
IRON File Systems

Vijayan Prabhakaran, Nitin Agrawal, Lakshmi Bairavasundaram, Haryadi Gunawi
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department
University of Wisconsin, Madison

Abstract
Commodity file systems trust disks to either work or fail com-
pletely, yet modern disks exhibit more complex failure modes.
We suggest a newfractured failure modelfor disks, which in-
corporates realistic localized faults such as latent sector errors
and block corruption. We then develop and apply a novel fault-
injection framework, to investigate how commodity file systems
react to a range of more realistic disk failures. We classifytheir
failure policies in a new taxonomy that measures theirInternal
RObustNess (IRON), which includes both failure detection and
recovery techniques. We show that commodity file system fail-
ure policies are often inconsistent, sometimes buggy, and gen-
erally inadequate in their ability to recover from localized disk
failures. Finally, we design, implement, and evaluate a prototype
IRON file system, ixt3, showing that techniques such as in-disk
checksumming and replication greatly enhance file system ro-
bustness while incurring minimal time and space overheads.

1 Introduction
Disks fail – but not in the way most commodity file sys-
tems expect. For many years, file system and storage sys-
tem designers have assumed that disks operate in a “fail
stop” manner [49]; within this classic model, the disks
either are working perfectly, or fail absolutely and in an
easily detectable manner.

The fault model presented by modern disk drives, how-
ever, is much more complex. For example, modern drives
can exhibitlatent sector faults[28, 13, 50], where a block
or set of blocks is inaccessible. Worse, blocks some-
times becomesilently corrupted[5, 21, 63]. Finally, disks
sometimes exhibittransientperformance problems [57].

There are many reasons for these complex failures in
disks. For example, a buggy disk controller could issue a
“misdirected” write [63], placing the correct data on disk
but in the wrong location. Interestingly, while these fail-
ures exist in disks today, simply “waiting” for disk tech-
nology to improve will not remove these errors: indeed,
these errors mayworsenover time, due to the increasing
complexity [4], immense cost pressures in the drive indus-
try, and the escalated use of less reliable ATA drives, not
only in desktop PCs but also in large-scale clusters [19]

and storage systems [17].
Developers of high-end systems have realized the na-

ture of these disk faults and built mechanisms into their
systems to handle them. For example, many redundant
storage systems incorporatedisk scrubbing[27, 50] to
proactively detect and subsequently correct latent sector
errors by creating a new copy of inaccessible blocks; some
recent storage arrays incorporate extra levels of redun-
dancy to lessen the potential damage of undiscovered la-
tent errors [13]. Similarly, highly-reliable systems (e.g.,
Tandem NonStop) have long utilized end-to-end check-
sums to detect when block corruption occurs [5].

Unfortunately, such technology has not filtered down
to the realm of commodity file systems, including Linux
file systems such as ext3 [61], ReiserFS [42], and IBM’s
JFS [7], or Windows file systems such as NTFS [53].
Such file systems are not only pervasive in the home en-
vironment, storing valuable (and often non-archived) user
data such as photos, home movies, and tax returns, but
also in many internet services such as Google [19].

In this paper, the first question we pose is:how do mod-
ern commodity file systems react to failures that are com-
mon in modern disks?To answer this query, we aggregate
knowledge from the research literature, industry, and field
experience to form a new model for disk failure. We label
our model thefractured failure model (FFM)to empha-
size thatpiecesof the disk can fail.

With the model in place, we develop and apply an au-
tomated framework to inject more realistic disk faults be-
neath a file system. Our goal is to unearth thefailure pol-
icy of each system: how it detects and recovers from disk
failures. To better characterize failure policy, we develop
an Internal RObustNess (IRON)taxonomy, which cata-
logs a broad range of detection and recovery techniques.

Our study focuses on three important and substantially
different open-source file systems, ext3, ReiserFS, and
IBM’s JFS, and one commercial file system, Windows
NTFS. Across all platforms, we find a great deal ofin-
consistencyin failure policy, often due to the diffusion
of failure handling code through the kernel; such incon-
sistency leads to substantially different detection and re-

Draft: Please do not distribute.

covery strategies under similar fault scenarios. We also
find that most systems implement portions of their failure
policy incorrectly; the presence of bugs in the implemen-
tations demonstrates the difficulty and complexity of cor-
rectly handling certain classes of disk failure. Finally, we
show that none of the file systems can recover from local-
ized disk failures, due to a lack ofin-disk redundancy.

This behavior under realistic disk failures leads us to
our second question:how can we change file systems to
better handle modern disk failures?We advocate a single
guiding principle for the design of file systems:don’t trust
the disk. The file system should not view the disk as an
utterly reliable component. For example, if blocks can
become corrupt, the file system should apply measures to
both detect and recover from such corruption, even when
running on a single disk. Our approach is an instance of
the age-old end-to-end argument [46]: at the top of the
storage stack, the file system is fundamentally responsible
for reliable management of its data and meta-data.

In our initial efforts, we focus on one specific “sweet
spot” in the IRON taxonomy: an IRON version of ext3
(ixt3) that uses redundancy within a single disk for its
meta-data structures. We show that ixt3 incurs little over-
head while greatly increasing the robustness of modern
file systems to latent sector errors and corruption. By
implementing detection and recovery techniques from the
IRON taxonomy, a system can implement a well-defined
failure policy and subsequently provide increased levels
of protection against the broader range of disk failures.

The rest of this paper is structured as follows. First, we
present a detailed examination of how disks fail and the
fractured failure model (§2). Then, we discuss detection
and recovery techniques within our IRON taxonomy (§3),
present our fault-injection method (§4), and our analysis
of failure policy under such faults (§5). We then propose,
implement, and evaluate IRON ext3 (§6), discuss related
work (§7), and conclude (§8).

2 Disk Failure
There are many reasons that the file system may see er-
rors in the storage system below. In this section, we first
discuss common causes of disk failure. We then present a
new, more realisticfractured failure modelfor disks and
discuss various aspects of this model.

2.1 The Storage Subsystem
Figure 1 presents a typical layered storage subsystem be-
low the file system. An error can occur in any of these
layers and propagate itself to the file system above.

At the bottom of the “storage stack” is the drive itself;
beyond the magnetic storage media, there are mechanical
(e.g., the motor and arm assembly) and electrical compo-
nents (e.g., power, buses, and so forth). A particularly
important component of the drive is its firmware – the

Generic Block I/O
Device Driver

Device Controller

Firmware

Media

Transport

H
os

t
D

is
k

Generic File System
Specific File System

S
to

ra
ge

 S
ub

sy
st

em

Electrical
Mechanical Cache

Figure 1: The Storage Stack. We present a schematic of the entire
storage stack. At the top is the file system; beneath are the many layers of
the “storage subsystem”. Gray shading implies a software orfirmware
component, whereas white (unshaded) is hardware.

code embedded within the drive to control most of its
higher-level functions, including caching, disk schedul-
ing, and error handling. This firmware code is substantial
and complex,e.g., a modern drive from Seagate contains
roughly 400,000 lines of low-level code [16].

Connecting the drive to the main host is the transport
layer. In low-end systems, the transport medium is often a
bus (e.g., IDE/ATA or SCSI), whereas networks are com-
mon in higher-end systems (e.g., FibreChannel).

At the top of this “storage stack” is the host. At a low
level in the host is hardware: a device controller that is
used to communicate with the device. Above this layer is
software: a low-level device driver to communicate with
the hardware. Block-level software is layered on top of
this, to provide a generic interface to clients and imple-
ment various optimizations (e.g., request reordering).

Note that the file system that operates above the storage
subsystem is often split into two pieces: a generic compo-
nent that is common to all file systems, and a specific com-
ponent that maps generic operations onto the data struc-
tures of the particular file system. A generic interface
(e.g., Vnode/VFS [30]) is positioned between the two.

2.2 Why Do Disks Fail?
To motivate our failure model, we first describe how errors
in the layers of the storage stack can cause failures.
Media: There are two primary errors that occur in the
magnetic media. First, the classic problem of “bit rot” oc-
curs when the magnetism of a single bit or a few bits is
flipped. This type of problem can often (but not always)
be detected and corrected with low-level ECC embedded
in the drive. Second, physical damage can occur on the
media. The quintessential “head crash” is one culprit,
where the drive head contacts the surface momentarily.
A media scratch can also occur when a particle is trapped
between the drive head and the media [50]. Such dangers
are well-known to drive manufacturers, and hence modern

2

Draft: Please do not distribute.

disks “park” the drive head when the drive is not in use
to reduce the number of head crashes; SCSI disks even
sometimes include various filters to remove particles [4].
Media errors most often lead to permanent failure or cor-
ruption of individual disk blocks.

