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Abstract 

Moving the contents of a large virtual address space stands 
out as the bottleneck in process migration, dominating all 
other costs and growing with the size of the program. Copy- 
on-reference shipment is shown to successfully attack this 
problem in the Accent distributed computing environment. 
Logical memory transfers at migration time with individual 
on-demand page fetches during remote execution allows 
relocations to occur up to one thousand times faster than with 
standard techniques. While the amount of allocated memory 
varies by four orders of magnitude across the processes 
studied, their transfer times are practically constant. The 
number of bytes exchanged between machines as a result of 
migration and remote execution drops by an average of 58% 
in the representative processes studied, and message-handling 
costs are cut by over 47% on average. The assumption that 
processes touch a relatively small part of their memory while 
executing is shown to be correct, helping to account for these 
figures. Accent's copy-on-reference facility can be used by 
any application wishing to take advantage of lazy shipment of 
data. 

1. Introduction 
Process migration is a valuable resource management tool in 

a distributed computing environment. However, very few 
migration facilities exist for such systems. Part of the 
problem lies in providing an efficient method for naming 
resources that is completely independent of their location. 
The major difficulty, though, is the cost of transferring a 
computation's context from one system node to another. This 
context, which consists primarily of the process virtual ad- 
dress space, is typically large in proportion to the usable 
bandwidth of the interconnection medium. Moving the con- 
tents of a large virtual address space thus stands out as the 
bottleneck in process migration, dominating all other costs. 
As programs continue to grow, the cost of migrating them by 
direct copy will also grow in a linear fashion. 
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Any attempt to make process migration a more usable and 
attractive facility in the presence of large address spaces must 
focus on this basic bottleneck. One approach is to perform a 
logical transfer, which in reality requires only portions of the 
address space to be physically transmitted. Instead of ship- 
ping the entire contents at migration time, an IOU for all or 
part of of the data can be sent. As the relocated process 
executes on the new host, attempts to reference "owed" 
memory pages will result in the generation of requests to copy 
in the desired blocks from their remote locations. Context 
transmission times during migration are greatly reduced with 
this demand-driven copy-on-reference approach, and are vir- 
tually independent of the size of the address space. Processes 
are assumed to touch relatively small portions of their address 
spaces, justifying the higher cost of accessing each page 
during remote execution. 

This paper describes the process migration facility built for 
the SPICE [12] environment at Carnegie Mellon University, 
which demonstrates the validity of using copy-on-reference 
transfer to attack the migration bottleneck. Section 2 
describes the design of the Accent copy-on-reference 
mechanism, available to any application wishing to lazy- 
evaluate its data transfers. Accent's organization and abstrac- 
tions not only provide the transparency needed to support 
migration, but lend themselves to the natural construction of 
such a mechanism. Section 3 show how the migration system 
capitalizes on copy-on-reference data delivery. Section 4 
presents performance measurements taken on a set of repre- 
sentative processes that were migrated using different trans- 
mission strategies. Process relocations occur up to one 
thousand times faster using copy-on-reference transfers. 
While the amount of allocated data varies by four orders of 
magnitude across the processes studied, their transfer times 
are practically constant. The number of bytes exchanged 
between machines as a result of migration and remote execu- 
tion drops by 58.2% on average, and message-handling costs 
are cut by 47.8%. The assumption that processes touch a 
relatively small part of their memory while executing is 
shown to be correct, helping to account for these figures. The 
detailed measurements are used to assess the effect of such 
copy-on-reference variations as prefetching in response to 
remote page requests and migration-time transfer of the ad- 
dress space portions resident in main memory. Section 5 
compares the Accent migration work to other activity in the 



field. Finally, Section 6 summarizes the lessons learned from 
the Accent migration system and considers future research 
directions suggested by this work. 

2. The Accent Copy-On-Reference Mechanism 
Accent's design and organization allows such intelligent vir- 

tual memory techniques as copy-on-write to be applied to data 
passed through the IPC system. It is this feature which aids in 
the construction of another intelligent strategy, copy-on- 
reference. This section begins by providing a quick overview 
of the Accent features that contribute to the natural construc- 
tion of a transparent, genetic copy-on-reference facility. 
Accent's imaginary segment abstraction serves as the basis 
for lazy data delivery, and is described next. The con- 
sequences of permitting imaginary objects to exist are ex- 
plored, along with the method of shipping imaginary areas 
between machine boundaries. 

2,1. Accent  Fea tu res  
The Accent IPC and virtual memory facilities axe closely 

integrated, operating symbiotically. Unlike most message- 
based systems, a single Accent IPC message can hold all of 
the memory addressible by a process. Message contents are 
conceptually copied by value directly from the sender's ad- 
dress space into the receiver's. In reality, a message is first 
copied into the kernel's memory, buffered there until the 
recipient decides to accept it, and then copied out again. 
Accent provides the advantages of double-copy semantics for 
transferring message data between address spaces while still 
achieving the performance expected of a system that passes 
data by reference. This is possible through the use of a 
copy-on-write virtual memory mechanism by the IPC facility. 
If the amount of message data falls below a certain threshold, 
it is physically copied to the receiver. However, the kernel 
uses much faster memory-mapping techniques for messages 
exceeding this threshold. The receiver's virtual memory map 
is modified to provide access to the message data, and the 
region is marked copy-on-write for both parties. The two 
processes share this single copy of the data until either one 
tries to modify it. The deferred copy operation is then carried 
out, but only for the 512-byte page(s) affected. Files are 
accessed through an IPC interface and mapped in their en- 
tirety into process memory, allowing these techniques to be 
applied to their data as well. Since large amounts of data are 
often transferred through IPC messages and only rarely 
modified to any degree, this lazy strategy realizes perfor- 
mance that approaches by-reference transfer. Fitzgerald's 
study [3] reveals that up to 99.98% of data passed between 
processes in a system-building application did not have to be 
physically copied. 

