
Numerical Tic-Tac-Toe on the 4 × 4 Board

Bryce Sandlund1, Kerrick Staley2, Michael Dixon2, and Steve Butler2

1 University of Wisconsin–Madison, Madison, WI 53706, USA
bcsandlund@gmail.com

2 Iowa State University, Ames, IA 50011, USA
kerrick@kerrickstaley.com,

{medixon,butler}@iastate.edu

Abstract. Numerical Tic-Tac-Toe on the n × n board is a two player
game where the numbers {1, 2, . . . , n2} are divided between the two play-
ers (usually as odds and evens) and then players alternately play by plac-
ing one of their numbers on the board. The first player to complete a
line of n numbers (played by either player) that add up to n(n2 + 1)/2
is the winner. The original 3× 3 game was created and analyzed by Ron
Graham nearly fifty years ago and it has been shown that the first player
has a winning strategy. In this paper we consider the 4 × 4 game and
determine that in fact the second player has a winning strategy.

Keywords: Tic-Tac-Toe, games, symmetry, backtracking, pruning.

1 Introduction

Tic-Tac-Toe is a classic game that is familiar to people of all ages. Because of its
familiarity this game is often used as a starting example of how to mathematically
analyze a game, and it is well known that in optimal play by both players the
game will always end in a tie.1 One of the best known Tic-Tac-Toe strategy
guides was created by Randall Munroe in an XKCD posting [6].

Nearly fifty years ago Ron Graham created a variation of Tic-Tac-Toe which
has come to be known as “Numerical Tic-Tac-Toe”. The game is still played on
the same 3× 3 board but now instead of using ×’s and ◦’s the two players are
given the numbers {1, 3, 5, 7, 9} and {2, 4, 6, 8}, respectively. The players take
turns (with the odd player going first) and at each round the players put one of
their unused numbers on an open square on the board. The first player to create
any three numbers in a line that sum to 15 wins the game.

Numerical Tic-Tac-Toe is easily played by two players and the reader is en-
couraged to give it a try to help get a sense of the game. It should be noted that
there are many implementations of this game online as well as apps for portable
devices.

1 Even modest training can result in a “good” player. At one time people would
compete against chickens playing Tic-Tac-Toe in casinos in Atlantic City (though
the chickens themselves responded more to lighting cues than strategy).

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 537–546, 2014.
c© Springer International Publishing Switzerland 2014



538 B. Sandlund et al.

By extensive case analysis carried out by hand, Graham [1] determined that
remarkably the first player has a strategy that can guarantee a win. An exhaus-
tive computer analysis by Markowsky [4,5] thirty years later verified the result
of Graham, while Orr and Cooper [7] subsequently gave a compact strategy for
the game.

This game can be generalized to be played on any size board. Usually, on the
n×n board the numbers {1, 2, . . . , n2} are divided into the odd’s and even’s. The
players take turns, starting with the odd player, and at each round the players
put one of their unused numbers on the board. The first player to complete a line
of any n numbers that sum to n(n2+1)/2 wins the game. (The value n(n2+1)/2
comes from the average value of 1, 2, . . . , n2 being (n2 +1)/2 and then having n
of them.)

In this paper we will outline the computation that was done to carry out
the analysis for n = 4. Our exhaustive computation shows that in optimal play
the second player has a winning strategy (though we do not have a compact
description of such a strategy).

We mention in passing that there are other variations that could be considered
for this game. One variation that we also explored was altering the initial division
of 1, 2, . . . , 9 between the two players for the 3 × 3 game. It turns out that
regardless of which five numbers the first player has they will always be able to
win. This was independently confirmed by Bennett Hansen [2]. For the 4×4 case
one could also create variations by changing the initial division; or giving each
player the numbers {1, 2, . . . , 8} and then the winner would be the first person
to get four numbers in a line that total to 18. We have not considered these
variations here but the technique we will give can be used to analyze these and
other situations as well.

One popular approach to solve perfect information games that has proven
effective is using retrograde analysis, i.e., starting at the finishing positions and
then working backwards. This works well when there are relatively few finishing
positions, e.g., chess endgames [9]. This technique was also used to solve end
game for checkers when there were relatively few pieces (later Schaeffer et al.
[8] gave a complete solution of checkers combining various ideas). While this
technique could work in this setting we will opt instead to use symmetry and
efficient pruning of the game tree to determine the result. A survey of games that
have been solved, including a discussion of various techniques to solve them, is
given by van den Herik et al. [3].