Mechanical: “Wear and tear” eventually leads to the fail-
ure of moving parts. The drive motor can spin irregularly
or fail completely. Erratic arm movements can lead to
head crashes and media flaws. Inaccurate arm movement
can position the disk poorly upon a write, making blocks
inaccessible or corrupted for subsequent reads.

Electrical: A power spike or surge can damage in-drive
circuits and hence lead to drive failure [58]. Thus, electri-
cal problems can lead to entire disk failure.

Drive firmware: Interesting errors arise in the drive con-
troller, which consists of many thousands of lines of real-
time, concurrent firmware. For example, disks have been
known to return correct data but circularly shifted by a
byte [31] or have “memory leaks” that lead to errors [58].
Some firmware bugs are well-enough known in the field
that they have specific names; for example, “misdirected”
writes are writes that place the correct data on the disk but
in the wrong location, and “phantom” writes are writes
that the drive reports as completed but that never reach
the media [63]; phantom writes can be caused by a buggy
or even misconfigured cache (i.e., write-back caching is
enabled). In summary, errors in drive firmware often lead
to sticky or transient block corruption.

Transport: The transport connecting the drive and host
can also be problematic. For example, a study of a large
disk farm [57] reveals that most of the systems tested had
interconnect problems, such as bus timeouts. Parity er-
rors also occurred with some frequency, either causing re-
quests to succeed (slowly) or fail altogether. Thus, the
transport often causes transient errors for the entire drive.

Bus controller: The main bus controller can also be prob-
lematic. For example, the EIDE controller on a particular
series of motherboards incorrectly indicates completion of
a disk request before the data has reached the main mem-
ory of the host, leading to data corruption [62]. A similar
problem causes some other controllers to return status bits
as data if the floppy drive is in use at the same time as the
hard drive [21]. Others have also observed IDE protocol
version problems that yield corrupt data [19]. Thus, prob-
lems with the bus controller can lead to transient block
failure and data corruption.

Low-level Drivers: Recent research has shown that de-
vice driver code is more likely to contain bugs than the
rest of the operating system [12, 18, 56]. While some of
these bugs will likely crash the operating systems, others
can issue disk requests with bad parameters, data, or both.

2.3 The Fractured Failure Model
From our discussion of the many root causes for failure,
we are now ready to put forth a more realistic model of
disk failure. In our model, failures in the storage subsys-
tem manifest themselves in three ways:

• Entire disk failure: The entire disk is no longer acces-
sible. If permanent, this is the classic “fail-stop” failure.

• Block failure: One or more blocks are not accessible;
often referred to as “latent sector errors” [28, 27].

• Block corruption: The data within individual blocks
is altered. This failure is perhaps the most insidious error
manifestation because it is silent – the storage subsystem
simply returns “bad” data upon a read.

We term this model thefractured failure model (FFM),
to emphasize that pieces of the storage subsystem can fail.
We now discuss some other key elements of FFM, includ-
ing the transience, locality, and frequency of failures.

2.3.1 Transience of Failures
In our model, failures can be “sticky” (permanent) or
“transient” (temporary). Which behavior manifests itself
depends upon the root cause of the problem. For exam-
ple, a low-level media problem likely indicates that sub-
sequent requests will continue to fail. In contrast, a trans-
port or higher-level software issue could at first cause a
block failure or corruption; however, the operation could
subsequently succeed if retried.

2.3.2 Locality of Failures
Because multiple blocks of a disk can fail, one must con-
sider whether such block failures are dependent. The root
causes of block failure indicate that some forms of block
failure do indeed exhibit spatial locality [28]. For exam-
ple, a scratched surface can render a number of contiguous
blocks inaccessible. However, all failures do not exhibit
locality; for example, a corruption due to a misdirected
write may impact only a single block.

2.3.3 Frequency of Failures
Block failures and corruptions do occur – as one commer-
cial storage system developer succinctly stated, “Disks
break a lot – all guarantees are fiction” [23]. However,
one must also consider how frequently such errors occur,
particularly when modeling overall reliability and decid-
ing which failures are most important to handle. Unfortu-
nately, as Talagala and Patterson point out [57], disk drive
manufacturers are loathe to provide information on disk
failures; indeed, people within the industry refer to an im-
plicit industry-wide agreement to not publicize such de-
tails [3]. Not surprisingly, the actual frequency of drive
errors, especially errors that do not cause the whole disk
to fail, is not well-known in the literature. Previous work
on latent sector errors indicate that such errors occur more

3

Draft: Please do not distribute.

commonly than absolute disk failure [28], and more re-
cent research estimates that such errors may occur five
times more often than absolute disk failures [50].

In terms of relative frequency, block failures are more
likely to occur on reads than writes, due to internal error
handling common in most disk drives. For example, failed
writes to a given sector are often remapped to another
(distant) sector, allowing the drive to transparently handle
such problems [25]. However, remapping does not imply
that writes cannot fail. A failure in a component above
the media (e.g., a stuttering transport), can lead to an un-
successful write attempt. Also, for remapping to succeed,
free blocks must be available; a large scratch could ren-
der many blocks unwritable and quickly use up reserved
space. Reads are more problematic: if the media is un-
readable, the drive has no choice but to return an error.

2.3.4 Trends
In many other areas (e.g., processor performance), tech-
nology and market trends combine to improve different
aspects of computer systems. In contrast, we believe
that technology trends and market forces may combine to
make storage system failures occurmorefrequently over
time, for the following three reasons.

First, reliability is a greater challenge when drives are
made increasingly more dense; as more bits are packed
into smaller spaces, drive logic (and hence complexity)
increases [4]. Second, at the low-end of the drive mar-
ket, cost-per-byte dominates, and hence many corners are
cut to save pennies in IDE/ATA drives [4]. Low-cost “PC
class” drives tend to be tested less and have less internal
machinery to prevent failures from occurring [25]. The
result, in the field, is that ATA drives are observably less
reliable [57]; however, cost pressures serve to increase
their usage, even in server environments [19]. Finally, the
amount of software is increasing in storage systems and,
as others have noted, software is often the root cause of
errors [20]. In the storage system, hundreds of thousands
of lines of software are present in the lower-level drivers
and firmware. This low-level code is generally the type of
code that is difficult to write and debug [18, 56] – hence a
likely source of increased errors in the storage stack.

3 The IRON Taxonomy
In this section, we outline strategies for developing an
IRON file system,i.e., a file system that detects and re-
covers from a range of modern disk failures. Our main
focus is to develop different strategies, notacrossdisks
as is common in storage arrays, butwithin a single disk.
Such Internal RObustNess (IRON) provides much of the
needed protection within a file system.

To cope with the failures in modern disks, an IRON
file system includes machinery to bothdetect(Level D)
fractured faults andrecover (Level R) from them. Ta-
bles 1 and 2 present our IRON detection and recovery

Level Technique Comment
DZero No detection Assumes disk works
DErrorCode Check return codes Assumes lower level

from lower levels can detect errors
DSanity Check data structures May require extra

for consistency space per block
DRedundancy Redundancy over Detect corruption

one or more blocks in end-to-end way

Table 1:The Levels of the IRON Detection Taxonomy.

taxonomies, respectively. Note that the taxonomy is by
no means complete. Many other techniques are likely to
exist, just as many different RAID variations have been
proposed over the years [2, 10, 47, 64].

The detection and recovery mechanisms employed by a
file system define itsfailure policy. Currently, it is difficult
to discuss the failure policy of a system. We believe that
with the IRON taxonomy, one will be able to describe the
failure policy of a file system, much as one can already
describe a cache replacement or a file layout policy.

3.1 Levels of Detection
LevelD techniques are used by a file system to detect that
a problem has occurred,i.e., that a block cannot currently
be accessed or has been corrupted.

•ErrorCode: The most basic detection that an IRON file
system can perform is to check the return codes provided
by the disk and lower levels of the storage system. Given
that disks currently only report that a block is unavailable,
this level cannot detect corruption.

• Sanity: With sanity checks, the file system verifies that
its on-disk data structures are consistent. This check can
be performed either within a single block or across blocks.

When checking a single block, the file system can ei-
ther verify individual fields (e.g., that pointers are within
valid ranges) or verify thetypeof the block. For example,
most file system superblocks include a “magic number”
and some older file systems such as Pilot even include a
header per data block [41]. By checking whether a block
has the correct type information, a file system can guard
against some forms of block corruption.

Checking across blocks can involve verifying only a
few blocks (e.g., that a bitmap corresponds to allocated
blocks) or can involve periodically scanning all structures
to determine if they are intact and consistent (e.g., simi-
lar to fsck [35]). Even journaling file systems can benefit
from periodic integrity checks; journaling does not pre-
vent a buggy system from corrupting on-disk structures.