2.2. Imaginary Segments 
Accent's copy-on-reference mechanism is based on a new 

segment class, the imaginary segment. Imaginary segment 
data is accessed not by direct reference to physical memory or 
a hard disk, but rather through the IPC system. Each imagi- 
nary segment is associated with a backing IPC port which 
provides memory management services for the object. When 
a process touches a page mapped to an imaginary segment, 

the high-level Pager~Scheduler process sends an Imaginary 
Read Request message to the region's backing port. The 
process with Receive fights for this port interprets the request 
and returns the required page in an Imaginary Read Reply 
message. The Pager/Scheduler completes the handling of the 
imaginary "fault" by mapping in the page and resuming the 
process attempting the access. Currently, page-outs for im- 
aginary data are performed to the local disk at the site that 
touched the page. Any process may create an imaginary 
segment based on one of its ports, map all or part of it into its 
address space and pass this memory to another process via an 
IPC message. In effect, it transmits an "IOU" for the 
region's data, promising to deliver it as needed. The backing 
process continues to field page request messages aimed at the 
imaginary object until all references to it die out. At this 
point, Accent informs the backer of the object's demise by 
sending it an Imaginary Segment Death message. 

2.3. Accessibil i ty Maps  
The existence of imaginary objeets forces the operating sys- 

tem to provide a facility for determining the accessibility of 
any given virtual address range. Carelessly touching imagi- 
nary regions can result in deadlock. For example, an Accent 
process executing in the kernel context deadlocks if it touches 
a page with port-based backing. The faulter is caught holding 
the system critical section, preventing the backing process 
from executing the protected Receive operation needed to 
respond to the fault. 
Accessibility Maps (or AMaps) were created to supply the 

necessary addressing information in Accent. Four different 
memory "distances" have been defined for AMaps: 

1. RealZeroMem: This is a region that has been 
validated (allocated) by a process but has never 
been accessed. When memory is validated, it is 
conceptually filled with zeros. Accent 
postpones these filling operations until the pages 
are first touched. A special fault condition, the 
FillZero fault, is realized for this case. The only 
action the Pager/Scheduler process takes is to 
reserve a page of physical memory, fill it with 
zeros and create the appropriate virtual memory 
mappings. The disk is never consulted while 
handling this type of fault. In practice, Accent 
processes validate large amounts of virtual 
memory and only touch a small percentage. 
Lazy initialization of address space regions and 
the use of a special inexpensive fault-handling 
operation combine to make creation and main- 
tenance of large virtual memory regions afford- 
able. These RealZeroMem pages are considered 
immediately accessible to the process. 

2. RealMem: The data in this type of region is 
either already present in physical memory or 
accessible by fetching the corresponding local 
disk page. The distinction between disk address 
mappings owned by the kernel and process 
mappings for the same data allows a disk page 
image to be resident without being visible to a 
user process. In this eventuality, the 
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Pager/Scheduler again simply fills in the miss- 
ing user mapping and promotes the faulted 
process to a rurmable state. If  neither the disk 
nor the process mapping are available for the 
page, the matching disk block is determined. 
The page is brought in, and disk and process 
mappings for it are entered. RealMem pages are 
ra ted '  'moderately" accessible, since the system 
may have to go out to disk to get them. 

3. ImagMem:  The contents of memory regions 
mapped to imaginary segments have lmagMem 
accessibility. Touching a page in this acces- 
sibility class results in the the generation and 
processing of an imaginary fault, as described in 
Section 2.2. ImagMem pages are considered 
distantly accessible, since it may take an ar- 
bitrarily long time to complete a page fetch. 
The network state, the load on the machines 
involved and the amount of work being per- 
formed by the backing process all contribute 
variables to the service time. 

4. BadMem: Attempting to touch a page in a 
region that hasn't  been validated causes a true 
addressing error. Referencing a BadMem page 
invokes a debugger so the human user can 
analyze and properly terminate the delinquent 
process. Since referencing a BadMem page is 
illegal, its accessibility is considered infinitely 
distant. 

2.4. Extending I m a g i n a r y  S e g m e n t s  
As with the port abstraction, copy-on-reference access via 

imaginary segments depends on a user-level server for trans- 
parent extension across the network. The NetMsgServer 
process, running on each host, provides this service by chang- 
ing its message fragmentation and reassembly algorithms to 
account for imaginary subranges. Using an AMap as a guide 
on both sides, the RealMem portions are physically trans- 
mitted to the remote location and placed in the corresponding 
locations in the reassembly buffer. The receiving 
NetMsgServer creates its own local ports and imaginary 
object(s) to stand in for the originals. Messages generated in 
response to faults on the remote imaginary objects are 
automatically channeled to the correct backing site. 

On its own initiative, a NetMsgServer may cache the 
RealMem portions of a message destined to a remote site and 
instead pass IOUs for them, becoming the manager for that 
data. Senders can inhibit this behavior by setting the NolOUs 
bit in the message header, which is inspected by the 
NetMsgServer. This action guarantees that non-imaginary 
message data is physically copied to the remote site. 

