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Abstract
This paper explores the relationship between domain scheduling in
a virtual machine monitor (VMM) and I/O performance. Tradition-
ally, VMM schedulers have focused on fairly sharing the processor
resources among domains while leaving the scheduling of I/O re-
sources as a secondary concern. However, this can result in poor
and/or unpredictable application performance, making virtualiza-
tion less desirable for applications that require efficient and consis-
tent I/O behavior.

This paper is the first to study the impact of the VMM scheduler
on performance using multiple guest domains concurrently run-
ning different types of applications. In particular, different com-
binations of processor-intensive, bandwidth-intensive, and latency-
sensitive applications are run concurrently to quantify the impacts
of different scheduler configurations on processor and I/O perfor-
mance. These applications are evaluated on 11 different scheduler
configurations within the Xen VMM. These configurations include
a variety of scheduler extensions aimed at improving I/O perfor-
mance. This cross product of scheduler configurations and applica-
tion types offers insight into the key problems in VMM scheduling
for I/O and motivates future innovation in this area.

Categories and Subject Descriptors C.4.1 [OPERATING SYS-
TEMS]: Process Management—Scheduling

General Terms Experimentation, Performance

Keywords Machine Virtualization, Network I/O, Scheduling Pol-
icy, Server Consolidation, Xen

1. Introduction
In many organizations, the economics of supporting a growing
number of Internet-based application services has created a demand
for server consolidation. Consequently, there has been a resurgence
of interest in machine virtualization [2, 3, 4, 7, 9, 12, 13, 18,
19]. A virtual machine monitor (VMM) enables multiple virtual
machines, each encapsulating one or more services, to share the
same physical machine safely and fairly. Specifically, it provides
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isolation between the virtual machines and manages their access to
hardware resources.

The scheduler within the VMM plays a key role in determining
the overall fairness and performance characteristics of the virtual-
ized system. Traditionally, VMM schedulers have focused on fairly
sharing the processor resources among domains while leaving the
scheduling of I/O resources as a secondary concern. However, this
can cause poor and/or unpredictable I/O performance, making vir-
tualization less desirable for applications whose performance is
critically dependent on I/O latency or bandwidth.

This paper explores the relationship between domain schedul-
ing in a VMM and I/O performance. For concreteness, the Xen
VMM [4, 9] is used with both its current default Credit scheduler
and its earlier SEDF scheduler. In addition, this paper examines a
number of new and existing extensions to Xen’s Credit scheduler
targeted at improving I/O performance.

While other studies have examined the impact of VMM
scheduling on I/O performance [5, 6, 11], this paper is the first to
do so with multiple guest domains concurrently running different
types of applications. In particular, processor-intensive, bandwidth-
intensive, and latency-sensitive applications are run concurrently
with each other to quantify the impacts of different scheduler con-
figurations on processor and I/O performance. This cross product
of scheduler configurations and application types offers several in-
sights into the key problems in VMM scheduling for I/O and moti-
vates future innovation in this area.

Both the Credit and SEDF schedulers within Xen do a good job
of fairly sharing processor resources among compute-intensive do-
mains. However, when bandwidth-intensive and latency-sensitive
domains are introduced, the schedulers achieve mixed results, de-
pending on the particular configuration.

The default scheduler in the current version of Xen is a credit
scheduler which uses a credit/debit system to fairly share processor
resources. The Xen Credit scheduler is invoked whenever an I/O
event is sent and boosts the priority of an idle domain receiving an
I/O event. It does not, however, sort domains in the run queue based
on their remaining credits. This study shows that these extensions
can have significant effects on I/O performance. In particular, the
priority boost optimization frequently impacts both bandwidth and
latency positively, as it allows domains performing I/O operations
to achieve lower response latency. Sorting the run queue based on
remaining credits can have a similarly positive effect, as it allows
infrequently running, but latency-sensitive, domains to run more
promptly. When events are sent, tickling the scheduler to immedi-
ately preempt a lower priority domain can sometimes reduce re-
sponse latency. However, it also creates a wide variance in both
bandwidth and latency among I/O-intensive domains. Finally, this
study shows that latency-sensitive applications will perform best
if they are not combined in the same domain with a compute-
intensive application, but instead are placed within their own do-
main.



Figure 1. The Xen Virtual Machine Environment

The rest of this paper is organized as follows. The next section
provides a brief introduction to Xen. Section 3 describes Xen’s de-
fault scheduler, the Credit scheduler. Section 4 discusses modifica-
tions to the Credit scheduler as well as the earlier SEDF scheduler.
Section 5 describes the experimental methodology and Section 6
discusses the experimental results. Section 7 discusses the related
work. Finally, Section 8 concludes the paper.

2. The Xen VMM
A virtual machine monitor allows multiple operating systems to
share a single machine safely. It provides isolation between operat-
ing systems and manages access to hardware resources.

Figure 1 graphically shows the organization of Xen, an open
source virtual machine monitor based on the Linux kernel [4]. Xen
effectively consists of two elements: the hypervisor and the driver
domain. The hypervisor provides an abstraction layer between the
guest operating systems running in their own domains and the
actual hardware. In particular, this layer performs functions such
as scheduling processors and allocating memory among guest do-
mains. One of the major functions of the driver domain is to provide
access to the actual hardware I/O devices. The hypervisor grants
the driver domain direct access to the devices and does not allow
the guest domains to access them directly. Therefore, all I/O traffic
must pass through the driver domain.

