
The Design of a
Practical System for

Fault-Tolerant Virtual Machines

Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam
VMware, Inc

{scales,mnelson,ganesh}@vmware.com

ABSTRACT
We have implemented a commercial enterprise-grade system
for providing fault-tolerant virtual machines, based on the
approach of replicating the execution of a primary virtual
machine (VM) via a backup virtual machine on another
server. We have designed a complete system in VMware
vSphere 4.0 that is easy to use, runs on commodity servers,
and typically reduces performance of real applications by
less than 10%. In addition, the data bandwidth needed to
keep the primary and secondary VM executing in lockstep
is less than 20 Mbit/s for several real applications, which
allows for the possibility of implementing fault tolerance
over longer distances. An easy-to-use, commercial system
that automatically restores redundancy after failure requires
many additional components beyond replicated VM execu-
tion. We have designed and implemented these extra com-
ponents and addressed many practical issues encountered in
supporting VMs running enterprise applications. In this pa-
per, we describe our basic design, discuss alternate design
choices and a number of the implementation details, and
provide performance results for both micro-benchmarks and
real applications.

1. INTRODUCTION
A common approach to implementing fault-tolerant servers

is the primary/backup approach [1], where a backup server is
always available to take over if the primary server fails. The
state of the backup server must be kept nearly identical to
the primary server at all times, so that the backup server can
take over immediately when the primary fails, and in such
a way that the failure is hidden to external clients and no
data is lost. One way of replicating the state on the backup
server is to ship changes to all state of the primary, includ-
ing CPU, memory, and I/O devices, to the backup nearly
continuously. However, the bandwidth needed to send this
state, particular changes in memory, can be very large.
A different method for replicating servers that can use

much less bandwidth is sometimes referred to as the state-
machine approach [13]. The idea is to model the servers
as deterministic state machines that are kept in sync by
starting them from the same initial state and ensuring that
they receive the same input requests in the same order. Since
most servers or services have some operations that are not
deterministic, extra coordination must be used to ensure
that a primary and backup are kept in sync. However, the
amount of extra information need to keep the primary and
backup in sync is far less than the amount of state (mainly
memory updates) that is changing in the primary.

Implementing coordination to ensure deterministic exe-
cution of physical servers [14] is difficult, particularly as
processor frequencies increase. In contrast, a virtual ma-
chine (VM) running on top of a hypervisor is an excellent
platform for implementing the state-machine approach. A
VM can be considered a well-defined state machine whose
operations are the operations of the machine being virtu-
alized (including all its devices). As with physical servers,
VMs have some non-deterministic operations (e.g. reading
a time-of-day clock or delivery of an interrupt), and so extra
information must be sent to the backup to ensure that it
is kept in sync. Since the hypervisor has full control over
the execution of a VM, including delivery of all inputs, the
hypervisor is able to capture all the necessary information
about non-deterministic operations on the primary VM and
to replay these operations correctly on the backup VM.
Hence, the state-machine approach can be implemented

for virtual machines on commodity hardware, with no hard-
ware modifications, allowing fault tolerance to be imple-
mented immediately for the newest microprocessors. In ad-
dition, the low bandwidth required for the state-machine
approach allows for the possibility of greater physical sepa-
ration of the primary and the backup. For example, repli-
cated virtual machines can be run on physical machines dis-
tributed across a campus, which provides more reliability
than VMs running in the same building.
We have implemented fault-tolerant VMs using the pri-

mary/backup approach on the VMware vSphere 4.0 plat-
form, which runs fully virtualized x86 virtual machines in
a highly-efficient manner. Since VMware vSphere imple-
ments a complete x86 virtual machine, we are automatically
able to provide fault tolerance for any x86 operating sys-
tems and applications. The base technology that allows us
to record the execution of a primary and ensure that the
backup executes identically is known as deterministic re-
play [15]. VMware vSphere Fault Tolerance (FT) is based
on deterministic replay, but adds in the necessary extra pro-
tocols and functionality to build a complete fault-tolerant
system. In addition to providing hardware fault tolerance,
our system automatically restores redundancy after a failure
by starting a new backup virtual machine on any available
server in the local cluster. At this time, the production ver-
sions of both deterministic replay and VMware FT support
only uni-processor VMs. Recording and replaying the exe-
cution of a multi-processor VM is still work in progress, with
significant performance issues because nearly every access to
shared memory can be a non-deterministic operation.
Bressoud and Schneider [3] describe a prototype imple-

30

The Design of a
Practical System for

Fault-Tolerant Virtual Machines

Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam
VMware, Inc

{scales,mnelson,ganesh}@vmware.com

ABSTRACT
We have implemented a commercial enterprise-grade system
for providing fault-tolerant virtual machines, based on the
approach of replicating the execution of a primary virtual
machine (VM) via a backup virtual machine on another
server. We have designed a complete system in VMware
vSphere 4.0 that is easy to use, runs on commodity servers,
and typically reduces performance of real applications by
less than 10%. In addition, the data bandwidth needed to
keep the primary and secondary VM executing in lockstep
is less than 20 Mbit/s for several real applications, which
allows for the possibility of implementing fault tolerance
over longer distances. An easy-to-use, commercial system
that automatically restores redundancy after failure requires
many additional components beyond replicated VM execu-
tion. We have designed and implemented these extra com-
ponents and addressed many practical issues encountered in
supporting VMs running enterprise applications. In this pa-
per, we describe our basic design, discuss alternate design
choices and a number of the implementation details, and
provide performance results for both micro-benchmarks and
real applications.

1. INTRODUCTION
A common approach to implementing fault-tolerant servers

is the primary/backup approach [1], where a backup server is
always available to take over if the primary server fails. The
state of the backup server must be kept nearly identical to
the primary server at all times, so that the backup server can
take over immediately when the primary fails, and in such
a way that the failure is hidden to external clients and no
data is lost. One way of replicating the state on the backup
server is to ship changes to all state of the primary, includ-
ing CPU, memory, and I/O devices, to the backup nearly
continuously. However, the bandwidth needed to send this
state, particular changes in memory, can be very large.
A different method for replicating servers that can use

much less bandwidth is sometimes referred to as the state-
machine approach [13]. The idea is to model the servers
as deterministic state machines that are kept in sync by
starting them from the same initial state and ensuring that
they receive the same input requests in the same order. Since
most servers or services have some operations that are not
deterministic, extra coordination must be used to ensure
that a primary and backup are kept in sync. However, the
amount of extra information need to keep the primary and
backup in sync is far less than the amount of state (mainly
memory updates) that is changing in the primary.

Implementing coordination to ensure deterministic exe-
cution of physical servers [14] is difficult, particularly as
processor frequencies increase. In contrast, a virtual ma-
chine (VM) running on top of a hypervisor is an excellent
platform for implementing the state-machine approach. A
VM can be considered a well-defined state machine whose
operations are the operations of the machine being virtu-
alized (including all its devices). As with physical servers,
VMs have some non-deterministic operations (e.g. reading
a time-of-day clock or delivery of an interrupt), and so extra
information must be sent to the backup to ensure that it
is kept in sync. Since the hypervisor has full control over
the execution of a VM, including delivery of all inputs, the
hypervisor is able to capture all the necessary information
about non-deterministic operations on the primary VM and
to replay these operations correctly on the backup VM.
Hence, the state-machine approach can be implemented

for virtual machines on commodity hardware, with no hard-
ware modifications, allowing fault tolerance to be imple-
mented immediately for the newest microprocessors. In ad-
dition, the low bandwidth required for the state-machine
approach allows for the possibility of greater physical sepa-
ration of the primary and the backup. For example, repli-
cated virtual machines can be run on physical machines dis-
tributed across a campus, which provides more reliability
than VMs running in the same building.
We have implemented fault-tolerant VMs using the pri-

mary/backup approach on the VMware vSphere 4.0 plat-
form, which runs fully virtualized x86 virtual machines in
a highly-efficient manner. Since VMware vSphere imple-
ments a complete x86 virtual machine, we are automatically
able to provide fault tolerance for any x86 operating sys-
tems and applications. The base technology that allows us
to record the execution of a primary and ensure that the
backup executes identically is known as deterministic re-
play [15]. VMware vSphere Fault Tolerance (FT) is based
on deterministic replay, but adds in the necessary extra pro-
tocols and functionality to build a complete fault-tolerant
system. In addition to providing hardware fault tolerance,
our system automatically restores redundancy after a failure
by starting a new backup virtual machine on any available
server in the local cluster. At this time, the production ver-
sions of both deterministic replay and VMware FT support
only uni-processor VMs. Recording and replaying the exe-
cution of a multi-processor VM is still work in progress, with
significant performance issues because nearly every access to
shared memory can be a non-deterministic operation.
Bressoud and Schneider [3] describe a prototype imple-

30

Primary
VM

Backup
VM

Logging
channel

Shared Disk

Figure 1: Basic FT Configuration.

mentation of fault-tolerant VMs for the HP PA-RISC plat-
form. Our approach is similar, but we have made some
fundamental changes for performance reasons and investi-
gated a number of design alternatives. In addition, we have
had to design and implement many additional components
in the system and deal with a number of practical issues
to build a complete system that is efficient and usable by
customers running enterprise applications. Similar to most
other practical systems discussed, we only attempt to deal
with fail-stop failures [12], which are server failures that can
be detected before the failing server causes an incorrect ex-
ternally visible action.
The rest of the paper is organized as follows. First, we

describe our basic design and detail our fundamental proto-
cols that ensure that no data is lost if a backup VM takes
over after a primary VM fails. Then, we describe in de-
tail many of the practical issues that must be addressed to
build a robust, complete, and automated system. We also
describe several design choices that arise for implementing
fault-tolerant VMs and discuss the tradeoffs in these choices.
Next, we give performance results for our implementation
for some benchmarks and some real enterprise applications.
Finally, we describe related work and conclude.

2. BASIC FT DESIGN
Figure 1 shows the basic setup of our system for fault-

tolerant VMs. For a given VM for which we desire to provide
fault tolerance (the primary VM), we run a backup VM on
a different physical server that is kept in sync and executes
identically to the primary virtual machine, though with a
small time lag. We say that the two VMs are in virtual lock-
step. The virtual disks for the VMs are on shared storage
(such as a Fibre Channel or iSCSI disk array), and there-
fore accessible to the primary and backup VM for input and
output. (We will discuss a design in which the primary and
backup VM have separate non-shared virtual disks in Sec-
tion 4.1.) Only the primary VM advertises its presence on
the network, so all network inputs come to the primary VM.
Similarly, all other inputs (such as keyboard and mouse) go
only to the primary VM.
All input that the primary VM receives is sent to the

backup VM via a network connection known as the logging
channel. For server workloads, the dominant input traffic
is network and disk. Additional information, as discussed
below in Section 2.1, is transmitted as necessary to ensure
that the backup VM executes non-deterministic operations
in the same way as the primary VM. The result is that the
backup VM always executes identically to the primary VM.
However, the outputs of the backup VM are dropped by
the hypervisor, so only the primary produces actual outputs
that are returned to clients. As described in Section 2.2, the
primary and backup VM follow a specific protocol, including
explicit acknowledgments by the backup VM, in order to
ensure that no data is lost if the primary fails.
To detect if a primary or backup VM has failed, our sys-

tem uses a combination of heartbeating between the relevant
servers and monitoring of the traffic on the logging channel.
In addition, we must ensure that only one of the primary
or backup VM takes over execution, even if there is a split-
brain situation where the primary and backup servers have
lost communication with each other.
In the following sections, we provide more details on sev-

eral important areas. In Section 2.1, we give some details
on the deterministic replay technology that ensures that pri-
mary and backup VMs are kept in sync via the information
sent over the logging channel. In Section 2.2, we describe
a fundamental rule of our FT protocol that ensures that no
data is lost if the primary fails. In Section 2.3, we describe
our methods for detecting and responding to a failure in a
correct fashion.

