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Abstract

Recently a new generation of P2P systems, offering
distributed hash table (DHT) functionality, have
been proposed. These systems greatly improve the
scalability and exact-match accuracy of P2P sys-
tems, but offer only the exact-match query facility.
This paper outlines a research agenda for building
complex query facilities on top of these DHT-based
P2P systems. We describe the issues involved and
outline our research plan and current status.

1 Introduction

Peer-to-peer (P2P) networks are among the most
quickly-growing technologies in computing. How-
ever, the current technologies and applications of
today’s P2P networks have (at least) two serious
limitations.

Poor Scaling: From the centralized design of Nap-
ster, to the notoriously inefficient search process
of Gnutella, to the hierarchical designs of Fast-
Track [4], the scalability of P2P designs has always
been problematic. While there has been significant
progress in this regard, scaling is still an issue in
the currently deployed P2P systems.

Impoverished query languages: P2P networks
are largely used for filesharing, and hence sup-
port the kind of simplistic query facility often used
in filesystem “search” tools: Find all files whose
names contain a given string. Note that “search”
is a limited form of querying, intended for identi-
fying (“finding”) individual items. Rich query lan-
guages should do more than “find” things: they
should also allow for combinations and correlations
among the things found. As an example, it is pos-
sible to search in Gnutella for music by J. S. Bach,

but it is not possible to ask specifically for all of
Bach’s chorales, since they do not typically contain
the word “chorale” in their name.

The first of these problems has been the sub-
ject of intense research in the last few years.
To overcome the scaling problems with unstruc-
tured P2P systems such as Gnutella where data-
placement and overlay network construction are es-
sentially random, a number of groups have pro-
posed structured P2P designs. These proposals sup-
port a Distributed Hash Table (DHT) functional-
ity [11, 14, 12, 3, 18]. While there are significant
implementation differences between these DHT sys-
tems (as we will call them), these systems all sup-
port (either directly or indirectly) a hash-table in-
terface of put(key,value) and get(key). More-
over, these systems are extremely scalable; lookups
can be resolved in log n (or nα for small α) overlay
routing hops for an overlay network of size n hosts.
Thus, DHTs largely solve the first problem. How-
ever, DHTs support only “exact match” lookups,
since they are hash tables. This is fine for fetching
files or resolving domain names, but presents an
even more impoverished query language than the
original, unscalable P2P systems. Hence in solving
the first problem above, DHTs have aggravated the
second problem.

We are engaged in a research project to address
the second problem above by studying the design
and implementation of complex query facilities over
DHTs; see [7] for a description of a related effort.
Our goal is not only bring the traditional function-
ality of P2P systems – filesharing – to a DHT imple-
mentation but also to push DHT query functional-
ity well beyond current filesharing search, while still
maintaining the scalability of the DHT infrastruc-
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tures. This note offers a description of our approach
and a brief discussion of our current status.

2 Background

Before describing our approach, we first discuss
some general issues in text retrieval and hash in-
dexes and then explain why we are not proposing a
P2P database.

2.1 Text Retrieval and Hash Indexes

As noted above, DHTs only support exact-match
lookups. Somewhat surprisingly, it has been shown
that one can use the exact-match facility of hash in-
dexes as a substrate for textual similarity searches,
including both strict substring searches and more
fuzzy matches as well [17]. The basic indexing
scheme is to split each string to be indexed into
“n-grams”: distinct n-length substrings. For exam-
ple, a file with ID I and filename “Beethovens 9th”
could be split into twelve trigrams: Bee, eet, eth,

tho, hov, ove, ven, ens, ns%, s%9, %9t, 9th (where
’%’ represents the space character). For each such
n-gram gi, the pair (gi, I) is inserted into the hash
index, keyed by gi. One can build an index over
n-grams for various values of n; it is typical to use
a mixture of bigrams and trigrams.