3. M i g r a t i o n  U s i n g  C o p y - O n - R e f e r e n c e  
The SPICE migration facility is designed to take advantage of 

the copy-on-reference mechanism described in the previous 
section. This is done by special migration primitives which 
automatically separate out the context portions eligible for 
copy-on-reference shipment. Using these operations, the 

MigrationManager process on each machine has several op- 
tions for context delivery to the new execution site. 

3.1. ExciseProcess a n d  InsertProcess 
The Excise.Process kernel trap allows the complete context 

of  an active process to be removed from its current host. 
Accent contexts are divided into five components: the state of 
the Perq 1 microengine, the kernel stack if the process is ex- 
ecuting in supervisor mode, the PCB, the set of port rights 
owned by the process and the virtual address space contents. 
While the first four parts combined only account for roughly 1 
Kbyte, the address space contributes up to 4 gigabytes. Once 
a context is excised, the process ceases to exist. Since all port 
rights are passed transparently to the caller, there is no disrup- 
tion to the set of  processes capable of naming these ports. 

ExciseProcess delivers a process context in two separate IPC 
messages, ready for shipment to the new execution site. The 
Core message contains the first four context pieces, which 
must be physically copied to the remote site. It also carries an 
AMap describing the entire process address space. The 
RIMAS 2 message contains all of  the RealMera and ImagMem 
portions of  the address space, collapsed into a contiguous 
area. This allows the caller to fit one or more excised address 
spaces into its own memory at one time. It also allows the 
bearer to cache the ReaIMera portions and substitute its own 
imaginary objects in the RIMAS message. If the migration 
agent doesn't wish to actively manage the excised address 
space, it simply turns off the NoIOUs bit in the RIMAS mes- 
sage header as described in Section 2.4, prompting the local 
NetMsgServer to assume backing services for the memory. 

The counterpart for ExciseProcess is InsertProcess, which 
uses the two context messages to recreate the process. Since 
the messages are self-contained, they do not have to be pre- 
processed in any way. The embedded port rights are passed 
to the new incarnation. Using the AMap for guidance and the 
RIMAS data for ammunition, the process address space map- 
pings are restored. The reconstituted process is finally placed 
into the kernel queue representing the original execution 
status. 

3.2. T h e  MigrationManager P r o c e s s  
Each SPICE machine wishing to participate in process migra- 

tion runs a simple MigrationManager process. This server 
accepts and executes commands to perform migrations. 
Given a process name, it uses the ExciseProcess primitive to 
acquire the process context. The two context messages are 
then simply sent to the MigrationManager at the new execu- 
tion site, which uses InsertProcess to reconstruct the target 
process. 

The current MigrationManager doesn't attempt sophis- 
ticated address space management for the processes it ex- 
tracts. If  asked to use copy-on-reference transfer for process 
memory, the MigrationManager allows the intermediary 
NetMsgServers to cache the data and become its backer. 

1Designed by Perq Systems, Inc., the Perq workstation has a microcoded 
CPU, 16-bit words and a 150 nanosecond cycle time. It's rated at between 1/5 
and 1/2 the speed of a Vax-11/780, depending on the instruction set used. More 
detailed Sl~S are in [3]. 

2RIMAS stands for Real and Imaginary Memory Address Space. 
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4. E v a l u a t i o n  
This section summarizes the results of experiments carried 

out on the augmented Accent testbed system to determine the 
effectiveness of the copy-on-reference technique in reducing 
the dominant cost of migration: transfer of large process ad- 
dress spaces. Representative processes were chosen and 
monitored as they were migrated with the different strategies 
of interest. These programs are implemented in a variety of 
languages, perform widely different tasks and differ greatly in 
memory requirements and access patterns. Figures on their 
address space composition and utilization are presented, along 
with the basic costs of the migration primitives used to extract 
and insert process contexts on a host. Based on such metrics 
as the quantity and distribution of byte traffic, message 
processing costs and end-to-end elapsed times, copy-on- 
reference is shown to be superior to the brute-force method. 
Two variations on the basic lazy-transfer theme were simu- 
lated using the detailed performance figures and also 
evaluated. While prefetch of between 1 and 15 nearby pages 
in response to  imaginary faults proved to be a valuable op- 
timization, the shipment of process resident sets (as an ap- 
proximation to their working sets [2]) was found to be 
generally detrimental. Overall, the experiments show that this 
lazy transfer technique significantly reduces the dominant 
context transmission costs by exploiting the fact that 
processes tend to use only small portions of their address 
spaces during execution. 

4.1. R e p r e s e n t a t i v e  Processes  
Several processes were chosen to undergo relocation, each 

representing a class of programs sharing similar attributes. 
The results obtained for these representatives should be 
characteristic of other programs in their class. 

1. Minprog: This program is used to judge the 
effects of the various transmission strategies on 
d "minimal" program. Written in Perq Pascal, 
Minprog prints a message on the standard out- 
put, waits for user input and terminates. 
Measurement of this program is the equivalent 
of timing the "null trap" when exploring 
operating system performance. 

2. Lisp-T: Accent supports the SPICE Lisp dialect, 
complete with a customizable screen editor and 
compiler. The Lisp-T trial resembles Minprog 
in that the minimum computation is performed. 
After migration, the Lisp interpreter is simply 
asked to evaluate T. This process represents 
simple Lisp programs, or larger Lisp jobs 
migrated late in life. The primary difference 
between Lisp-T and Minprog is the amount of 
address space used. Lisp processes validate 
their entire 4 gigabyte address spaces at birth, 
compared to Minprog's use of only 330 Kbytes. 