2.1 Deterministic Replay Implementation
As we have mentioned, replicating server (or VM) exe-

cution can be modeled as the replication of a determinis-
tic state machine. If two deterministic state machines are
started in the same initial state and provided the exact same
inputs in the same order, then they will go through the same
sequences of states and produce the same outputs. A vir-
tual machine has a broad set of inputs, including incoming
network packets, disk reads, and input from the keyboard
and mouse. Non-deterministic events (such as virtual in-
terrupts) and non-deterministic operations (such as reading
the clock cycle counter of the processor) also affect the VM’s
state. This presents three challenges for replicating execu-
tion of any VM running any operating system and workload:
(1) correctly capturing all the input and non-determinism
necessary to ensure deterministic execution of a backup vir-
tual machine, (2) correctly applying the inputs and non-
determinism to the backup virtual machine, and (3) doing
so in a manner that doesn’t degrade performance. In addi-
tion, many complex operations in x86 microprocessors have
undefined, hence non-deterministic, side effects. Capturing
these undefined side effects and replaying them to produce
the same state presents an additional challenge.
VMware deterministic replay [15] provides exactly this

functionality for x86 virtual machines on the VMware vSphere
platform. Deterministic replay records the inputs of a VM
and all possible non-determinism associated with the VM
execution in a stream of log entries written to a log file. The
VM execution may be exactly replayed later by reading the
log entries from the file. For non-deterministic operations,
sufficient information is logged to allow the operation to be
reproduced with the same state change and output. For
non-deterministic events such as timer or IO completion in-

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

Figure 1: Basic FT Configuration.

mentation of fault-tolerant VMs for the HP PA-RISC plat-
form. Our approach is similar, but we have made some
fundamental changes for performance reasons and investi-
gated a number of design alternatives. In addition, we have
had to design and implement many additional components
in the system and deal with a number of practical issues
to build a complete system that is efficient and usable by
customers running enterprise applications. Similar to most
other practical systems discussed, we only attempt to deal
with fail-stop failures [12], which are server failures that can
be detected before the failing server causes an incorrect ex-
ternally visible action.
The rest of the paper is organized as follows. First, we

describe our basic design and detail our fundamental proto-
cols that ensure that no data is lost if a backup VM takes
over after a primary VM fails. Then, we describe in de-
tail many of the practical issues that must be addressed to
build a robust, complete, and automated system. We also
describe several design choices that arise for implementing
fault-tolerant VMs and discuss the tradeoffs in these choices.
Next, we give performance results for our implementation
for some benchmarks and some real enterprise applications.
Finally, we describe related work and conclude.

2. BASIC FT DESIGN
Figure 1 shows the basic setup of our system for fault-

tolerant VMs. For a given VM for which we desire to provide
fault tolerance (the primary VM), we run a backup VM on
a different physical server that is kept in sync and executes
identically to the primary virtual machine, though with a
small time lag. We say that the two VMs are in virtual lock-
step. The virtual disks for the VMs are on shared storage
(such as a Fibre Channel or iSCSI disk array), and there-
fore accessible to the primary and backup VM for input and
output. (We will discuss a design in which the primary and
backup VM have separate non-shared virtual disks in Sec-
tion 4.1.) Only the primary VM advertises its presence on
the network, so all network inputs come to the primary VM.
Similarly, all other inputs (such as keyboard and mouse) go
only to the primary VM.
All input that the primary VM receives is sent to the

backup VM via a network connection known as the logging
channel. For server workloads, the dominant input traffic
is network and disk. Additional information, as discussed
below in Section 2.1, is transmitted as necessary to ensure
that the backup VM executes non-deterministic operations
in the same way as the primary VM. The result is that the
backup VM always executes identically to the primary VM.
However, the outputs of the backup VM are dropped by
the hypervisor, so only the primary produces actual outputs
that are returned to clients. As described in Section 2.2, the
primary and backup VM follow a specific protocol, including
explicit acknowledgments by the backup VM, in order to
ensure that no data is lost if the primary fails.
To detect if a primary or backup VM has failed, our sys-

tem uses a combination of heartbeating between the relevant
servers and monitoring of the traffic on the logging channel.
In addition, we must ensure that only one of the primary
or backup VM takes over execution, even if there is a split-
brain situation where the primary and backup servers have
lost communication with each other.
In the following sections, we provide more details on sev-

eral important areas. In Section 2.1, we give some details
on the deterministic replay technology that ensures that pri-
mary and backup VMs are kept in sync via the information
sent over the logging channel. In Section 2.2, we describe
a fundamental rule of our FT protocol that ensures that no
data is lost if the primary fails. In Section 2.3, we describe
our methods for detecting and responding to a failure in a
correct fashion.

2.1 Deterministic Replay Implementation
As we have mentioned, replicating server (or VM) exe-

cution can be modeled as the replication of a determinis-
tic state machine. If two deterministic state machines are
started in the same initial state and provided the exact same
inputs in the same order, then they will go through the same
sequences of states and produce the same outputs. A vir-
tual machine has a broad set of inputs, including incoming
network packets, disk reads, and input from the keyboard
and mouse. Non-deterministic events (such as virtual in-
terrupts) and non-deterministic operations (such as reading
the clock cycle counter of the processor) also affect the VM’s
state. This presents three challenges for replicating execu-
tion of any VM running any operating system and workload:
(1) correctly capturing all the input and non-determinism
necessary to ensure deterministic execution of a backup vir-
tual machine, (2) correctly applying the inputs and non-
determinism to the backup virtual machine, and (3) doing
so in a manner that doesn’t degrade performance. In addi-
tion, many complex operations in x86 microprocessors have
undefined, hence non-deterministic, side effects. Capturing
these undefined side effects and replaying them to produce
the same state presents an additional challenge.
VMware deterministic replay [15] provides exactly this

functionality for x86 virtual machines on the VMware vSphere
platform. Deterministic replay records the inputs of a VM
and all possible non-determinism associated with the VM
execution in a stream of log entries written to a log file. The
VM execution may be exactly replayed later by reading the
log entries from the file. For non-deterministic operations,
sufficient information is logged to allow the operation to be
reproduced with the same state change and output. For
non-deterministic events such as timer or IO completion in-

31

terrupts, the exact instruction at which the event occurred
is also recorded. During replay, the event is delivered at the
same point in the instruction stream. VMware determinis-
tic replay implements an efficient event recording and event
delivery mechanism that employs various techniques, includ-
ing the use of hardware performance counters developed in
conjunction with AMD [2] and Intel [8].
Bressoud and Schneider [3] mention dividing the execution

of VM into epochs, where non-deterministic events such as
interrupts are only delivered at the end of an epoch. The no-
tion of epoch seems to be used as a batching mechanism be-
cause it is too expensive to deliver each interrupt separately
at the exact instruction where it occurred. However, our
event delivery mechanism is efficient enough that VMware
deterministic replay has no need to use epochs. Each inter-
rupt is recorded as it occurs and efficiently delivered at the
appropriate instruction while being replayed.

2.2 FT Protocol
For VMware FT, we use deterministic replay to produce

the necessary log entries to record the execution of the pri-
mary VM, but instead of writing the log entries to disk,
we send them to the backup VM via the logging channel.
The backup VM replays the entries in real time, and hence
executes identically to the primary VM. However, we must
augment the logging entries with a strict FT protocol on
the logging channel in order to ensure that we achieve fault
tolerance. Our fundamental requirement is the following:

Output Requirement: if the backup VM ever
takes over after a failure of the primary, the backup
VM will continue executing in a way that is en-
tirely consistent with all outputs that the pri-
mary VM has sent to the external world.

Note that after a failover occurs (i.e. the backup VM takes
over after the failure of the primary VM), the backup VM
will likely start executing quite differently from the way the
primary VM would have continued executing, because of the
many non-deterministic events happening during execution.
However, as long as the backup VM satisfies the Output Re-
quirement, no externally visible state or data is lost during
a failover to the backup VM, and the clients will notice no
interruption or inconsistency in their service.
The Output Requirement can be ensured by delaying any

external output (typically a network packet) until the backup
VM has received all information that will allow it to replay
execution at least to the point of that output operation.
One necessary condition is that the backup VM must have
received all log entries generated prior to the output oper-
ation. These log entries will allow it to execute up to the
point of the last log entry. However, suppose a failure were
to happen immediately after the primary executed the out-
put operation. The backup VM must know that it must
keep replaying up to the point of the output operation and
only “go live” (stop replaying and take over as the primary
VM, as described in Section 2.3) at that point. If the backup
were to go live at the point of the last log entry before the
output operation, some non-deterministic event (e.g. timer
interrupt delivered to the VM) might change its execution
path before it executed the output operation.
Given the above constraints, the easiest way to enforce

the Output Requirement is to create a special log entry at

Primary

Backup

input output
operation

failure!

Backup takes over

async
event

async
event

output

Figure 2: FT Protocol.

each output operation. Then, the Output Requirement may
be enforced by this specific rule:

Output Rule: the primary VM may not send
an output to the external world, until the backup
VM has received and acknowledged the log en-
try associated with the operation producing the
output.

If the backup VM has received all the log entries, includ-
ing the log entry for the output-producing operation, then
the backup VM will be able to exactly reproduce the state
of the primary VM at that output point, and so if the pri-
mary dies, the backup will correctly reach a state that is
consistent with that output. Conversely, if the backup VM
takes over without receiving all necessary log entries, then its
state may quickly diverge such that it is inconsistent with
the primary’s output. The Output Rule is in some ways
analogous to the approach described in [11], where an “ex-
ternally synchronous” IO can actually be buffered, as long
as it is actually written to disk before the next external com-
munication.
Note that the Output Rule does not say anything about

stopping the execution of the primary VM. We need only
delay the sending of the output, but the VM itself can con-
tinue execution. Since operating systems do non-blocking
network and disk outputs with asynchronous interrupts to
indicate completion, the VM can easily continue execution
and will not necessarily be immediately affected by the delay
in the output. In contrast, previous work [3, 9] has typically
indicated that the primary VM must be completely stopped
prior to doing an output until the backup VM has acknowl-
edged all necessary information from the primary VM.
As an example, we show a chart illustrating the require-

ments of the FT protocol in Figure 2. This figure shows a
timeline of events on the primary and backup VMs. The
arrows going from the primary line to the backup line rep-
resent the transfer of log entries, and the arrows going from
the backup line to the primary line represent acknowledg-
ments. Information on asynchronous events, inputs, and
output operations must be sent to the backup as log entries
and acknowledged. As illustrated in the figure, an output to
the external world is delayed until the primary VM has re-
ceived an acknowledgment from the backup VM that it has
received the log entry associated with the output operation.
Given that the Output Rule is followed, the backup VM will
be able to take over in a state consistent with the primary’s
last output.

32

terrupts, the exact instruction at which the event occurred
is also recorded. During replay, the event is delivered at the
same point in the instruction stream. VMware determinis-
tic replay implements an efficient event recording and event
delivery mechanism that employs various techniques, includ-
ing the use of hardware performance counters developed in
conjunction with AMD [2] and Intel [8].
Bressoud and Schneider [3] mention dividing the execution

of VM into epochs, where non-deterministic events such as
interrupts are only delivered at the end of an epoch. The no-
tion of epoch seems to be used as a batching mechanism be-
cause it is too expensive to deliver each interrupt separately
at the exact instruction where it occurred. However, our
event delivery mechanism is efficient enough that VMware
deterministic replay has no need to use epochs. Each inter-
rupt is recorded as it occurs and efficiently delivered at the
appropriate instruction while being replayed.

2.2 FT Protocol
For VMware FT, we use deterministic replay to produce

the necessary log entries to record the execution of the pri-
mary VM, but instead of writing the log entries to disk,
we send them to the backup VM via the logging channel.
The backup VM replays the entries in real time, and hence
executes identically to the primary VM. However, we must
augment the logging entries with a strict FT protocol on
the logging channel in order to ensure that we achieve fault
tolerance. Our fundamental requirement is the following:

Output Requirement: if the backup VM ever
takes over after a failure of the primary, the backup
VM will continue executing in a way that is en-
tirely consistent with all outputs that the pri-
mary VM has sent to the external world.

Note that after a failover occurs (i.e. the backup VM takes
over after the failure of the primary VM), the backup VM
will likely start executing quite differently from the way the
primary VM would have continued executing, because of the
many non-deterministic events happening during execution.
However, as long as the backup VM satisfies the Output Re-
quirement, no externally visible state or data is lost during
a failover to the backup VM, and the clients will notice no
interruption or inconsistency in their service.
The Output Requirement can be ensured by delaying any

external output (typically a network packet) until the backup
VM has received all information that will allow it to replay
execution at least to the point of that output operation.
One necessary condition is that the backup VM must have
received all log entries generated prior to the output oper-
ation. These log entries will allow it to execute up to the
point of the last log entry. However, suppose a failure were
to happen immediately after the primary executed the out-
put operation. The backup VM must know that it must
keep replaying up to the point of the output operation and
only “go live” (stop replaying and take over as the primary
VM, as described in Section 2.3) at that point. If the backup
were to go live at the point of the last log entry before the
output operation, some non-deterministic event (e.g. timer
interrupt delivered to the VM) might change its execution
path before it executed the output operation.
Given the above constraints, the easiest way to enforce

the Output Requirement is to create a special log entry at

Primary

Backup

input output
operation

failure!

Backup takes over

async
event

async
event

output

Figure 2: FT Protocol.

each output operation. Then, the Output Requirement may
be enforced by this specific rule:

Output Rule: the primary VM may not send
an output to the external world, until the backup
VM has received and acknowledged the log en-
try associated with the operation producing the
output.