Given such an index, a substring lookup like
“thoven” is also split into n-grams (e.g., tho, hov,

ove, ven), and a lookup is done in the index for
each n-gram from the query. The resulting lists of
matches are concatenated and grouped by file ID;
the count of copies of each file ID in the concate-
nated list is computed as well. For strict substring
search, the only files returned are those for which
the count of copies is as much as the number of n-
grams in the query (four, in our example). This still
represents a small superset of the correct answer,
since the n-grams may not occur consecutively and
in the correct order in the results. To account for
this, the resulting smallish list can be postprocessed
directly to test for substrings.

While the text-search literature tends not to
think in relational terms, note that the query above
can be represented nearly directly in SQL:

SELECT H.fileID, H.fileName

FROM hashtable H

WHERE H.text IN (<list-of-n-grams-in-search>)

GROUP BY H.fileID

HAVING COUNT(*) >= <#-of-n-grams-in-search>

AND H.fileName LIKE <substring expression>

In relational algebra implementation terms, this re-
quires an index access operator, a grouping opera-
tor, and selection operators1.

The point of our discussion is not to dwell on the
details of this query. The use of SQL as a query
language is not important, it merely highlights the
universality of these operators: they apply not only
to database queries, but also to text search, and
work naturally over hash indexes. If we can pro-
cess relational algebra operators in a P2P network
over DHTs, we can certainly execute traditional
substring searches as a special case.

2.2 Why Not Peer-to-Peer Databases?

We have noted that relational query processing is
more powerful than the search lookups provided
by P2P filesharing tools. Of course, traditional
database systems provide a great deal of additional
functionality that is missing in P2P filesharing –
the most notable features being reliable, transac-
tional storage, and the strict relational data model.
This combined functionality has been the corner-
stone of traditional database systems, but it has ar-
guably cornered database systems and database re-
search into traditional, high-end, transactional ap-
plications. These environments are quite different
from the P2P world we wish to study. Like the
users of P2P systems, we are not focused on perfect
storage semantics and carefully administered data.
Instead, we are interested in ease of use, massive
scalability, robustness to volatility and failures, and
best-effort functionality.

The explosive growth of the P2P networks show
that there is a viable niche for such systems. Trans-
actional storage semantics are important for many

1We have kept the substring match example strict, for
clarity of exposition. In many cases, n-gram search can also
support a useful fuzzy semantics, in which files are simply
ranked by descending count of n-gram matches (or some more
subtle ranking metric), down to some cutoff. This allows the
searching to be more robust to misspellings, acronyms, and
so on, at the expense of false positives in the answer set.
Such a ranking scheme can also be represented in SQL via an
ORDER BY clause containing an externally-defined ranking
function.
Also note that our index can be augmented so that each en-

try holds the offset of the n-gram in the string – this allows
tests for ordering and consecutiveness to be done without
observing the actual string. This optimization usually only
helps when the strings being indexed are long – e.g. for full-
text documents rather than file names. It is also clumsy to
express this in SQL, though the relational algebra implemen-
tation is relatively straightforward.
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applications, but are not familiar to most end-
users today, who typically use file systems for stor-
age. Most users do not want to deploy or man-
age a “database” of any kind. We believe this is a
“street reality” worth facing, in order to maintain
the grassroots approach natural in P2P. As part of
that, we do not see transactions as an integral part
of the research thrust we describe here.

On the other hand, relational data modeling is
in some sense universal, and its details can be ab-
stracted away from the user. All data is relational
at some level, inasmuch as one can think of storing
it in a table of one column labeled “bits”. In many
cases, there is somewhat more natural structure to
exploit: as noted above, sets of P2P files can be
thought of as relations, with “attributes” name, ID,

host, etc. The user need not go through a complex
data modeling exercise to enable a system to index
and query these attributes in sophisticated ways.

Hence we do not see a pressing need for users
of P2P system to load their data into a database;
we prefer to build a query engine that can use the
natural attributes exposed in users’ existing data,
querying those attributes intelligently while provid-
ing the storage semantics that users have learned to
live with. In fact, we wish to stress the point that
it may be strategically unwise to discuss peer-to-
peer databases at all, with their attendant complex-
ities in software and administration associated with
database storage. Instead, we focus on peer-to-peer
query processing, and separate it from the problem
of storage semantics and administration. Of course
we leave the option open: our ideas could be com-
bined with P2P transactional mechanisms, e.g. as
suggested in [10]. However, we do not wed ourselves
to the success (both technical and propagandistic)
of such efforts. It is worth noting that despite cur-
rent commercial packaging, relational database re-
search from the early prototypes onward [1, 15] has
separated the storage layer from the query process-
ing layer. We are simply following in those footsteps
in a new storage regime.