• Redundancy: The final level of the detection taxon-
omy is redundancy. Many forms of redundancy can be
used to detect block corruption. For example,checksum-
minghas been used in reliable systems for years to detect
corruption [5] and has recently been applied to improve
security as well [37, 54]. Checksums are useful for a num-
ber of reasons. First, they assist in detecting classic “bit

4

Draft: Please do not distribute.

Level Technique Comment
RZero No recovery Assumes disk works
RPropagate Propagate error Informs user
RStop Stop activity Limit amount

(crash, prevent writes) of damage
RGuess Return “guess” at Could be wrong;

block contents failure hidden
RRetry Retry read or write Handles failures

that are transient
RRepair Repair data structs Could lose data
RRemap Remaps block or file Assumes disk informs

to different locale FS of failures
RRedundancy Block replication Enables recovery

or other forms from loss/corruption

Table 2:The Levels of the IRON Recovery Taxonomy.

rot”, where the bits of the media have been flipped. How-
ever, in-media ECC often catches and corrects such er-
rors. Checksums are therefore particularly well-suited for
detecting corruption in higher levels of the storage system
stack,e.g., a buggy controller that “misdirects” disk up-
dates to the wrong location or does not write a given block
to disk at all. However, checksums must be carefully im-
plemented to detect these problems [5, 63]; specifically, a
checksum that is stored along with the data it checksums
will not detect such misdirected or phantom writes.

Higher levels of redundancy, such as block mir-
roring [8], parity [36, 39] and other error-correction
codes [32], can also detect corruption. For example, a
file system could keep three copies of each block, read-
ing and comparing all three to determine if one has been
corrupted. However, such techniques are truly designed
for correction (as discussed below); they often assume the
presence of a lower-overhead detection mechanism [39].

3.2 Detection Frequency
All detection techniques discussed above can be applied
lazily, upon block access, oreagerly, perhaps scanning
the disk during idle time. We believe an IRON file system
should always contain some form of lazy detection and
should consider additional eager methods.

For example,disk scrubbingis a classic eager technique
used by RAID systems to scan a disk and thereby dis-
cover latent sector errors [28]. Disk scrubbing is partic-
ularly valuable if a means for recovery is available; that
is, if a replica exists to repair the now-unavailable block.
To detect whether an error occurred, scrubbing typically
leverages the return codes explicitly provided by the disk
and hence discovers block failure but not corruption. If
combined with other detection techniques (such as check-
sums), scrubbing can discover block corruption as well.

3.3 Levels of Recovery
LevelR of the IRON taxonomy facilitates recovery from
block failure within a single disk drive. These techniques
handle both latent sector errors and block corruptions.

• Propagate: The simplest recovery mechanism is to
propagate errors up through the file system; the file system
informs the application that an error occurred and assumes
the user will respond appropriately to the problem.

• Stop: One way to recover from a disk failure is to stop
the current file system activity. This action can be taken at
many different levels of granularity. At the coarsest level,
one can crash the entire machine. One positive feature is
that this recovery mechanism turns alldetecteddisk fail-
ures into fail-stop failures and likely preserves file system
integrity. However, crashing assumes the problem is tran-
sient; if the faulty block contains repeatedly-accessed data
(e.g., a .login file), the system may repeatedly reboot, at-
tempt to access the unavailable data, and crash again. At
an intermediate level, one can kill only the process that
triggered the disk fault and subsequently mount the file
system in a read-only mode. This approach is advanta-
geous in that it does not take down the entire system and
thus allows other processes to continue. At the finest level,
a journaling file system can abort only the current transac-
tion. This approach is likely to lead to the most available
system, but may be more complex to implement.

• Guess: As recently suggested by Rinardet al. [44],
another possible reaction to a failed block read would be
to manufacture a response, perhaps allowing the system
to keep running in spite of a failure. The negative is that
an artificial response may be less desirable than failing.

• Retry: A simple response to failure is to retry the failed
operation. Retry can appropriately handle transient errors,
but wastes time retrying if the failure is indeed permanent.

• Repair: If an IRON file system can detect an incon-
sistency in its internal data structures, it can likely repair
them, just as fsck would. For example, a block that is not
pointed to, but is marked as allocated in a bitmap, could
be freed. As discussed above, such techniques are useful
even in the context of journaling file systems, as bugs may
lead to corruption of file system integrity.

• Remap: IRON file systems can perform block remap-
ping. This technique can be used to fix errors that oc-
cur when writing a block, but cannot recover failed reads.
Specifically, when a write to a given block fails, the file
system could choose to simply write the block to another
location. More sophisticated strategies could remap an
entire “semantic unit” at a time (e.g., a user file, the jour-
nal, and so forth), thus preserving logical contiguity.

• Redundancy: Finally, redundancy (in its many forms)
can be used to recover from block loss. The simplest form
is replication, in which a given block has two (or more)
copies in different locations within a disk. Another redun-
dancy approach employs parity to facilitate error correc-
tion. Similar to RAID 4/5 [39], by adding a parity block
per block group, a file system can tolerate the unavailabil-
ity or corruption of one block in each such group. More

5

Draft: Please do not distribute.

complex encodings (e.g., Tornado codes [32]) could also
be used, forming a rich space for future exploration.

However, redundancy within a disk can have negative
consequences. First, replicas must account for the spatial
locality of failure (e.g., a surface scratch that corrupts a
sequence of neighboring blocks); hence, copies should be
allocated across remote parts of the disk, which can lower
performance. Second, in-disk redundancy techniques can
incur a high space cost; however, in many desktop set-
tings, drives have sufficient available free space [15].

3.4 Why The File System?
One natural question to ask is: why should the file system
implement detection and recovery instead of the disk? Af-
ter all, modern disks do contain a number of mechanisms
for detecting and recovering from errors.

In our view, the primary reason for detection and recov-
ery within the file system is found in the classic end-to-
end argument [46]; even if the lower-levels of the system
implement some forms of fault tolerance, the file system
must implement them as well to guard against all forms of
failure. For example, the file system is theonlyplace that
can detect corruption of data in higher levels of the storage
stack (e.g., within the device driver or drive controller).

A second reason for implementing detection and re-
covery in the file system is that the file system has exact
knowledge of how blocks are currently being used. Thus,
the file system can apply detection and recovery intelli-
gently across different block types. For example, the file
system can provide a higher level of replication for its own
meta-data, perhaps leaving failure detection and correc-
tion of user data to applications (indeed, this is a specific
solution that we explore). Similarly, the file system can
provide machinery to enable application-controlled repli-
cation of “important” data, thus enabling an explicit per-
formance/reliability trade-off.

A third reason is performance: file systems and stor-
age systems have an “unwritten contract” [48] that allows
the file system to lay out blocks to achieve high band-
width. For example, the unwritten contract stipulates that
adjacent blocks in the logical disk address space are phys-
ically proximate. Disk-level recovery mechanisms, such
as remapping, break this unwritten contract and cause per-
formance problems. If the file system instead remaps
blocks, it can move an entire logically-related unit (e.g.,
a file) and hence avoid such problems.

However, there are some complexities to placing IRON
functionality in the file system. First, some of these tech-
niques require new persistent data structures,e.g., to track
where redundant copies or parity blocks are located. Sec-
ond, some mechanisms require control of the underlying
drive mechanisms. For example, to recover on-disk data,
modern drives will attempt different positioning and read-
ing strategies [4]; no interface exists to control these dif-

ferent low-level strategies in current systems.
Finally, it should be noted that while most of this dis-

cussion focuses on the case of a single disk, IRON tech-
niques may be useful even when multiple drives are used
in a RAID-like manner. Specifically, in-disk parity or
replication can be another useful technique that storage
arrays employ to combat the increasingly common sector
fault and corruption errors they encounter.

4 Failure Policy: Methodology
We now describe our methodology to uncover thefailure
policyof file systems. Our main objective is to determine
which detection and recovery techniques each file system
uses and the assumptions each makes about how the un-
derlying storage system can fail. By comparing the failure
policies across file systems, we can learn not only which
file systems are the most robust to disk failures, but also
suggest improvements for each. Our analysis will also be
helpful for inferring which IRON techniques can be im-
plemented the most effectively.

Our basic approach is to inject faults just beneath the
file system and then observe how the file system reacts
to those faults. If the fault policy is entirely consistent
within a file system, then this can be done very simply;
for example, we can run any workload, fail one of the
blocks that is read or written, and then conclude that the
way the file system reacts to this block failure is the way
it reacts to all block failures. However, the file system
might have different failure policies depending upon the
operation performed and the type of the faulty block.

Therefore, to explore the complete failure policy of a
file system, we must trigger all interesting cases. Our
challenge is to coerce the file system down its different
internal code paths in order to observe how each path han-
dles failure. This requires that we run workloads exercis-
ing all relevant code paths in combination with faults on
all blocks containing different types of file system meta-
data. We now describe how we create workloads, inject
faults, and infer the reaction of the file system.

