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ABSTRACT

Program specialization speeds up program execution by eliminating computation that depends
on semi-invariant values: known program inputs, or repetitive data encountered during program
execution. There are three parts to this problem: (i) determining what values are semi-invariant (ii)
determining what code to specialize, and (iii) how to specialize. There is a vast body of literature that
addresses the last part of the problem — how to specialize. However, all existing techniques either
rely on the programmer or expensive offline program analysis to determine the semi-invariant values,
and to determine what code to specialize. Consequently, there is no existing program specialization
technique that can be performed at runtime without user intervention (transparently).

This dissertation proposes and investigates techniques for enabling transparent runtime special-
ization of programs within a dynamic optimizer. The primary contribution of this dissertation is in
the form of techniques that address the first two parts above: determining what values are semi-
invariant, and determining what code to specialize.

The specializer collects a store profile to identify frequently modified portions of the program’s
data structures. Based on this, the specializer predicts which parts of the program’s data structures
might be invariant for the rest of the program’s execution. This store-profile based invariance de-
tection technique, in addition to being transparent, is more powerful than existing annotation-based
approaches. The correctness of this optimistic, but speculative invariance assumptions is ensured
by runtime guards that detect modifications of the specialized memory locations. Due to infrastruc-
tural limitations, these runtime guarding techniques have not been implemented and studied in this
dissertation.

The collected runtime profiles are used by a scope-building algorithm that identifies the code re-
gions (specialization scopes) that can be profitably specialized. The identified scopes are specialized
using a specializer based on the Sparse Conditional Constant Propagation algorithm that has been ex-

tended to eliminate invariant memory accesses as well as unroll and specialize loops. However, other



specializers could be used in combination with the proposed invariance-detection and scope-building
techniques.

This dissertation implements a specializer that specializes Java programs available in bytecode
form. However, due to infrastructural limitations, the evaluation uses a profile-driven recompilation
process (as opposed to true runtime specialization).

Experimental evaluation shows that transparent runtime specialization is feasible and can be
implemented within dynamic optimizers. The runtime costs are not prohibitive and the specializer
can provide good speedups. For example, the specializer could speedup a publicly available Scheme
interpreter by a factor of 1.9x. However, with a better engineered implementation than Strata (which
is inefficient and unoptimized for runtime compilation), the runtime compilation overheads will be
lower leading to to higher speedups. In addition, with an improved specialization model and an
improved scope-building algorithm, more specialization opportunities can be exploited which might

also translate into higher speedups.
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CHAPTER 1
INTRODUCTION

Program optimization using traditional static compile-time techniques is becoming increasingly
harder because of modular and component-based software development with increasing reliance on
general-purpose libraries. In this scenario, dynamic optimization systems [3,10, 15,21, 25, 35,53,57,
67] are very promising since they can overcome many limitations of static compilation systems as
well as offline profile-driven compilation systems.

In this dissertation, our work is targeted at a dynamic optimization systems because they have
the following advantages over static and profile-driven recompilation systems:

e Access to run-time state: By operating at runtime, dynamic optimization systems have access
to a program’s runtime state as well as to the fully-linked binary. By leveraging this informa-
tion, they can build optimization units that are tuned to the runtime behavior of the program.
In direct contrast, in the absence of such runtime information, static compilation systems are
constrained by the small size of basic compilation units (methods/functions/procedures) as

well as hard-to-predict control flow.

e Transparency: Unlike profile-driven recompilation systems, dynamic optimization systems

tend to be transparent and free the user from the tedious compile/profile/recompile cycle.

e Adaptability: Without the need for a separate profiling run, dynamic optimization systems
do not suffer from the problem of having to identify a representative input. By monitoring
a program’s behavior at runtime, dynamic optimization systems can adapt to any change in

program behavior by re-optimizing the program as necessary.

While many existing dynamic optimizers contain transparent and adaptive optimization sys-
tems [15, 21, 67], they do not fully exploit the advantage of having access to runtime state of a

program. They leave unexploited attractive, but hard-to-exploit data-specific opportunities due to



stringent time constraints of the run-time setting, and instead focus on the more traditional control-
flow optimizations developed for profile-guided off-line compilation, like procedure inlining, su-
perblock formation, and code layout.

