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Abstract
General-purpose operating systems provide inade-

quate support for resource management in large-scale
servers. Applications lack sufficient control over
scheduling and management of machine resources,
which makes it difficult to enforce priority policies, and
to provide robust and controlled service. There is a fun-
damental mismatch between the original design assump-
tions underlying the resource management mechanisms
of current general-purpose operating systems, and the
behavior of modern server applications. In particular, the
operating system’s notions of protection domain andre-
source principalcoincide in the process abstraction. This
coincidence prevents a process that manages large num-
bers of network connections, for example, from properly
allocating system resources among those connections.

We propose and evaluate a new operating system ab-
straction called aresource container, which separates the
notion of a protection domain from that of a resource
principal. Resource containers enable fine-grained re-
source management in server systems and allow the de-
velopment of robust servers, with simple and firm control
over priority policies.

1 Introduction
Networked servers have become one of the most im-

portant applications of large computer systems. For many
users, the perceived speed of computing is governed by
server performance. We are especially interested in the
performance of Web servers, since these must often scale
to thousands or millions of users.

Operating systems researchers and system vendors
have devoted much attention to improving the perfor-
mance of Web servers. Improvements in operating sys-
tem performance have come from reducing data move-
ment costs [2, 35, 43], developing better kernel algo-
rithms for protocol control block (PCB) lookup [26] and
file descriptor allocation [6], improving stability under
overload [15, 30], and improving server control mech-
anisms [5, 21]. Application designers have also at-
tacked performance problems by making more efficient

use of existing operating systems. For example, while
early Web servers used a process per connection, recent
servers [41, 49] use a single-process model, which re-
duces context-switching costs.

While the work cited above has been fruitful, it has
generally treated the operating system’s application pro-
gramming interface (API), and therefore its core abstrac-
tions, as a constant. This has frustrated efforts to solve
thornier problems of server scaling and effective con-
trol over resource consumption. In particular, servers
may still be vulnerable to “denial of service” attacks, in
which a malicious client manages to consume all of the
server’s resources. Also, service providers want to exert
explicit control over resource consumption policies, in
order to provide differentiated quality of service (QoS) to
clients [1] or to control resource usage by guest servers
in a Rent-A-Server host [45]. Existing APIs do not al-
low applications to directly control resource consump-
tion throughout the host system.

The root of this problem is the model for resource
management in current general-purpose operating sys-
tems. In these systems, scheduling and resource man-
agement primitives do not extend to the execution of sig-
nificant parts of kernel code. An application has no con-
trol over the consumption of many system resources that
the kernel consumes on behalf of the application. The
explicit resource management mechanisms that do exist
are tied to the assumption that a process is what consti-
tutes an independent activity1. Processes are the resource
principals: those entities between which the resources of
the system are to be shared.

Modern high-performance servers, however, often use
a single process to perform many independent activities.
For example, a Web server may manage hundreds or
even thousands of simultaneous network connections, all
within the same process. Much of the resource consump-
tion associated with these connections occurs in kernel

1We use the termindependent activityto denote a unit of compu-
tation for which the application wishes to perform separate resource
allocation and accounting; for example, the processing associated with
a single HTTP request.



mode, making it impossible for the application to control
which connections are given priority2.

In this paper, we address resource management in
monolithic kernels. While microkernels and other novel
systems offer interesting alternative approaches to this
problem, monolithic kernels are still commercially sig-
nificant, especially for Internet server applications.

We describe a new model for fine-grained resource
management in monolithic kernels. This model is based
on a new operating system abstraction called aresource
container. A resource container encompasses all system
resources that the server uses to perform a particular in-
dependent activity, such as servicing a particular client
connection. All user and kernel level processing for an
activity is charged to the appropriate resource container,
and scheduled at the priority of the container. This model
allows fairly arbitrary interrelationships between protec-
tion domains, threads and resource containers, and can
therefore support a wide range of resource management
scenarios.

We evaluate a prototype implementation of this model,
as a modification of Digital UNIX, and show that it is ef-
fective in solving the problems we described.

2 Typical models for high-performance
servers

This section describes typical execution models for
high-performance Internet server applications, and pro-
vides the background for the discussion in following sec-
tions. To be concrete, we focus on HTTP servers and
proxy servers, but most of the issues also apply to other
servers, such as mail, file, and directory servers. We as-
sume the use of a UNIX-like API; however, most of this
discussion is valid for servers based on Windows NT.

An HTTP server receives requests from its clients via
TCP connections. (In HTTP/1.1, several requests may be
sent serially over one connection.) The server listens on
a well-known port for new connection requests. When a
new connection request arrives, the system delivers the
connection to the server application via theaccept()
system call. The server then waits for the client to send
a request for data on this connection, parses the request,
and then returns the response on the same connection.
Web servers typically obtain the response from the local
file system, while proxies obtain responses from other
servers; however, both kinds of server may use a cache
to speed retrieval. Stevens [42] describes the basic oper-
ation of HTTP servers in more detail.

The architecture of HTTP servers has undergone rad-
ical changes. Early servers forked a new process to han-
dle each HTTP connection, following the classical UNIX

2 In this paper, we use the termpriority loosely to mean the cur-
rent scheduling precedence of a resource principal, as defined by the
scheduling policy based on the principal’s scheduling parameters. The
scheduling policy in use may not be priority based.
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Fig. 1: A process-per connection HTTP server with a
master process.

model. The forking overhead quickly became a problem,
and subsequent servers (such as the NCSA httpd [32]),
used a set of pre-forked processes. In this model, shown
in Figure 1, a master process accepts new connections
and passes them to the pre-forked worker processes.
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Fig. 2: A single-process event-driven server.