In Xen, the hypervisor therefore protects the guest domains
from each other and shares I/O resources through the driver do-
main. This enables each guest operating system to behave as if it
were running directly on the hardware without worrying about pro-
tection and fairness.

3. Xen’s Credit Scheduler
3.1 Operation

The current version of the Xen virtual machine monitor (version 3)
uses a credit scheduler to schedule domains. Each domain is given
a certain number ofcreditsby the system administrator. The over-
all objective of the Credit scheduler is to allocate the processor re-
sources fairly, weighted by the number of credits each domain is
allocated. Therefore, if each domain is given the same number of
credits, the domains should expect an equal fraction of processor
resources.

In practice, the Credit scheduler works as follows. Domains can
be in one of two states:OVER or UNDER. If they are in theUNDER
state, then they have credits remaining. If they are in theOVER
state, then they have gone over their credit allocation. Credits are
debited on periodic scheduler interrupts that occur every 10ms. At
each scheduler interrupt, the currently running domain is debited
100 credits. When the sum of the credits for all of the domains
in the system goes negative, all domains are given new credits.
When making scheduling decisions, domains in theUNDER state
are always run before domains in theOVER state. A domain that is

over its credit allocation is only executed if there are no domains
in the UNDER state that are ready to run. This allows domains to
use more than their fair share of the processor resources only if the
processor(s) would otherwise have been idle.

When making scheduling decisions, the Credit scheduler only
considers whether a domain is in theOVER or UNDER state. The ab-
solute number of credits that a domain has remaining is irrelevant.
Rather, domains in the same state are simply run in a first-in, first-
out manner. Domains are always inserted into the run queue after
all other domains in the run queue that are in the same state, and the
scheduler always selects the domain at the head of the run queue to
execute. When a domain reaches the head of the run queue, it is
allowed to run for three scheduling intervals (for a total of 30ms)
as long as it has sufficient credits to do so.

3.2 Events

Xen usesevent channelsto communicate virtual interrupts. The
hypervisor sends an event to the driver domain in response to a
physical interrupt. The next time the driver domain runs, it will see
the event and process the interrupt. Events are also used for inter-
domain communication. After a domain sends an event to another
domain, the receiving domain will see and process the event the
next time it runs.

For example, when the network interface card (NIC) receives a
network packet, it generates an interrupt. The hypervisor forwards
that IRQ to the driver domain as an event. When the driver domain
runs, it sees the event. If the packet is destined for a guest domain,
the driver domain then copies the packet to the appropriate guest
domain and sends that domain an event. Once the guest domain
runs, it sees the event and handles the packet.

If the guest domain responds to the packet, it remaps the re-
sponse packet(s) to the driver domain and sends an event to the
driver domain. When the driver domain runs, it sees the event and
responds by forwarding the packet to the NIC. The NIC’s acknowl-
edgement (another hardware interrupt) is forwarded by the hypervi-
sor to the driver domain as an event. The driver domain then sends
an event to the guest domain so that it will know that the packet has
been sent.

Whenever an event is sent to a domain, the hypervisor wakes the
target domain if it is idle. Then, the hypervisorticklesthe scheduler,
meaning that it invokes the scheduler to re-evaluate which domain
should be running. If the woken domain has a higher priority
than the currently running domain, the scheduler will switch to
the newly woken domain. Tickling the scheduler in this manner
potentially reduces the communication latency for both hardware
interrupts and inter-domain notifications by immediately running
the domain receiving the event.

3.3 Fairness

The Credit scheduler attempts to fairly share the processor re-
sources. Figure 2 shows the fraction of the processor that is allo-
cated among seven domains with equal credit allocations that are
running concurrently. In this experiment, each domain is simply
burning as many processor cycles as it can in an infinite loop. As
the figure shows, the Credit scheduler is quite successful at fairly
sharing the processor in this case. Furthermore, modifying the do-
mains’ credit allocation should directly affect the fraction of time
each domain receives in an obvious way.

However, the scheduler is fairly sharing the processor resources
only by approximation. For example, a domain that runs for less
than 10ms will not have any credits debited. When all domains
are primarily using processor resources, this is unlikely to have a
significant impact on the fair sharing of the processor resources.
Recent activity in the Linux community, however, has focused on
replacing this type of approximate scheduler with a “completely
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Figure 2. CPU fairness with Xen’s default configuration.

fair scheduler,” which keeps track of the time each process uses
with nanosecond granularity. Such a scheduler can more fairly
allocate processor resources than a statistical sampling scheduler
like the Credit scheduler.

Regardless of the accounting method used in the scheduler, the
driver domain is treated just like any other domain. While it can be
assigned more credits than other domains, allowing it to consume a
larger fraction of the processor resources, it receives no additional
priority and is still scheduled based on its state and the order it is
inserted into the run queue. When low response latency from the
driver domain is not needed, this is entirely appropriate. However,
if low response latency is desired—as in a networking application,
for example—then this policy may not be effective.

Since the Credit scheduler does not considerwheneach domain
should receive its allocated fraction of processor resources, it does
not provide fair latency. For example, a domain that performs a
lot of I/O will be treated similarly to a domain that only performs
processing. Although an I/O-intensive domain may actually con-
sume far less processor resources than the processing domain, it
may still perform poorly. This occurs because the processing do-
main can consume 30ms of processing time once it arrives at the
head of the run queue, regardless of whether there are pending I/O
events. If the I/O events can be handled quickly, the domain per-
forming I/O would benefit from being prioritized above the pro-
cessing domain. This would allow that domain to promptly handle
the I/O operation, without much harm to the processing domain.