In this dissertation, we propose to avail this unexploited opportunity by implementing program
specialization (a) entirely within a dynamic optimization system, and (b) by exploiting the accessible
runtime program state.

Program specialization (in various forms) [8, 31, 47, 56, 58, 61, 65, 71, 73, 75, 76, 80, 81, 86] is
a well-studied program optimization technique which speeds up program execution by eliminating
computation that depends on constant values. The dynamic optimization environment is arguably the
most suitable environment for specializer deployment, because the runtime is where the largest num-
ber of constants can be discovered. In addition, adaptability enables better specialization, whereas
transparency provides the benefits of complete automation without any programmer intervention.

While there do exist program specializers that operate at run-time, they cannot be implemented
in a dynamic optimizer transparently since they require program annotations [31, 47], or else re-
quire a separate profiling run and pre-run-time program analysis [71]. This dissertation presents
techniques that can enable program specialization to be implemented transparently within a dynamic

optimization system.

1.1. Motivations

Having presented the problem tackled by this dissertation, we now present the various reasons

why this problem is being tackled, i.e. why is this an important and interesting problem to solve?

1.1.1. Motivation 1: Performance

The first motivation is the performance gains that result from specialization. While specialization

is definitely not an optimization that benefits all programs equally, there exist several classes of



programs which benefit from specialization: interpreters, image processing applications, graphics
programs, or, in general, any program that operates on semi-invariant data. While offline and staged
program specializers exist, this dissertation is concerned with a transparent runtime implementation
of a specializer. Transparency has the usual benefits of freeing the user from having to identify
specialization opportunities. In certain scenarios, the user might not be able to accurately identify
specialization opportunities, especially when the user does not write all the code that goes within an

application, for example, when code libraries are commonly used, as in the case of Java APIs.

1.1.2. Motivation 2: Co-designed Virtual Machines

One of the original motivations for this dissertation was to explore the area of co-designed virtual
machines [83] along the lines of Transmeta Crusoe [57] and IBM Daisy [40]. This work started as
one of many projects to explore different ways in which hardware and software could be designed
closely and together to enable better optimizations than is possible without such close h/w-s/w col-
laboration. Since runtime program specialization relies on low-overhead access to program runtime
state (invariant values, frequently executed code regions, data structure access patterns), program

specialization is a good candidate for the study of co-designed virtual machines.

1.1.3. Motivation 3: Domain Specific Languages

The next motivation comes from the area of Domain Specific Languages (DSLs) [1]. The area of
domain specific languages is an important and growing field of research within the broader research
area of programming language design and implementation. DSLs provide semantics customized to
the domain of interest which allows programs to be more concise than equivalent programs in general
purpose languages (GPL).

An important property of DSLs is that they allow more program properties to be checked than

with equivalent GPL programs. This property arises because the semantics of a DSL can be restricted



to enable the decidability of some properties that are critical to a domain [1]. For example, it is well-
known that it is impossible to write an algorithm to decide if a program written in a Turing-complete
language will terminate on a given input — this is the well-known halting problem. However, by
providing looping constructs with restricted semantics, it might be possible to guarantee termination

of DSL programs written in the restricted language.

Since it is expensive to build and maintain a compiler, interpreters are the most common way
of providing an implementation of a domain specific language. Therefore, interpreters enable fast
prototyping and testing of domain specific languages. However, where performance of a DSL pro-
gram is important, interpreters often fall short. Partial evaluation [56] has been proposed to address
this problem. Runtime specializers could be used to specialize DSL interpreters [86] for the input
programs. It is well known that specializing an interpreter with respect to an invariant input program
produces native code which is equivalent (in principle) to compiling the input program. While re-
alistic specializers might not replace a custom-made JIT compiler for the interpreted language, they

may reduce the need to create one by reducing the performance gap.