Multi-process servers can suffer from context-
switching and interprocess communication (IPC) over-
heads [11, 38], so many recent servers use a single-
process architecture. In the event-driven model (Fig-
ure 2), the server uses a single thread to manage all con-
nections at the server. (Event-driven servers designed
for multiprocessors use one thread per processor.) The
server uses theselect() (or poll() ) system call
to simultaneously wait for events on all connections it
is handling. Whenselect() delivers one or more
events, the server’s main loop invokes handlers for each
ready connection. Squid [41] and Zeus [49] are examples
of event-driven servers.

Alternatively, in the single-process multi-threaded
model (Figure 3), each connection is assigned to a unique
thread. These can either be user-level threads or kernel
threads. The thread scheduler is responsible for time-
sharing the CPU between the various server threads.
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Fig. 3: A single-process multi-threaded server.

Idle threads accept new connections from the listening
socket. TheAltaVistafront-end uses this model [8].

So far, we have assumed the use of static documents
(or “resources”, in HTTP terms). HTTP also supports
requests for dynamic resources, for which responses are
created on demand, perhaps based on client-provided ar-
guments. For example, a query to a Web search engine
such asAltaVistaresolves to a dynamic resource.

Dynamic responses are typically created by auxiliary
third-party programs, which run as separate processes to
provide fault isolation and modularity. To simplify the
construction of such auxiliary programs, standard inter-
faces (such as CGI [10] and FastCGI [16]) support com-
munication between Web servers and these programs.
The earliest interface, CGI, creates a new process for
each request to adynamic resource; the newer FastCGI
allows persistent CGI processes. Microsoft and Netscape
have defined library-based interfaces [29, 34] to allow
the construction of third-party dynamic resource mod-
ules that reside in the main server process, if fault isola-
tion is not required; this minimizes overhead.

In summary, modern high-performance HTTP servers
are implemented as a small set of processes. One main
server process services requests for static documents; dy-
namic responses are created either by library code within
the main server process, or, if fault isolation is desired,
by auxiliary processes communicating via a standard in-
terface. This is ideal, in theory, because the overhead
of switching context between protection domains is in-
curred only if absolutely necessary. However, structur-
ing a server as a small set of processes poses numerous
important problems, as we show in the next section.

3 Shortcomings of current resource man-
agement models

An operating system’s scheduling and memory allo-
cation policies attempt to provide fairness among resource
principals, as well as graceful behavior of the system un-
der various load conditions. Most operating systems treat
a process, or a thread within a process, as the schedulable

entity. The process is also the “chargeable” entity for the
allocation of resources, such as CPU time and memory.

A basic design premise of such process-centric sys-
tems is that a process is the unit that constitutes an in-
dependent activity. This give the process abstraction a
dual function: it serves both as a protection domain and
as a resource principal. As protection domains, processes
provide isolation between applications. As resource prin-
cipals, processes provide the operating system’s resource
management subsystem with accountable entities, be-
tween which the system’s resources are shared.

We argue that this equivalence between protection do-
mains and resource principals, however, is not always ap-
propriate. We will examine several scenarios in which
the natural boundaries of resource principals do not co-
incide with either processes or threads.

3.1 The distinction between scheduling entities and
activities

Application Process

Application Threads

Kernel

Single Independent 
         Activity

(Protection Domain 
+ Resource Principal)

User level

Fig. 4: A classical application.

A classical application uses a single process to per-
form an independent activity. For such applications, the
desired units of isolation and resource consumption are
identical, and the process abstraction suffices. Figure 4
shows a mostly user-mode application, using one process
to perform a single independent activity.

In a network-intensive application, however, much of
the processing is done in the kernel. The process is the
correct unit for protection isolation, but it does not en-
compass all of the associated resource consumption; in
most operating systems, the kernel generally does not
control or properly account for resources consumed dur-
ing the processing of network traffic. Most systems do
protocol processing in the context of software interrupts,
whose execution is either charged to the unlucky process
running at the time of the interrupt, or to no process at
all. Figure 5 shows the relationship between the applica-
tion, process, resource principal and independent activity
entities for a network-intensive application.

Some applications are split into multiple protection
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Fig. 5: A classical network-intensive application.
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Fig. 6: A multi-process application.

domains (for example, to provide fault isolation between
different components of the application). Such applica-
tions may still perform a single independent activity, so
the desired unit of protection (the process) is different
from the desired unit of resource management (all the
processes of the application). A mostly user-mode multi-
process application trying to perform a single indepen-
dent activity is shown in Figure 6.
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Fig. 7: A single-process multi-threaded server.

In yet another scenario, an application consists of a
single process performing multiple independent activi-
ties. Such applications use a single protection domain, to
reduce context-switching and IPC overheads. For these
applications, the correct unit of resource management is
smaller than a process: it is the set of all resources being
used by the application to accomplish a single indepen-
dent activity. Figure 7 shows, as an example, a single-
process multi-threaded Internet server.