Fundamentally, the Credit scheduler has no notion of theur-
gencywith which a domain needs to execute. Rather, it only at-
tempts to fairly allocate processor resources among domains over
the long run. This results in a second fundamental problem for I/O,
which is that response latency will vary widely among domains.
Ultimately, the latency between the occurrence of an I/O event and
the scheduling of the appropriate domain is determined by the po-
sition of that domain in the run queue. If the domain is close to the
head of the queue, its response latency will be lower. If it is far from
the head of the queue, behind a lot of compute-intensive domains
with many remaining credits, its response latency can be quite high.
This leads to the unexpected situation where different domains ex-
perience widely varying I/O performance, despite being allocated
an equal number of credits and seemingly having equal priorities.
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Figure 3. I/O fairness with Xen’s default configuration.

Figure 3 further illustrates this problem. The figure shows the
network bandwidth achieved by seven domains that are running
concurrently. Each domain is running a network streaming bench-
mark, which attempts to send a continuous stream of data as fast as
possible. In contrast to processor-intensive workloads, it is obvious
that the Credit scheduler does not achieve fairness for I/O-intensive
workloads. The bandwidth achieved by the domains varies by a
factor of almost 1.5. This is a direct result of the uneven latency
experienced by the domains. As TCP throttles bandwidth based on
latency, each domain stabilizes at a different level of bandwidth
based on the idiosyncrasies of the scheduler.

These two phenomena, high and uneven I/O response latency,
make I/O-intensive domains perform poorly and unpredictably.
This limits the usefulness of virtualization for many types of server
applications that rely heavily on networking and other I/O.

3.4 Boosting I/O Domains

In an attempt to solve the problem of high response latency, the
Credit scheduler adds an additional state:BOOST. A domain in the
BOOSTstate has a higher priority in the scheduler than domains in
the UNDER andOVER states. TheBOOSTstate is meant to provide
a mechanism for domains to achieve low I/O response latency.

A domain enters theBOOSTstate when it receives an event over
an event channel while it is idle. This prevents the domain from
entering the run queue at the tail and having to wait for all other
active domains before being executed. Since the scheduler is tickled
when an event is sent, this means that if the domain receiving the
event is boosted, it will very likely preempt the current domain and
begin running immediately.

Increasing a domain’s priority in this fashion can have some ef-
fect on lowering the high latency experienced by domains perform-
ing I/O, as shown in Figure 4. The figure shows the ping latency
from an external machine to an otherwise idle guest domain with
and without boosting. There are seven other domains consuming
processor cycles while the test is running. The graph shows the
ping latency for 90 consecutive pings. The solid line shows that
with boost disabled, the latency oscillates around 150ms. The high
latency is the result of the ping domain having to wait behind the
processing domains for service. The dotted line shows that when
boost is enabled, the ping latency is usually around 0.2–0.3ms, with



0 10 20 30 40 50 60 70 80 90
Ping Number

0

50

100

150

200

250

300

350

400

L
at

en
cy

 (
m

s)

Boost Disabled
Boost Enabled

Figure 4. The effect of boost on latency in the Credit sched-
uler. One guest is receiving pings, while 7 others are performing
processor-intensive activities. The event channel fix (described in
section 4.1) is active.

some spikes when the scheduler is occasionally unable to give the
ping domain prompt service.

While boosting reduces response latency, it does very little to
improve the uneven I/O response latency when multiple domains
are performing I/O. In that case, many domains get boosted, which
negates the value of theBOOSTstate. For example, boost has little
effect on the experiment shown in Figure 3. With boosting enabled
or disabled, the variation in achieved bandwidth is nearly identical.

4. Scheduler Enhancements for I/O
This section first discusses a change to Xen’s event channel mech-
anism that results in fairer scheduling of I/O-intensive domains.
Then, it discusses two modifications to the Credit scheduler that
are intended to improve I/O performance. Finally, it describes an
alternative to the Credit scheduler, Xen’s SEDF scheduler.

4.1 Fixing Event Channel Notification

Xen uses event channels, as described previously, to communicate
IRQ’s to the driver domain. A two-level hierarchy of bit vectors,
referred to as the pending array, is shared between the hypervisor
and the driver domain’s kernel. Each bit in the second level of the
hierarchy corresponds to aport, which maps to an IRQ number in
this case. A set bit at this level indicates the port has a pending
event. The first level of the hierarchy is used as an optimization to
avoid excessive searching for set bits. A bit is set in the first level if
any bit is set in the corresponding vector in the second level.

When a port number is allocated, Xen simply uses the smallest
port number not in use. Thus, since physical devices require port
numbers immediately when the driver domain boots, they are as-
signed relatively low port numbers. Any virtual devices to support
guest operations, such as loopback filesystems or virtual network
interfaces, will be assigned higher port numbers. Similarly, guest
domains will be assigned port numbers in the order that they are
started.