3. Lisp-Del: This Lisp process performs a sig- 
nificant amount of computation and I/O. Im- 
mediately after migration, a Delaunay triangula- 
tion package written at Carnegie Mellon by Rex 
Dwyer is loaded. Utilizing a divide-and- 

conquer algorithm on a random set of points, 
this package displays its actions graphically on 
the screen as the triangulation is built. 

4. PM-Start: The Pasmac macro processor for 
Perq Pascal represents the class of programs 
whose primary duty is to read flies from the 
disk, process them in some way and write the 
results back out. In this instance, a 164 Kbyte 
file containing the program with macro 
references imports five definition fries totaling 
114 Kbytes. Migration takes place at the point 
the first definition f'rie is being accessed. 

5. PM-Mid: This trial postpones migration of the 
above macro processor until all of the def'mition 
files have been read in. Thus, the file images 
have become part of the process context and are 
carried along by the migration. The relocated 
program doesn't perform any more file accesses 
until it writes out the expanded program text. 

6. PM-End: The final trial involving the Perq Pas- 
cal macro processor further postpones migration 
until the original file has almost been com- 
pletely expanded. With little computation left to 
perform, this trial reveals the performance of the 
various migration strategies on processes near 
the end of their lifetimes. 

7. Chess: A chess program written by Charly 
Drechsler at Siemens rounds out the group. It 
performs a large amount of computation to 
evaluate beard positions and generate moves, 
but doesn't use a lot of its address space. A 
graphical representation of the chess board is 
displayed on the screen along with a game 
dock. The game clock ticks every second, so 
screen updates occur at least that often. Migra- 
tion takes place as soon as the program initial- 
izes itself and draws the first screen image. 

4.2. A d d r e s s  Space  Ana lys i s  

4.2.1. Composition 
Table 4-1 expresses the address space sizes and breakdowns 

of the representative processes at migration time. 

Real RealZ Total % RealZ 
Mlnprog 1 4 2 " ~  157,904 330,240 56.9 

IAs -T 2,203,136 4,225,926,144 4,228,129,280 99.9 
Lis~-~el 99.9 2,200,064 4,225,929,216 4,228,129,280 

PM-Start  449,024 501,760 950,784 52.8 
PM-Mid 446,464 466,432 912,896 51.1 
PM-End 492,032 398,848 890,880 44.8 

Chess 195,584 305,1b'2 500,736 60.9 

Table 4-1: Representative Address Space Sizes in Bytes 
Listed for each ~-escmativo proce~ is the amomat of non-zc~ dats it acld~cs (Re.a/), 

the alloca'~d but t,x,~,oudxed z~ro-rdlcd mmnory ~¢a/~, the total mmno~ ~ckessed (Tota/) 
and the tgrcentago of the ovcraU Woce.-- :mm~-y taken up by allocated, u~ouched 
zzro-fiRod m g i ~  (~ ReaIZ). Memory qmmfiti~ am ~a bye .  

There is wide variance in the amount of validated memory in 

16 



the representative Accent processes. The space utilized by the 
biggest process is a factor of  12,803 larger than that of  the 
smallest. This is the consequence of  the way Lisp processes 
manage their address spaces. The amount of  RealMem 
mapped into processes doesn't  vary nearly as much, only by a 
factor of  15 for these samples. Notice that RealZeroMem 
forms a significant part of  all process address spaces, more 
than half even in most non-Lisp examples. 

4.2.2. Resident Set Analysis 
The process resident set sizes at migration time and their 

relationships to their2-,ost address spaces are shown in Table 
4-2. 

RS Size % of  Real % of  Total  
M i n p r o 2  71,680 50.4 21.7 

Lisp-T 190,464 8.6 0.005 
Llsp-Del 190,464 8.7 0.005 

P M - S t a r t  132,096 29.4 13.9 
P M - M i d  190,976 42.8 20.9 
P M - E n d  302,080 61.4 33.9 

Chess  110,080 56.3 22.0 

Table 4-2: Representative Resident Sets 

Listed is the resident set size ha bytes at migration time (colurma RS Size) for each 
representative, as well as the relative siz~ compared to the process non-~:ro data (% of  Real) 
and total ,,llocated space (% of Totel). i 

The range of resident set ~izes is even narrower than that of 
the RealMem figures in Sec~tion 4.2.1, a factor of only 4. With 
the unrealistic Minprog process excluded, the factor drops to 
2.7. This implies that the transfer of a process resident set 
will contribute a relatively consistent delay to the migration 
operation. Because of the amount of memory involved, resi- 
dent set transfers are a significant expense. Viewing resident 
set transfer as a middle ground between a pure-copy transfer 
and a pure-IOU strategy appears reasonable, since the resident 
sets are roughly half as large as the RealMem in most cases. 
However, Section 4.3.4 demonstrates that this added expense 
at migration time doesn't  translate into better overall perfor- 
mance. 

4.2.3, Address Space Utilization 
As postulated, Accent processes reference a small portion of  

their address spaces on average in their lifetimes. Table 4-3 
reveals the amount of  data transferred between machines 
during the trials in relation to address space size. Percentages 
are listed for the pure-IOU and resident set strategies without 
prefetching (pure-copy transmits 100% of RealMera by 
definition). Pure-IOU figures (the first column) indicate the 
portions actually touched by the process at the remote site. 