Real-world single-process Internet servers typically
combine the last two scenarios: a single process usually
manages all of server’s connections, but additional pro-
cesses are employed when modularity or fault isolation
is necessary (see section 2). In this case, the desired unit
of resource management includes part of the activity of
the main server process, and also the entire activity of,

for example, a CGI process.
In some operating systems, e.g., Solaris, threads as-

sume some of the role of a resource principal. In these
systems, CPU usage is charged to individual threads
rather than to their parent processes. This allows threads
to be scheduled either independently, or based on the
combined CPU usage of the parent process’s threads.
The process is still the resource principal for the alloca-
tion of memory and other kernel resources, such as sock-
ets and protocol buffers.

We stress that it is not sufficient to simply treat threads
as the resource principals. For example, the processing
for a particular connection (activity) may involve mul-
tiple threads, not always in the same protection domain
(process). Or, a single thread may be multiplexed be-
tween several connections.

3.2 Integrating network processing with resource
management

As described above, traditional systems provide little
control over the kernel resources consumed by network-
intensive applications. This can lead to inaccurate ac-
counting, and therefore inaccurate scheduling. Also,
much of the network processing is done as the result of
interrupt arrivals, and interrupts have strictly higher pri-
ority than any user-level code; this can lead to starvation
or livelock [15, 30]. These issues are particularly impor-
tant for large-scale Internet servers.

Lazy Receiver Processing (LRP) [15] partially solves
this problem, by more closely following the process-
centric model. In LRP, network processing is integrated
into the system’s global resource management. Re-
sources spent in processing network traffic are associated
with and charged to the application process that caused
the traffic. Incoming network traffic is processed at the
scheduling priority of the process that received the traf-
fic, and excess traffic is discarded early. LRP systems
exhibit increased fairness and stable overload behavior.

LRP extends a process-centered resource principal
into the kernel, leading to the situation shown in Fig-
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ure 8. However, LRP maintains the equivalence between
resource principal and process; it simply makes it more
accurate. LRP, by itself, does not solve all of the prob-
lems that arise when the process is not the correct unit of
resource management.

3.3 Consequences of misidentified resource princi-
pals

Our fundamental concern is to allow an application to
explicitly allocate resource consumption among the inde-
pendent activities that it manages. This is infeasible if the
operating system’s view of activity differs from that of
the application, or if the system fails to account for large
chunks of consumption. Yet it is crucial for a server to
supportaccurately differentiated QoS among its clients,
or to prevent overload from denial-of-service attacks, or
to give its existing connections priority over new ones.

With a single-process server, for example, traditional
operating systems see only one resource principal – the
process. This prevents the application from controlling
consumption of kernel CPU time (and other kernel re-
sources) by various network connectionswithin this re-
source principal. The application cannot control the or-
der in which the kernel delivers its network events; nor,
in most systems, can it control whether it receives net-
work events before other processes do.

It is this lack of a carefully defined concept of re-
source principal, independent from other abstractions
such as process or thread, that precludes the application
control we desire.

4 A new model for resource management
To address the problems of inadequate control over

resource consumption, we propose a new model for fine-
grained resource management in monolithic kernels. We
introduce a new abstraction, called aresource container,
for the operating system’s resource principal.

Sections 4.1 through 4.7 describe the resource con-
tainer model in detail. Section 4.8 then discusses its use
in Internet servers.

4.1 Resource containers
A resource container is an abstract operating system

entity that logically contains all the system resources be-
ing used by an application to achieve a particular inde-
pendent activity. For a given HTTP connection managed
by a Web server, for example, these resources include
CPU time devoted to the connection, and kernel objects
such as sockets, protocol control blocks, and network
buffers used by the connection.

Containers have attributes; these are used to provide
scheduling parameters, resource limits, and network QoS
values. A practical implementation would require an ac-
cess control model for containers and their attributes;
space does not permit a discussion of this issue.

The kernel carefully accounts for the system re-
sources, such as CPU time and memory, consumed by
a resource container. The system scheduler can access
this usage information and use it to control how it sched-
ules threads associated with the container; we discuss
scheduling in detail in Section 4.3. The application pro-
cess can also access this usage information, and might
use it, for example, to adjust the container’s numeric pri-
ority.

Current operating systems, as discussed in Section 3,
implicitly treat processes as the resource principals,
while ignoring many of the kernel resources they con-
sume. By introducing an explicit abstraction for resource
containers, we make a clear distinction between protec-
tion domains and resource principals, and we provide for
fuller accounting of kernel resource consumption. This
provides the flexibility necessary for servers to handle
complex resource management problems.

4.2 Containers, processes, and threads
In classical systems, there is a fixed association be-

tween threads and resource principals (which are either
the threads themselves, or the processes containing the
threads). The resource consumption of a thread is charged
to the associated resource principal, and this information
is used by the system when scheduling threads.

With resource containers, the binding between a
thread and a resource principal is dynamic, and un-
der the explicit control of the application; we call this
the thread’sresource binding. The kernel charges the
thread’s resource consumption to this container. Mul-
tiple threads, perhaps from multiple processes, may si-
multaneously have their resource bindings set to a given
container.

A thread starts with a default resource container bind-
ing (inherited from its creator). The application can re-
bind the thread to another container as the need arises.
For example, a thread time-multiplexed between several
connections changes its resource binding as it switches
from handling one connection to another, to ensure cor-
rect accounting of resource consumption.



4.3 Resource containers and CPU scheduling
CPU schedulers make their decisions using informa-

tion about both the desired allocation of CPU time, and
the recent history of actual usage. For example, the tra-
ditional UNIX scheduler uses numeric process priori-
ties (which indicate desired behavior) modified by time-
decayed measures of recent CPU usage; lottery schedul-
ing [48] uses lottery tickets to represent the allocations.
In systems that support threads, the allocation for a
thread may be with respect only to the other threads of
the same process (“process contention scope”), or it may
be with respect to all of the threads in the system (“sys-
tem contention scope”).