4.1 Applied Workload
Our goal when applying workloads is to exercise the file
system as thoroughly as possible. Although we do not
claim to stress every code path, we do strive to execute
many of the interesting internal cases.

Our workload suite contains some general programs
that are common for all file systems. For example, the
suite contains a separate program for each function of the
file system API (e.g., mkdir, truncate,etc.), a set of pro-
grams to stress journal recovery, and programs to exercise
common functionality such as path traversal.

In addition to the general functionality, each file system
also has a number of special cases that must be stressed.
For example, the Linux ext3 inode uses a standard im-

6

Draft: Please do not distribute.

balanced tree with indirect, doubly-indirect, and triply-
indirect pointers to track file blocks; hence, our workload
ensures that sufficiently large files are created to handle
these different cases. Other file systems have similar pe-
culiarities that must be exercised (e.g., the B+-tree balanc-
ing code of ReiserFS).

4.2 Type-Aware Fault Injection
Our second step is to inject faults that emulate a disk
adhering to the fractured failure model. Many standard
fault injectors [9, 52] fail disk blocks in atype oblivious
manner; that is, a block is failed regardless of how it is
being used by the file system. However, repeatedly in-
jecting faults into random blocks and waiting to uncover
new aspects of the failure policy would be a laborious and
time-consuming process, likely yielding little insight on
the failure handling policy.

The key idea that allows us to test a file system in a rel-
atively efficient and thorough manner istype-aware fault
injection, in which a block of a specific type (e.g., inode,
directory data, or indirect block) is explicitly failed. Type
information is crucial in reverse-engineering the failure
policy, allowing us to discern the different strategies that
a file system applies for its different data structures. The
disadvantage of our type-aware approach is that the fault
injector must be tailored to each file system tested and
requires a solid understanding of the on-disk structures.
However, we believe that the benefits of type-awareness
clearly outweigh these complexities.

Our mechanism for injecting faults is to use a software
layer directly beneath the file system (i.e., a pseudo-device
driver). This software layer injects both block failures and
block corruption. To emulate a block failure, we simply
return the appropriate error code and do not issue the op-
eration to the underlying disk. To emulate block corrup-
tion, we change bits within the block before returning the
data; in some cases we inject random noise, whereas in
other cases we use a block similar to the expected one but
with some number of corrupted fields. The software layer
also models both transient and sticky faults and operates
on either read or write operations.

By injecting failures just below the file system, we em-
ulate faults that could be caused by any of the layers in
the storage subsystem. Therefore, unlike approaches that
emulate faulty disks using additional hardware [9], we can
capture faults introduced by buggy device drivers and con-
trollers. A drawback of our approach is that it does not
model how lower-layers of the system handle disk faults;
for example, some SCSI drivers retry certain commands
after a failure [43]. However, given that we are charac-
terizing how file systems react to faults, we believe this is
the correct layer for fault injection.

4.3 Failure Policy Inference
After running a workload and injecting a fault, the final
step is to determine how the file system behaved. To in-
fer how a fault affected the file system, we compare the
results of running with and without the fault. We per-
form this comparison across all observable outputs from
the system: the errors codes and data returned by the file
system API, the contents of the system log, and the low-
level I/O traces recorded by the fault-injection layer.

In summary, we believe that we have constructed a
fairly comprehensive set of workloads and possible disk
faults to exercise file system code. Our workload suite
contains about 30 programs, each file system has between
12 and 14 different block types, and each block can be
failed on a read or a write or have its data corrupted. For
each file system, this amounts to about 400 tests which
generate relevant block traffic.

5 Failure Policy: Results
We now present the results of our failure policy analy-
sis for four commodity file systems: ext3, ReiserFS (ver-
sion 3), and IBM’s JFS on Linux and NTFS on Windows.
For each file system, we first present basic background in-
formation and then discuss the general failure policy we
uncovered along with bugs and inconsistencies; where ap-
propriate and available, we also look at source code to
better explain the problems we discover.

Due to the sheer volume of experimental data, it is dif-
ficult to present all results for the reader’s inspection. For
each file system that we studied in depth, we present a
graphical depiction of our results, showing for each work-
load/blocktype pair how a given detection or recovery
technique is used. Figure 2 presents a (complex) graph-
ical depiction of our results – see the caption for interpre-
tation details. We now provide a qualitative summary of
the results that are presented within the figure.

5.1 Linux ext3
Linux ext3 is the most similar to many classic UNIX file
systems such as the Berkeley Fast File system [34]. Ext3
divides the disk into a set of block groups; within each are
statically-reserved spaces for bitmaps, inodes, and data
blocks. The major addition in ext3 over ext2 is journal-
ing [61]; hence, ext3 includes a new set of on-disk struc-
tures to manage its write-ahead log.
Detection: To detect read failures, ext3 primarily uses
error codes (DErrorCode). However, when a write fails,
ext3 does not record the error code (DZero); hence, write
errors are often ignored, potentially leading to serious file
system problems (e.g., when checkpointing a transaction
to the fixed-location). Ext3 also performs a fair amount of
sanity checking (DSanity). For example, ext3 explicitly
performs type checks for certain blocks such as the su-
perblock and many of its journal blocks. However, little

7

Draft: Please do not distribute.

 Read Failure Write Failure Corruption
a b c d e f g h i j k l m n o p q r s t a b c d e f g h i j k l m n o p q r s t a b c d e f g h i j k l m n o p q r s t

E

xt
3

D
et

ec
tio

n

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

E

xt
3

R
ec

ov
er

y

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

a b c d e f g h i j k l m n o p q r s t a b c d e f g h i j k l m n o p q r s t a b c d e f g h i j k l m n o p q r s t

 R
ei

se
rF

S
 D

et
ec

tio
n

internal
root
j-data
j-commit
j-desc
j-header
super
data
indirect
bitmap
dir
inode

 R
ei

se
rF

S
 R

ec
ov

er
y

internal
root
j-data
j-commit
j-desc
j-header
super
data
indirect
bitmap
dir
inode

a b c d e f g h i j k l m n o p q r s t a b c d e f g h i j k l m n o p q r s t a b c d e f g h i j k l m n o p q r s t

JF

S
 D

et
ec

tio
n

imap-cntl
bmap-desc
aggr-inode
j-data
j-super
super
data
internal
imap
bmap
dir
inode

JF

S
 R

ec
ov

er
y

imap-cntl
bmap-desc
aggr-inode
j-data
j-super
super
data
internal
imap
bmap
dir
inode

Figure 2: File System Failure Policies. The tables indicate both detection and re-
covery policies of ext3, ReiserFS and JFS for read, write andcorruption faults injected
for each block type across a range of workloads. The workloads are a: path traversal
b: {access,chdir,chroot,stat,statfs,lstat,open} c: {chmod,chown,utimes} d: read e: readlink
f: getdirentriesg: creat h: link i: mkdir j: renamek: symlink l: write m: truncaten: rmdir
o: unlink p: mountq: {fysnc,sync} r: umounts: FS recoveryt: log write operations. A gray
box indicates that the workload is not applicable for the block type. When multiple recovery
mechanisms are observed, the symbols are superimposed in the table.

Key for Detection Key for Recovery
© DZero © RZero

− DErrorCode / RRetry

| DSanity − RPropagate

\ RRedundancy

| RStop

8

Draft: Please do not distribute.

type checking is done for many important blocks, such as
directories, bitmap blocks, and indirect blocks. Ext3 also
performs numerous other sanity checks in type-specific
ways;e.g., when the file size field in an inode contains a
very large value,open detects this and reports an error.
Recovery: For most detected errors, ext3 propagates the
error to the user (RPropagate). For read failures, ext3 also
often aborts the journal (RStop); aborting the journal usu-
ally leads to a read-only remount of the file system, pre-
venting future updates without explicit administrator in-
teraction. Ext3 also uses retry (RRetry); when a prefetch
read fails, ext3 retries only the originally requested block.
Bugs and Inconsistencies:We found a number of bugs
and inconsistencies in the ext3 failure policy. First, errors
are not always propagated to the user (e.g., truncate
and rmdir fail silently). Second, there are important
cases when ext3 does not immediately abort the journal
on failure (i.e., does not implementRStop). For exam-
ple, when a journal write fails, ext3 still writes the rest of
the transaction, including the commit block, to the jour-
nal; thus, if the journal is later used for recovery, the file
system can easily become corrupted. Third, ext3 does not
always perform sanity checking; for example,unlink
does not check thelinkscount field before modifying
it and therefore a corrupted value can lead to a system
crash. Finally, although ext3 has redundant copies of the
superblock (RRedundancy), these copies are never updated
after file system creation.