I O U  RS 
Mlnprol~ 8 .6 [  3.7] 50.4 [ 21.71 

Lisp-T 3.0 [0.002] 9.010.005l 
I.Isp-Del 16.5 [0.009] 17.4 [0.0091 

PM-Sta r t  58.0 [ 27.41 76.0 [ 35.91 
PM-Mid  $1.5 [ 25.2] 77.5 [ 37.9] 
P M - E n d  26.9 [ 14.8] 72.5 [ 40,1] 

Chess  35.6 [ 13.9] 66.0 [ 25,8] 

Table 4-3: Percent of Address Space Accessed 
For esch t~presentative process, the poaiou of the sdd:~s spice transferred to the new site 

is g i v ~  for the pure copy-on-mfean~ (/OU) mad r=,idmat set (RS) strategies. The first 
number ha each column repge.~ntJ the p ~ t  of  thz allor.~led, non-zero (RealMem) memory 
shipped, while the nttml~r ha iqwtm brsckew ~ the pefoet~ of the total allocated add~n 
~ .  By definition, the pme-¢.ol~ technique ItartJferJ 100% of non-zero data. 

The Lisp representatives, while they have the largest address 
spaces, touch the smallest percentage in the course of execu- 
tion. This applies even when performing a considerable 
amount of computation and I/O, as in the case of Lisp-Del. 
The Pasmac macro processor trials showed the highest ad- 
dress space utilization, as their mapped disk files are touched 
sequentially and in their entirety. In all cases, the resident set 
transfer method accessed larger portions of the address space, 
bringing over pages that are never used. This is especially 
acute for Pasmac. Since physical memory under Accent tends 
to act as a disk cache, old file pages that have already been 
processed are still sent to the new execution site. This ex- 
plains why the pure-IOU method references significantly less 
of  the Pasmac process address space the later in life it is 
migrated while the resident set approach results in nearly 
constant utilization. 

4.3. M i g r a t i o n  P h a s e  T i m i n g s  
Migration under Accent may be broken down into three 

phases: 
1. Packaging and unpackaging the process context 

at the source and destination hosts. 

2. Transferring the context between the sites. 

3. Running the program at its new location. 

This section examines how the migration strategies and their 
variations perform in each of  these phases, and also presents 
an end-to-end analysis. Copy-on-reference transfers are 
shown to greatly reduce the time spent in the transfer phas~ 
while only moderately increasing remote execution times, 
resulting in significant overall performance improvements. 
While the first phase is insensitive to the migration strategy 
chosen, the experiments reveal some interesting facts about 
Accent 's  virtual memory system. 

4.3.1. Process Excision and Insert ion 
Two operations dominate the removal and packaging of a 

process context, as revealed by Table 4-4: AMap construction 
for the target address space and the collapse of process 
memory into a contiguous chunk. 

A M a p  R I M A S  Overa l l  
M i n p r o g  ..37 .36 .82 

Lisp-T 2.12 .59 2.79 
Lisp-Del 2.46 .73 3.38 

PM-Sta  rt  .98 .63 1.67 
PM-Mid  1.01 .68 1.74 
PM*End 1.4 .94 2.45 

Chess .37 .43 1.00 

Table 4-4: Process Excision Times in Seconds 

The righ~most cciurrm of this table lists thc amount of alzpzcd timc used by d~c 
ExciseProcess kcmcl trap on ©ach of the ~prcsentativcs (~vo l / ) .  Also listed ate thc 
individual timings for the two domhlant activities carried out during exaction: AMap 
construction (AMap) and i~.ntion of tl~ ~ mcsssge C~'lLtinhag lh0" c~l:lclls¢~ ~ 1 ~  
address space (RIMAS). 

There are two reasons why AMap construction is an expen- 
sive operation under Accent. The complex process map or- 
ganization chosen to support sparse address spaces and copy- 
on-write makes it difficult to determine accessibility for 
ranges of addresses. Also, the lazy update algorithm 
employed for process maps often forces a costly search of 
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system virtual memory tables. The Lisp processes take the 
longest to service, as might be expected. The Mhaprog and 
Chess programs have small, uncomplicated address spaces 
and hence require the shortest amount of time. 

While process memory is rearranged into a compact form 
and delivered to the migration agent via memory-mapping 
techniques instead of physical copies, it is still an important 
part of the excision activity. Address space collapses con- 
tribute a much smaller variation to excision times than does 
AMap construction. Overall, excision times vary only by a 
factor of 4, compared to the 4 orders of magnitude difference 
in the address space contents. 

Process reincarnation given the two context messages in- 
volves reestablishing the microeode and port state of the 
process, along with setting up its address space to correspond 
to the original structure. The times required to insert the 
transferred contexts into the new site ranged from 263 mil- 
liseconds for Minprog to 853 milliseconds for Lisp-Del. Ad- 
dress space reconstruction is the major factor in the insertion 
operation, and times are very similar to the RIMAS creation 
times during context extraction. As with other portions of the 
migration mechanism, this insertion costs grow much more 
slowly than the address spaces involved, only a factor of 3.3. 

4.3.2. Context Transfer Times 
Approximately one second is required to transmit the Core 

context message (microstate, PCI], port fights) in all cases. 
These messages differ by a small number of bytes, since some 
AMaps are slightly larger than others. The real variation 
involves die delivery of the RIMAS message (v'did, non-zero 
address space) tinder the different transfer strategies. Table 
4-5 provides these timings. 