3 P2P Query Processing
Our design is constrained by the following goals:

Broad Applicability: A main goal for our work
is that it be broadly and practically usable. In the
short term, this means that it should be able to
interact with user’s filesystems in the same way as

Query Processor

Enhanced DHT Layer

Data Storage
(file system)

P2P Network

Figure 1: The software architecture of a node im-
plementing query processing.

existing P2P filesharing systems.

Minimal Extension to DHT APIs: DHTs are
being proposed for use for a number of purposes in
P2P networks, and we do not want to complicate
the design of a DHT with excessive hooks for the
specifics of query processing. From the other direc-
tion, we need our query processing technology to
be portable across DHT implementations, since a
clear winner has not emerged in the DHT design
space. For both these reasons, we wish to keep the
DHT APIs as thin and general-purpose as possible.
The relational operators we seek to implement can
present challenging workloads to DHT designers.
We believe this encourages synergistic research with
both query processing and DHT design in mind.

3.1 Architecture

Based on these design decisions, we propose a three-
tier architecture as diagrammed in Figure 1. Note
that all networking is handled by the DHT layer: we
will use DHTs not only as an indexing mechanism,
but also as a network routing mechanism. We pro-
ceed with a basic overview of the architecture and
its components.

The bottom layer is a local data store, which
must support the following API:

(1) An Iterator (as in Java, or STL) supporting an
interface to scan through the set of objects.

(2) For each object, accessors to the attributes lo-

calID and contents. The former must be a store-
wide unique identifier for the object, and the latter
should be “the content” of the object, which can be
a byte-array.

(3) A metadata interface to find out about addi-
tional attributes of the objects in this store.

(4) Accessors to the additional attributes.

Note that we do not specify many details of this
data store, and our interface is read-only. Based on
our first design goal, we expect the store to often be
a filesystem, but it could easily be a wrapper over
a database table or view.

The next layer is the DHT layer, which supports
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the put/get interface, enhanced with the following:

(1) An Iterator called `scan, which can be allocated
by code that links to the DHT library on this ma-
chine (typically the Query Processor of Figure 1).
`scan allows the local code to iterate through all
DHT entries stored on this machine.

(2) A callback newData that notifies higher layers
of the identifier for new insertions into the local
portion of the DHT.

`scan is important because various query process-
ing operators need to scan through all the data, as
we shall see below. The addition of scanning is
not unusual: other popular hashing packages sup-
port scanning through all items as well [13]. Note
that we break the location transparency of the DHT
abstraction in `scan, in order to allow scans to be
parallelized across machines – a distributed scan in-
terface would only have a a single caller per Iterator.
The `scan interface allows code to run at each ma-
chine, scanning the local data in parallel with other
machines. newData is desirable because we will use
DHTs for temporary state during query processing,
and we will want insertions into that state to be
dealt with in a timely fashion.

The top layer is the query processing (QP) layer,
which includes support for the parallel implementa-
tions of query operators described below, as well as
support for specifying queries and iterating through
query results. Our query executor will be im-
plemented in the traditional “pull-based” iterator
style surveyed by Graefe [6], with parallel “push-
based” communication encapsulated in exchange
operators [5]. We plan to support two query APIs:
a graph-scripting interface for specifying explicit
query plans, and a simplified SQL interface to sup-
port declarative querying. Common query types
(such as keyword search) can be supported with
syntatic sugar for SQL to make application pro-
gramming easier.

3.2 Namespaces and Multicast

DHT systems assume a flat identifier space which
is not appropriate to manage multiple data struc-
tures, as will be required for query processing. In
particular, we need to be able to name tables and
temporary tables, tuples within a table, and fields
within a tuple. One approach is to implement an
hierarchical name space on top of the flat identifier
space provided by DHTs, by partitioning the iden-
tifiers in multiple fields and then have each field

identify objects of the same granularity.

