewed as -Iess than fu”y reliz Systems and D2D Archives Using SATA Disk DriveSCM Transactions on
able, such mistrust must be woven into the storage sys- Storage 1(1):95-107, February 2005.
tem framework as well. Many challenges remain: Whigkf! Lq{g!”hacrgg)ﬁedgﬁgersISBmme?;gJé oy pogvice  Driver  Hardening.
failures should disks expose to the layers above? H ' ) o

' . . H. H. Kari. Latent Sector Faults and Reliability of Disk ArrayBhD thesis,
should the file system software architecture be redesigned Helsinki University of Technology, September 1997.

to enable more consistent and well-defined failure polic§?® H. H. Kari, H. Saikkonen, and F. Lombardi. Detection aéfBctive Media in
Disks. InThe IEEE International Workshop on Defect and Fault Toleean

What kind of controls should be exposed to applications in VLS| Systempages 49-55, Venice, Italy, October 1993.
and users? What low-overhead detection and recovgpy J. Katcher. PostMark: A New File System Benchmark. Teéchl Report

techniques can IRON file systems employ? Answers to <2022 Network Appliance Inc., October 1697.
. . é:%%f S. R. Kleiman. Vnodes: An Architecture for Multiple EilSystem Types
these questions should lead to a better understanding Of iy sun UNIX. InUSENIX Summer '8pages 238-247, Atlanta, GA, June

how to effectively implement robust file systems. 1986.
[31] B. Lewis. Smart Filers and Dumb Disks. NSIC OSD Workingpb@ Meet-
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