If the backup VM has received all the log entries, includ-
ing the log entry for the output-producing operation, then
the backup VM will be able to exactly reproduce the state
of the primary VM at that output point, and so if the pri-
mary dies, the backup will correctly reach a state that is
consistent with that output. Conversely, if the backup VM
takes over without receiving all necessary log entries, then its
state may quickly diverge such that it is inconsistent with
the primary’s output. The Output Rule is in some ways
analogous to the approach described in [11], where an “ex-
ternally synchronous” IO can actually be buffered, as long
as it is actually written to disk before the next external com-
munication.
Note that the Output Rule does not say anything about

stopping the execution of the primary VM. We need only
delay the sending of the output, but the VM itself can con-
tinue execution. Since operating systems do non-blocking
network and disk outputs with asynchronous interrupts to
indicate completion, the VM can easily continue execution
and will not necessarily be immediately affected by the delay
in the output. In contrast, previous work [3, 9] has typically
indicated that the primary VM must be completely stopped
prior to doing an output until the backup VM has acknowl-
edged all necessary information from the primary VM.
As an example, we show a chart illustrating the require-

ments of the FT protocol in Figure 2. This figure shows a
timeline of events on the primary and backup VMs. The
arrows going from the primary line to the backup line rep-
resent the transfer of log entries, and the arrows going from
the backup line to the primary line represent acknowledg-
ments. Information on asynchronous events, inputs, and
output operations must be sent to the backup as log entries
and acknowledged. As illustrated in the figure, an output to
the external world is delayed until the primary VM has re-
ceived an acknowledgment from the backup VM that it has
received the log entry associated with the output operation.
Given that the Output Rule is followed, the backup VM will
be able to take over in a state consistent with the primary’s
last output.

32

We cannot guarantee that all outputs are produced ex-
actly once in a failover situation. Without the use of trans-
actions with two-phase commit when the primary intends
to send an output, there is no way that the backup can
determine if a primary crashed immediately before or after
sending its last output. Fortunately, the network infrastruc-
ture (including the common use of TCP) is designed to deal
with lost packets and identical (duplicate) packets. Note
that incoming packets to the primary may also be lost dur-
ing a failure of the primary and therefore won’t be delivered
to the backup. However, incoming packets may be dropped
for any number of reasons unrelated to server failure, so the
network infrastructure, operating systems, and applications
are all written to ensure that they can compensate for lost
packets.

2.3 Detecting and Responding to Failure
As mentioned above, the primary and backup VMs must

respond quickly if the other VM appears to have failed. If
the backup VM fails, the primary VM will go live – that
is, leave recording mode (and hence stop sending entries on
the logging channel) and start executing normally. If the
primary VM fails, the backup VM should similarly go live,
but the process is a bit more complex. Because of its lag in
execution, the backup VM will likely have a number of log
entries that it has received and acknowledged, but have not
yet been consumed because the backup VM hasn’t reached
the appropriate point in its execution yet. The backup VM
must continue replaying its execution from the log entries
until it has consumed the last log entry. At that point, the
backup VMwill stop replaying mode and start executing as a
normal VM. In essence, the backup VM has been promoted
to the primary VM (and is now missing a backup VM).
Since it is no longer a backup VM, the new primary VM
will now produce output to the external world when the
guest OS does output operations. During the transition to
normal mode, there may be some device-specific operations
needed to allow this output to occur properly. In particular,
for the purposes of networking, VMware FT automatically
advertises the MAC address of the new primary VM on the
network, so that physical network switches will know on
what server the new primary VM is located. In addition,
the newly promoted primary VM may need to reissue some
disk IOs (as described in Section 3.4).
There are many possible ways to attempt to detect failure

of the primary and backup VMs. VMware FT uses UDP
heartbeating between servers that are running fault-tolerant
VMs to detect when a server may have crashed. In addition,
VMware FT monitors the logging traffic that is sent from
the primary to the backup VM and the acknowledgments
sent from the backup VM to the primary VM. Because of
regular timer interrupts, the logging traffic should be regular
and never stop for a functioning guest OS. Therefore, a halt
in the flow of log entries or acknowledgments could indicate
the failure of a VM. A failure is declared if heartbeating or
logging traffic has stopped for longer than a specific timeout
(on the order of a few seconds).
However, any such failure detection method is susceptible

to a split-brain problem. If the backup server stops receiving
heartbeats from the primary server, that may indicate that
the primary server has failed, or it may just mean that all
network connectivity has been lost between still functioning
servers. If the backup VM then goes live while the primary

VM is actually still running, there will likely be data cor-
ruption and problems for the clients communicating with the
VM. Hence, we must ensure that only one of the primary or
backup VM goes live when a failure is detected. To avoid
split-brain problems, we make use of the shared storage that
stores the virtual disks of the VM. When either a primary
or backup VM wants to go live, it executes an atomic test-
and-set operation on the shared storage. If the operation
succeeds, the VM is allowed to go live. If the operation
fails, then the other VM must have already gone live, so the
current VM actually halts itself (“commits suicide”). If the
VM cannot access the shared storage when trying to do the
atomic operation, then it just waits until it can. Note that
if shared storage is not accessible because of some failure in
the storage network, then the VM would likely not be able
to do useful work anyway because the virtual disks reside
on the same shared storage. Thus, using shared storage to
resolve split-brain situations does not introduce any extra
unavailability.
One final aspect of the design is that once a failure has oc-

curred and one of the VMs has gone live, VMware FT auto-
matically restores redundancy by starting a new backup VM
on another host. Though this process is not covered in most
previous work, it is fundamental to making fault-tolerant
VMs useful and requires careful design. More details are
given in Section 3.1.

3. PRACTICAL IMPLEMENTATION OF FT
Section 2 described our fundamental design and protocols

for FT. However, to create a usable, robust, and automatic
system, there are many other components that must be de-
signed and implemented.

3.1 Starting and Restarting FT VMs
One of the biggest additional components that must be

designed is the mechanism for starting a backup VM in the
same state as a primary VM. This mechanism will also be
used when re-starting a backup VM after a failure has oc-
curred. Hence, this mechanism must be usable for a running
primary VM that is in an arbitrary state (i.e. not just start-
ing up). In addition, we would prefer that the mechanism
does not significantly disrupt the execution of the primary
VM, since that will affect any current clients of the VM.
For VMware FT, we adapted the existing VMotion func-

tionality of VMware vSphere. VMware VMotion [10] allows
the migration of a running VM from one server to another
server with minimal disruption – VM pause times are typ-
ically less than a second. We created a modified form of
VMotion that creates an exact running copy of a VM on a
remote server, but without destroying the VM on the local
server. That is, our modified FT VMotion clones a VM to
a remote host rather than migrating it. The FT VMotion
also sets up a logging channel, and causes the source VM
to enter logging mode as the primary, and the destination
VM to enter replay mode as the new backup. Like normal
VMotion, FT VMotion typically interrupts the execution of
the primary VM by less than a second. Hence, enabling FT
on a running VM is an easy, non-disruptive operation.
Another aspect of starting a backup VM is choosing a

server on which to run it. Fault-tolerant VMs run in a cluster
of servers that have access to shared storage, so all VMs can
typically run on any server in the cluster. This flexibility al-
lows VMware vSphere to restore FT redundancy even when

33

We cannot guarantee that all outputs are produced ex-
actly once in a failover situation. Without the use of trans-
actions with two-phase commit when the primary intends
to send an output, there is no way that the backup can
determine if a primary crashed immediately before or after
sending its last output. Fortunately, the network infrastruc-
ture (including the common use of TCP) is designed to deal
with lost packets and identical (duplicate) packets. Note
that incoming packets to the primary may also be lost dur-
ing a failure of the primary and therefore won’t be delivered
to the backup. However, incoming packets may be dropped
for any number of reasons unrelated to server failure, so the
network infrastructure, operating systems, and applications
are all written to ensure that they can compensate for lost
packets.

2.3 Detecting and Responding to Failure
As mentioned above, the primary and backup VMs must

respond quickly if the other VM appears to have failed. If
the backup VM fails, the primary VM will go live – that
is, leave recording mode (and hence stop sending entries on
the logging channel) and start executing normally. If the
primary VM fails, the backup VM should similarly go live,
but the process is a bit more complex. Because of its lag in
execution, the backup VM will likely have a number of log
entries that it has received and acknowledged, but have not
yet been consumed because the backup VM hasn’t reached
the appropriate point in its execution yet. The backup VM
must continue replaying its execution from the log entries
until it has consumed the last log entry. At that point, the
backup VMwill stop replaying mode and start executing as a
normal VM. In essence, the backup VM has been promoted
to the primary VM (and is now missing a backup VM).
Since it is no longer a backup VM, the new primary VM
will now produce output to the external world when the
guest OS does output operations. During the transition to
normal mode, there may be some device-specific operations
needed to allow this output to occur properly. In particular,
for the purposes of networking, VMware FT automatically
advertises the MAC address of the new primary VM on the
network, so that physical network switches will know on
what server the new primary VM is located. In addition,
the newly promoted primary VM may need to reissue some
disk IOs (as described in Section 3.4).
There are many possible ways to attempt to detect failure

of the primary and backup VMs. VMware FT uses UDP
heartbeating between servers that are running fault-tolerant
VMs to detect when a server may have crashed. In addition,
VMware FT monitors the logging traffic that is sent from
the primary to the backup VM and the acknowledgments
sent from the backup VM to the primary VM. Because of
regular timer interrupts, the logging traffic should be regular
and never stop for a functioning guest OS. Therefore, a halt
in the flow of log entries or acknowledgments could indicate
the failure of a VM. A failure is declared if heartbeating or
logging traffic has stopped for longer than a specific timeout
(on the order of a few seconds).
However, any such failure detection method is susceptible

to a split-brain problem. If the backup server stops receiving
heartbeats from the primary server, that may indicate that
the primary server has failed, or it may just mean that all
network connectivity has been lost between still functioning
servers. If the backup VM then goes live while the primary

VM is actually still running, there will likely be data cor-
ruption and problems for the clients communicating with the
VM. Hence, we must ensure that only one of the primary or
backup VM goes live when a failure is detected. To avoid
split-brain problems, we make use of the shared storage that
stores the virtual disks of the VM. When either a primary
or backup VM wants to go live, it executes an atomic test-
and-set operation on the shared storage. If the operation
succeeds, the VM is allowed to go live. If the operation
fails, then the other VM must have already gone live, so the
current VM actually halts itself (“commits suicide”). If the
VM cannot access the shared storage when trying to do the
atomic operation, then it just waits until it can. Note that
if shared storage is not accessible because of some failure in
the storage network, then the VM would likely not be able
to do useful work anyway because the virtual disks reside
on the same shared storage. Thus, using shared storage to
resolve split-brain situations does not introduce any extra
unavailability.
One final aspect of the design is that once a failure has oc-

curred and one of the VMs has gone live, VMware FT auto-
matically restores redundancy by starting a new backup VM
on another host. Though this process is not covered in most
previous work, it is fundamental to making fault-tolerant
VMs useful and requires careful design. More details are
given in Section 3.1.

3. PRACTICAL IMPLEMENTATION OF FT
Section 2 described our fundamental design and protocols

for FT. However, to create a usable, robust, and automatic
system, there are many other components that must be de-
signed and implemented.

3.1 Starting and Restarting FT VMs
One of the biggest additional components that must be

designed is the mechanism for starting a backup VM in the
same state as a primary VM. This mechanism will also be
used when re-starting a backup VM after a failure has oc-
curred. Hence, this mechanism must be usable for a running
primary VM that is in an arbitrary state (i.e. not just start-
ing up). In addition, we would prefer that the mechanism
does not significantly disrupt the execution of the primary
VM, since that will affect any current clients of the VM.
For VMware FT, we adapted the existing VMotion func-

tionality of VMware vSphere. VMware VMotion [10] allows
the migration of a running VM from one server to another
server with minimal disruption – VM pause times are typ-
ically less than a second. We created a modified form of
VMotion that creates an exact running copy of a VM on a
remote server, but without destroying the VM on the local
server. That is, our modified FT VMotion clones a VM to
a remote host rather than migrating it. The FT VMotion
also sets up a logging channel, and causes the source VM
to enter logging mode as the primary, and the destination
VM to enter replay mode as the new backup. Like normal
VMotion, FT VMotion typically interrupts the execution of
the primary VM by less than a second. Hence, enabling FT
on a running VM is an easy, non-disruptive operation.
Another aspect of starting a backup VM is choosing a

server on which to run it. Fault-tolerant VMs run in a cluster
of servers that have access to shared storage, so all VMs can
typically run on any server in the cluster. This flexibility al-
lows VMware vSphere to restore FT redundancy even when

33

hypervisor hypervisor

Primary
VM

Backup
VM

Logging channel
log buffer log buffer

Acks

Figure 3: FT Logging Buffers and Channel.

one or more servers have failed. VMware vSphere imple-
ments a clustering service that maintains management and
resource information. When a failure happens and a primary
VM now needs a new backup VM to re-establish redundancy,
the primary VM informs the clustering service that it needs
a new backup. The clustering service determines the best
server on which to run the backup VM based on resource
usage and other constraints and invokes an FT VMotion to
create the new backup VM. The result is that VMware FT
typically can re-establish VM redundancy within minutes of
a server failure, all without any noticeable interruption in
the execution of a fault-tolerant VM.