A hierarchical name space also requires more
complex routing primitives such as multicast. Sup-
pose we wish to store a small temporary table on a
subset of nodes in the network. Then we will need
to route queries to just that subset of nodes. One
possibility would be to modify the routing protocol
such that a node forwards a query to all neighbors
that make progress in the identifier space towards
any of the identifiers covered by the query.

3.3 Query Processing Operators

We will focus on the traditional relational database
operators: selection, projection, join, grouping and
aggregation, and sorting. A number of themes arise
in our designs. First, we expect communication to
be a key bottleneck in P2P query processing, so
we will try to avoid excessive communication. Sec-
ond, we wish to harness the parallelism inherent in
P2P, and we will leverage traditional ideas both in
intra-operator parallelism and in pipelined paral-
lelism to achieve these goals. Third, we want an-
swers to stream back in the style of online query
processing [9, 8]: P2P users are impatient, they
do not expect perfect answers, and they often ask
broad queries even when they are only interested in
a few results. Next, we we focus on the example of
joins; grouping and other unary hashing operators
are quite analogous to joins, with only some subtle
differences [2].

Our basic join algorithm on two relations R and
S is based on the pipelined or “symmetric” hash
join [16], using the DHT infrastructure to route
and store tuples. The algorithm begins with the
query node initializing a unique temporary DHT
namespace, TjoinID. We assume that data is iter-
ating in from relations R and S, which each may
be generated either by an `scan or by some more
complex query subplan. The join algorithm is fully
symmetric with respect to R and S, so we describe
it without loss of generality from one perspective
only. The join operator repeatedly gets a datum
from relation R, extracts the join attribute from
the datum, and uses that attribute as the insertion
key for DHT TjoinID. When new data is inserted
into TjoinID on some node, the newData call notifies
the QP layer, which takes that datum and uses its
join key to probe local data in TjoinID for matches.
Matches are pipelined to the next iterator in the
query plan (or to the client machine in the case of
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final results). In the case where one table (say S) is
already stored hashed by the join attribute, there is
no need to rehash it – the R tuples can be scanned
in parallel via `scans, and probe the S DHT.2

Selection is another important operator. Rela-
tional selection can either be achieved by a table-
scan followed by an explicit test of the selection
predicate, or by an index lookup (which can option-
ally also be followed by a predicate test). Clearly
explicit tests can be pushed into the network to
limit the flow of data back. Index-supported selec-
tions further limit network utilization by sending
requests only to those nodes that will have data.
DHT indexes currently support only equality pred-
icates. An interesting question will be to try and
develop range-predicate support in a manner as ef-
ficient as current DHTs.

4 Status

We have implemented the join operation by modify-
ing the existing CAN simulator [12] and performed
exhaustive simulations. In addition to the solution
presented in the previous section, we have imple-
mented several other join variants. For example, in
one of the variants, we rehash only one of the ta-
bles (say S) by the join attribute. Then each node
scans locally the other table, R, and for each tu-
ple it queries the tuples of St with the same join
attribute value and performs local joins. The main
metric we consider in our simulations is the join
latency function f(x), which is defined as the frac-
tion of the total result tuples that the join initiator
receives by time x. One interesting result is that
this function is significantly smoother when we use
a Fair Queueing like algorithm to allocate the com-
munication and process resources. Other metrics
we consider in our simulations are data placement
and query processing hotspots, as well as routing
hotspots. Preliminary results show that for realis-
tic distributions of the join attribute values, there
are significant hotspots in all dimensions: storage,
processing, and routing.

2This degenerate case of hash join is simply a parallel
index-nested-loops join over a DHT. It also suggests an index-
on-the-fly scheme, in which only one table (S) is rehashed –
after S is rehashed, R probes it. Index-on-the-fly blocks the
query pipeline for the duration of the rehashing, however,
and is unlikely to dominate our pipelining scheme.
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