2 Symmetries of the 4 × 4 Game

One näıve approach to this problem is to determine every possible state of the
board and then form a graded poset with the unique maximal entry correspond-
ing to an empty board and then as we go down we look at all possible ways to
legally insert one number until either there is a win or the game results in a tie.
Given such a poset we could then easily determine the winner of the game by
working from the bottom to the top. However an approximation for the number
of boards at depth k is



Numerical Tic-Tac-Toe on the 4× 4 Board 539

(
16

k

)(
8

�k/2�
)(

8

�k/2�
)
k!.

That is, choose k positions out of 16 possible positions, then choose which odds
are to be played, which evens are to be played and put them on the board in all
possible ways. Summing up over all possible k then gives us 2.7 × 1015 boards.
For comparison the 3 × 3 version of Numerical Tic-Tac-Toe has 9.3 × 106 and
classical Tic-Tac-Toe has 6, 046. (This count gives all possible boards, but some
of these boards would not occur in gameplay as they contain within them two
or more disjoint winning lines which would indicate play has already stopped.)

Even with advances in computing power and memory storage this is still
prohibitive to approach an analysis of the 4 × 4 board. We will employ several
techniques to reduce the size of this problem to a point where the computation
can be carried out efficiently.

One of the most important tools that we have is to use the symmetry of the
board. That is a bijection from the board to itself which preserves lines. To be
more precise when we have the following board:

A B C D

E F G H

I J K L

M N O P

then the lines are:

{A,B,C,D}, {E,F,G,H}, {I, J,K, L}, {M,N,O, P}, {A,E, I,M},
{B,F, J,N}, {C,G,K,O}, {D,H,L, P}, {A,F,K, P}, {D,G, J,M}.

Proposition 1. The bijections of the board consist of compositions of the fol-
lowing maps: rotations, reflections, and the two maps shown below.

=

F E H G

B A D C

N M P O

J I L K

=

A C B D

I K J L

E G F H

M O N P

For the two maps given above we will call the one on the left the “cross-
symmetry” and the one on the right the “X-symmetry”. When all of these are
combined we end up with 32 different bijections that preserve the lines of the
4× 4 board.

Proof. A simple check will verify that each one of those maps will preserve
lines, so it suffices to show that if we have preserved lines that we must be a
composition of these maps.

Next we note that each map we have outlined is reversible (i.e., for rotation we
reverse the direction and for the other maps we simply apply the map a second



540 B. Sandlund et al.

time). Therefore to show that we have all possible bijections by combining these
maps, it suffices to show how we can apply these maps to get back to the starting
board.

So suppose we have a board that has preserved lines. Then by applying ro-
tations we can place the A in the upper left corner. Note that A, D, M and
P will always have to form the corners of a square and so if needed we can
apply reflection to place D in the upper right corner. Reflection will achieve this
because A and D cannot be on opposite corners, since that would force B and
C to be one of the four center squares. The center squares are involved in three
lines, but B and C are only involved in two, meaning they can never be center
tiles. Therefore we are in one of the following two situations:

A D

M P

A D

M P

Similarly, F , G, J , and K will form another square and their positioning must
agree with the above boards in preserving diagonal lines. So in the first case we
now have the following four possibilities:

A D

M P

F G

J K

A D

M P

F J

G K

A D

M P

K G

J F

A D

M P

K J

G F

Every remaining unfilled square is contained in two lines and we can determine
what value (if possible) must go in the square by taking the intersection of the
two lines. The first possibility reduces to the identity, the fourth gives the X-
symmetry, and the other two are impossible.

For the second case we have the following four possibilities:

A D

M P

F G

J K

A D

M P

F J

G K

A D

M P

K G

J F

A D

M P

K J

G F

Again proceeding as before we can fill in any remaining squares by looking at
the intersection of the lines. The first possibility reduces to cross-symmetry, the
fourth possibility is the result of composition of X-symmetry and cross-symmetry
maps, and the other two are impossible.

Thus using only our given maps we have accounted for each valid bijection of
the board. �



Numerical Tic-Tac-Toe on the 4× 4 Board 541

There is one other natural candidate for symmetry involving manipulation of
the numbers themselves rather than the location of each entry. The symmetry
was used by Markowsky [4] in the 3× 3 version and was found due to the fact:

a+ b+ c = 15 ↔ (10− a) + (10− b) + (10− c) = 15.