Pure-lOU RS Copy 
Minprog .16 5.0 8.5 

Lisp-T .16 25.8 157.0 
Lisp-Del .17 25.8 168.5 

PM-Start .15 9.0 30.8 
PM-Mid .16 13.0 28.1 
PM-End .19 20.5 31.0 

Chess .21 7.7 11.7 

Tab le  4-5: Address Space Transfer Times in Seconds 

Address space lnmfcr times are closely clustmcd for the copy-on-reference approach 
(IOU), but vat/covalderably for the n:sident set (RS) mad pure-voiD, (Copy) techniques. 

Times required to ship process address spaces pure-IOU are 
nearly independent of the amount of memory involved. Use 
of pure-copy doesn't fare nearly as well, where RIMAS trans- 
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F i g u r e  4-1 :  R e m o t e  E x e c u t i o n  T i m e s  in  S e c onds  

The measurement interval starts when the relocated program is restarted at its new location and ends when remote execution 
completes; Column PFn describes a trial where n pages were prefetched in response to an imaginary fault. Note: each chart is 
scaled individually. 
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mission times vary by a factor of 20. Pure-IOU allows the 
address space transmission to complete in significantly less 
time. Lisp-Del is the most extreme example, where a physical 
copy is almost 1,000 times more expensive. Resident set 
transfers once again display intermediate performance. 
4.3.3. Remote Execution Times 

Figure 4-1 shows the remote execution times of the repre- 
sentative processes, namely the elapsed time in seconds from 
the first instruction executed at the new host up to the 
program's termination. These figures show the effects of the 
different migration strategies, combined with differing 
prefetch values for the pure-IOU and resident set approaches. 

Part of the effort saved in the lazy transfer of an address 
space must be expended as the process accesses its memory 
remotely. Referencing imaginary memory through the inter- 
mediary Scheduler and NetMsgServer processes on both 
testbed machines is roughly 2.8 times more expensive than 
accessing data backed by a local disk (115 milliseconds vs. 
40.8 milliseconds). The most glaring effect of this cest dif- 
ferential on remote execution time is .seen in the Minprog 
case, which executes 44 times slower under the pure-IOU 
strategy. The majority of this time is spent collecting its 
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working set as it attempts to execute the few instructions 
before it terminates. The long-lived, compute-bound Chess 
program suffers a much smaller execution penalty, running 
only about 3% longer. 

Dependent on the memory access patterns exhibited, the 
effect of prefetch varies considerably among the represen- 
tatives. The Lisp family, which doesn't display memory 
locality, suffered from increased prefetch. The additional 
pages were rarely used and did not justify the larger fault- 
handling time. Hit.ratios on these extra Lisp pages dropped 
from around 40% to 20% as prefetch increased. On the other 
hand, programs such as Pasmae, which access large tracts of 
memory in a sequential fashion, benefitted greatly from large 
prefeteh. Pasmac tallied a steady 78% hit ratio across all 
prefetch values used, and improved its IOU remote execution 
times by up to a factor of 2 across this range. 

Transferring process resident sets to the new execution site 
only had a significant impact on the extremely short-lived 
processes (Lisp-T, Minprog). This implies that the underlying 
working sets change quickly for Accent processes, in turn 
suggesting that resident set transfers are not a useful optimiza- 
tion in this setting. 
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F i g u r e  4 -2 :  Percen t  Overal l  S p e e d u p  o v e r  P u r e - C o p y  

Shown are the end-to-end speedups resulting from use of pure-IOU and RS transmissions. Elapsed times for address space 
transfer and remote execution are summed for each representative process and prefetch value and compared to the pure-copy 
results. From left to right in each group, bars indicate percent speedup over pure-copy for prefeteh values of 0, 1, 3, 7 and 15 
pages. Negative values (bars drawn in the bottom half of each gray area) represent slowdowns in relation to pure-copy. 
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4.3.4. Overall  Migration Speedup 
As demonstrated above, the pure-IOU and RS~schemes hold 

a clear advantage in the address space transfer phase of migra- 
tion yet generally cause processes to execute longer at the 
remote site. In order to get overall or end-to-end performance 
figures, elapsed times for context transfer and remote execu- 
tion are summed for these strategies and compared to the 
pure-copy results. The percent speedups over the straightfor- 
ward pure-copy technique are displayed in Figure 4-2 for the 
pure-IOU and RS approaches as different amounts of prefetch 
are performed. The pure-IOU results (white bars) are grouped 
together on the left-hand side of each chart; similarly, the 
resident set results (dark gray bars) are placed on the right- 
hand side. From left to right in, each group, the bars show the 
percent speedup for prefetch values of 0, 1, 3, 7 and 15. 
Negative values indicate slowdowns in relation to pure-copy. 

As expected, processes that access the smallest portion of 
their address spaces at the new site are best suited to use the 
copy-on-reference technique when overall elapsed time for 
migration and remote execution is the metric. In the current 
implementation, the breakeven point is around one-quarter of 
the process RealMem. Once past this percentage, as in the 
Pasmac family of processes, the higher cost of fetching in- 

dividual pages during remote execution in the pureqOU sys- 
tem outweighs the savings achieved during migration itself. 
The exception to this observation is the Chess program, which 
is insensitive to the transfer method used. In that case, the 
differences imposed the various strategies were drowned out 
by the program's longevity. 