5.2 ReiserFS
ReiserFS [42] is quite different in its internal structure
than ext3. Virtually all meta-data and data are placed in
a balanced tree, similar to a database index. The major
advantage of tree-like structuring is scalability [55], al-
lowing large numbers of files to co-reside in a directory.
Detection: Our analysis reveals that ReiserFS pays
close attention to error codes across reads and writes
(DErrorCode). ReiserFS also performs a great deal of in-
ternal sanity checking (DSanity). For example, all inter-
nal and leaf nodes in the balanced tree have a block header
containing information about the level of the block in the
tree, the number of items, and the available free space;
the super block and journal metadata blocks have “magic
numbers” which identify them as valid; the journal de-
scriptor and commit blocks also have additional informa-
tion; finally, inodes and directory blocks have known for-
mats. ReiserFS checks whether each of these blocks has
the expected values in the appropriate fields. However,
not all blocks are checked this carefully. For example,
bitmaps and data blocks do not have associated type in-
formation and hence are never type-checked.
Recovery: The most prominent aspect of the recovery
policy of ReiserFS is its tendency topanic the sys-
tem upon detection of virtually any write failure (RStop).

When ReiserFS callspanic, the file system crashes, usu-
ally leading to a reboot and recovery sequence. By do-
ing so, ReiserFS attempts to ensure that its on-disk struc-
tures are not corrupted. ReiserFS recovers from read and
write failures differently. For most read failures, ReiserFS
propagates the error to the user (RPropagate) and some-
times performs a single retry (RRetry) (e.g., when a data
block read fails, or when an indirect block read fails dur-
ingunlink,truncate, andwrite operations). How-
ever, ReiserFS never retries upon a write failure.
Bugs and Inconsistencies:ReiserFS also exhibits in-
consistencies and bugs. For example, when an ordered
data block write fails, ReiserFS journals and commits the
transaction without handling the error (RZero instead of
the expectedRStop), which can lead to corrupted data
blocks since the metadata blocks now point to invalid
data contents. Second, while dealing with indirect blocks,
ReiserFS detects but ignores a read failure; hence, on a
truncate orunlink, it updates the bitmaps and super
block incorrectly, leaking space. Third, ReiserFS some-
times callspanic on failing a sanity check, instead of
simply returning an error code. Finally, there is no sanity
or type checking to detect corrupt journal data; therefore,
replaying a corrupted journal block can make the file sys-
tem unusable, if for example, the block is written as the
super block or a bitmap block.

5.3 IBM JFS
JFS uses modern techniques to manage data, block allo-
cation and journaling, with B+ trees to manage files and
directories in addition to using a tree structure for block
allocation maps. Unlike ext3 and ReiserFS, JFS uses
record-level journaling to reduce journal traffic.
Detection: Error codes are used to detect read fail-
ures (DErrorCode), but most write errors are ignored
(DZero)(like ext3), with the exception of journal su-
perblock writes. JFS employs only minimal type check-
ing; the superblock and journal superblock have magic
and version numbers that are checked. Other sanity
checks (DSanity) are used for different block types. For
example, internal tree blocks, directory blocks, and in-
ode blocks contain the number of entries (pointers) in the
block; JFS checks to make sure this number is less than
the maximum possible for each block type. As another ex-
ample, an equality check on a field is performed for block
allocation maps to verify that the block is not corrupted.
Recovery: The recovery strategies of JFS vary dramat-
ically depending on the block type. For example, when
an error occurs during a journal superblock write, JFS
crashes the system (RStop); however, other write errors
are ignored entirely (RZero). On a block read failure to
the primary superblock, JFS accesses the alternate copy
(RRedundancy) to complete the mount operation; how-
ever, a corrupt primary results in a mount failure (RStop).

9

Draft: Please do not distribute.

Explicit crashes (RStop) are used when a block allocation
map or inode allocation map read fails. Error codes for all
meta-data reads are handled by generic file system code
called by JFS; this generic code attempts to recover from
read errors by retrying the read a single time (RRetry).
Finally, the reaction for a failed sanity check is to propa-
gate the error (RPropagate) and remount the file system as
read-only (RStop); during journal replay, a sanity-check
failure causes the replay to abort (RStop).
Bugs and Inconsistencies:We also found problems with
the JFS failure policy. First, while JFS has some built in
redundancy, it does not always use it as one would ex-
pect; for example, JFS does not use its secondary copies
of aggregate inode tables (special inodes used to describe
the file system) when an error code is returned for an ag-
gregate inode read. Second, a blank page is sometimes
returned to the user (RGuess), although we believe this
is not by design (i.e., it is a bug); for example, this oc-
curs when a read to an internal tree block does not pass
its sanity check. Third, some bugs limit the utility of JFS
recovery; for example, although generic code detects read
errors and retries, a bug in the JFS implementation leads
to ignoring the error and corrupting the file system.

5.4 Windows NTFS
NTFS [53] is the only commercial file system in our study.
Because our analysis requires detailed knowledge of on-
disk structures, our NTFS analysis requires more effort to
first reverse-engineer such information; hence, we have
not yet run the full set of tests.

We find that NTFS uses error codes (DErrorCode) to
detect both block read and write failures. Similar to ext3
and JFS, when a data write fails, NTFS records the error
code but does not use it (DZero), which can corrupt the
file system.

NTFS performs strong sanity checking (DSanity) on
meta-data blocks; the file system becomes unmountable
if any of its meta-data blocks (except the journal) are cor-
rupted. NTFS surprisingly does not always perform san-
ity checking,e.g., a corrupted block pointer can point to
important system structures and hence corrupt them when
the block pointed to is updated.

In most cases, NTFS propagates the error to the user
(RPropagate). NTFS aggressively uses retry (RRetry)
when operations fail. For example, NTFS retries up to
seven times under read failures. In the case of write fail-
ures, the number of retries varies (e.g., three times for data
blocks, two times for MFT blocks).

5.5 File System Summary
• Ext3: Overall simplicity. Ext3 implements a simple
and mostly reliable failure policy, matching the general
design philosophy found in the ext family of file systems.
It checks error codes, uses a modest level of sanity check-
ing, and recovers by propagating errors and aborting oper-

ations. The main problem with ext3 is its failure handling
for write errors, which are ignored and cause serious prob-
lems including possible file system corruption.
• ReiserFS: First, do no harm. ReiserFS is the most
concerned about disk failure. This concern is particularly
evident upon write failures, which often induce apanic;
ReiserFS takes this action to ensure that the file system is
not corrupted. ReiserFS also uses a great deal of sanity
and type checking. These behaviors combine to form a
Hippocratic failure policy: first, do no harm.
• JFS: The kitchen sink. JFS is the least consistent and
most diverse in its failure detection and recovery tech-
niques. For detection, JFS sometimes uses sanity, some-
times checks error codes, and sometimes does nothing at
all. For recovery, JFS sometimes uses available redun-
dancy, sometimes crashes the system, and sometimes re-
tries operations, depending on the block type that fails, the
error detection and the API that was called.
• NTFS: Persistence is a virtue.Compared to the Linux
file systems, NTFS is the most persistent, retrying failed
requests many times before giving up. It also seems to
propagate errors to the user quite reliably. However, more
thorough testing of NTFS is needed in order to broaden
these conclusions (a part of our ongoing work).

5.6 Technique Summary
• Detection and Recovery: Inconsistency is common.
We found a high degree of inconsistency (observable in
the patterns in Figure 2) in failure policy across all file sys-
tems. For example, ReiserFS performs a great deal of san-
ity checking; however, in one important case it does not
(journal replay), and the result is that a single corrupted
block in the journal can corrupt the entire file system. JFS
is the least consistent across all file systems, employing
different techniques across block types and routines.