3.2 Managing the Logging Channel
There are a number of interesting implementation details

in managing the traffic on the logging channel. In our im-
plementation, the hypervisors maintain a large buffer for
logging entries for the primary and backup VMs. As the
primary VM executes, it produces log entries into the log
buffer, and similarly, the backup VM consumes log entries
from its log buffer. The contents of the primary’s log buffer
are flushed out to the logging channel as soon as possible,
and log entries are read into the backup’s log buffer from the
logging channel as soon as they arrive. The backup sends ac-
knowledgments back to the primary each time that it reads
some log entries from the network into its log buffer. These
acknowledgments allow VMware FT to determine when an
output that is delayed by the Output Rule can be sent. Fig-
ure 3 illustrates this process.
If the backup VM encounters an empty log buffer when

it needs to read the next log entry, it will stop execution
until a new log entry is available. Since the backup VM is
not communicating externally, this pause will not affect any
clients of the VM. Similarly, if the primary VM encounters
a full log buffer when it needs to write a log entry, it must
stop execution until log entries can be flushed out. This stop
in execution is a natural flow-control mechanism that slows
down the primary VM when it is producing log entries at
too fast a rate. However, this pause can affect clients of the
VM, since the primary VM will be completely stopped and
unresponsive until it can log its entry and continue execu-
tion. Therefore, our implementation must be designed to
minimize the possibility that the primary log buffer fills up.
One reason that the primary log buffer may fill up is be-

cause the backup VM is executing too slowly and therefore
consuming log entries too slowly. In general, the backup VM

must be able to replay an execution at roughly the same
speed as the primary VM is recording the execution. Fortu-
nately, the overhead of recording and replaying in VMware
deterministic replay is roughly the same. However, if the
server hosting the backup VM is heavily loaded with other
VMs (and hence overcommitted on resources), the backup
VM may not be able to get enough CPU and memory re-
sources to execute as fast as the primary VM, despite the
best efforts of the backup hypervisor’s VM scheduler.
Beyond avoiding unexpected pauses if the log buffers fill

up, there is another reason why we don’t wish the execution
lag to become too large. If the primary VM fails, the backup
VM must “catch up” by replaying all the log entries that
it has already acknowledged before it goes live and starts
communicating with the external world. The time to finish
replaying is basically the execution lag time at the point of
the failure, so the time for the backup to go live is roughly
equal to the failure detection time plus the current execution
lag time. Hence, we don’t wish the execution lag time to be
large (more than a second), since that will add significant
time to the failover time.
Therefore, we have an additional mechanism to slow down

the primary VM to prevent the backup VM from getting
too far behind. In our protocol for sending and acknowledg-
ing log entries, we send additional information to determine
the real-time execution lag between the primary and backup
VMs. Typically the execution lag is less than 100 millisec-
onds. If the backup VM starts having a significant execution
lag (say, more than 1 second), VMware FT starts slowing
down the primary VM by informing the scheduler to give
it a slightly smaller amount of the CPU (initially by just
a few percent). We use a slow feedback loop, which will
try to gradually pinpoint the appropriate CPU limit for the
primary VM that will allow the backup VM to match its
execution. If the backup VM continues to lag behind, we
continue to gradually reduce the primary VM’s CPU limit.
Conversely, if the backup VM catches up, we gradually in-
crease the primary VM’s CPU limit until the backup VM
returns to having a slight lag.
Note that such slowdowns of the primary VM are very

rare, and typically happen only when the system is under
extreme stress. All the performance numbers of Section 5
include the cost of any such slowdowns.

3.3 Operation on FT VMs
Another practical matter is dealing with the various con-

trol operations that may be applied to the primary VM.
For example, if the primary VM is explicitly powered off,
the backup VM should be stopped as well, and not attempt
to go live. As another example, any resource management
change on the primary (such as increased CPU share) should
also be applied to the backup. For these kind of operations,
special control entries are sent on the logging channel from
the primary to the backup, in order to effect the appropriate
operation on the backup.
In general, most operations on the VM should be initiated

only on the primary VM. VMware FT then sends any nec-
essary control entry to cause the appropriate change on the
backup VM. The only operation that can be done indepen-
dently on the primary and backup VMs is VMotion. That
is, the primary and backup VMs can be VMotioned indepen-
dently to other hosts. Note that VMware FT ensures that
neither VM is moved to the server where the other VM is,

34

hypervisor hypervisor

Primary
VM

Backup
VM

Logging channel
log buffer log buffer

Acks

Figure 3: FT Logging Buffers and Channel.

one or more servers have failed. VMware vSphere imple-
ments a clustering service that maintains management and
resource information. When a failure happens and a primary
VM now needs a new backup VM to re-establish redundancy,
the primary VM informs the clustering service that it needs
a new backup. The clustering service determines the best
server on which to run the backup VM based on resource
usage and other constraints and invokes an FT VMotion to
create the new backup VM. The result is that VMware FT
typically can re-establish VM redundancy within minutes of
a server failure, all without any noticeable interruption in
the execution of a fault-tolerant VM.

3.2 Managing the Logging Channel
There are a number of interesting implementation details

in managing the traffic on the logging channel. In our im-
plementation, the hypervisors maintain a large buffer for
logging entries for the primary and backup VMs. As the
primary VM executes, it produces log entries into the log
buffer, and similarly, the backup VM consumes log entries
from its log buffer. The contents of the primary’s log buffer
are flushed out to the logging channel as soon as possible,
and log entries are read into the backup’s log buffer from the
logging channel as soon as they arrive. The backup sends ac-
knowledgments back to the primary each time that it reads
some log entries from the network into its log buffer. These
acknowledgments allow VMware FT to determine when an
output that is delayed by the Output Rule can be sent. Fig-
ure 3 illustrates this process.
If the backup VM encounters an empty log buffer when

it needs to read the next log entry, it will stop execution
until a new log entry is available. Since the backup VM is
not communicating externally, this pause will not affect any
clients of the VM. Similarly, if the primary VM encounters
a full log buffer when it needs to write a log entry, it must
stop execution until log entries can be flushed out. This stop
in execution is a natural flow-control mechanism that slows
down the primary VM when it is producing log entries at
too fast a rate. However, this pause can affect clients of the
VM, since the primary VM will be completely stopped and
unresponsive until it can log its entry and continue execu-
tion. Therefore, our implementation must be designed to
minimize the possibility that the primary log buffer fills up.
One reason that the primary log buffer may fill up is be-

cause the backup VM is executing too slowly and therefore
consuming log entries too slowly. In general, the backup VM

must be able to replay an execution at roughly the same
speed as the primary VM is recording the execution. Fortu-
nately, the overhead of recording and replaying in VMware
deterministic replay is roughly the same. However, if the
server hosting the backup VM is heavily loaded with other
VMs (and hence overcommitted on resources), the backup
VM may not be able to get enough CPU and memory re-
sources to execute as fast as the primary VM, despite the
best efforts of the backup hypervisor’s VM scheduler.
Beyond avoiding unexpected pauses if the log buffers fill

up, there is another reason why we don’t wish the execution
lag to become too large. If the primary VM fails, the backup
VM must “catch up” by replaying all the log entries that
it has already acknowledged before it goes live and starts
communicating with the external world. The time to finish
replaying is basically the execution lag time at the point of
the failure, so the time for the backup to go live is roughly
equal to the failure detection time plus the current execution
lag time. Hence, we don’t wish the execution lag time to be
large (more than a second), since that will add significant
time to the failover time.
Therefore, we have an additional mechanism to slow down

the primary VM to prevent the backup VM from getting
too far behind. In our protocol for sending and acknowledg-
ing log entries, we send additional information to determine
the real-time execution lag between the primary and backup
VMs. Typically the execution lag is less than 100 millisec-
onds. If the backup VM starts having a significant execution
lag (say, more than 1 second), VMware FT starts slowing
down the primary VM by informing the scheduler to give
it a slightly smaller amount of the CPU (initially by just
a few percent). We use a slow feedback loop, which will
try to gradually pinpoint the appropriate CPU limit for the
primary VM that will allow the backup VM to match its
execution. If the backup VM continues to lag behind, we
continue to gradually reduce the primary VM’s CPU limit.
Conversely, if the backup VM catches up, we gradually in-
crease the primary VM’s CPU limit until the backup VM
returns to having a slight lag.
Note that such slowdowns of the primary VM are very

rare, and typically happen only when the system is under
extreme stress. All the performance numbers of Section 5
include the cost of any such slowdowns.

3.3 Operation on FT VMs
Another practical matter is dealing with the various con-

trol operations that may be applied to the primary VM.
For example, if the primary VM is explicitly powered off,
the backup VM should be stopped as well, and not attempt
to go live. As another example, any resource management
change on the primary (such as increased CPU share) should
also be applied to the backup. For these kind of operations,
special control entries are sent on the logging channel from
the primary to the backup, in order to effect the appropriate
operation on the backup.
In general, most operations on the VM should be initiated

only on the primary VM. VMware FT then sends any nec-
essary control entry to cause the appropriate change on the
backup VM. The only operation that can be done indepen-
dently on the primary and backup VMs is VMotion. That
is, the primary and backup VMs can be VMotioned indepen-
dently to other hosts. Note that VMware FT ensures that
neither VM is moved to the server where the other VM is,

34

since that situation would no longer provide fault tolerance.
VMotion of a primary VM adds some complexity over

a normal VMotion, since the backup VM must disconnect
from the source primary and re-connect to the destination
primary VM at the appropriate time. VMotion of a backup
VM has a similar issue, but adds an additional complexity.
For a normal VMotion, we require that all outstanding disk
IOs be quiesced (i.e. completed) just as the final switchover
on the VMotion occurs. For a primary VM, this quiescing
is easily handled by waiting until the physical IOs complete
and delivering these completions to the VM. However, for
a backup VM, there is no easy way to cause all IOs to be
completed at any required point, since the backup VM must
replay the primary VM’s execution and complete IOs at the
same execution point. The primary VM may be running a
workload in which there are always disk IOs in flight during
normal execution. VMware FT has a unique method to solve
this problem. When a backup VM is at the final switchover
point for a VMotion, it requests via the logging channel
that the primary VM temporarily quiesce all of its IOs. The
backup VM’s IOs will then naturally be quiesced as well
at a single execution point as it replays the primary VM’s
execution of the quiescing operation.

3.4 Implementation Issues for Disk IOs
There are a number of subtle implementation issues re-

lated to disk IO. First, given that disk operations are non-
blocking and so can execute in parallel, simultaneous disk
operations that access the same disk location can lead to
non-determinism. Also, our implementation of disk IO uses
DMA directly to/from the memory of the virtual machines,
so simultaneous disk operations that access the same mem-
ory pages can also lead to non-determinism. Our solution is
generally to detect any such IO races (which are rare), and
force such racing disk operations to execute sequentially in
the same way on the primary and backup.
Second, a disk operation can also race with a memory ac-

cess by an application (or OS) in a VM, because the disk
operations directly access the memory of a VM via DMA.
For example, there could be a non-deterministic result if an
application/OS in a VM is reading a memory block at the
same time a disk read is occurring to that block. This situ-
ation is also unlikely, but we must detect it and deal with it
if it happens. One solution is to set up page protection tem-
porarily on pages that are targets of disk operations. The
page protections result in a trap if the VM happens to make
an access to a page that is also the target of an outstanding
disk operation, and the VM can be paused until the disk
operation completes. Because changing MMU protections
on pages is an expensive operation, we choose instead to
use bounce buffers. A bounce buffer is a temporary buffer
that has the same size as the memory being accessed by a
disk operation. A disk read operation is modified to read the
specified data to the bounce buffer, and the data is copied to
guest memory only as the IO completion is delivered. Simi-
larly, for a disk write operation, the data to be sent is first
copied to the bounce buffer, and the disk write is modified
to write data from the bounce buffer. The use of the bounce
buffer can slow down disk operations, but we have not seen
it cause any noticeable performance loss.
Third, there are some issues associated with disk IOs that

are outstanding (i.e. not completed) on the primary when a
failure happens, and the backup takes over. There is no way

for the newly-promoted primary VM to be sure if the disk
IOs were issued to the disk or completed successfully. In
addition, because the disk IOs were not issued externally on
the backup VM, there will be no explicit IO completion for
them as the newly-promoted primary VM continues to run,
which would eventually cause the guest operating system in
the VM to start an abort or reset procedure. We could send
an error completion that indicates that each IO failed, since
it is acceptable to return an error even if the IO completed
successfully. However, the guest OS might not respond well
to errors from its local disk. Instead, we re-issue the pending
IOs during the go-live process of the backup VM. Because we
have eliminated all races and all IOs specify directly which
memory and disk blocks are accessed, these disk operations
can be re-issued even if they have already completed suc-
cessfully (i.e. they are idempotent).