Resource containers allow an application to associate
scheduling information with an activity, rather than with
a thread or process. This allows the system’s scheduler to
provide resources directly to an activity, no matter how it
might be mapped onto threads.

The container mechanism supports a large variety of
scheduling models, including numeric priorities, guaran-
teed CPU shares, or CPU usage limits. The allocation
attributes appropriate to the scheduling model are asso-
ciated with each resource container in the system. In our
prototype, we implemented a multi-level scheduling pol-
icy that supports both fixed-share scheduling and regular
time-shared scheduling.

A thread is normally scheduled according to the
scheduling attributes of the container to which it is
bound. However, if a thread is multiplexed between
several containers, it may cost too much to reschedule
it (recompute its numeric priority and decide whether
to preempt it) every time its resource binding changes.
Also, with a feedback-based scheduler, using only the
current container’s resource usage to calculate a multi-
plexed thread’s numeric priority may not accurately re-
flect its recent usage. Instead, the thread should be sched-
uled based on thecombinedresource allocations and us-
age of all the containers it is currently handling.

To support this, our model defines a binding, called
a scheduler binding, between each thread and the set
of containers over which it is currently multiplexed. A
priority-based scheduler, for example, would construct a
thread’s scheduling priority from the combined numeric
priorities of the resource containers in its scheduler bind-
ing, possibly taking into account the recent resource con-
sumption of this set of containers.

A thread’s scheduler binding is set implicitly by the
operating system, based on the system’s observation of
the thread’s resource bindings. A thread that services
only one container will therefore have a scheduler bind-
ing that includes just this container. The kernel prunes
the scheduler binding set of a container, periodically re-
moving resource containers that the thread has not re-
cently had a resource binding to. In addition, an appli-
cation can explicitly reset a thread’s scheduler binding

to include only the container to which it currently has a
resource binding.

4.4 Other resources
Like CPU cycles, the use of other system resources

such as physical memory, disk bandwidth and socket
buffers can be conveniently controlled by resource con-
tainers. Resource usage is charged to the correct activity,
and the various resource allocation algorithms can bal-
ance consumption between principals depending on spe-
cific policy goals.

We stress here that resource containers are just a
mechanism, and can be used in conjunction with a large
variety of resource management policies. The container
mechanism causes resource consumption to be charged
to the correct principal, but does not change what these
charges are. Unfortunately, policies currently deployed
in most general-purpose systems are able to control
consumption of resources other than CPU cycles only
in a very coarse manner, which is typically based on
static limits on total consumption. The development of
more powerful policies to control the consumption of
such resources has been the focus of complimentary re-
search in application-specific paging [27, 20, 24] and file
caching [9], disk bandwidth allocation [46, 47], and TCP
buffer management [39].

4.5 The resource container hierarchy
Resource containers form a hierarchy. The resource

usage of a child container is constrained by the schedul-
ing parameters of its parent container. For example, if
a parent container is guaranteed at least 70% of the sys-
tem’s resources, then it and its child containers are col-
lectively guaranteed 70% of the system’s resources.

Hierarchical resource containers make it possible to
control the resource consumption of an entire subsys-
tem without constraining (or even understanding) how
the subsystem allocates and schedules resources among
its various independent activities. For example, a system
administrator may wish to restrict the total resource us-
age of a Web server by creating a parent container for all
the server’s resource containers. The Web server can cre-
ate an arbitary number of child containers to manage and
distribute the resources allocated to its parent container
among its various independent activities, e.g. different
client requests.

The hierarchical structure of resource containers
makes it easy to implement fixed-share scheduling
classes, and to enforce a rich set of priority policies.
Our prototype implementation supports a hierarchy of
resource principals, but only supports resource bindings
between threads and leaf containers.

4.6 Operations on resource containers
The resource container mechanism includes these op-

erations on containers:



Creating a new container: A process can create a new
resource container at any time (and may have mul-
tiple containers available for its use). A default
resource container is created for a new process as
part of afork() , and the first thread of the new
process is bound to this container. Containers are
visible to the application as file descriptors (and so
are inherited by a new process after afork() ).

Set a container’s parent: A process can change a con-
tainer’s parent container (or set it to “no parent”).

Container release: Processes release their references to
containers usingclose() ; once there are no such
descriptors, and no threads with resource bindings,
to the container, it is destroyed. If the parent P of
a container C is destroyed, C’s parent is set to “no
parent.”

Sharing containers between processes:Resource con-
tainers can be passed between processes, analo-
gous to the transfer of descriptors between UNIX
processes (the sending process retains access to the
container). When a process receives a reference to
a resource container, it can use this container as a
resource context for its own threads. This allows
an application to move or share a computation be-
tween multiple protection domains, regardless of
the container inheritance sequence.

Container attributes: An application can set and read
the attributes of a container. Attributes include
scheduling parameters, memory allocation limits,
and network QoS values.

Container usage information: An application can ob-
tain the resource usage information charged to a
particular container. This allows a thread that
serves multiple containers to timeshare its execu-
tion between these containers based on its particu-
lar scheduling policy.

These operations control the relationship between con-
tainers, threads, sockets, and files:

Binding a thread to a container: A process can set the
resource binding of a thread to a container at any
time. Subsequent resource usage by the thread
is charged to this resource container. A process
can also obtain the current resource binding of a
thread.