With its strong influence on remote execution times, the 
amount of prefetch performed is a critical factor in end-to-end 
performance. Pasmac, as a representative for processes past 
the breakeven point and demonstrating strong sequential ac- 
cess patterns, went from an overall 21% slowdown on average 
to a 44% speedup as prefetch increased. In all cases, the 
results demonstrate that returning one additional contiguous 
page per remote fault improves performance. With intelligent 
use of prefetch, copy-on-reference migration is significantly 
faster than pure-copy transfer for the representatives (except 
the long-lived Chess process) when overall timings are con- 
sidered. On the other hand, process resident sets didn't "pay  
their way" by cutting remote faulting activity enough to of- 
fset their shipment costs, 

4.4 .  Cost  Ana lys i s  
Section 4.3 reports that copy-on-reference ~'eatment of ad- 
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Number of b~es  transferred for each program, transmission strategy ar~ page prefetch value during the migration trials. The 
measurement mterval starts when the migration request is received by the M~grationManager and ends when the program 
completes its remote execution. Column PFn describes a trial where n pages were prefetched m response to an imaginary fault. 
Note: each chart is sealed individually. 
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dress space transfers significantly improves the time required 
to migrate a process to a new site and complete its execution 
there. This section supports these results by examining the 
specific costs incurred by the different migration strategies, 
and how these costs are distributed across the migration 
phases. Experiments reveal that copy-on-reference reduces 
the number of bytes transferred between the hosts as well as 
the cost of handling messages related to migration activities. 
Not only are the overall costs lowered by this approach, but 
they are also more evenly distributed across the context trans- 
fer and remote execution phases. 
4.4.1. Bytes Transferred 

Figure 4-3 reports the number of bytes exchanged between 
machines due to migration and remote execution of the 
representatives under the different strategies. Note that a 
single value is reported for each pure-copy trial, since 
prefeteh doesn't apply in these cases. 

The pure copy-on-reference strategy was superior to pure- 
copy across all prefetch settings. This technique reduced byte 
traffic by an average of 58.2% over pure-copy when no 
prefeteh was used. As a rule, more data was exchanged as the 
number of contiguous pages prefetched grew. This is reason- 
able, since not all the extra pages were referenced. Shipping 
resident sets cut into the savings realized by the IOU strategy, 

again implying that very little of this data was actually used at 
the remote site. 
4.4,2. Message Costs 

Pure-copy is the clear winner when evaluated by the number 
of messages processed by the test systems. However, it does 
not fare nearly as well in a more important metric, the amount 
of time required to process and deliver these messages. Each 
second of execution time spent by the NetMsgServer to 
handle message traffic is not only a second stolen from the 
migrated process but from all processes in both systems. 
Figure 4-4 displays the amount of time spent by each node in 
message manipulation. 

These figures further confirm the utility of a lazy approach 
to address space access. By putting off the apparent work that 
needs to be performed until the last moment, a significant 
portion does not need to be done at all. Although the bulk 
transfer of the process context when the pure-copy strategy is 
employed allows a higher throughput than the page-by-page 
access imposed by the pure-IOU and resident set approaches, 
the majority of pages sent by the pure-copy approach are 
never used. The pure-IOU strategy only performs work that 
is productive and necessary. 

In every ease, the IOU and resident set strategies outperform 
pure-copy. The average savings in message processing is 
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47.8% for IOU trials without prefetch. The effect of prefetch 
is an interesting one. When only a single additional page is 
prefetched in response to an imaginary fault, the time spent 
processing messages drops slightly. As we increase the num- 
ber of pages prefetched, the system spends more and more 
time in message handling. Although the prefetching 
eliminates many of the imaginary faults, it also transfers some 
"dead weight" pages that are never used. Also, since each 
message carries more data, the time to process each imaginary 
reply message grows. 

Combined with the results on end-to-end costs, these figures 
suggest that one page should be prefetched regardless of the 
transfer strategy chosen. 

4.4.3. Distribution of Costs 
The vast majority of migration costs charged to the pure- 

copy strategy are incurred during the transfer phase of process 
migration. On the other hand, the copy-on-reference ap- 
proaches radically reduce the cost of context shipment and 

instead incurs its expenses across the remote lifetime of the 
process involved. Thus, not only are costs reduced overall, 
but they are also more evenly distributed. Pure IOU transfers 
don't experience the same magnitudes and bursts of activity 
reqttired by the pure-copy strategy. Instead, a lower, more 
constant rate of work is exhibited. The trials demonstrate that 
sustained network transmission speeds are reduced up to 66%. 

Figure 4-5 presents the data transfer rates caused by the 
migration and remote execution of the Lisp-Del ease under 
the different strategies, starting at the time of migration and 
ending with the execution of the f'mal remote instruction. 

These panels depict the results of a full-IOU transfer of 
Lisp-Del, a resident set approach and finally the full-copy 
method. The areas in white represent bytes exchanged in 
support of imaginary fault activity. Full-copy transfers have a 
characteristic signature, with a large bulk data transfer early 
on. The resident set panel illustrates that a sizable amount of 
data is still physically shipped during the migration phase, but 
does not improve the overall time significantly from the pure- 
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Figure 4-5: Byte Transfer Rates for Lisp-Del 
Network data transfer rates during the migration and remote execution of the Lisp-Del (Delaunay triangulation) program. No 
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transfers. 

22 



IOU approach. Copy-on-reference allows the process to re- 
sume execution very quickly. In this case, Lisp-Del finishes 
its work shortly after the full-copy trial begins its remote 
execution. 