The event channel driver, which runs in the driver domain, scans
the two-level hierarchy of bit vectors sequentially. When it finds a
bit set in the first level of the hierarchy, it scans for set bits in the
corresponding bit vector in the second level of the hierarchy. When
it finds a set bit, it trivially calculates the port number from the
index into the first and second levels of the hierarchy and maps

that port into an IRQ number. It then calls the appropriate handler
for that IRQ. After processing the IRQ, it restarts the scan from
the beginning of the current bit vector in the second level of the
hierarchy.

There is a subtle, but rather important, issue with the event chan-
nel driver. Suppose that Guest 4 is receiving a continuous stream
of data. When a packet for Guest 4 arrives over the network, the
driver domain receives an interrupt from the NIC through the event
channel mechanism. It processes the IRQ, finds the packet’s desti-
nation is Guest 4, copies the packet to Guest 4, and finally sends
an event channel notification to Guest 4. Xen wakes Guest 4 and
tickles the scheduler. The Credit scheduler may then preempt the
driver domain in favor of Guest 4. Guest 4 may send an acknowl-
edgement packet back to the driver domain followed by an event
channel notification. When the driver domain is next executed, it
has a pending event from Guest 4. Also, the NIC has likely re-
ceived more inbound data destined for Guest 4, so the driver do-
main has the event bit set for the port corresponding to the NIC’s
IRQ. Since the driver domain always seeks the first set bit in the bit
vector, it will always process lower port numbers before higher port
numbers. Moreover, because of the way port numbers are allocated,
inbound packets destined for Guest 4 will always be processed be-
fore outbound packets originating from Guest 4. If Xen repeatedly
preempts the driver domain to inform Guest 4 of new inbound data,
the system enters a cycle where it becomes unlikely that the driver
domain will process any outbound acknowledgements.

The event channel driver was modified to solve this problem
in a straight-forward manner. Rather than restarting the scan from
the beginning of the bit vector after processing an IRQ, the scan
resumes from where it left off. Once the end of the two-level
hierarchy is reached, the scan will restart from the beginning. This
guarantees that no port will be processed a second time before all
other pending ports have been processed once.

This fix was submitted to Xen’s maintainers and is now incor-
porated in Xen’s development code branch (changeset 324 of the
linux-2.6.18-xen.hg repository).

4.2 Minimizing Preemptions

Under Xen’s network I/O architecture, arriving packets are first
delivered to the driver domain. The driver domain demultiplexes
the arriving packets, forwarding each one to the appropriate guest
domain. As described in Section 3.2, the driver domain uses an
event channel to signal the availability of one or more packets to a
guest domain. If that guest domain was idle, it is woken as a result.

When multiple packets destined for distinct domains are deliv-
ered to the driver domain, they are processed in an arbitrary order.
The driver domain sends an event to the appropriate guest domain
as it forwards each packet. Since the act of sending an event tickles
the scheduler, the scheduler may preempt the driver domain be-
fore it has processed all of the packets. This can have an effect that
is similar to priority inversion. For example, consider a scenario
in which two packets arrive: the first is destined for a guest do-
main that isUNDER, and the second is destined for a guest domain
that is or will beBOOST. If the driver domain isOVER, it will be
preempted after the first packet is forwarded, thereby delaying the
delivery of the second packet.

Arguably, the driver domain should not be preempted while it
is demultiplexing packets. It is a trusted component in Xen’s I/O
architecture, and thus can be expected to be well-behaved in its
use of computational resources. To avoid preempting the driver
domain, tickling was disabled altogether. This forces the scheduler
to wait for the driver domain to yield before it can run any other
guest.



4.3 Ordering the Run Queue

Under the Credit scheduler, I/O-intensive domains will often con-
sume their credits more slowly than CPU-intensive domains. In
fact, an I/O-intensive domain will not be debited any credits if it
happens to block before the periodic scheduler interrupt, which oc-
curs every 10ms. However, when it later becomes runnable, its re-
maining credits have only a limited effect on its place in the run
queue. Specifically, as described in Section 3.1, the number of re-
maining credits only determines the domain’s state. The domain is
always enqueued after the last domain in the same state. Intuitively,
sorting the run queue by the number of remaining credits that each
domain possesses could reduce the latency for an I/O-intensive do-
main to be executed. The Credit scheduler was modified to insert
domains into the run queue based on their remaining credits in or-
der to evaluate this optimization.

4.4 Scheduling Based on Deadlines

In principle, under a workload mixing CPU- and I/O-intensive
domains, Xen’sSimple Earliest Deadline First(SEDF) scheduler
should allow I/O-intensive domains to achieve lower latency.

With the SEDF scheduler, each domain is allocated processing
resources according to two parameters: the domain’speriod and
the domain’sslice. In particular, the SEDF scheduler guarantees
that if the domain is runnable and not blocked, it will be executed
for the amount of time given by its slice during every interval of
time given by its period. Thus, the administrator can determine the
interval over which fair processor resource allocation is achieved
by proportionally changing the period and slice.

The SEDF scheduler operates as follows. It maintains for each
domain adeadline, the time at which the domain’s current period
ends, and the amount of processing time that the domain is due
before the deadline passes. It orders the domains in the run queue
according to their deadlines and executes the domain with the earli-
est deadline. As domains consume processing time, their deadlines
will move forward in time. I/O-intensive domains that consume lit-
tle processing time will typically have earlier deadlines, and thus
higher priority, than CPU-intensive domains.

Despite the SEDF scheduler’s advantages for workloads that
combine CPU- and I/O-intensive domains, the Credit scheduler re-
placed the SEDF scheduler as the default scheduler in recent ver-
sions of Xen. The reasons given for this change were that the Credit
scheduler improves scheduling on multiprocessors and provides
better QoS controls [1].