3.5 Implementation Issues for Network IO
VMware vSphere provides many performance optimiza-

tions for VM networking. Some of these optimizations are
based on the hypervisor asynchronously updating the state
of the virtual machine’s network device. For example, re-
ceive buffers can be updated directly by the hypervisor while
the VM is executing. Unfortunately these asynchronous
updates to a VM’s state add non-determinism. Unless we
can guarantee that all updates happen at the same point in
the instruction stream on the primary and the backup, the
backup’s execution can diverge from that of the primary.
The biggest change to the networking emulation code for

FT is the disabling of the asynchronous network optimiza-
tions. The code that asynchronously updates VM ring
buffers with incoming packets has been modified to force the
guest to trap to the hypervisor, where it can log the updates
and then apply them to the VM. Similarly, code that nor-
mally pulls packets out of transmit queues asynchronously
is disabled for FT, and instead transmits are done through
a trap to the hypervisor (except as noted below).
The elimination of the asynchronous updates of the net-

work device combined with the delaying of sending pack-
ets described in Section 2.2 has provided some performance
challenges for networking. We’ve taken two approaches to
improving VM network performance while running FT. First,
we implemented clustering optimizations to reduce VM traps
and interrupts. When the VM is streaming data at a suffi-
cient bit rate, the hypervisor can do one transmit trap per
group of packets and, in the best case, zero traps, since it can
transmit the packets as part of receiving new packets. Like-
wise, the hypervisor can reduce the number of interrupts to
the VM for incoming packets by only posting the interrupt
for a group of packets.
Our second performance optimization for networking in-

volves reducing the delay for transmitted packets. As noted
earlier, the hypervisor must delay all transmitted packets
until it gets an acknowledgment from the backup for the ap-
propriate log entries. The key to reducing the transmit delay
is to reduce the time required to send a log message to the
backup and get an acknowledgment. Our primary optimiza-
tions in this area involve ensuring that sending and receiv-
ing log entries and acknowledgments can all be done without
any thread context switch. The VMware vSphere hypervisor
allows functions to be registered with the TCP stack that
will be called from a deferred-execution context (similar to
a tasklet in Linux) whenever TCP data is received. This al-

35

since that situation would no longer provide fault tolerance.
VMotion of a primary VM adds some complexity over

a normal VMotion, since the backup VM must disconnect
from the source primary and re-connect to the destination
primary VM at the appropriate time. VMotion of a backup
VM has a similar issue, but adds an additional complexity.
For a normal VMotion, we require that all outstanding disk
IOs be quiesced (i.e. completed) just as the final switchover
on the VMotion occurs. For a primary VM, this quiescing
is easily handled by waiting until the physical IOs complete
and delivering these completions to the VM. However, for
a backup VM, there is no easy way to cause all IOs to be
completed at any required point, since the backup VM must
replay the primary VM’s execution and complete IOs at the
same execution point. The primary VM may be running a
workload in which there are always disk IOs in flight during
normal execution. VMware FT has a unique method to solve
this problem. When a backup VM is at the final switchover
point for a VMotion, it requests via the logging channel
that the primary VM temporarily quiesce all of its IOs. The
backup VM’s IOs will then naturally be quiesced as well
at a single execution point as it replays the primary VM’s
execution of the quiescing operation.

3.4 Implementation Issues for Disk IOs
There are a number of subtle implementation issues re-

lated to disk IO. First, given that disk operations are non-
blocking and so can execute in parallel, simultaneous disk
operations that access the same disk location can lead to
non-determinism. Also, our implementation of disk IO uses
DMA directly to/from the memory of the virtual machines,
so simultaneous disk operations that access the same mem-
ory pages can also lead to non-determinism. Our solution is
generally to detect any such IO races (which are rare), and
force such racing disk operations to execute sequentially in
the same way on the primary and backup.
Second, a disk operation can also race with a memory ac-

cess by an application (or OS) in a VM, because the disk
operations directly access the memory of a VM via DMA.
For example, there could be a non-deterministic result if an
application/OS in a VM is reading a memory block at the
same time a disk read is occurring to that block. This situ-
ation is also unlikely, but we must detect it and deal with it
if it happens. One solution is to set up page protection tem-
porarily on pages that are targets of disk operations. The
page protections result in a trap if the VM happens to make
an access to a page that is also the target of an outstanding
disk operation, and the VM can be paused until the disk
operation completes. Because changing MMU protections
on pages is an expensive operation, we choose instead to
use bounce buffers. A bounce buffer is a temporary buffer
that has the same size as the memory being accessed by a
disk operation. A disk read operation is modified to read the
specified data to the bounce buffer, and the data is copied to
guest memory only as the IO completion is delivered. Simi-
larly, for a disk write operation, the data to be sent is first
copied to the bounce buffer, and the disk write is modified
to write data from the bounce buffer. The use of the bounce
buffer can slow down disk operations, but we have not seen
it cause any noticeable performance loss.
Third, there are some issues associated with disk IOs that

are outstanding (i.e. not completed) on the primary when a
failure happens, and the backup takes over. There is no way

for the newly-promoted primary VM to be sure if the disk
IOs were issued to the disk or completed successfully. In
addition, because the disk IOs were not issued externally on
the backup VM, there will be no explicit IO completion for
them as the newly-promoted primary VM continues to run,
which would eventually cause the guest operating system in
the VM to start an abort or reset procedure. We could send
an error completion that indicates that each IO failed, since
it is acceptable to return an error even if the IO completed
successfully. However, the guest OS might not respond well
to errors from its local disk. Instead, we re-issue the pending
IOs during the go-live process of the backup VM. Because we
have eliminated all races and all IOs specify directly which
memory and disk blocks are accessed, these disk operations
can be re-issued even if they have already completed suc-
cessfully (i.e. they are idempotent).

3.5 Implementation Issues for Network IO
VMware vSphere provides many performance optimiza-

tions for VM networking. Some of these optimizations are
based on the hypervisor asynchronously updating the state
of the virtual machine’s network device. For example, re-
ceive buffers can be updated directly by the hypervisor while
the VM is executing. Unfortunately these asynchronous
updates to a VM’s state add non-determinism. Unless we
can guarantee that all updates happen at the same point in
the instruction stream on the primary and the backup, the
backup’s execution can diverge from that of the primary.
The biggest change to the networking emulation code for

FT is the disabling of the asynchronous network optimiza-
tions. The code that asynchronously updates VM ring
buffers with incoming packets has been modified to force the
guest to trap to the hypervisor, where it can log the updates
and then apply them to the VM. Similarly, code that nor-
mally pulls packets out of transmit queues asynchronously
is disabled for FT, and instead transmits are done through
a trap to the hypervisor (except as noted below).
The elimination of the asynchronous updates of the net-

work device combined with the delaying of sending pack-
ets described in Section 2.2 has provided some performance
challenges for networking. We’ve taken two approaches to
improving VM network performance while running FT. First,
we implemented clustering optimizations to reduce VM traps
and interrupts. When the VM is streaming data at a suffi-
cient bit rate, the hypervisor can do one transmit trap per
group of packets and, in the best case, zero traps, since it can
transmit the packets as part of receiving new packets. Like-
wise, the hypervisor can reduce the number of interrupts to
the VM for incoming packets by only posting the interrupt
for a group of packets.
Our second performance optimization for networking in-

volves reducing the delay for transmitted packets. As noted
earlier, the hypervisor must delay all transmitted packets
until it gets an acknowledgment from the backup for the ap-
propriate log entries. The key to reducing the transmit delay
is to reduce the time required to send a log message to the
backup and get an acknowledgment. Our primary optimiza-
tions in this area involve ensuring that sending and receiv-
ing log entries and acknowledgments can all be done without
any thread context switch. The VMware vSphere hypervisor
allows functions to be registered with the TCP stack that
will be called from a deferred-execution context (similar to
a tasklet in Linux) whenever TCP data is received. This al-

35

hypervisor hypervisor

Primary
VM

Backup
VM

Logging channel

Disk
reads &
writes

Disk
writes

Initially
synced
disks

Figure 4: FT Non-shared Disk Configuration.

lows us to quickly handle any incoming log messages on the
backup and any acknowledgments received by the primary
without any thread context switches. In addition, when the
primary VM enqueues a packet to be transmitted, we force
an immediate log flush of the associated output log entry (as
described in Section 2.2) by scheduling a deferred-execution
context to do the flush.

4. DESIGN ALTERNATIVES
In our implementation of VMware FT, we have explored

a number of interesting design alternatives. In this section,
we explore some of these alternatives.

4.1 Shared vs. Non-shared Disk
In our default design, the primary and backup VMs share

the same virtual disks. Therefore, the content of the shared
disks is naturally correct and available if a failover occurs.
Essentially, the shared disk is considered external to the pri-
mary and backup VMs, so any write to the shared disk is
considered a communication to the external world. There-
fore, only the primary VM does actual writes to the disk,
and writes to the shared disk must be delayed in accordance
with the Output Rule.
An alternative design is for the primary and backup VMs

to have separate (non-shared) virtual disks. In this design,
the backup VM does do all disk writes to its virtual disks,
and in doing so, it naturally keeps the contents of its virtual
disks in sync with the contents of the primary VM’s virtual
disks. Figure 4 illustrates this configuration. In the case of
non-shared disks, the virtual disks are essentially considered
part of the internal state of each VM. Therefore, disk writes
of the primary do not have to be delayed according to the
Output Rule. The non-shared design is quite useful in cases
where shared storage is not accessible to the primary and
backup VMs. This may be the case because shared storage is
unavailable or too expensive, or because the servers running
the primary and backup VMs are far apart (“long-distance
FT”). One disadvantage of the non-shared design is that the
two copies of the virtual disks must be explicitly synced up
in some manner when fault tolerance is first enabled. In
addition, the disks can get out of sync after a failure, so

they must be explicitly resynced when the backup VM is
restarted after a failure. That is, FT VMotion must not only
sync the running state of the primary and backup VMs, but
also their disk state.
In the non-shared-disk configuration, there may be no

shared storage to use for dealing with a split-brain situa-
tion. In this case, the system could use some other external
tiebreaker, such as a third-party server that both servers can
talk to. If the servers are part of a cluster with more than
two nodes, the system could alternatively use a majority al-
gorithm based on cluster membership. In this case, a VM
would only be allowed to go live if it is running on a server
that is part of a communicating sub-cluster that contains a
majority of the original nodes.

4.2 Executing Disk Reads on the Backup VM
In our default design, the backup VM never reads from its

virtual disk (whether shared or non-shared). Since the disk
read is considered an input, it is natural to send the results
of the disk read to the backup VM via the logging channel.
An alternate design is to have the backup VM execute

disk reads and therefore eliminate the logging of disk read
data. This approach can greatly reduce the traffic on the
logging channel for workloads that do a lot of disk reads.
However, this approach has a number of subtleties. It may
slow down the backup VM’s execution, since the backup
VM must execute all disk reads and wait if they are not
physically completed when it reaches the point in the VM
execution where they completed on the primary.
Also, some extra work must be done to deal with failed

disk read operations. If a disk read by the primary succeeds
but the corresponding disk read by the backup fails, then the
disk read by the backup must be retried until it succeeds,
since the backup must get the same data in memory that
the primary has. Conversely, if a disk read by the primary
fails, then the contents of the target memory must be sent
to the backup via the logging channel, since the contents of
memory will be undetermined and not necessarily replicated
by a successful disk read by the backup VM.
Finally, there is a subtlety if this disk-read alternative is

used with the shared disk configuration. If the primary VM
does a read to a particular disk location, followed fairly soon
by a write to the same disk location, then the disk write
must be delayed until the backup VM has executed the first
disk read. This dependence can be detected and handled
correctly, but adds extra complexity to the implementation.
In Section 5.1, we give some performance results indicat-

ing that executing disk reads on the backup can cause some
slightly reduced throughput (1-4%) for real applications, but
can also reduce the logging bandwidth noticeably. Hence,
executing disk reads on the backup VM may be useful in
cases where the bandwidth of the logging channel is quite
limited.

5. PERFORMANCE EVALUATION
In this section, we do a basic evaluation of the performance

of VMware FT for a number of application workloads and
networking benchmarks. For these results, we run the pri-
mary and backup VMs on identical servers, each with eight
Intel Xeon 2.8 Ghz CPUs and 8 Gbytes of RAM. The servers
are connected via a 10 Gbit/s crossover network, though as
will be seen in all cases, much less than 1 Gbit/s of network
bandwidth is used. Both servers access their shared virtual

36

hypervisor hypervisor

Primary
VM

Backup
VM

Logging channel

Disk
reads &
writes

Disk
writes

Initially
synced
disks

Figure 4: FT Non-shared Disk Configuration.

lows us to quickly handle any incoming log messages on the
backup and any acknowledgments received by the primary
without any thread context switches. In addition, when the
primary VM enqueues a packet to be transmitted, we force
an immediate log flush of the associated output log entry (as
described in Section 2.2) by scheduling a deferred-execution
context to do the flush.