For example, the DyC project [46-49, 70, 71] was an offshoot of an effort to reduce the ex-
tensibility costs [14] of the SPIN extensible operating system [19], which was implemented using
a domain-specific language. Similarly, the Sprint project [5] has also employed the Tempo par-
tial evaluator [30-32] to reduce the costs of extensible networks [87]. In this project, the PLAN-P
domain-specific language is used to write network protocols which are downloaded into network
routers to provide network extensibility. Rather than use an interpreter to implement these protocols,

a runtime compiler generated by Tempo is used to speed up execution of these protocols.

To summarize, dynamic transparent specializers might encourage the creation and proliferation
of portable DSLs—for example, for safe scripting or for security monitors— because one will have
to write only a portable interpreter for the language. From the programmer-productivity standpoint,

specializer-equipped execution environments may thus change how certain systems are programmed.



While this approach might not be suitable for all DSL implementations and while our particular
specializer does not produce JIT-quality code by specializing interpreters (as most likely, no dynamic
specializer will), it is nevertheless a promising approach. Using our approach, we were able to
specialize a couple of language interpreters to obtain speedups of 1.7X and 3.6X over unspecialized

code. Future work can build on our research to provide even better speedups.

1.2. Example

Let us now look at an example to understand the potential of specialization and the key challenges
in automating this process.

Figure 1.1 shows a modified version of the method FindTreeNode method of the SPECjvm98
benchmark, raytrace. This method compares a Point against an OctNode which encodes the
nodes of an octtree. In this example, the octtree is invariant after it is constructed. Even though
the octree has tens of thousands of octnodes, about 60 octnodes account for over 75% of the invo-
cations to FindTreeNode. Therefore, if, for each of these 60 octnodes, specialized versions of
FindTreeNode are created, it can speed up the execution of this method.

Figure 1.2 shows a specialized version of the method for one frequently encountered octnode.
Since the octree is invariant, all the six expressions which have chains of five loads are specialized
and replaced with constant values. Secondly, the loop is unrolled and all virtual calls to Find-
TreeNode are replaced with direct calls. Thirdly, since the address of the receivers are known (c1,
... cq), if specialized versions of the method exist for any of these receivers, the call target is changed
to the specialized version. For this example, specialization is clearly beneficial.

In creating this specialized version of FindTreeNode, we needed the following information:

e The octree is invariant

e About 50 frequently seen values of this accounted for over 60% of the execution of Find-



OctNode FindTreeNode(OctNode this, Point p)
{
if ( p-x < this.faces[0]-.verts[0]-x
Il p-x >= this.faces[3].verts[0]-x)
return this;
if ( p.y > this.faces[1].verts[0].y
Il p-y <= this.faces[4].verts[0].y)
return this;
iT ( p-z < this.faces[2].verts[0].z
Il p-z >= this.faces[5].verts[0]-.2)
return this;
if (child[0] !'= null) {
for (i = 0; 1 < 4; i++) {
found = child[i]-FindTreeNode(p);
if (found '= null) return found;
¥
¥
return null;

}

Figure 1.1. Example: Modified version of Fi ndTr eeNode method in raytrace, a SPECjvm98 benchmark

OctNode FindTreeNode A(Point p)
{
if ((p-x> 3.5 ]| (p-x < 4.3) return this;
it ((p-y > -2.3) |l (p-x < -1.0) return this;
if ((p-z > -0.1) ]| (p-x < 2.3) return this;
found = ¢y-FindTreeNode(p); /* ¢y =child[0] */
if (found '= null) return ¢p;
found = ¢;.FindTreeNode(p); /* ¢y =child[1] */
if (found '= null) return c;;
found = c¢y.FindTreeNode(p); /* co =child[2] */
it (found !'= null) return c;;
found = c3.FindTreeNode(p); /*c3=child[3]*/
it (found !'= null) return c;3;
return null;
¥

Figure 1.2. A Specialized version of Fi ndTr eeNode



TreeNode

e The entire method can be specialized to exploit the invariance of the octree and the repetition

of this.

Within a dynamic optimizer, all this information has to be discovered automatically which hap-

pens to be the key challenge in implementing a transparent program specializer.