In our estimation, the root cause of inconsistency isfail-
ure policy diffusion; the code that implements the failure
policy is spread throughout the kernel. Indeed, the diffu-
sion is encouraged by some architectural features of mod-
ern file systems, such as the split between generic and spe-
cific file systems. Further, we have observed some cases
where different developers implement different portions
of the code and hence implement different failure policies
(e.g., one of the few cases in which ReiserFS doesnot
panic on write failure arises due to this); perhaps mecha-
nisms need to be put into place to encourage consistency.
• Detection and Recovery: Bugs are common.We also
found numerous bugs across the file systems we tested,
some of which are serious, and many of which are not
found by other sophisticated techniques [65]. We believe
this is generally indicative of the difficulty of implement-
ing a correct failure policy; it certainly hints that more
effort needs to be put into testing and debugging of such
code. One suggestion in the literature that could be help-

10

Draft: Please do not distribute.

ful would be to periodically inject faults in normal opera-
tion as part of a “fire drill” [38]. Our method reveals that
testing needs to be broad and cover as many code paths as
possible; for example, only by testing the indirect-block
handling of ReiserFS did we observe certain classes of
fault mishandling.
• Detection: Error codes are sometimes ignored.
Amazingly (to us), error codes were sometimes clearly ig-
nored by the file system. This was most common in JFS,
but found occasionally in the other file systems. Perhaps
a testing framework such as ours should be a part of the
file system developer’s toolkit; with such tools, this class
of error is easily discovered.
• Detection: Sanity checking is of limited utility. Many
of the file systems use sanity checking to ensure that the
meta-data they are about to use meets the expectations of
the code. However, modern disk failure modes such as
misdirected and phantom writes lead to cases where the
file system could receive a properly formatted (but incor-
rect) block; the bad block thus passes sanity checks, is
used, and can corrupt the file system. Indeed, all file sys-
tems we tested exhibit this behavior. Hence, we believe
stronger tests (such as checksums) should be used.
• Recovery: Stop is useful (if used correctly). Most
file systems employed some form ofRStop in order to
limit damage to the file system when some types of er-
rors arose; ReiserFS is the best example of this, as it calls
panic on virtually any write error to prevent corruption
of its structures. However, one has to be careful with such
techniques. For example, upon a write failure, ext3 tries
to abort the transaction, but does not correctly squelch all
writes to the file system, leading to corruption. Perhaps
this indicates that fine-grained rebooting is difficult to ap-
ply in practice [11].
• Recovery: Stop should not be overused.One down-
side to halting file system activity in reaction to failure is
the inconvenience it causes: recovery takes time and often
requires administrative involvement to fix. However, all
of the file systems used some form ofRStop when some-
thing as innocuous as a read failure occurred; instead of
simply returning an error to the requesting process, the
entire system stops. Such draconian reactions to possibly
temporary failures should be avoided.
• Recovery: Retry is underutilized. Most of the file sys-
tems assume that failures are not transient, and hence do
not retry the request at a later time (this could be stated in
an alternate fashion: they assume that retry has been done
at a lower level in the system). The systems that employ
retry generally assume read retry is useful, but write retry
is not; however, transient faults due to device drivers or
transport issues are equally likely to occur on reads and
writes. Hence, retry should be applied more uniformly.
NTFS is the lone file system that embraces retry; it is
willing to issue a much higher number of requests when a

block failure is observed.
• Recovery: Automatic repair is rare. Automatic repair
is used rarely by the file systems; instead, after using an
RStop technique, most of the file systems require man-
ual intervention to attempt to fix the observed problem
(i.e., running fsck). We believe that more effort should be
placed into developing automatic repair strategies.
• Detection and Recovery: Redundancy is not used.
Finally, and perhaps most importantly, while virtually all
file systems include some machinery to detect disk fail-
ures, none of them applyredundancyto enable recovery
from such failures. The lone exception is the minimal
amount of superblock redundancy found in JFS; even this
redundancy is used inconsistently. Also, JFS places the
copies close, endangering them to spatial locality of er-
rors. As it is the least explored and potentially most use-
ful in handling the failures common in drives today, we
next investigate the inclusion of redundancy into the fail-
ure policy of a file system.

6 An IRON File System
We now describe our implementation and evaluation of
IRON ext3 (ixt3). Within ixt3, we implement recovery
techniques that most single-disk file systems do not cur-
rently provide: checksumming (to detect corruption) and
in-disk replication (to recover from block failure or cor-
ruption). We apply these mechanisms to themeta-data
of the file system; by doing so, ixt3 can detect and re-
cover from block failures and corruptions to its inodes,
directories, and other important file system structures.
Thus, in our taxonomy, ixt3 employsDErrorCode and
DRedundancy (checksumming) to detect block failure and
RRedundancy (replication) to recover from any detected
loss or corruption.

6.1 Implementation
To implement checksumming within ixt3, we borrow
techniques from other recent research in checksumming
in file systems [54, 37]. Specifically, we place meta-data
checksums first into the journal (with the meta-data blocks
that are covered by the checksums), and then checkpoint
these checksums to their final location, distant from the
meta-data blocks. Checksums are very small and can be
cached for read verification. In our current implementa-
tion, we use SHA-1 to compute the checksums. By in-
corporating checksumming into existing transactional ma-
chinery, ixt3 cleanly integrates into the ext3 framework.

We apply a similar approach in adding meta-data repli-
cation to ixt3. All meta-data blocks are written to a sep-
aratereplica log; they are later checkpointed to a fixed
location in a block group distant from the original meta-
data. We again use transactions to ensure that either both
copies reach disk consistently, or that neither do.

Note that “cleaning overhead”, which can be a large

11

Draft: Please do not distribute.

problem in pure log-structured file systems [45, 51], is
not a major performance issue for journaling file systems,
even with ixt3-style replication. Journaling file systems
already incorporate “cleaning” into their on-line mainte-
nance costs; for example, ext3 first writes all meta-data to
the journal and then “cleans” the journal by checkpoint-
ing the data to a final fixed location. Hence, the additional
cleaning of meta-data checksums and the replica log in-
creases total traffic only by a small amount.

We also explore a new idea for leveraging checksums
in a journaling file system; specifically, checksums can be
used to relax ordering constraints and thus to improve per-
formance. In particular, when updating its journal, stan-
dard ext3 ensures that all previous journal data reaches
disk before the commit block; to enforce this ordering,
standard ext3 induces an extra wait before writing the
commit block, and thus incurs extra rotational delay. To
avoid this wait, ixt3 implements what we call atransac-
tional checksum, which is a checksum over the contents
of a transaction. By placing this checksum in the journal
commit block, ixt3 can safely issue all blocks of the trans-
action concurrently. If a crash occurs during the commit,
the recovery procedure can reliably detect the crash and
not replay the transaction, because the checksum over the
journal data will not match the checksum in the commit
block. Note that a transactional checksum provides the
same crash semantics as in the original ext3 and thus can
be used even without other IRON extensions.

6.2 Evaluation
We now evaluate our prototype implementation of ixt3.
We focus on three major axes of assessment: robustness
to modern disk failures, and both the time and space over-
head of the additional redundancy mechanisms.
Robustness:To test the robustness of ixt3, we harness our
fault injection framework. Under most failure and corrup-
tion tests (not shown), ixt3 successfully detects errors and
recovers all metadata. Compared to ext3 in Figure 2, ixt3
eliminates 184 problems out of the 191 observed (all ex-
cept data block corruption). The result is a consistent and
well-defined failure policy.
Time Overhead: We now assess the performance over-
head of the IRON mechanisms used within ixt3. We iso-
late the overhead of each mechanism by enabling meta-
data checksumming, meta-data replication, and transac-
tional checksumming separately and in all combinations.

We use four standard file system benchmarks: SSH-
Build, which unpacks and compiles the SSH source dis-
tribution; a web server benchmark, which responds to a
set of static HTTP GET requests; PostMark [29], which
emulates file system traffic of an email server; and TPC-
B [59], which runs a series of debit-credit transactions
against a simple database. These benchmarks exhibit a
broad set of behaviors. Specifically, SSH-Build is a good

CS TC TC
Workload CS R & TC & & All

R CS R
SSH-Build 1.00 1.00 1.00 1.00 1.00 1.00 1.01

Web 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PostMark 1.00 1.18 1.22 1.00 1.00 1.18 1.22
TPC-B 1.00 1.30 1.45 0.81 0.80 1.13 1.27

Table 3: The Costs of Redundancy.Results from running different
variants of ixt3 under the SSH-Build, Web Server, PostMark,and TPC-
B benchmarks are presented. The SSH-Build time measures thetime to
unpack, configure, and build the SSH source tree (the tar’d source is
11 MBin size); we run a web server on top of ixt3 and transfer 25MB
of data using http requests; we run 1500 PostMark transactions with
file sizes ranging from 4 KB to 1 MB, with 10 subdirectories and1500
files; with TPC-B, we run 1000 randomly generated debit-credit trans-
actions. Along the columns, we vary which redundancy technique is im-
plemented, in all possible combinations; “CS” implies meta-data check-
summing is enabled, “R” that replication of meta-data is turned on, and
“TC” that transactional checksums are in use. All results are normalized
to the performance of standard Linux ext3; for the interested reader, run-
ning times for standard ext3 on SSH-Build, Web, PostMark, and TPC-B
are 118.5, 52.6, 153.0, and 58.8 seconds, respectively. Alltesting is done
on the Linux 2.6.9 kernel on a 2.4 GHz Intel P4 with 1 GB of memory.
The disk is a Western Digital WDC WD1200BB-00DAA0.

(albeit simple) model of a “typical” action of a developer
or administrator; the web server is read intensive with
concurrency; PostMark is meta-data intensive, with many
file creations and deletions; TPC-B induces a great deal of
synchronous update traffic to the file system.