4. DESIGN ALTERNATIVES
In our implementation of VMware FT, we have explored

a number of interesting design alternatives. In this section,
we explore some of these alternatives.

4.1 Shared vs. Non-shared Disk
In our default design, the primary and backup VMs share

the same virtual disks. Therefore, the content of the shared
disks is naturally correct and available if a failover occurs.
Essentially, the shared disk is considered external to the pri-
mary and backup VMs, so any write to the shared disk is
considered a communication to the external world. There-
fore, only the primary VM does actual writes to the disk,
and writes to the shared disk must be delayed in accordance
with the Output Rule.
An alternative design is for the primary and backup VMs

to have separate (non-shared) virtual disks. In this design,
the backup VM does do all disk writes to its virtual disks,
and in doing so, it naturally keeps the contents of its virtual
disks in sync with the contents of the primary VM’s virtual
disks. Figure 4 illustrates this configuration. In the case of
non-shared disks, the virtual disks are essentially considered
part of the internal state of each VM. Therefore, disk writes
of the primary do not have to be delayed according to the
Output Rule. The non-shared design is quite useful in cases
where shared storage is not accessible to the primary and
backup VMs. This may be the case because shared storage is
unavailable or too expensive, or because the servers running
the primary and backup VMs are far apart (“long-distance
FT”). One disadvantage of the non-shared design is that the
two copies of the virtual disks must be explicitly synced up
in some manner when fault tolerance is first enabled. In
addition, the disks can get out of sync after a failure, so

they must be explicitly resynced when the backup VM is
restarted after a failure. That is, FT VMotion must not only
sync the running state of the primary and backup VMs, but
also their disk state.
In the non-shared-disk configuration, there may be no

shared storage to use for dealing with a split-brain situa-
tion. In this case, the system could use some other external
tiebreaker, such as a third-party server that both servers can
talk to. If the servers are part of a cluster with more than
two nodes, the system could alternatively use a majority al-
gorithm based on cluster membership. In this case, a VM
would only be allowed to go live if it is running on a server
that is part of a communicating sub-cluster that contains a
majority of the original nodes.

4.2 Executing Disk Reads on the Backup VM
In our default design, the backup VM never reads from its

virtual disk (whether shared or non-shared). Since the disk
read is considered an input, it is natural to send the results
of the disk read to the backup VM via the logging channel.
An alternate design is to have the backup VM execute

disk reads and therefore eliminate the logging of disk read
data. This approach can greatly reduce the traffic on the
logging channel for workloads that do a lot of disk reads.
However, this approach has a number of subtleties. It may
slow down the backup VM’s execution, since the backup
VM must execute all disk reads and wait if they are not
physically completed when it reaches the point in the VM
execution where they completed on the primary.
Also, some extra work must be done to deal with failed

disk read operations. If a disk read by the primary succeeds
but the corresponding disk read by the backup fails, then the
disk read by the backup must be retried until it succeeds,
since the backup must get the same data in memory that
the primary has. Conversely, if a disk read by the primary
fails, then the contents of the target memory must be sent
to the backup via the logging channel, since the contents of
memory will be undetermined and not necessarily replicated
by a successful disk read by the backup VM.
Finally, there is a subtlety if this disk-read alternative is

used with the shared disk configuration. If the primary VM
does a read to a particular disk location, followed fairly soon
by a write to the same disk location, then the disk write
must be delayed until the backup VM has executed the first
disk read. This dependence can be detected and handled
correctly, but adds extra complexity to the implementation.
In Section 5.1, we give some performance results indicat-

ing that executing disk reads on the backup can cause some
slightly reduced throughput (1-4%) for real applications, but
can also reduce the logging bandwidth noticeably. Hence,
executing disk reads on the backup VM may be useful in
cases where the bandwidth of the logging channel is quite
limited.

5. PERFORMANCE EVALUATION
In this section, we do a basic evaluation of the performance

of VMware FT for a number of application workloads and
networking benchmarks. For these results, we run the pri-
mary and backup VMs on identical servers, each with eight
Intel Xeon 2.8 Ghz CPUs and 8 Gbytes of RAM. The servers
are connected via a 10 Gbit/s crossover network, though as
will be seen in all cases, much less than 1 Gbit/s of network
bandwidth is used. Both servers access their shared virtual

36

performance logging
(FT / non-FT) bandwidth

SPECJbb2005 0.98 1.5 Mbits/sec
Kernel Compile 0.95 3.0 Mbits/sec
Oracle Swingbench 0.99 12 Mbits/sec
MS-SQL DVD Store 0.94 18 Mbits/sec

Table 1: Basic Performance Results

disks from an EMC Clariion connected through a standard
4 Gbit/s Fibre Channel network. The client used to drive
some of the workloads is connected to the servers via a 1
Gbit/s network.
The applications that we evaluate in our performance re-

sults are as follows. SPECJbb2005 is an industry-standard
Java application benchmark that is very CPU- and memory-
intensive and does very little IO. Kernel Compile is a work-
load that runs a compilation of the Linux kernel. This work-
load does some disk reads and writes, and is very CPU- and
MMU-intensive, because of the creation and destruction of
many compilation processes. Oracle Swingbench is a work-
load in which an Oracle 11g database is driven by the Swing-
bench OLTP (online transaction processing) workload. This
workload does substantial disk and networking IO, and has
eighty simultaneous database sessions. MS-SQL DVD Store
is a workload in which a Microsoft SQL Server 2005 database
is driven by the DVD Store benchmark, which has sixteen
simultaneous clients.

5.1 Basic Performance Results
Table 1 gives basic performance results. For each of the

applications listed, the second column gives the ratio of the
performance of the application when FT is enabled on the
VM running the server workload vs. the performance when
FT is not enabled on the same VM. The performance ra-
tios are calculated so that a value less than 1 indicates that
the FT workload is slower. Clearly, the overhead for en-
abling FT on these representative workloads is less than
10%. SPECJbb2005 is completely compute-bound and has
no idle time, but performs well because it has minimal non-
deterministic events beyond timer interrupts. The other
workloads do disk IO and have some idle time, so some of
the FT overhead may be hidden by the fact that the FT
VMs have less idle time. However, the general conclusion is
that VMware FT is able to support fault-tolerant VMs with
a quite low performance overhead.
In the third column of the table, we give the average band-

width of data sent on the logging channel when these appli-
cations are run. For these applications, the logging band-
width is quite reasonable and easily satisfied by a 1 Gbit/s
network. In fact, the low bandwidth requirements indicate
that multiple FT workloads can share the same 1 Gbit/s
network without any negative performance effects.
For VMs that run common guest operating systems like

Linux and Windows, we have found that the typical logging
bandwidth while the guest OS is idle is 0.5-1.5 Mbits/sec.
The “idle” bandwidth is largely the result of recording the
delivery of timer interrupts. For a VM with an active work-
load, the logging bandwidth is dominated by the network
and disk inputs that must be sent to the backup – the net-
work packets that are received and the disk blocks that are
read from disk. Hence, the logging bandwidth can be much

base FT logging
bandwidth bandwidth bandwidth

Receive (1Gb) 940 604 730
Transmit (1Gb) 940 855 42
Receive (10Gb) 940 860 990
Transmit (10Gb) 940 935 60

Table 2: Performance of Network Transmit and Re-
ceive to a Client (all in Mbit/s) for 1Gb and 10Gb
Logging Channels

higher than those measured in Table 1 for applications that
have very high network receive or disk read bandwidth. For
these kinds of applications, the bandwidth of the logging
channel could be a bottleneck, especially if there are other
uses of the logging channel.
The relatively low bandwidth needed over the logging

channel for many real applications makes replay-based fault
tolerance very attractive for a long-distance configuration
using non-shared disks. For long-distance configurations
where the primary and backup might be separated by 1-100
kilometers, optical fiber can easily support bandwidths of
100-1000 Mbit/s with latencies of less than 10 milliseconds.
For the applications in Table 1, a bandwidth of 100-1000
Mbit/s should be sufficient for good performance. Note,
however, that the extra round-trip latency between the pri-
mary and backup may cause network and disk outputs to be
delayed by up to 20 milliseconds. The long-distance configu-
ration will only be appropriate for applications whose clients
can tolerate such an additional latency on each request.
For the two most disk-intensive applications, we have mea-

sured the performance impact of executing disk reads on the
backup VM (as described in Section 4.2) vs. sending disk
read data over the logging channel. For Oracle Swingbench,
throughput is about 4% lower when executing disk reads
on the backup VM; for MS-SQL DVD Store, throughput is
about 1% lower. Meanwhile, the logging bandwidth is de-
creased from 12 Mbits/sec to 3 Mbits/sec for Oracle Swing-
bench, and from 18 Mbits/sec to 8 Mbits/sec for MS-SQL
DVD Store. Clearly, the bandwidth savings could be much
greater for applications with much greater disk read band-
width. As mentioned in Section 4.2, it is expected that the
performance might be somewhat worse when disk reads are
executed on the backup VM. However, for cases where the
bandwidth of the logging channel is limited (for example,
a long-distance configuration), executing disk reads on the
backup VM may be useful.

5.2 Network Benchmarks
Networking benchmarks can be quite challenging for our

system for a number of reasons. First, high-speed network-
ing can have a very high interrupt rate, which requires the
logging and replaying of asynchronous events at a very high
rate. Second, benchmarks that receive packets at a high
rate will cause a high rate of logging traffic, since all such
packets must be sent to the backup via the logging channel.
Third, benchmarks that send packets will be subject to the
Output Rule, which delays the sending of network packets
until the appropriate acknowledgment from the backup is
received. This delay will increase the measured latency to
a client. This delay could also decrease network bandwidth
to a client, since network protocols (such as TCP) may have

37

performance logging
(FT / non-FT) bandwidth

SPECJbb2005 0.98 1.5 Mbits/sec
Kernel Compile 0.95 3.0 Mbits/sec
Oracle Swingbench 0.99 12 Mbits/sec
MS-SQL DVD Store 0.94 18 Mbits/sec

Table 1: Basic Performance Results

disks from an EMC Clariion connected through a standard
4 Gbit/s Fibre Channel network. The client used to drive
some of the workloads is connected to the servers via a 1
Gbit/s network.
The applications that we evaluate in our performance re-

sults are as follows. SPECJbb2005 is an industry-standard
Java application benchmark that is very CPU- and memory-
intensive and does very little IO. Kernel Compile is a work-
load that runs a compilation of the Linux kernel. This work-
load does some disk reads and writes, and is very CPU- and
MMU-intensive, because of the creation and destruction of
many compilation processes. Oracle Swingbench is a work-
load in which an Oracle 11g database is driven by the Swing-
bench OLTP (online transaction processing) workload. This
workload does substantial disk and networking IO, and has
eighty simultaneous database sessions. MS-SQL DVD Store
is a workload in which a Microsoft SQL Server 2005 database
is driven by the DVD Store benchmark, which has sixteen
simultaneous clients.