Reset the scheduler binding:An application can reset
a thread’s scheduler binding to include only its cur-
rent resource binding.

Binding a socket or file to a container: A process can
bind the descriptor for a socket or file to a con-
tainer; subsequent kernel resource consumption on

behalf of this descriptor is charged to the container.
A descriptor may be bound to at most one con-
tainer, but many descriptors may be bound to one
container. (Our prototype currently supports bind-
ing only sockets, not disk files.)

4.7 Kernel execution model
Resource containers are effective only if kernel pro-

cessing on behalf of a process is performed in the re-
source context of the appropriate container. As discussed
in Section 3, most current systems do protocol process-
ing in the context of a software interrupt, and may fail to
charge the costs to the proper resource principal.

LRP, as discussed in Section 3.2, addresses this prob-
lem by associating arriving packets with the receiving
process as early as possible, which allows the kernel to
charge the cost of received-packet processing to the cor-
rect process. We extend the LRP approach, by associat-
ing a received packet with the correct resource container,
instead of with a process. If the kernel uses threads for
network processing, the thread handling a network event
can set its resource binding to the resource container; a
non-threaded kernel might use a more ad-hoc mechanism
to perform this accounting.

When there is pending protocol processing for multi-
ple containers, the priority (or other scheduling param-
eters) of these containers determines the order in which
they are serviced by the kernel’s network implementa-
tion.

4.8 The use of resource containers
We now describe how a server application can use re-

source containers to provide robust and controlled behav-
ior. We consider several example server designs.

First, consider a single-process multi-threaded Web
server, that uses a dedicated kernel thread to handle each
HTTP connection. The server creates a new resource
container for each new connection, and assigns one of a
pool of free threads to service the connection. The appli-
cation sets the thread’s resource binding to the container.
Any subsequent kernel processing for this connection is
charged to the connection’s resource container. This sit-
uation is shown in Figure 9.

If a particular connection (for example, a long file
transfer) consumes a lot of system resources, this con-
sumption is charged to the resource container. As a re-
sult, the scheduling priority of the associated thread will
decay, leading to the preferential scheduling of threads
handling other connections.

Next, consider an event-driven server, on a uniproces-
sor, using a single kernel thread to handle all of its con-
nections. Again, the server creates a new resource con-
tainer for each new connection. When the server does
processing for a given connection, it sets the thread’s re-
source binding to that container. The operating system
adds each such container to the thread’s scheduler bind-
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Fig. 10: Containers in an event-driven server.

ing. Figure 10 depicts this situation.
If a connection consumes a lot of resources, this usage

is charged to the corresponding container. The server
application can obtain this usage information, and use
it both to adjust the container’s numeric priority, and to
control how it subsequently expends its resources for the
connection.

Both kinds of servers, when handling a request for
a dynamic (CGI) document, pass the connection’s con-
tainer to the CGI process. This may either be done by
inheritance, for traditional CGI using a child process, or
explicitly, when persistent CGI server processes are used.
(If the dynamic processing is done in a module within
the server process itself, the application simply binds its
thread to the appropriate container.)

A server may wish to assign different priorities to re-
quests from different sources, even for processing that
occurs in the kernel before the application sees the con-
nection. This could be used to defend against some
denial-of-service attacks, and could also be used by an
ISP to provide an enhanced class of service to users who
have paid a premium.

To support this prioritization, we define a new
sockaddr namespace that includes a “filter” specify-
ing a set of foreign addresses, in addition to the usual
Internet address and port number. Filters are specified
as tuples consisting of a template address and a CIDR
network mask [36]. The application uses thebind()
system call to bind multiple server sockets,each with the
same<local-address, local-port> tuple but with a dif-
ferent<template-address, CIDR-mask> filter. The sys-
tem uses these filters to assign requests from a particular
client, or set of clients, to the socket with a matching fil-
ter. By associating a different resource container with
each socket, the server application can assign different
priorities to different sets of clients, prior to listening for
and accepting new connections on these sockets. (One
might also want to be able to specify complement filters,
to accept connectionsexceptfrom certain clients.)

The server can use the resource container associated

with a listening socket to set the priority of accepting
new connections relative to servicing the existing ones.
In particular, to defend against a denial-of-service at-
tack from a specific set of clients, the server can cre-
ate a socket whose filter matches this set, and then bind
it to a resource container with a numeric priority of
zero. (This requires the network infrastructure to reject
spoofed source addresses, a problem currently being ad-
dressed [33].)

A server administrator may wish to restrict the total
CPU consumption of certain classes of requests, such as
CGI requests, requests from certain hosts, or requests for
certain resources. The application can do this by creat-
ing a container for each such class, setting its attributes
appropriately (e.g., limiting the total CPU usage of the
class), and then creating the resource container for each
individual request as the child of the corresponding class-
specific container.

Because resource containers enable precise account-
ing for the costs of an activity, they may be useful to
administrators simply for sending accurate bills to cus-
tomers, and for use in capacity planning.

Resource containers are in some ways similar to many
resource management mechanisms that have been devel-
oped in the context of multimedia and real-time operat-
ing systems [17, 19, 22, 28, 31]. Resource containers are
distinguished from these other mechanism by their gen-
erality, and their direct applicability to existing general
purpose operating systems. See Section 6 for more dis-
cussion of this related work.

5 Performance
We performed several experiments to evaluate

whether resource containers are an effective way for a
Web server to control resource consumption, and to pro-
vide robust and controlled service.