5. Experimental Methodology
5.1 Benchmarks

Three simple microbenchmarks were used to characterize the be-
havior of the VMM scheduler across workloads:

• burn: This microbenchmark attempts to fully utilize a guest
domain’s processor resources. Theburn script simply runs
an infinite computation loop within the guest. This script will
consume as many processor resources as the VMM will allow.

• stream: This microbenchmark attempts to fully utilize a
guest’s network resources. A remote system is used to stream as
much data as possible over the network to the guest. This bench-
mark will consume as many network resources as the VMM
will allow.

• ping: This microbenchmark attempts to achieve low response
latency. A remote system is used to send pings to the guest. The
ping program on the remote system transmits each packet upon
the receipt of the previous packet’s acknowledgement or after a

Label Scheduler Event Ch. Tickle Boost RQ Sort
orig credit default on on off

all off credit patched off off off
t credit patched on off off
b credit patched off on off
s credit patched off off on
tb credit patched on on off
ts credit patched on off on
bs credit patched off on on
tbs credit patched on on on

SEDF SEDF default N/A N/A N/A
SEDF′ SEDF patched N/A N/A N/A

Table 1. Various configurations of the scheduler tested.

timeout. As the guest domain does nothing else, this benchmark
will achieve the lowest response latencies the VMM will allow.

These benchmarks are simple representatives of a processor-
intensive workload, a network-intensive workload, and a latency-
sensitive workload.

5.2 Experiments

The experiments used the following test suite that combines the
three microbenchmarks in eight different ways:

1. stream x 7: The first seven guests running stream; the last guest
was idle.

2. stream x 3, burn x 3: The first three guests running stream; the
next three guests running burn.

3. burn x 7, ping x 1: The first seven guests running burn; the last
guest receiving pings.

4. ping x 1, burn x 7: The first guest receiving pings; the last seven
guests running burn.

5. stream x 7, ping x 1: The first seven guests running stream; the
last guest receiving pings.

6. ping x 1, stream x 7: The first guest receiving pings; the last
seven guests running stream.

7. stream x 3, burn x 3, ping x 1: The first three guests running
stream; the next three guests running burn; the last guest re-
ceiving pings.

8. stream x 3, ping+burn x 1, burn x 3: The first three guests
running stream; the next guest receiving pings and running
burn; the final three guests only running burn.

The first two tests show the ability of the scheduler to fairly
allocate processor resources to bandwidth-intensive I/O domains.
Tests 3 through 7 show the effects of the scheduler on the response
latency of the domain runningping under various configurations.
Finally, test 8 shows whether or not using more processor resources
can enable a domain to achieve lower response latency.

5.3 Scheduler Configurations

Table 1 shows the 11 scheduler configurations that were evaluated.
The “orig” configuration is the default configuration in Xen 3 un-
stable. As the table shows, it uses the Credit scheduler, does not
include the event channel fix described in Section 4.1, tickles the
scheduler when sending events as described in Section 3.2, includes
theBOOSTstate described in Section 3.4, and does not sort the run
queue based on remaining credits as described in Section 4.3. The
“all off” configuration includes the event channel fix, but otherwise
turns off all other modifications to the Credit scheduler. The follow-
ing 7 configurations are all of the combinations of the tickling (t),
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Figure 5. Bandwidth distributions in the stream x 7 test.

boosting (b), and run queue sorting (s) modifications. The final two
configurations use the SEDF scheduler, as described in Section 4.4,
instead of the Credit scheduler. The “SEDF” configuration does not
include the event channel fix, and the “SEDF′” configuration does.
Note that the three modifications to the Credit scheduler are not
relevant in the SEDF scheduling algorithm.

5.4 Experimental System

All experiments were run using Xen 3 on an AMD Opteron-based
system. The system includes an Opteron 242 processor, 2 GB of
memory, and two Ethernet network interfaces. A Gigabit Ethernet
network interface was used for thestream andping tests, while a
100 Mbps Ethernet network interface was used for control mes-
sages to setup and manage the tests. An Intel Pentium 4-based
system running native Linux served as the other endpoint for the
stream andping tests. This endpoint system was never the bottle-
neck in any experiments.

The virtualized system ran Xen 3 unstable (changeset 15080;
May 17, 2007). The driver domain and all guest domains ran the
Ubuntu Dapper Linux distribution with the Linux 2.6.18 kernel.
All of the eight guest domains were identical for all experiments.
The guests shared a read-only root filesystem and each had its own
read-write/var filesystem. Asysfs interface in the driver domain
was created to toggle the scheduler parameters in the tests.

6. Experimental Results
6.1 Bandwidth (Tests 1–2)

Figure 5 presents the results of the first test: stream x 7. The graph
shows the bandwidth achieved by each of the seven guest domains
for each of the scheduler configurations described in Section 5.3.
The x-axis presents each of the 11 scheduler configurations. The
left y-axis shows the bandwidth in Mbps. For a particular con-
figuration, each guest’s bandwidth is marked with an×, so there
are seven×’s on each configuration’s line. The average bandwidth
achieved for the configuration is shown as a thick horizontal line.
All bandwidth results throughout this section will be plotted in this
manner, using the left y-axis to show the achieved bandwidth for
all guests running the stream benchmark.