5.1 Basic Performance Results
Table 1 gives basic performance results. For each of the

applications listed, the second column gives the ratio of the
performance of the application when FT is enabled on the
VM running the server workload vs. the performance when
FT is not enabled on the same VM. The performance ra-
tios are calculated so that a value less than 1 indicates that
the FT workload is slower. Clearly, the overhead for en-
abling FT on these representative workloads is less than
10%. SPECJbb2005 is completely compute-bound and has
no idle time, but performs well because it has minimal non-
deterministic events beyond timer interrupts. The other
workloads do disk IO and have some idle time, so some of
the FT overhead may be hidden by the fact that the FT
VMs have less idle time. However, the general conclusion is
that VMware FT is able to support fault-tolerant VMs with
a quite low performance overhead.
In the third column of the table, we give the average band-

width of data sent on the logging channel when these appli-
cations are run. For these applications, the logging band-
width is quite reasonable and easily satisfied by a 1 Gbit/s
network. In fact, the low bandwidth requirements indicate
that multiple FT workloads can share the same 1 Gbit/s
network without any negative performance effects.
For VMs that run common guest operating systems like

Linux and Windows, we have found that the typical logging
bandwidth while the guest OS is idle is 0.5-1.5 Mbits/sec.
The “idle” bandwidth is largely the result of recording the
delivery of timer interrupts. For a VM with an active work-
load, the logging bandwidth is dominated by the network
and disk inputs that must be sent to the backup – the net-
work packets that are received and the disk blocks that are
read from disk. Hence, the logging bandwidth can be much

base FT logging
bandwidth bandwidth bandwidth

Receive (1Gb) 940 604 730
Transmit (1Gb) 940 855 42
Receive (10Gb) 940 860 990
Transmit (10Gb) 940 935 60

Table 2: Performance of Network Transmit and Re-
ceive to a Client (all in Mbit/s) for 1Gb and 10Gb
Logging Channels

higher than those measured in Table 1 for applications that
have very high network receive or disk read bandwidth. For
these kinds of applications, the bandwidth of the logging
channel could be a bottleneck, especially if there are other
uses of the logging channel.
The relatively low bandwidth needed over the logging

channel for many real applications makes replay-based fault
tolerance very attractive for a long-distance configuration
using non-shared disks. For long-distance configurations
where the primary and backup might be separated by 1-100
kilometers, optical fiber can easily support bandwidths of
100-1000 Mbit/s with latencies of less than 10 milliseconds.
For the applications in Table 1, a bandwidth of 100-1000
Mbit/s should be sufficient for good performance. Note,
however, that the extra round-trip latency between the pri-
mary and backup may cause network and disk outputs to be
delayed by up to 20 milliseconds. The long-distance configu-
ration will only be appropriate for applications whose clients
can tolerate such an additional latency on each request.
For the two most disk-intensive applications, we have mea-

sured the performance impact of executing disk reads on the
backup VM (as described in Section 4.2) vs. sending disk
read data over the logging channel. For Oracle Swingbench,
throughput is about 4% lower when executing disk reads
on the backup VM; for MS-SQL DVD Store, throughput is
about 1% lower. Meanwhile, the logging bandwidth is de-
creased from 12 Mbits/sec to 3 Mbits/sec for Oracle Swing-
bench, and from 18 Mbits/sec to 8 Mbits/sec for MS-SQL
DVD Store. Clearly, the bandwidth savings could be much
greater for applications with much greater disk read band-
width. As mentioned in Section 4.2, it is expected that the
performance might be somewhat worse when disk reads are
executed on the backup VM. However, for cases where the
bandwidth of the logging channel is limited (for example,
a long-distance configuration), executing disk reads on the
backup VM may be useful.

5.2 Network Benchmarks
Networking benchmarks can be quite challenging for our

system for a number of reasons. First, high-speed network-
ing can have a very high interrupt rate, which requires the
logging and replaying of asynchronous events at a very high
rate. Second, benchmarks that receive packets at a high
rate will cause a high rate of logging traffic, since all such
packets must be sent to the backup via the logging channel.
Third, benchmarks that send packets will be subject to the
Output Rule, which delays the sending of network packets
until the appropriate acknowledgment from the backup is
received. This delay will increase the measured latency to
a client. This delay could also decrease network bandwidth
to a client, since network protocols (such as TCP) may have

37

to decrease the network transmission rate as the round-trip
latency increases.
Table 2 gives our results for a number of measurements

made by the standard netperf benchmark. In all these mea-
surements, the client VM and primary VM are connected
via a 1 Gbit/s network. The first two rows give send and re-
ceive performance when the primary and backup hosts are
connected by a 1 Gbit/s logging channel. The third and
fourth rows give the send and receive performance when the
primary and backup servers are connected by a 10 Gbit/s
logging channel, which not only has higher bandwidth, but
also lower latency than the 1 Gbit/s network. As a rough
measure, the ping time between hypervisors for the 1 Gbit/s
connection is about 150 microseconds, while the ping time
for a 10 Gbit/s connection is about 90 microseconds.
When FT is not enabled, the primary VM can achieve

close (940 Mbit/s) to the 1 Gbit/s line rate for transmits
and receives. When FT is enabled for receive workloads, the
logging bandwidth is very large, since all incoming network
packets must be sent on the logging channel. The logging
channel can therefore become a bottleneck, as shown for the
results for the 1 Gbit/s logging network. The effect is much
less for the 10 Gbit/s logging network. When FT is enabled
for transmit workloads, the data of the transmitted packets
is not logged, but network interrupts must still be logged.
The logging bandwidth is much lower, so the achievable net-
work transmit bandwidths are higher than the network re-
ceive bandwidths. Overall, we see that FT can limit network
bandwidths significantly at very high transmit and receive
rates, but high absolute rates are still achievable.

6. RELATED WORK
Bressoud and Schneider [3] described the initial idea of im-

plementing fault tolerance for virtual machines via software
contained completely at the hypervisor level. They demon-
strated the feasibility of keeping a backup virtual machine
in sync with a primary virtual machine via a prototype for
servers with HP PA-RISC processors. However, due to lim-
itations of the PA-RISC architecture, they could not imple-
ment fully secure, isolated virtual machines. Also, they did
not implement any method of failure detection or attempt
to address any of the practical issues described in Section 3.
More importantly, they imposed a number of constraints on
their FT protocol that were unnecessary. First, they im-
posed a notion of epochs, where asynchronous events are
delayed until the end of a set interval. The notion of an
epoch is unnecessary – they may have imposed it because
they could not replay individual asynchronous events effi-
ciently enough. Second, they required that the primary VM
stop execution essentially until the backup has received and
acknowledged all previous log entries. However, only the
output itself (such as a network packet) must be delayed –
the primary VM itself may continue executing.
Bressoud [4] describes a system that implements fault tol-

erance in the operating system (Unixware), and therefore
provides fault tolerance for all applications that run on that
operating system. The system call interface becomes the
set of operations that must be replicated deterministically.
This work has similar limitations and design choices as the
hypervisor-based work.
Napper et al. [9] and Friedman and Kama [7] describe im-

plementations of fault-tolerant Java virtual machines. They
follow a similar design to ours in sending information about

inputs and non-deterministic operations on a logging chan-
nel. Like Bressoud, they do not appear to focus on detecting
failure and re-establishing fault tolerance after a failure. In
addition, their implementation is limited to providing fault
tolerance for applications that run in a Java virtual machine.
These systems attempt to deal with issues of multi-threaded
Java applications, but require either that all data is cor-
rectly protected by locks or enforce a serialization on access
to shared memory.
Dunlap et al. [6] describe an implementation of determin-

istic replay targeted towards debugging application software
on a paravirtualized system. Our work supports arbitrary
operating systems running inside virtual machines and im-
plements fault tolerance support for these VMs, which re-
quires much higher levels of stability and performance.
Cully et al. [5] describe an alternative approach for sup-

porting fault-tolerant VMs and its implementation in a proj-
ect called Remus. With this approach, the state of a pri-
mary VM is repeatedly checkpointed during execution and
sent to a backup server, which collects the checkpoint infor-
mation. The checkpoints must be executed very frequently
(many times per second), since external outputs must be
delayed until a following checkpoint has been sent and ac-
knowledged. The advantage of this approach is that it ap-
plies equally well to uni-processor and multi-processor VMs.
The main issue is that this approach has very high network
bandwidth requirements to send the incremental changes to
memory state at each checkpoint. The results for Remus
presented in [5] show 100% to 225% slowdown for kernel
compile and SPECweb benchmarks, when attempting to do
40 checkpoints per second using a 1 Gbit/s network connec-
tion for transmitting changes in memory state. There are
a number of optimizations that may be useful in decreas-
ing the required network bandwidth, but it is not clear that
reasonable performance can be achieved with a 1 Gbit/s
connection. In contrast, our approach based on determin-
istic replay can achieve less than 10% overhead, with less
than 20 Mbit/s bandwidth required between the primary
and backup hosts for several real applications.

7. CONCLUSION AND FUTURE WORK
We have designed and implemented an efficient and com-

plete system in VMware vSphere that provides fault tol-
erance (FT) for virtual machines running on servers in a
cluster. Our design is based on replicating the execution
of a primary VM via a backup VM on another host using
VMware deterministic replay. If the server running the pri-
mary VM fails, the backup VM takes over immediately with
no interruption or loss of data.
Overall, the performance of fault-tolerant VMs under VM-

ware FT on commodity hardware is excellent, and shows
less than 10% overhead for some typical applications. Most
of the performance cost of VMware FT comes from the
overhead of using VMware deterministic replay to keep the
primary and backup VMs in sync. The low overhead of
VMware FT therefore derives from the efficiency of VMware
deterministic replay. In addition, the logging bandwidth re-
quired to keep the primary and backup in sync is typically
quite small, often less than 20 Mbit/s. Because the log-
ging bandwidth is quite small in most cases, it seems fea-
sible to implement configurations where the primary and
backup VMs are separated by long distances (1-100 kilome-
ters). Thus, VMware FT could be used in scenarios that

38

to decrease the network transmission rate as the round-trip
latency increases.
Table 2 gives our results for a number of measurements

made by the standard netperf benchmark. In all these mea-
surements, the client VM and primary VM are connected
via a 1 Gbit/s network. The first two rows give send and re-
ceive performance when the primary and backup hosts are
connected by a 1 Gbit/s logging channel. The third and
fourth rows give the send and receive performance when the
primary and backup servers are connected by a 10 Gbit/s
logging channel, which not only has higher bandwidth, but
also lower latency than the 1 Gbit/s network. As a rough
measure, the ping time between hypervisors for the 1 Gbit/s
connection is about 150 microseconds, while the ping time
for a 10 Gbit/s connection is about 90 microseconds.
When FT is not enabled, the primary VM can achieve

close (940 Mbit/s) to the 1 Gbit/s line rate for transmits
and receives. When FT is enabled for receive workloads, the
logging bandwidth is very large, since all incoming network
packets must be sent on the logging channel. The logging
channel can therefore become a bottleneck, as shown for the
results for the 1 Gbit/s logging network. The effect is much
less for the 10 Gbit/s logging network. When FT is enabled
for transmit workloads, the data of the transmitted packets
is not logged, but network interrupts must still be logged.
The logging bandwidth is much lower, so the achievable net-
work transmit bandwidths are higher than the network re-
ceive bandwidths. Overall, we see that FT can limit network
bandwidths significantly at very high transmit and receive
rates, but high absolute rates are still achievable.

6. RELATED WORK
Bressoud and Schneider [3] described the initial idea of im-

plementing fault tolerance for virtual machines via software
contained completely at the hypervisor level. They demon-
strated the feasibility of keeping a backup virtual machine
in sync with a primary virtual machine via a prototype for
servers with HP PA-RISC processors. However, due to lim-
itations of the PA-RISC architecture, they could not imple-
ment fully secure, isolated virtual machines. Also, they did
not implement any method of failure detection or attempt
to address any of the practical issues described in Section 3.
More importantly, they imposed a number of constraints on
their FT protocol that were unnecessary. First, they im-
posed a notion of epochs, where asynchronous events are
delayed until the end of a set interval. The notion of an
epoch is unnecessary – they may have imposed it because
they could not replay individual asynchronous events effi-
ciently enough. Second, they required that the primary VM
stop execution essentially until the backup has received and
acknowledged all previous log entries. However, only the
output itself (such as a network packet) must be delayed –
the primary VM itself may continue executing.
Bressoud [4] describes a system that implements fault tol-

erance in the operating system (Unixware), and therefore
provides fault tolerance for all applications that run on that
operating system. The system call interface becomes the
set of operations that must be replicated deterministically.
This work has similar limitations and design choices as the
hypervisor-based work.
Napper et al. [9] and Friedman and Kama [7] describe im-

plementations of fault-tolerant Java virtual machines. They
follow a similar design to ours in sending information about

inputs and non-deterministic operations on a logging chan-
nel. Like Bressoud, they do not appear to focus on detecting
failure and re-establishing fault tolerance after a failure. In
addition, their implementation is limited to providing fault
tolerance for applications that run in a Java virtual machine.
These systems attempt to deal with issues of multi-threaded
Java applications, but require either that all data is cor-
rectly protected by locks or enforce a serialization on access
to shared memory.
Dunlap et al. [6] describe an implementation of determin-

istic replay targeted towards debugging application software
on a paravirtualized system. Our work supports arbitrary
operating systems running inside virtual machines and im-
plements fault tolerance support for these VMs, which re-
quires much higher levels of stability and performance.
Cully et al. [5] describe an alternative approach for sup-

porting fault-tolerant VMs and its implementation in a proj-
ect called Remus. With this approach, the state of a pri-
mary VM is repeatedly checkpointed during execution and
sent to a backup server, which collects the checkpoint infor-
mation. The checkpoints must be executed very frequently
(many times per second), since external outputs must be
delayed until a following checkpoint has been sent and ac-
knowledged. The advantage of this approach is that it ap-
plies equally well to uni-processor and multi-processor VMs.
The main issue is that this approach has very high network
bandwidth requirements to send the incremental changes to
memory state at each checkpoint. The results for Remus
presented in [5] show 100% to 225% slowdown for kernel
compile and SPECweb benchmarks, when attempting to do
40 checkpoints per second using a 1 Gbit/s network connec-
tion for transmitting changes in memory state. There are
a number of optimizations that may be useful in decreas-
ing the required network bandwidth, but it is not clear that
reasonable performance can be achieved with a 1 Gbit/s
connection. In contrast, our approach based on determin-
istic replay can achieve less than 10% overhead, with less
than 20 Mbit/s bandwidth required between the primary
and backup hosts for several real applications.