Simple algebra takes the original sum n(n2 + 1)/2 and finds that in the general
case, subtracting each filled entry from n2+1 presents a possible symmetry. For
the 4×4 version, each filled cell q would then be replaced by 17− q. An example
is given below:

3

16

10 7

14

1

7 10

However, due to the fact replacing q by 17 − q changes the parity of an entry,
this symmetry is invalid for two reasons. First, if we apply this after an odd
number of plays then we will be in an impossible board, i.e., one with more even
numbers than odd numbers. Second, if we apply this after an even number of
plays then situations can change dramatically. As an example of this latter case,
consider the above scenario where it is now the first player’s turn. In the original
board the first player can block but cannot win with the next move, while in the
second board the first player can place 9 in the lower right corner and win.

We note that this last symmetry does work for the 3 × 3 board and more
generally any n×n board when n is odd, due to the fact n2+1 is even whenever
n is odd.

3 Splitting the Computation

As already mentioned, we can form a graded poset consisting of all boards where
connections go between consecutive levels between boards that differ by a legal
move. In this poset we then identify each “winning move” and break all con-
nections below such boards and work from the bottom up. Each board can be
labeled with one of three possibilities P1, P2, or T for “player one wins”, “player
two wins” and “neither player can guarantee a win”. Working from the leaf nodes
upwards we visit each board and identify the labels of all boards below it which
it connects to and then determine the label of the board by the following rule:
If it is player one’s turn then P1 � T � P2 (i.e., P1 is preferred to T which is
preferred to P2 and the player takes the best labeling of all boards immediately
below); while if it is player two’s turn then P2 � T � P1. Finally, the label
of the empty board indicates the outcome of optimal play on the part of both
players.

Instead we will opt for starting at the root and working our way down the tree
and filling in this information as we go along. The implemented program is a



542 B. Sandlund et al.

version of the minimax algorithm, working in a depth-first, backtracking manner.
One advantage of this is that we can use alpha-beta pruning to eliminate the
need to compute significant parts of the tree (i.e., avoid having to consider some
board configurations). Suppose that below is part of the tree for us to consider
(where on the left we have indicated which player is playing):

Player one

Player two

T

P2 T T

P2 T P1 P1 T T T T P1

Given that at each board we will scan its children from left to right, we can
then trim off parts of the tree that we guarantee are not necessary to visit, giving
us the following:

Player one

Player two

T

P2 T T

P2 P1 T T T T P1

Since this technique is applied at each level of the tree, this pruning has a
dramatic effect on execution time. But we can prune even more if we run the
computation twice and instead of looking at P1, P2 and T we ask the following
two questions:

• Can player one force a win?
• Can player two force a win?

While forming the tree for each of these two situations we will use Y and N
for “Yes” and “No” respectively. For the first question we note that Y = {P1}
and N = {P2, T }, further when it is player one’s turn Y � N and for player
two N � Y . For the second question we note that Y = {P2} and N = {P1, T },
further when it is player one’s turn N � Y and for player two Y � N .

Applying this to the above tree and trimming as we are wont will result in
the following two trees:



Numerical Tic-Tac-Toe on the 4× 4 Board 543

Player one

Player two

Can player one win?N

N N N

N Y N N

Player one

Player two

Can player two win?N

Y N

Y N N N

In this particular problem space, we found that examining only two utility
values instead of three sped up computation exponentially due to the fact many
tie boards exist in the game space. With this technique, only one player must
search to find a winning configuration, but the other can return as soon as a
tie board is found. In theory, this could reduce runtime from O(bd) to O(bd/2)
(where b is the branching factor and d is the depth), due to the repeating pattern
of 1 ∗ b ∗ 1 ∗ b... corresponding to an immediate return vs. searching every child.
In practice, we found the strategy more effective for player one’s computation
than player two’s computation (sensible considering our result) and encourage
the reader to look at the number of boards visited at each depth in the attached
appendix, which is explained in more detail in the following section.

The authors comment that this general technique is probably known in AI
literature and can be seen as similar to other techniques such as proof-number
search [10]. For the record, however, we note that the above strategy could be
easily translated to any general problem space with k utility values to turn the
original question into O(log(k)) separate questions by binary searching for the
best achievable utility value.

4 Results

In the previous two sections we have outlined our basic approach. First we run
two computations to ask starting from an empty board whether each player can
win. To further help prune we store all boards up through some preset depth
and the corresponding answers for those boards. Symmetries were only used in



544 B. Sandlund et al.

the first five depths, a cutoff found by trial and error to avoid the expensive cost
of calculating symmetries but keep the gain of avoiding duplicate computation.
Boards were still stored after this point since it is quite possible to arrive at the
same board from two or more different paths. Finally, due to memory constraints,
to answer player two’s computation, periodically we removed configurations from
memory at the deeper depths of the memory storage.