As the figure shows, while the original Xen scheduler achieves
nearly the best average bandwidth, the spread in bandwidth among
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Figure 6. Bandwidth and CPU distributions in the stream x 3, burn
x 3 test.

the guests is the worst. The lowest bandwidth domain achieved
only 23.9 Mbps, whereas the highest bandwidth domain achieved
192.3 Mbps with the remaining guests relatively evenly spaced
between. The wide variance is a direct result of the event channel
code problems that were discussed in Section 4.1. With this code
fixed and everything else the same (configuration “tb” in the figure),
the variance in bandwidth is much lower, but it is still significant.
The figure identifies the scheduler tickling that occurs as a result
of event channel notifications to be the culprit of the unfairness in
the Credit scheduler once the event channel code is fixed. In fact,
all configurations that include tickling (t) have a reasonably wide
bandwidth distribution, whereas those configurations that don’t
keep the bandwidth differences between domains below 17 Mbps.

While the SEDF scheduler achieves a slightly higher average
bandwidth and a smaller range than the original Credit scheduler,
it still does not effectively balance the I/O use of the domains.
In fact, the bandwidth variation among domains with the SEDF
scheduler is much higher than with the Credit scheduler when the
event channel code is fixed.

Figure 6 presents the results of the second test: stream x 3, burn
x 3. As before, the range of bandwidths for the three stream do-
mains is plotted against the left y-axis. This figure also introduces
the right y-axis, which shows the processor utilization of the burn
domains. For a particular configuration, each guest’s processor uti-
lization (as a percentage of the total processor resources) is marked
with a box, so there are three boxes on each configuration’s line. In
this test, as with most tests, the variations in processor utilization
are not visible as all the scheduler configurations are able to fairly
allocate processor resources among the burn domains. All proces-
sor utilization results throughout this section will be plotted in this
manner, using the right y-axis to show processor utilization for all
guests running the burn benchmark.

This figure further highlights the problems with fairness for the
bandwidth domains. The original Xen configuration performs the
worst of all of the configurations, allocating the most processor
resources to the burn domains and severely limiting the achieved
bandwidths of the stream domains. The variation in bandwidth
among the stream domains, however, is reduced compared to the
stream x 7 test.
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Figure 7. CPU distributions with latency in the burn x 7, ping x
1 test. The latency for the original case (beyond the scale shown
here) is 36.6 seconds.

This figure clearly shows the value of the boost (b) optimiza-
tion. The processor resources allocated to the burn domains are
fairly constant across all configurations, but those that include the
boost optimization yield the largest average network bandwidths.
The best configuration also includes a sorted run queue (s), which
yields over 100 Mbps on average with very little variation among
domains. For this test, the scheduler tickling optimization not only
seems to increase the bandwidth variation, but also lowers the av-
erage achievable bandwidth. Again, the SEDF scheduler achieves
high average bandwidth with large bandwidth variations.

These two tests clearly show that tickling the scheduler when
events are sent to domains creates unfair variations in achievable
bandwidth, while the boost optimization helps prevent compute-
intensive domains from starving domains performing I/O. In either
case, despite being designed for I/O performance, the SEDF sched-
uler does a poor job of fairly balancing bandwidth across domains.

6.2 Response Latency (Tests 3–7)

Figures 7 and 8 present the results of the third and fourth tests:
seven domains running burn and one domain running ping. The
only difference is whether the ping domain is booted last (Figure 7)
or first (Figure 8). In these figures, processor utilization for the burn
domains are plotted as boxes against the right y-axis. These figures
introduce ping latency for the ping domain plotted as a triangle with
error bars. The triangle is the average latency and is annotated with
the actual value. The error bars indicate the standard deviation of
the ping latency over the duration of the test. The latency is not
plotted against either the left y-axis (reserved for bandwidth) or the
right y-axis (reserved for processor utilization). All ping latency
results will be reported in this manner throughout the section.

As the ping domain uses almost no processor resources, both
figures show that, for most configurations, all seven of the domains
running the burn benchmark consistently consume approximately
one seventh of the processor resources, as expected. The configu-
ration with all of the Credit scheduler optimizations applied is the
exception and will be discussed below. Therefore, the variations lie
mostly in the achieved ping latency. Furthermore, the ping latency
is so high under the original Xen configuration in both cases that it
does not fit on the graph. The ping latency in the original configura-
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Figure 8. CPU distributions with latency in the ping x 1, burn x
7 test. The latency for the original case (beyond the scale shown
here) is 12.3 seconds.

tion is 36.6 seconds for the burn x 7, ping x 1 test and 12.3 seconds
for the ping x 1, burn x 7 test. This is due to the misbehaving event
channel code in Xen that was fixed for the other configurations, as
discussed in Section 4.1.

As Figure 7 shows, when the ping domain is booted last, ping la-
tencies vary from 5.5 ms to 259 ms. Despite having slightly higher
latency than the best performing Credit scheduler configuration, the
SEDF configurations perform best, as they give much higher prior-
ity to the domain running ping. This allows the ping domain to
preempt the domains running burn when it needs to, resulting in
low latency with very little variation. For the Credit scheduler to
compete with the SEDF scheduler, all of the optimizations (tick-
ling (t), boosting (b), and run queue sorting (s)) are needed. When
all optimizations are enabled, the average ping latency is lower un-
der the Credit scheduler than the SEDF scheduler, but with much
higher variation. The Credit scheduler also reduces the processor
utilization of the guests running the burn benchmark in order to
achieve these low latencies. The driver domain consumes the re-
maining processor resources, which helps provide the reduced la-
tency.