5.1 Prototype implementation
Our prototype was implemented as modifications to

the Digital UNIX 4.0D kernel. We changed the CPU



scheduler, the resource management subsystem, and the
network subsystem to understand resource containers.

We modified Digital UNIX’s CPU scheduler sched-
uler to treat resource containers as its resource princi-
pals. A resource container can obtain a fixed-share guar-
antee from the scheduler (within the CPU usage restric-
tions of its parent container), or can choose to time-share
the CPU resources granted to its parent container with its
sibling containers. Fixed-share guarantees are ensured
for timescales that are in the order of tens of seconds or
larger. Containers with fixed-share guarantees can have
child containers; time-share containers cannot have chil-
dren. In our prototype, threads can only be bound to leaf-
level containers.

We changed the TCP/IP subsystem to implement LRP-
style processing, treating resource containers as resource
principals. A per-process kernel thread is used to per-
form processing of network packets in priority order of
their containers. To ensure correct accounting, this thread
sets its resource binding appropriately while processing
each packet.

Implementing the container abstraction added 820
lines of new code to the Digital UNIX kernel. About
1730 lines of kernel code were changed and 4820 lines
of code were added to integrate containers as the sys-
tem’s resource principals, and to implement LRP-style
network processing. Of these 6550 lines (1730 + 4820)
of integration code, 2342 lines (142 changed, 2200 new)
concerned the CPU scheduler, 2136 lines (205 changed,
1931 new) were in the network subsystem, and the re-
mainder were spread across the rest of the kernel.

Code changes were small for all the server applica-
tions that we considered, though they were sometimes
fairly pervasive throughout the application.

5.2 Experimental environment
In all experiments, the server was a Digital Personal

Workstation 500au (500Mhz 21164, 8KB I-cache, 8KB
D-cache, 96KB level 2 unified cache, 2MB level 3 uni-
fied cache, SPECint95 = 12.3,128MB of RAM), running
our modified version of Digital UNIX 4.0D. The client
machines were 166MHz Pentium Pro PCs, with 64MB
of memory, and running FreeBSD 2.2.5. All experiments
ran over a private 100Mbps switched Fast Ethernet.

Our server software was a single-process event-driven
program derived from thttpd [44]. We started from a
modified version of thttpd with numerous performance
improvements, and changed it to optionally use resource
containers. Our clients used the S-Client software [4].

5.3 Baseline throughput
We measured the throughput of our HTTP server run-

ning on the unmodified kernel. When handling requests
for small files (1 KByte) that were in the filesystem cache,
our server achieved a rate of 2954 requests/sec. using

connection-per-request HTTP, and 9487 requests/sec. us-
ing persistent-connection HTTP. These rates saturated the
CPU, corresponding to per-request CPU costs of 338�s
and 105�s, respectively.

5.4 Costs of new primitives
We measured the costs of primitive operations on re-

source containers. For each new primitive, a user-level
program invoked the system call 10,000 times, measured
the total elapsed time, and divided to obtain a mean
“warm-cache” cost. The results, in Table 1, show that
all such operations have costs much smaller than that of
a single HTTP transaction. This implies that the use of
resource containers should add negligible overhead.

Operation Cost (�s)

create resource container 2.36
destroy resource container 2.10
change thread’s resource binding 1.04
obtain container resource usage 2.04
set/get container attributes 2.10
move container between processes3.15
obtain handle for existing container1.90

Table 1: Cost of resource container primitives.

We verified this by measuring the throughput of our
server running on the modified kernel. In this test, the
Web server process created a new resource container for
each HTTP request. The throughput of the system re-
mained effectively unchanged.

5.5 Prioritized handling of clients
Our next experiment tested the effectiveness of re-

source containers in enabling prioritized handling of
clients by a Web server. We consider a scenario where a
server’s administrator wants to differentiate between two
classes of clients (for example, based on payment tariffs).

Our experiment used an increasing number of low-
priority clients to saturate a server, while a single high-
priority client made requests of the server. All requests
were for the same (static) 1KB file, with one request per
connection. We measured the response time perceived
by the high-priority client.

Figure 11 shows the results. The y-axis shows the re-
sponse time seen by the high-priority client (Thigh) as a
function of the number of concurrent low-priorityclients.
The dotted curve shows how (Thigh) varies when using
the unmodified kernel. The application attempted to give
preference to requests from the high-priority client by
handling events on its socket, returned byselect() ,
before events on other sockets. The figures shows that,
despite this preferential treatment, (Thigh) increases sharply
when there are enough low-priority clients to saturate the
server. This happens because most of request processing
occurs inside the kernel, and so is uncontrolled.
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The dashed and the solid curve in Figure 11 shows
the effect of using resource containers. Here, the server
uses two containers, with different numeric priorities, as-
signing the high-priority requests to one container, and
the low-priority requests to another. The dashed curve,
labeled “With containers/select() ”, shows the effect
of resource containers with the application still using
select() to wait for events. Thigh increases much
less than in the original system. Resource containers al-
low the application to control resource consumption at
almost all levels of the system. For example, TCP/IP
processing, which is performed in FIFO order in classi-
cal systems, is now performed in priority order.

The remaining increase in response time is due to some
known scalability problems of theselect() system
call [5, 6]. These problems can be alleviated by a smart
implementation described in [6], but some inefficiency
is inherent to the semantics of theselect() API. The

problem is that each call toselect() must specify, via
a bitmap, the complete set of descriptors that the appli-
cation is interested in. The kernel must check the status
of each descriptor in this set. This causes overhead linear
in the number of descriptors handled by the application.