In the appendix is the information regarding the outcome when we ran the
program for the question: Can player one force a win? For each depth (i.e.,
number of rounds played in the game) it records the number of boards that
were visited, how many were determined because they were already calculated
in memory (stored up through depth 9), and how many times the answer was
“Yes”. Since our program looked one move ahead to determine if the opponent
can win, all recorded “Yes’s” represent a win at least one depth away from the
winning board. Similarly, in the appendix is the same information when we ran
the program for the question: Can player two force a win? (Where we stored
boards up through depth 10.)

In particular, we see that for the 4 × 4 Numerical Tic-Tac-Toe game that
player two can force a win. Comparing the amount of computation required to
determine the answers to our original questions, it appears that in random play
that it is much easier to stop player one from winning than it is to make player
two win. This is easy to convince yourself of in the 3× 3 case where it is not so
hard to stop player two from winning but far from obvious how to have player
one win.

By using an appropriately pruned tree for the question “Can player two force a
win?” we would have a perfect strategy for the game. Unfortunately this requires
immense amounts of storage and so is likely impractical to program. Therefore
we expect that for most players (even most low-powered computer players with
limited time to act in each move), games will likely end in a tie.

There are of course many interesting questions left to ask for numerical tic-tac-
toe, including whether or not one of the players always has a winning strategy.
One can imagine that we divide the numbers up arbitrarily or play in larger
boards. If one player did always have a winning strategy is there an easy ex-
planation for which player it is and what strategy they should pursue? Another
question that we did not answer here is whether player two could force an early
win, i.e., is it possible to finish the game in the fourteenth round? We do not yet
have the answers to these questions, but look forward to the next move in this
area.

Implementation

The program for carrying out the computation was written in Java, and is avail-
able online: https://github.com/brycesandlund/4x4TicTacToe/

https://github.com/brycesandlund/4x4TicTacToe/


Numerical Tic-Tac-Toe on the 4× 4 Board 545

References

1. Graham, R.: Personal communication
2. Hansen, B.: Personal communication
3. can den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: Now

and in the future. Artificial Intelligence 134, 277–311 (2002)
4. Markowsky, G.: Numerical tic-tac-toe–I. J. of Recreational Math. 22, 114–123

(1990)
5. Markowsky, G.: Numerical tic-tac-toe–II. J. of Recreational Math. 22, 192–200

(1990)
6. Munroe, R.: xkcd: Tic-Tac-Toe, http://xkcd.com/832/
7. Orr, S., Cooper, C.: A compact strategy for numerical tic-tac-toe. J. of Recreational

Math. 27, 161–171 (1995)
8. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu,

P., Sutphen, S.: Checkers is solved. Science 317, 1518–1522 (2007)
9. Thompson, K.: Retrograde analysis of certain endgames. ICCA Journal 9, 131–139

(1986)
10. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artificial

Intelligence 66(1), 91–124 (1994)

Appendix

For the question “Can player one force a win?” we have the following information
in regards to the computation:

Depth Boards Visited Found in Memory How many “Yes”’s
0 1 0 0
1 128 112 0
2 16 0 0
3 1,440 136 0
4 1,304 0 0
5 88,430 33,554 0
6 57,295 0 2,419
7 2,158,685 1,131,526 2,419
8 1,334,445 6,328 309,061
9 23,654,937 9,012,830 306,283

10 18,237,546 0 3,896,978
11 215,581,273 0 3,896,978
12 221,312,077 0 9,627,782
13 1,462,159,978 0 9,627,782
14 1,452,532,196 0 0
15 2,818,792,528 0 0
16 2,818,792,528 0 0

http://xkcd.com/832/


546 B. Sandlund et al.

For the question “Can player two force a win?” we have the following information
in regards to the computation:

Depth Boards Visited Found in Memory How many “Yes”’s
0 1 0 1
1 128 112 128
2 72 0 16
3 1,467 19 1,411
4 17,358 329 1,396
5 155,748 5,215 140,006
6 2,822,029 150,020 135,188
7 14,434,502 833,734 11,892,556
8 185,959,992 16,012,248 11,122,103
9 572,733,507 45,970,492 413,409,269

10 5,686,646,311 699,206,459 374,906,758
11 10,231,334,279 0 5,593,772,898
12 82,553,255,357 0 5,593,772,898
13 109,945,222,392 0 32,985,739,933
14 521,913,263,546 0 32,985,739,933
15 488,927,523,613 0 0
16 488,927,523,613 0 0


	Numerical Tic-Tac-Toe on the 44 Board
	Introduction
	Symmetries of the 44 Game
	Splitting the Computation
	Results