Table 3 reports the relative performance of the variants
of ixt3 for the four workloads, as compared to stock Linux
ext3. From these numbers, we draw four conclusions.
First, for workloads similar to SSH-Build, there is virtu-
ally no time overhead with higher levels of redundancy.
Hence, if SSH-Build is indicative of the “typical” activity,
using IRON for meta-data robustness incurs little cost.

Second, for the web server benchmark, we again see
no observable degradation. Hence, for highly read and
CPU intensive applications such as the web server, the
additional cost due to checksumming is not substantial.

Third, the synchronous workload of TPC-B demon-
strates the possible benefit of a transactional checksum.
In the base case, this technique improves standard ext3
performance by 20%, and in combination with meta-data
checksumming and replication reduces overall overhead
from roughly 45% to 27%. Hence, even when not used
for additional robustness, checksums can be applied to
improve theperformanceof journaling file systems.

Finally, for meta-data intensive workloads such as Post-
Mark and TPC-B, the overhead is more noticeable – 22%
for PostMark and 27% for TPC-B. Since these workloads
are very meta-data intensive, these results represent the
worst-case performance that we expect. Given our rel-
atively untuned implementation of ixt3, we believe this
demonstrates that even in the worst case, the costs of
meta-data robustness are not prohibitive.
Space Overhead:To evaluate space overhead, we mea-
sured a number of local file systems and computed the
increase in space required if all meta-data was replicated

12

Draft: Please do not distribute.

and room for checksums included. Overall, we found that
the space overhead of checksumming and meta-data repli-
cation is small, in the 2% to 5% range.

6.3 Summary
Our implementation of ixt3 represents a middle-ground
in the space of IRON file systems. By applying IRON
techniques solely to its meta-data, ixt3 lowers the cost of
redundancy, both in terms of space and time overheads.
In doing so, ixt3 leaves detection and recovery ofuser
data to the applications themselves, which can implement
application-appropriate strategies. However, we believe
that ixt3 represents just a single point in a large space
of possible IRON file systems. Many different designs
should be explored in order to better understand the bene-
fits and costs of the IRON approach.

7 Related Work
Fault Injection and Robustness Testing: The fault-
tolerance community has worked for many years on tech-
niques for injecting faults into a system to determine its
robustness [6, 14, 22, 33, 52, 60]. For example, FIAT
simulates the occurrence of hardware errors by altering
the contents of memory or registers [6]; similarly, FINE
can be used to inject software faults into an operating sys-
tem [33]. More recent work develops techniques to test
the Linux kernel behavior under errors [22].

One major difference with most of this previous work
and ours is that our approach focuses on how file systems
handle the broad class of modern disk failure modes; we
know of no previous work that does so. Our approach also
assumes implicit knowledge of file-system block types;
by doing so, we ensure that we test many different paths
of the file system code. Much of the previous work in-
serts faults in a “blind” fashion and hence is less likely to
uncover the problems we have found.

Our work is similar to Brown and Patterson’s work on
RAID failure analysis [9]. Therein the authors suggest
that hidden policies of RAID systems are worth under-
standing, and demonstrate (via fault injection) that three
different software RAID systems have qualitatively differ-
ent failure-handling and recovery policies. We also wish
to discover such “failure policy”, but target the file sys-
tem instead of the RAID, hence requiring a more complex
type-aware approach.

Finally, recent work by Yanget al. [65] uses model-
checking to find a host of file system bugs. Their tech-
niques are well-suited to finding certain classes of bugs,
whereas our approach is aimed at the discovery of file sys-
tem failure policy. Interestingly, our approach also uncov-
ers some serious file system bugs that Yanget al. do not.
One reason for this may be that our more focused test-
ing is better under scale; whereas model-checking must
be limited to small file systems to reduce run-time, our

approach can be applied to large file systems.
IRON File Systems: Our work on IRON file systems
was partially inspired by work within Google. Therein,
Acharya suggests that when using cheap hardware, one
should “be paranoid” and assume it will fail often and
in unpredictable ways [1]. However, Google (perhaps
with good reason) treats this as an application-level prob-
lem, and therefore builds checksumming on top of the file
system; disk-level redundancy is kept across drives (on
different machines) but not within a drive [19]. We ex-
tend this approach by incorporating such techniques into
the file system, where all applications can benefit from
them. Note that our techniques are complimentary to
application-level approaches; for example, if a file sys-
tem meta-datablock becomes corrupted or inaccessible,
user-level checksums and replicas do not enable recovery
of the now-corrupted volume.

Another related approach is the “driver hardening” ef-
fort within Linux. As stated therein: “A ‘hardened’ driver
extends beyond the realm of ‘well-written’ to include
‘professional paranoia’ features to detect hardware and
software problems” (page 5) [26]. However, while such
drivers would generally improve system reliability, we be-
lieve that most faults should be handled by the file system
(i.e., the end-to-end argument [46]).

The fractured failure model for disks is likely better
understood by the high-end storage and high-availability
systems communities. For example, Network Appliance
introduced “Row-Diagonal” parity, which can tolerate
two disk faults and can continue to operate, in order to
ensure recovery despite the presence of latent sector er-
rors [13]. Further, virtually all Network Appliance prod-
ucts use checksumming to detect block corruption [24].
Similarly, systems such as the Tandem NonStop kernel [5]
include end-to-end checksums, to handle problems such
as misdirected writes [5].

Interestingly, redundancy has been usedwithin a single
disk in a few instances. For example, FFS uses internal
replication in a limited fashion, specifically by making
copies of the superblock across different platters of the
drive [34]. As we noted earlier, some commodity file sys-
tems have similar provisions.

Yu et al. suggest making replicas within a disk in a
RAID array to reduce rotational latency [66]. Hence, al-
though not the primary intention, such copies could be
used for recovery. However, within a storage array, it
would be difficult to apply said techniques in a selective
manner (e.g., for meta-data). Yuet al.’s work also indi-
cates that replication can be useful for improvingboth
performance and fault-tolerance, something that future in-
vestigation of IRON strategies should consider.

Checksumming is also becoming more commonplace
to improve system security. For example, both Patilet
al. [37] and Steinet al.[54] suggest, implement, and eval-

13

Draft: Please do not distribute.

uate methods for incorporating checksums into file sys-
tems. Both systems aim to make the corruption of file
system data by an attacker more difficult.

Finally, the Dynamic File System from Sun is a good
example of a file system that uses IRON techniques [63].
DFS uses checksums to detect block corruption and em-
ploys redundancy across multiple drives to ensure recov-
erability. In contrast, we emphasize the utility of repli-
cation within a drive, and suggest and evaluate techniques
for implementing such redundancy. Further, we show how
to embellish an existing commodity file system, whereas
DFS is written from scratch, perhaps limiting its impact.

8 Conclusions
Commodity operating systems have grown to assume the
presence of fairly reliable hardware. The result, in the
case of file systems, is that most commodity file systems
do not include machinery to handle the types of faults one
can expect from modern disk drives.

We believe it is time to reexamine how file systems
handle failure. One excellent model is already available
to us within the operating system kernel: the networking
subsystem. Indeed, as network hardware has long been
considered an unreliable hardware medium, the software
stacks above them have been designed with well-defined
policies to cope with common failure modes [40].

As disks can now be viewed as less than fully reli-
able, such mistrust must be woven into the storage sys-
tem framework as well. Many challenges remain: Which
failures should disks expose to the layers above? How
should the file system software architecture be redesigned
to enable more consistent and well-defined failure policy?
What kind of controls should be exposed to applications
and users? What low-overhead detection and recovery
techniques can IRON file systems employ? Answers to
these questions should lead to a better understanding of
how to effectively implement robust file systems.

References
[1] A. Acharya. Reliability on the Cheap: How I Learned to Stop Worrying and

Love Cheap PCs. EASY Workshop ’02, October 2002.

[2] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating Multiple Failures
in RAID Architectures with Optimal Storage and Uniform Declustering. In
ISCA ’97, pages 62–72, Denver, CO, May 1997.

[3] D. Anderson. Personal Communication, 2005.

[4] D. Anderson, J. Dykes, and E. Riedel. More Than an Interface: SCSI vs.
ATA. In FAST ’03, San Francisco, CA, April 2003.

[5] W. Bartlett and L. Spainhower. Commercial Fault Tolerance: A Tale of
Two Systems.IEEE Transactions on Dependable and Secure Computing,
1(1):87–96, January 2004.

[6] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek. Fault Injection Exper-
iments Using FIAT. IEEE Transactions on Computers, 39(4):1105–1118,
April 1990.

[7] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html,
2004.

[8] D. Bitton and J. Gray. Disk shadowing. InVLDB 14, pages 331–338, Los
Angeles, CA, August 1988.

[9] A. Brown and D. A. Patterson. Towards Maintainability, Availability, and
Growth Benchmarks: A Case Study of Software RAID Systems. InUSENIX
’00, pages 263–276, San Diego, CA, June 2000.