The solid curve, labeled “With containers/new event
API”, shows the variation inThigh when the server uses
a new scalable event API, described in [5]. In this
case,Thigh increases very slightly as the number of low-
priority clients increases. The remaining slight increase
in Thigh reflects the cost of packet-arrival interrupts from
low-priority connections. The kernel must handle these
interrupts and invoke a packet filter to determine the pri-
ority of the packet.

5.6 Controlling resource usage of CGI processing
Section 2 described how requests for dynamic re-

sources are typically handled by processes other than
the main Web server process. In a system that time-
shares the CPU equally between processes, these back-
end (CGI) processes may gain an excessive share of the
CPU, which reduces the throughput for static documents.
We constructed an experiment to show how a server can
use resource containers to explicitly control the CPU
costs of CGI processes.

We measured the throughput of our Web server (for
cached, 1 KB static documents) while increasing the num-
ber of concurrent requests for a dynamic (CGI) resource.
Each CGI request process consumed about 2 seconds of
CPU time. These results are shown in the curve labeled
“Unmodified System” in Figure 12.

As the number of concurrent CGI requests increases,
the CPU is shared among a larger set of processes, and
the main Web server’s share decreases; this sharply re-
duces the throughput for static documents. For exam-
ple, with only 4 concurrent CGI requests, the Web server



itself gets only 40% of the CPU, and the static-request
throughput drops to 44% of its maximum.

The main server process actually gets slightly more of
the CPU than does each CGI process, because of misac-
counting for network processing. This is shown in Fig-
ure 13, which plots the total CPU time used by all CGI
processes.

In Figures 12 and 13, the curves labeled “LRP Sys-
tem” show the performance of an LRP version of Digital
UNIX. LRP fixes the misaccounting, so the main server
process shares the CPU equally with other processes.
This further reduces the throughput for static documents.

To measure how well resource containers allow fine-
grained control over CGI processes, we modified our
server so that each container created for a CGI request
was the child of a specific “CGI-parent” container. This
CGI-parent container was restricted to a maximum frac-
tion of the CPU (recall that this restriction includes its
children). In Figures 12 and 13, the curves labeled “RC
System 1” show the performance when the CGI-parent
container was limited to 30% of the CPU; the curves la-
beled “RC System 2” correspond to a limit of 10%.

Figure 13 shows that the CPU limits are enforced al-
most exactly. Figure 12 shows that this effectively forms
a “resource sand-box” around the CGI processes, and so
the throughput of static requests remains almost constant
as the number of concurrent CGI requests increases from
1 to 5.

Note that the Web server could additionally impose
relative priorities among the CGI requests, by adjusting
the resource limits on each corresponding container.

5.7 Immunity against SYN-flooding
We constructed an experiment to determine if resource

containers, combined with the filtering mechanism de-
scribed in Section 4.7, allow a server to protect against
denial-of-service attacks using ”SYN-flooding.” In this
experiment, a set of “malicious” clients sent bogus SYN
packets to the server’s HTTP port, at a high rate. We then
measured the server’s throughput for requests from well-
behaved clients (for a cached, 1 KB static document).

Figure 14 shows that the throughput of the unmodified
system falls drastically as the SYN-flood rate increases,
and is effectively zero at about 10,000 SYNs/sec. We
modified the kernel to notify the application when it
drops a SYN (due to queue overflow). We also modi-
fied our server to isolate the misbehaving client(s) to a
low-priority listen-socket, using the filter mechanism de-
scribed in Section 4.8. With these modifications, even
at 70,000 SYNs/sec., the useful throughput remains at
about 73% of maximum. This slight degradation results
from the interrupt overhead of the SYN flood. Note that
LRP, in contrast to our system, cannot protect against
such SYN floods; it cannot filter traffic to a given port
based on the source address.

Unmodified System
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Fig. 14: Server behavior under SYN-flooding attack.

5.8 Isolation of virtual servers
Section 5.6 shows how resource containers allow “re-

source sand-boxes” to be put around CGI processes. This
approach can be used in other applications, such as con-
trolling the total resource usage of guest servers in a Rent-
A-Server [45] environment.

In current operating systems, each guest server, which
might consist of many processes, can appear to the sys-
tem as numerous resource principals. The number may
vary dynamically, and has little relation to how much
CPU time the server’s administrator wishes to allow each
guest server.

We performed an informal experiment to show how
resource containers solve this problem. We created 3
top-level containers and restricted their CPU consump-
tion to fixed CPU shares. Each container was then used
as the root container for a guest server. Subsequently,
three sets of clients placed varying request loads on these
servers; the requests included CGI resources. We ob-
served that the total CPU time consumed by each guest
server exactly matched its allocation. Moreover, because
the resource container hierarchy is recursive, each guest
server can itself control how its allocated resources are
re-divided among competing connections.

6 Related Work
Many mechanisms have been developed to support

fine-grained research management. Here, we contrast
these with our resource container abstraction.

The Scout operating system [31] is based on thepath
abstraction, representing an I/O channel (such as a TCP
connection) through a multi-layered system. A path en-
capsulates the specific attributes of an I/O channel, and
allows access to these attributes across layers. Paths have
been used to implement fine-grained resource manage-
ment in network appliances, including Web server ap-



pliances [40]. Resource containers, in contrast to paths,
allow the application to treat the resources consumed by
several I/O channels as being part of the same activity.
Moreover, the composition of a path is limited by the
router graph specified at kernel-build time; resource con-
tainers encompass arbitrary sets of resources at run-time.