4.5. Summary 
The trial data collected for the Accent migration facility 

reveals several interesting facts about process composition 
and behavior. While address space size varies by as much as 
a factor of 12,803 in the representative processes, the amount 
of ReaIMem only differs by a factor of 15. RealZeroMem 
forms a significant portion of every process address space, 
more than half in most cases and 99.9% in the Lisp examples. 
These representatives touched between 0.002% and 27.4% of 
their validated address spaces, and between 3% and 58% of 
the RealMera portions, This verifies the assumption that 
processes access relatively small parts of their addressible 
data. 

Process excision and insertion times are also much less 
variable in this study, factors of 4 and 3.3 respectively across 
the samples. IOU context transfers take roughly one second 
in all cases, and thus provide a lower bound for this activity. 
Pure-copy transfers vary by a factor of 20, and in the most 
extreme case are 1,000 times more expensive than the cor- 
responding pure-IOU transfer. 

Much less data needs to be communicated between 
machines when copy-on-reference tactics are used. On 
average, 58% fewer bytes are transferred and message 
processing times drop by 47%. Touching remote pages via 
the copy-on-reference mechanism is roughly 2.8 times more 
expensive than local disk accesses, and this figure can likely 
be improved through tuning. 

The copy-on-reference variations studied in this system 
produced mixed results. Resident sets were found to be poor 
predictors of  the data required by the process at its remote 
site. Since Accent uses its physical memory as a disk cache, 
many resident pages are sometimes guaranteed not to be 
referenced again, especially by the Pasmac class of processes. 
On the other hand, small amounts of page prefetch were 
found to always be useful. Prefetching more pages each time 
degrades performance in some cases, but greatly aids 
programs performing mostly sequential accesses. 

5. Related Work 
Investigation into process migration began in the early 

1970's. Such efforts as the "Creeper"  program [11] by Bob 
Thomas at BBN and the "Relocatable McRoss"  [14] air traf- 
fic controller demonstrated migration's feasibility. However, 
they did little to address the transparency issues. DCN 
[6] added name transparency by associating resources with 

processes, but failed to provide location transparency. DCN's  
resource names specified the supplying host, and were in- 
validated if the resource was moved. The RIG system [4] is 
Accent 's  direct ancestor and shared many of the same con- 
cepts. RIG's  ports were visibly tied with the process owning 
them, so it suffered from DCN's  problem. The DEMOS/MP 
operating system [9] was among the first to offer full trans- 
parency. Link names contained hints to the location of the 
service, and were not invalidated by resource relocation. The 

University of Washington's object-oriented Eden [5] system 
provided full transparency and migration services, but could 
n o t  take advantage of a copy-on-reference mechanism. 
Eden's objects were forced to reside entirely on a single host. 
Darmenberg's Butler [1] made use of an older version of 
Accent which did not provide copy-on-reference data ship- 
merit, but demonstrated Accent 's  suitability for transparent 
migration support. 

Various systems have attempted different attacks on the cost 
of context transfer. The LOCUS [8] remote invocation 
facility exploits shared code present at the target site, cutting 
down the amount of data that must flow to the new site. This 
approach doesn't address the data portions of a process con- 
text, including memory-mapped files. Marvin Theimer's 
migration facility for the V system [13] tried to hide trans- 
mission costs from processes by pre-copying the context in an 
iterative fashion before moving the process. Process 
downtime was thus reduced, but beth hosts still paid the 
transfer costs. Theimer's measurements reveal that this tech- 
nique suffers from network buffering problems and overruns. 

6. Conclusions 
The Accent testbed's use of copy-on-reference address space 

transfer has demonstrated its effectiveness in tackling process 
migration's dominant cost. Unlike the conventional trans- 
mission technique, copy-on-reference avoids the linear 
growth in costs as processes address more and more data. 
Any distributed system in the same class can expect similar 
results in the construction and use of  a copy-on-reference 
facility. 

Studying the Accent example also teaches important lessons 
in operating system design. The simple yet powerful port 
abstraction and the close integration of  IPC and virtual 
memory facilities give Accent the transparency needed to 
cleanly support migration without sacrificing performance. 
These features, along with extensibility through user-level 
processes, allows a generic copy-on-reference mechanism to 
be built in a natural way. This mode of  data transfer has 
proven useful in the migration domain, but may be just as 
easily applied to any task requiring sparse access to large 
tracts of  memory. 

Copy-on-reference data transmission is inherently more 
flexible than the conventional method. Only two variations of 
actual data delivery have been explored here. Tasks with 
special knowledge of  the data requirements they will en- 
counter may apply that knowledge to optimize the physical 
shipment of data. 

This investigation opens many avenues for future research. 
The creation and evaluation of  automatic migration strategies 
appropriate for such systems have not been addressed here. 
Good strategies are necessary to capitalize on the inherent 
advantages of lazy transfers. Part of  this activity will involve 
the development of good load metrics which specifically take 
into account the fact that a process virtual address space may 
be physically dispersed among several computational hosts. 
Copy-on-reference may be proven useful in remote file and 
database accesses, remote invocation facilities and intelligent 
RPCs. It would be interesting to attempt to extend this work 
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to systems allowing shared memory, and to evaluate the ap- 
plication of  copy-on-reference techniques to a shared central- 
ized file system such as Andrew [7]. 

Although Accent is no longer actively in use at Carnegie 
Mellon University, the lessons learned from this work are 
being applied to the Math  environment [10] currently being 
developed there. A successor to Accent aimed at supporting a 
wide range of  hardware configurations, Mach allows external 
pager processes which provide copy-on-reference administra- 
tion of data. Study of copy-on-reference behavior in this new 
facility will provide further insights on the basic mechanism 
in a more modem computing system. 
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