7. CONCLUSION AND FUTURE WORK
We have designed and implemented an efficient and com-

plete system in VMware vSphere that provides fault tol-
erance (FT) for virtual machines running on servers in a
cluster. Our design is based on replicating the execution
of a primary VM via a backup VM on another host using
VMware deterministic replay. If the server running the pri-
mary VM fails, the backup VM takes over immediately with
no interruption or loss of data.
Overall, the performance of fault-tolerant VMs under VM-

ware FT on commodity hardware is excellent, and shows
less than 10% overhead for some typical applications. Most
of the performance cost of VMware FT comes from the
overhead of using VMware deterministic replay to keep the
primary and backup VMs in sync. The low overhead of
VMware FT therefore derives from the efficiency of VMware
deterministic replay. In addition, the logging bandwidth re-
quired to keep the primary and backup in sync is typically
quite small, often less than 20 Mbit/s. Because the log-
ging bandwidth is quite small in most cases, it seems fea-
sible to implement configurations where the primary and
backup VMs are separated by long distances (1-100 kilome-
ters). Thus, VMware FT could be used in scenarios that

38

also protect against disasters in which entire sites fail. It is
worthwhile to note that the log stream is typically quite com-
pressible, and simple compression techniques can decrease
the logging bandwidth significantly with a small amount of
extra CPU overhead.
Our results with VMware FT have shown that an efficient

implementation of fault-tolerant VMs can be built upon de-
terministic replay. Such a system can transparently provide
fault tolerance for VMs running any operating systems and
applications with minimal overhead. However, for a system
of fault-tolerant VMs to be useful for customers, it must
also be robust, easy-to-use, and highly automated. A usable
system requires many other components beyond replicated
execution of VMs. In particular, VMware FT automatically
restores redundancy after a failure, by finding an appropriate
server in the local cluster and creating a new backup VM on
that server. By addressing all the necessary issues, we have
demonstrated a system that is usable for real applications
in customer’s datacenters.
One of tradeoffs with implementing fault tolerance via de-

terministic replay is that currently deterministic replay has
only been implemented efficiently for uni-processor VMs.
However, uni-processors VMs are more than sufficient for
a wide variety of workloads, especially since physical pro-
cessors are continually getting more powerful. In addition,
many workloads can be scaled out by using many uni-processor
VMs instead of scaling up by using one larger multi-processor
VM. High-performance replay for multi-processor VMs is an
active area of research, and can potentially be enabled with
some extra hardware support in microprocessors. One inter-
esting direction might be to extend transactional memory
models to facilitate multi-processor replay.
In the future, we are also interested in extending our sys-

tem to deal with partial hardware failure. By partial hard-
ware failure, we mean a partial loss of functionality or re-
dundancy in a server that doesn’t cause corruption or loss of
data. An example would be the loss of all network connec-
tivity to the VM, or the loss of a redundant power supply
in the physical server. If a partial hardware failure occurs
on a server running a primary VM, in many cases (but not
all) it would be advantageous to fail over to the backup VM
immediately. Such a failover could immediately restore full
service for a critical VM, and ensure that the VM is quickly
moved off of a potentially unreliable server.

Acknowledgments
We would like to thank Krishna Raja, who generated many
of the performance results. There were numerous people
involved in the implementation of VMware FT. Core im-
plementors of deterministic replay, (including support for
a variety of virtual devices) and the base FT functional-
ity included Lan Huang, Eric Lowe, Slava Malyugin, Alex
Mirgorodskiy, Kaustubh Patil, Boris Weissman, Petr Van-
drovec, and Min Xu. In addition, there are many other
people involved in the higher-level management of FT in
VMware vCenter. Karyn Ritter did an excellent job man-
aging much of the work.

8. REFERENCES
[1] Alsberg, P., and Day, J. A Principle for Resilient

Sharing of Distributed Resources. In Proceedings of
the Second International Conference on Software
Engineering (1976), pp. 627–644.

[2] AMD Corporation. AMD64 Architecture
Programmer’s Manual. Sunnyvale, CA.

[3] Bressoud, T., and Schneider, F. Hypervisor-based
Fault Tolerance. In Proceedings of SOSP 15 (Dec.
1995).

[4] Bressoud, T. C. TFT: A Software System for
Application-Transparent Fault Tolerance. In
Proceedings of the Twenty-Eighth Annual
International Symposium on Fault-Tolerance
Computing (June 1998), pp. 128–137.

[5] Cully, B., Lefebvre, G., Meyer, D., Feeley, M.,
Hutchison, N., and Warfield, A. Remus: High
Availability via Asynchronous Virtual Machine
Replication. In Proceedings of the Fifth USENIX
Symposium on Networked Systems Design and
Implementation (Apr. 2008), pp. 161–174.

[6] Dunlap, G. W., King, S. T., Cinar, S., Basrai,
M., and Chen, P. M. ReVirt: Enabling Intrusion
Analysis through Virtual Machine Logging and
Replay. In Proceedings of the 2002 Symposium on
Operating Systems Design and Implementation (Dec.
2002).

[7] Friedman, R., and Kama, A. Transparent
Fault-Tolerant Java Virtual Machine. In Proceedings of
Reliable Distributed System (Oct. 2003), pp. 319–328.

[8] Intel Corporation. IntelÂ R 64 and IA-32
Architectures Software Developer’s Manuals. Santa
Clara, CA.

[9] Napper, J., Alvisi, L., and Vin, H. A
Fault-Tolerant Java Virtual Machine. In Proceedings
of the International Conference on Dependable
Systems and Networks (June 2002), pp. 425–434.

[10] Nelson, M., Lim, B.-H., and Hutchins, G. Fast
Transparent Migration for Virtual Machines. In
Proceedings of the 2005 Annual USENIX Technical
Conference (Apr. 2005).

[11] Nightingale, E. B., Veeraraghavan, K., Chen,
P. M., and Flinn, J. Rethink the Sync. In
Proceedings of the 2006 Symposium on Operating
Systems Design and Implementation (Nov. 2006).

[12] Schlicting, R., and Schneider, F. B. Fail-stop
Processors: An Approach to Designing Fault-tolerant
Computing Systems. ACM Computing Surveys 1, 3
(Aug. 1983), 222–238.

[13] Schneider, F. B. Implementing fault-tolerance
services using the state machine approach: A tutorial.
ACM Computing Surveys 22, 4 (Dec. 1990), 299–319.

[14] Stratus Technologies. Benefit from Stratus
Continuing Processing Technology: Automatic
99.999% Uptime for Microsoft Windows Server
Environments. At http://www.stratus.com/˜/media/-
Stratus/Files/Resources/WhitePapers/continuous-
processing-for-windows.pdf, June
2009.

[15] Xu, M., Malyugin, V., Sheldon, J.,
Venkitachalam, G., and Weissman, B. ReTrace:
Collecting Execution Traces with Virtual Machine
Deterministic Replay. In Proceedings of the 2007
Workshop on Modeling, Benchmarking, and
Simulation (June 2007).

39

also protect against disasters in which entire sites fail. It is
worthwhile to note that the log stream is typically quite com-
pressible, and simple compression techniques can decrease
the logging bandwidth significantly with a small amount of
extra CPU overhead.
Our results with VMware FT have shown that an efficient

implementation of fault-tolerant VMs can be built upon de-
terministic replay. Such a system can transparently provide
fault tolerance for VMs running any operating systems and
applications with minimal overhead. However, for a system
of fault-tolerant VMs to be useful for customers, it must
also be robust, easy-to-use, and highly automated. A usable
system requires many other components beyond replicated
execution of VMs. In particular, VMware FT automatically
restores redundancy after a failure, by finding an appropriate
server in the local cluster and creating a new backup VM on
that server. By addressing all the necessary issues, we have
demonstrated a system that is usable for real applications
in customer’s datacenters.
One of tradeoffs with implementing fault tolerance via de-

terministic replay is that currently deterministic replay has
only been implemented efficiently for uni-processor VMs.
However, uni-processors VMs are more than sufficient for
a wide variety of workloads, especially since physical pro-
cessors are continually getting more powerful. In addition,
many workloads can be scaled out by using many uni-processor
VMs instead of scaling up by using one larger multi-processor
VM. High-performance replay for multi-processor VMs is an
active area of research, and can potentially be enabled with
some extra hardware support in microprocessors. One inter-
esting direction might be to extend transactional memory
models to facilitate multi-processor replay.
In the future, we are also interested in extending our sys-

tem to deal with partial hardware failure. By partial hard-
ware failure, we mean a partial loss of functionality or re-
dundancy in a server that doesn’t cause corruption or loss of
data. An example would be the loss of all network connec-
tivity to the VM, or the loss of a redundant power supply
in the physical server. If a partial hardware failure occurs
on a server running a primary VM, in many cases (but not
all) it would be advantageous to fail over to the backup VM
immediately. Such a failover could immediately restore full
service for a critical VM, and ensure that the VM is quickly
moved off of a potentially unreliable server.

Acknowledgments
We would like to thank Krishna Raja, who generated many
of the performance results. There were numerous people
involved in the implementation of VMware FT. Core im-
plementors of deterministic replay, (including support for
a variety of virtual devices) and the base FT functional-
ity included Lan Huang, Eric Lowe, Slava Malyugin, Alex
Mirgorodskiy, Kaustubh Patil, Boris Weissman, Petr Van-
drovec, and Min Xu. In addition, there are many other
people involved in the higher-level management of FT in
VMware vCenter. Karyn Ritter did an excellent job man-
aging much of the work.

8. REFERENCES
[1] Alsberg, P., and Day, J. A Principle for Resilient

Sharing of Distributed Resources. In Proceedings of
the Second International Conference on Software
Engineering (1976), pp. 627–644.

[2] AMD Corporation. AMD64 Architecture
Programmer’s Manual. Sunnyvale, CA.

[3] Bressoud, T., and Schneider, F. Hypervisor-based
Fault Tolerance. In Proceedings of SOSP 15 (Dec.
1995).

[4] Bressoud, T. C. TFT: A Software System for
Application-Transparent Fault Tolerance. In
Proceedings of the Twenty-Eighth Annual
International Symposium on Fault-Tolerance
Computing (June 1998), pp. 128–137.

[5] Cully, B., Lefebvre, G., Meyer, D., Feeley, M.,
Hutchison, N., and Warfield, A. Remus: High
Availability via Asynchronous Virtual Machine
Replication. In Proceedings of the Fifth USENIX
Symposium on Networked Systems Design and
Implementation (Apr. 2008), pp. 161–174.

[6] Dunlap, G. W., King, S. T., Cinar, S., Basrai,
M., and Chen, P. M. ReVirt: Enabling Intrusion
Analysis through Virtual Machine Logging and
Replay. In Proceedings of the 2002 Symposium on
Operating Systems Design and Implementation (Dec.
2002).

[7] Friedman, R., and Kama, A. Transparent
Fault-Tolerant Java Virtual Machine. In Proceedings of
Reliable Distributed System (Oct. 2003), pp. 319–328.

[8] Intel Corporation. IntelÂ R 64 and IA-32
Architectures Software Developer’s Manuals. Santa
Clara, CA.

[9] Napper, J., Alvisi, L., and Vin, H. A
Fault-Tolerant Java Virtual Machine. In Proceedings
of the International Conference on Dependable
Systems and Networks (June 2002), pp. 425–434.

[10] Nelson, M., Lim, B.-H., and Hutchins, G. Fast
Transparent Migration for Virtual Machines. In
Proceedings of the 2005 Annual USENIX Technical
Conference (Apr. 2005).

[11] Nightingale, E. B., Veeraraghavan, K., Chen,
P. M., and Flinn, J. Rethink the Sync. In
Proceedings of the 2006 Symposium on Operating
Systems Design and Implementation (Nov. 2006).

[12] Schlicting, R., and Schneider, F. B. Fail-stop
Processors: An Approach to Designing Fault-tolerant
Computing Systems. ACM Computing Surveys 1, 3
(Aug. 1983), 222–238.

[13] Schneider, F. B. Implementing fault-tolerance
services using the state machine approach: A tutorial.
ACM Computing Surveys 22, 4 (Dec. 1990), 299–319.

[14] Stratus Technologies. Benefit from Stratus
Continuing Processing Technology: Automatic
99.999% Uptime for Microsoft Windows Server
Environments. At http://www.stratus.com/˜/media/-
Stratus/Files/Resources/WhitePapers/continuous-
processing-for-windows.pdf, June
2009.

[15] Xu, M., Malyugin, V., Sheldon, J.,
Venkitachalam, G., and Weissman, B. ReTrace:
Collecting Execution Traces with Virtual Machine
Deterministic Replay. In Proceedings of the 2007
Workshop on Modeling, Benchmarking, and
Simulation (June 2007).

39