Mercer et al. [28] introduced thereserveabstraction in
the context of Real-Time Mach. Reserves insulate pro-
grams from the timing and execution characteristics of
other programs. An application can reserve system re-
sources, and the system ensures that these resources will
be available, when needed, to threads associated with the
reserve. Like a resource container, a reserve provides a
thread with a resource context, may be passed between
protection domains, and may be bound to one thread or
multiple threads. Thus, reserves can be used to charge
to one resource principal the resources consumed by an
activity distributed across protection domains. Unlike re-
source containers, reserves neither account for, nor con-
trol, kernel-mode processing on behalf of an activity (RT
Mach is a microkernel system, so network processing is
done in user mode [25]). Moreover, resources containers
can be structured hierarchically and can manage system
resources other than CPU.

Theactivityabstraction in Rialto [22] is similar to re-
source containers. Like a resource container, an activity
can account for resource consumption both across pro-
tection domains and at a granularity smaller than a pro-
tection domain. However, Rialto is an experimental real-
time object-oriented operating system and was designed
from scratch for resource accountability. In contrast to
Scout, RT Mach and Rialto, our work aimed at devel-
oping a resource accounting mechanism for traditional
UNIX systems with minimal disruption to existing APIs
and implementations.

The migrating threads of Mach [17] and Al-
phaOS [13], and theshuttlesof Spring [19] allow the re-
source consumption of a thread (or a shuttle) performing
a particular independent activity to be charged to the cor-
rect resource management entity, even when the thread
(or shuttle) moves across protection domains. However,
these systems do not separate the concepts of thread and
resource principal, and so cannot correctly handle appli-
cations in which a single thread is associated with mul-
tiple independent activities, such as an event-driven Web
server. Mach and Spring are also microkernel systems,
and so do not raise the issue of accounting for kernel-
mode network processing.

The reservation domains[7] of Eclipse and theSoft-
ware Performance Unitsof Verghese et al. [46] allow the
resource consumption of a group of processes to be con-
sidered together for the purpose of scheduling. These
abstractions allow a resource principal to encompass a
number of protection domains; unlike resource contain-
ers, neither abstraction addresses scenarios, such a single-

process Web server, where the natural extent of a re-
source principal is more complicated.

A number of mainframe operating systems [14, 37,
12] provide resource management at a granularity other
than a process. These systems allow a group of processes
(e.g. all processes owned by a given user) to be treated as
a single resource principal; in this regard, they are similar
to resource containers. Unlike our work, however, there
are no provisions for resource accounting at a granular-
ity smaller than a process. These systems account and
limit the resources consumed by a process group over
long periods of time (on the order of hundreds of min-
utes or longer). Resource containers, on the other hand,
can support policies for fine-grained, short-term resource
scheduling, including real-time policies.

The resource container hierarchy is similar to other
hierarchical structures described in the scheduling liter-
ature [18, 48]. These hierarchical scheduling algorithms
are complementary to resource containers, and could be
used to schedule threads according to the resource con-
tainer hierarchy.

The exokernel approach [23] gives application soft-
ware as much control as possible over raw system re-
sources. Functions implemented by traditional operating
systems are instead provided in user-mode libraries. In
a network server built using an exokernel, the applica-
tion controls essentially all of the protocol stack, includ-
ing the device drivers; the storage system is similarly ex-
posed. The application can therefore directly control the
resource consumption for all of its network and file I/O.
It seems feasible to implement the resource container
abstraction as a feature of an exokernel library operat-
ing system, since the exokernel delegates most resource
management to user code.

Almeida et al. [1] attempted to implement QoS sup-
port in a modified Apache [3] Web server, running on
a general-purpose monolithic operating system. Apache
uses a process for each connection, and so they mapped
QoS requirements onto numeric process priorities, ex-
perimenting both with a fully user-level implementation,
and with a slightly modified Linux kernel scheduler. They
were able to provide differentiated HTTP service to dif-
ferent QoS classes. However, the effectiveness of this
technique was limited by their inability to control kernel-
mode resource consumption, or to differentiate between
existing connections and new connection requests. Also,
this approach does not extend to event-driven servers.

Several researchers have studied the problem of con-
trollingkernel-mode network processing. Mogul and Ra-
makrishnan [30] improved the overload behavior of a
busy system by converting interrupt-driven processing
into explicitly-scheduled processing. Lazy Receiver Pro-
cessing (LRP) [15] extended this by associating received
packets as early as possible with the receiving process,
and then performed their subsequent processing based



on that process’s scheduling priority. Resource contain-
ers generalize this idea, by separating the concept of a
resource principal from that of a protection domain.

7 Conclusion
We introduced the resource container, an operating

system abstraction to explicitly identify a resource prin-
cipal. Resource containers allow explicit and fine-grained
control over resource consumption at all levels in the sys-
tem. Performance evaluations demonstrate that resource
containers allow a Web server to closely control the rel-
ative priority of connections and the combined CPU us-
age of various classes of requests. Together with a new
sockaddr namespace, resource containers provide im-
munity against certain types of denial of service attacks.
Our experience suggests that containers can be used to
address a large variety of resource management scenar-
ios beyond servers; for instance, we expect that container
hierarchies are effective in controlling resource usage in
multi-user systems and workstation farms.
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