When the domain running ping is booted first, as shown by Fig-
ure 8, the performance is roughly the same. However, ping latencies
do reduce under a few of the Credit scheduler configurations. When
all optimizations to the Credit scheduler are enabled, for instance,
the ping latency drops from 5.5ms to 3.5ms. The reduction is a re-
sult of the event channel code inherently prioritizing domains based
on the order in which they boot.

Figures 9 and 10 present the results of the fifth and sixth tests:
seven domains running stream and one domain running ping. The
only difference is whether the ping domain is booted last (Figure 9)
or first (Figure 10). All of the elements of these graphs have been
previously introduced.

In both tests, the performance of the domains running the stream
benchmark is basically the same as when there was no domain run-
ning the ping benchmark (compare to Figure 5). In the original Xen
scheduler, the order in which the domain running the ping bench-
mark was booted has a dramatic effect on ping response latency,
which is 2.6ms when the ping domain is booted first and 67.2ms
when the ping domain is booted last. This anomalous behavior is
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Figure 9. Bandwidth distributions with latency in the stream x 7,
ping x 1 test.

due to the broken event channel code in Xen that was fixed for the
other configurations.

Even with the fix, the ping latencies are always lower when the
domain running the ping benchmark is booted first. This is due to
the inherent prioritization of I/O events based on the boot order of
domains. While this is arbitrary and perhaps unintended, it does
have a noticeable effect. This makes it difficult to draw unambigu-
ous conclusions about the best scheduler configuration for response
latency when other domains are bandwidth-intensive. However, as
with the bandwidth benchmarks, the scheduler tickling optimiza-
tion creates wider variations in the ping latency. As long as the
event channel fix is employed, the rest of the configurations per-
form similarly to the “all off” case. This implies that the boosting
and run queue sorting optimizations have little effect on response
latency when many I/O-intensive domains are active.

Ping latency is higher when using the SEDF scheduler than
when using the Credit scheduler for these tests. Furthermore, the
variance in bandwidth is also higher when using the SEDF sched-
uler than when using the Credit scheduler. These differences are
consistent across all configurations of the Credit scheduler that in-
clude the event channel fix.

Figure 11 presents results for the seventh test, which includes
domains running all three types of benchmarks. This is basically the
same as test 2, shown in Figure 6, with an additional guest domain
running the ping benchmark. The additional ping domain has little
impact on the performance of the stream and burn domains, which
can be seen by comparing Figures 11 and 6. These latencies are
still much lower for most configurations than the achieved latencies
when there are burn domains but no stream domains, as in tests
3 and 4, since the ping domain must compete with fewer burn
domains for service. The stream domains consume fewer processor
resources, so they do not starve the ping domain nearly as much.
The variance introduced by the scheduler tickling optimization is
much lower than in previous tests, but is still larger than without the
optimization. In this test, boosting and run queue sorting appear to
be important optimizations that combine to give good performance
across all three types of domains.

In this test, the SEDF scheduler configurations enable the ping
domain to achieve the lowest ping latency. However, as in previous
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Figure 10. Bandwidth distributions with latency in the ping x 1,
stream x 7 test.

tests, the bandwidth variation of the stream domains is larger than
most of the Credit scheduler configurations.

These five tests have shown that the boosting and run queue
sorting optimizations are important for achieving low response
latency. The results with scheduler tickling, however, are much
more mixed. When there is only a single domain performing I/O,
tickling is extremely effective at reducing latency. However, when
multiple domains are competing for I/O resources, tickling creates
a large variance in performance. This suggests that it is probably a
good compromise not to tickle the scheduler during event delivery.
However, the effect of not tickling when there is only a single
latency-sensitive domain is large enough on ping latency that there
is definitely a need for more work in VMM scheduler design. The
SEDF scheduler is not sufficient to solve these problems. While
it often reduces response latency, it does so at the cost of large
variations in performance for bandwidth-intensive domains.

6.3 Mixed Domains (Test 8)

The test presented in Figure 12 is similar in most respects to
that in Figure 11. The difference is that the domain receiving and
responding to the ping in Figure 12 is also running burn. The most
striking difference between the figures is the significant increase
in the response latency for ping in Figure 12. This result can be
explained by the fact that the ping-and-burn domain is consuming
its credits just as fast as the other burning domains. Therefore,
latency optimizations such as boost and run queue sorting will
no longer result in preferential scheduling of the ping-and-burn
domain.

These results suggest that it is a bad idea to mix compute-
intensive and latency-sensitive applications in a single domain
within a VMM. The latency-sensitive application will receive better
performance if it is running separately in its own domain.

At first, this result seems unsurprising. However, such an in-
crease in ping response time would not occur under native Linux.
The reason is that in native Linux, the I/O stack is trusted. There-
fore, the OS scheduler can give preferential treatment to I/O opera-
tions within the OS, knowing they will perform only the necessary
tasks and will complete promptly. In contrast, the I/O stacks within
the domains of a VMM cannot be trusted. If the VMM’s sched-
uler gives preferential treatment to a domain because of a pend-
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Figure 11. Bandwidth and CPU distributions with latency in the
stream x 3, burn x 3, ping x 1 test. The latency for the original case
(beyond the scale shown here) is 1.8 seconds, and the average CPU
usage per burning domain is 30.5 %.

ing I/O operation, the VMM has no guarantee that the domain will
only process that I/O operation and voluntarily return control to
the VMM. This makes it difficult for the VMM scheduler to give
preferential treatment to I/O operations without sacrificing fairness
among the domains.