[10] W. Burkhard and J. Menon. Disk Array Storage System Reliability. In FTCS-
23, pages 432–441, Toulouse, France, June 1993.

[11] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot –
A Technique for Cheap Recovery. InOSDI ’04, pages 31–44, San Francisco,
CA, December 2004.

[12] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical Study
of Operating System Errors. InSOSP ’01, pages 73–88, Banff, Canada,
October 2001.

[13] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,J. Leong, and
S. Sankar. Row-Diagonal Parity for Double Disk Failure Correction. In
FAST ’04, pages 1–14, San Francisco, CA, April 2004.

[14] J. DeVale and P. Koopman. Performance Evaluation of Exception Handling
in I/O Libraries. InDSN-2001, Goteborg, Sweden, June 2001.

[15] J. R. Doucer and W. J. Bolosky. A Large-Scale Study of File-System Con-
tents. InSIGMETRICS ’99, pages 59–69, Atlanta, GA, May 1999.

[16] J. E. Dykes. ’A modern disk has roughly 400,000 lines of code within it’.
Personal Communication, 2005.

[17] EMC. EMC Centera: Content Addressed Storage System.
http://www.emc.com/, 2004.

[18] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as Deviant
Behavior: A General Approach to Inferring Errors in SystemsCode. In
SOSP ’01, pages 57–72, Banff, Canada, October 2001.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
SOSP ’03, pages 29–43, Bolton Landing, NY, October 2003.

[20] J. Gray. A Census of Tandem System Availability Between1985 and 1990.
Technical Report 90.1, Tandem Computers, 1990.

[21] R. Green. EIDE Controller Flaws Version 24.
http://mindprod.com/eideflaw.html, February 2005.

[22] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization of Linux
Kernel Behavior Under Error. InDSN-2003, pages 459–468, San Francisco,
CA, June 2003.

[23] V. Henson. A Brief History of UNIX File Systems.
http://infohost.nmt.edu/∼val/fs slides.pdf, 2004.

[24] D. Hitz, J. Lau, and M. Malcolm. File System Design for anNFS File Server
Appliance. InUSENIX Winter ’94, San Francisco, CA, January 1994.

[25] G. F. Hughes and J. F. Murray. Reliability and Security of RAID Storage
Systems and D2D Archives Using SATA Disk Drives.ACM Transactions on
Storage, 1(1):95–107, February 2005.

[26] Intel Corp. and IBM Corp. Device Driver Hardening.
http://hardeneddrivers.sourceforge.net/, 2002.

[27] H. H. Kari. Latent Sector Faults and Reliability of Disk Arrays. PhD thesis,
Helsinki University of Technology, September 1997.

[28] H. H. Kari, H. Saikkonen, and F. Lombardi. Detection of Defective Media in
Disks. InThe IEEE International Workshop on Defect and Fault Tolerance
in VLSI Systems, pages 49–55, Venice, Italy, October 1993.

[29] J. Katcher. PostMark: A New File System Benchmark. Technical Report
TR-3022, Network Appliance Inc., October 1997.

[30] S. R. Kleiman. Vnodes: An Architecture for Multiple File System Types
in Sun UNIX. In USENIX Summer ’86, pages 238–247, Atlanta, GA, June
1986.

[31] B. Lewis. Smart Filers and Dumb Disks. NSIC OSD Working Group Meet-
ing, April 1999.

[32] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and
V. Stemann. Practical Loss-Resilient Codes. InSTOC ’97, pages 150–159,
El Paso, TX, May 1997.

[33] W. lun Kao, R. K. Iyer, and D. Tang. FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Behavior Under Faults. In IEEE
Transactions on Software Engineering, pages 1105–1118, 1993.

[34] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System
for UNIX. ACM Transactions on Computer Systems, 2(3):181–197, August
1984.

[35] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck - The UNIX
File System Check Program. Unix System Manager’s Manual - 4.3 BSD
Virtual VAX-11 Version, April 1986.

[36] A. Park and K. Balasubramanian. Providing fault tolerance in parallel sec-
ondary storage systems. Technical Report CS-TR-057-86, Department of
Computer Science, Princeton University, November 1986.

[37] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok. I3FS: An In-kernel In-
tegrity Checker and Intrusion detection File System. InLISA ’04, Atlanta,
GA, November 2004.

[38] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. En-
riquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry,
W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case Studies. Technical Re-
port CSD-02-1175, U.C. Berkeley, March 2002.

14

Draft: Please do not distribute.

[39] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inex-
pensive Disks (RAID). InSIGMOD ’88, pages 109–116, Chicago, Illinois,
June 1988.

[40] J. Postel. RFC 793: Transmission Control Protocol, September 1981. Avail-
able fromftp://ftp.rfc-editor.org/in-notes/rfc793.txt
as of August, 2003.

[41] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C.Lynch, P. R.
McJones, H. G. Murray, and S. C.Purcell. Pilot: An OperatingSystem for
a Personal Computer.Communications of the ACM, 23(2):81–92, February
1980.

[42] H. Reiser. ReiserFS. www.namesys.com, 2004.

[43] P. M. Ridge and G. Field.The Book of SCSI 2/E. No Starch, June 2000.

[44] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and J.William
S. Beebe. Enhancing Server Availability and Security Through Failure-
Oblivious Computing. InOSDI ’04, San Francisco, CA, December 2004.

[45] M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-
Structured File System.ACM Transactions on Computer Systems, 10(1):26–
52, February 1992.

[46] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design.ACM Transactions on Computer Systems, 2(4):277–288, November
1984.

[47] S. Savage and J. Wilkes. AFRAID — A Frequently RedundantArray of
Independent Disks. InUSENIX 1996, pages 27–39, San Diego, CA, January
1996.

[48] S. W. Schlosser and G. R. Ganger. MEMS-based storage devices and stan-
dard disk interfaces: A square peg in a round hole? InFAST ’04, pages
87–100, San Francisco, CA, April 2004.

[49] F. B. Schneider. Implementing Fault-Tolerant Services Using The State Ma-
chine Approach: A Tutorial.ACM Computing Surveys, 22(4):299–319, De-
cember 1990.

[50] T. J. Schwarz, Q. Xin, E. L. Miller, D. D. Long, A. Hospodor, and S. Ng. Disk
Scrubbing in Large Archival Storage Systems. InMASCOTS ’04, Volendam,
Netherlands, October 2004.

[51] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. AnImplementation
of a Log-Structured File System for UNIX. InUSENIX Winter ’93, pages
307–326, San Diego, CA, January 1993.

[52] D. Siewiorek, J. Hudak, B. Suh, and Z. Segal. Development of a Benchmark
to Measure System Robustness. InFTCS-23, Toulouse, France, June 1993.

[53] D. A. Solomon. Inside Windows NT. Microsoft Programming Series. Mi-
crosoft Press, 2nd edition, May 1998.

[54] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying File System Protection.
In USENIX ’01, Boston, MA, June 2001.

[55] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck.
Scalability in the XFS File System. InUSENIX 1996, San Diego, CA, Jan-
uary 1996.

[56] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of
Commodity Operating Systems. InSOSP ’03, Bolton Landing, NY, October
2003.

[57] N. Talagala and D. Patterson. An Analysis of Error Behaviour in a Large
Storage System. InThe IEEE Workshop on Fault Tolerance in Parallel and
Distributed Systems, San Juan, Puerto Rico, April 1999.

[58] The Data Clinic. Hard Disk Failure. http://www.dataclinic.co.uk/hard-disk-
failures.htm, 2004.

[59] Transaction Processing Council. TPC Benchmark B Standard Specification,
Revision 3.2. Technical Report, 1990.

[60] T. K. Tsai and R. K. Iyer. Measuring Fault Tolerance withthe FTAPE Fault
Injection Tool. InThe 8th International Conference On Modeling Techniques
and Tools for Computer Performance Evaluation, pages 26–40, September
1995.

[61] S. C. Tweedie. Journaling the Linux ext2fs File System.In The Fourth
Annual Linux Expo, Durham, North Carolina, May 1998.

[62] J. Wehman and P. den Haan. The Enhanced IDE/Fast-ATA FAQ. http://thef-
nym.sci.kun.nl/cgi-pieterh/atazip/atafq.html, 1998.

[63] G. Weinberg. The Solaris Dynamic File System.
http://members.visi.net/∼thedave/sun/DynFS.pdf, 2004.

[64] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID Hierar-
chical Storage System.ACM Transactions on Computer Systems, 14(1):108–
136, February 1996.

[65] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model Checking to
Find Serious File System Errors. InOSDI ’04, San Francisco, CA, December
2004.

[66] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and T. E.
Anderson. Trading Capacity for Performance in a Disk Array.In OSDI ’00,
San Diego, CA, October 2000.

15