7. Related Work
Using Xen, Cherkasovaet al.studied the impact that three different
schedulers have on the throughput of three I/O-intensive bench-
marks [6]. In addition to the Credit and SEDF schedulers, their
study included Xen’sBorrowed-Virtual-Time(BVT) scheduler [8].
Their three I/O-intensive benchmarks are a disk read test using
the Unixdd program, a network bandwidth test, and a web server
throughput test. Their study differs from this one in that they eval-
uate how a single instance of these applications is affected by the
choice of scheduling policy. In effect, they evaluate how the sched-
uler divides the processing resources between the guest domain and
the driver domain. In contrast, this paper examines how multiple,
concurrent applications are impacted.

Govindan et al. propose modifications to the SEDF sched-
uler [10] that preferentially schedule I/O-intensive domains.
Whereas the SEDF scheduler always selects the domain with
the earliest deadline, their scheduler takes into consideration the
amount of communication being performed by each domain.
Specifically, they count the number of packets flowing into or out
of each domain and select the domain with the highest count that
has not yet consumed its entire slice during the current period. In-
tuitively, this approach is problematic when there are bandwidth-
intensive and latency-sensitive domains running concurrently. The
bandwidth-intensive domains are likely to take priority over any
latency-sensitive domains with little traffic. For example, in the
stream x 7, ping x 1 test presented here, the ping latency is likely to
be very high using their approach.

Guptaet al. introduce the SEDF-DC scheduler for Xen [11].
The SEDF-DC scheduler is derived from Xen’s SEDF scheduler. It
differs from the SEDF scheduler in the respect that it charges guest
domains for the time spent in the driver domain on their behalf. In a
sense, the SEDF-DC scheduler is addressing the opposite concern
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Figure 12. Bandwidth and CPU distributions with one guest both
burning CPU and receiving pings (indicated in gray). The latencies
for the original and tb configurations (both beyond the scale shown
here) are 3.8 seconds and 593.3 milliseconds, respectively.

as this paper. They are concerned with I/O-intensive domains re-
ceiving too many processing resources, specifically, through work
done on their behalf in the driver domain. In contrast, this paper
shows that there are often situations in which I/O-intensive domains
receive too few processing resources.

There has also been recent work on improving other aspects of
virtualized I/O performance [5, 13, 15, 14, 16, 17, 20]. However,
this work has largely focused on improving the efficiency of I/O
operations and has not explored the impact of the scheduler on
I/O performance. Scheduler improvements for I/O are likely to also
benefit these innovative I/O designs.

8. Conclusions
The VMM scheduler can have a significant impact on I/O per-
formance. Both the Credit and SEDF schedulers within Xen
do a good job of fairly sharing processor resources among
compute-intensive domains. However, when bandwidth-intensive
and latency-sensitive domains are introduced, both schedulers pro-
vide mixed results, depending on the particular configuration.

The Credit scheduler is the default scheduler in the current
version of Xen. This scheduler currently boosts the priority of idle
domains when they receive events and tickles the scheduler when
events are sent. It does not, however, sort domains in the run queue
based on their remaining credits. This study has shown that these
“optimizations” can have significant effects on I/O performance.

Two of these optimizations have generally positive effects on
I/O performance. The boost optimization frequently impacts both
bandwidth and latency positively, as it allows domains perform-
ing I/O operations to achieve lower response latency. Sorting the
run queue based on remaining credits can have a similarly posi-
tive effect, as it allows infrequently running, but latency-sensitive,
domains to run sooner.

In contrast, tickling the scheduler has mixed effects. With re-
spect to response latency, it is neither uniformly beneficial nor
harmful. However, tickling does consistently cause a wide vari-
ance in both bandwidth and latency among I/O-intensive domains.
When multiple domains are performing I/O, tickling the scheduler
frequently preempts the driver domain prematurely while it demul-



tiplexes packets. The scheduler effectively determines which do-
main to execute before it is informed of which guest domains are
runnable, resulting in the observed I/O performance disparities.

Furthermore, this study has shown that latency-sensitive appli-
cations will perform best if they are placed within their own do-
main. The VMM scheduler can really only give a domain preferen-
tial treatment if it consistently underutilizes its processor resource
allocation. However, if a latency-sensitive application shares a do-
main with applications that consume processor resources, then the
domain is more likely to have consumed its processor resource allo-
cation. In that case, the VMM scheduler will be unable to promptly
execute the domain in response to I/O events and maintain fairness.

This study has shown that VMM schedulers do not achieve the
same level of fairness for I/O-intensive workloads as they do for
compute-intensive workloads. Although the existing and proposed
extensions to VMM scheduling discussed in this paper may im-
prove I/O performance to some degree, there is still much room
for further improvement. Specifically, this paper has exposed two
key I/O performance issues created by current VMM scheduling
techniques. First, preempting the driver domain can have adverse
effects on I/O performance. Second, latency-senstive applications
must be placed in their own domain to achieve the best perfor-
mance. These issues both need to be addressed by future VMM
schedulers.
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