1.3. Implementing a transparent runtime program specializer: Key Challenges

In this section, we present the key challenges in implementing a specializer transparently within a
dynamic optimizer. In the next section, we present a high-level outline of the specialization technique
that addresses them.

In general, any specializer has to find answers to the following questions before it can specialize

the input program.

1. Which variables take on frequently repeating values? Any code segment using one of these
variables could potentially be specialized for each hot value of the variable. In the degenerate
case, a variable takes on exactly one value — this variable is then referred to as an invariant
variable. Profiles are one common way of doing this. However, the challenge is in doing this

with low overheads.

2. Which parts of a data structure are (semi-)invariant? A memory location is invariant if it
is never modified after it is initialized. A memory location is semi-invariant if it is modified
one or more times after it is initialized, but exhibits invariant behavior for “sufficiently long”
periods of program execution. These invariant and semi-invariant memory locations can be

considered run-time constants and used in further optimization.

3. Which code regions can be beneficially specialized? These code regions could (but need not)



depend on the answers to the previous two questions. By specializing these code regions, the

execution of the program can be sped up.

For example, classic partial evaluation [56] relies on the programmer to annotate a program to
answer the first two questions. These answers are then used to specialize the entire program. In other
techniques (DyC [47] Tempo [31]), the programmer answers the third question too. More recently,
Calpa [70, 71] automated the process of program annotations and can answer all the above three
questions automatically. Calpa instruments a program to collect program profiles and analyzes them
to generate annotations to answer the above questions and thus automates the process. However,
Calpa’s technique is not easily transferable to the dynamic optimizer domain because of the high time
and space overheads incurred by the initial profiling run (100x-1000x slowdown) and the annotation

analysis (2.5x-100x slowdown) [70].

In this dissertation, since we are interested in a transparent implementation, the specializer cannot
rely on program annotations and has to discover the answers to all these questions automatically.
Equally importantly, these answers have to be discovered with low overheads since the specializer
executes at runtime. Thus, the first key challenge facing a transparent program specializer executing
at runtime is the low-overhead, automatic identification of repetitive values, semi-invariant memory
locations, and specializeable code regions. The primary contributions of this dissertation are in the

form of techniques that address this challenge.

The next challenge is in specializing the identified code regions with low overheads and gen-
erating low-overhead dispatching code to transfer control to the specialized code. This dissertation
makes additional contributions with respect to low-overhead specialization and low-overhead dis-

patching techniques to transfer control to specialized code.



1.4. Implementing a transparent runtime program specializer: Key Ideas behind our

solution

Having examined the motivations for transparently implementing a program specializer within
a dynamic optimizer, and the challenges in implementing one, we now present the main ideas that

enable such an implementation.

In order to develop a fully automatic specializer, we rely on dynamic program analysis to answer

the three questions described in the previous section.

The specializer answers the first two questions with two forms of value profiling: it collects (1) an
object access profile, which is a frequency distribution of the set of objects accessed at each program
point; and (2) a store profile, which provides the specializer with the set of memory addresses that
were written in the profiled interval. Due to recent advances in sampling-based profiling both in
software and hardware, these profiles can be collected with high accuracy, yet with overheads that

are sufficiently low for dynamic optimizers (5% slowdown and lower) [13, 34,51, 77,78, 88].

With the aid of these two value profiles, we turn a Sparse Conditional Constant Propagator
(SCCP) [89] into a specializer (based on the online partial evaluation strategy [56]) by letting it con-
sult the two profiles, essentially as follows: given a program point p and an object o that is frequently
referenced at p, we perform standard constant propagation starting from p, with two modifications:
(1) we assume that o is a constant; and (2) we evaluate load instructions on the concrete memory
state (note that the program is specialized while the program is running). The second modification
discovers memory invariance: when the specializer encounters a load whose address « is a run-time
constant, it consults the store profile. If the memory location a has not been recently written, the
specializer assumes that the location is invariant and executes the load to fetch the current content of
a. The fetched value is now considered a run-time constant and is constant-propagated further. If the

memory location a was recently written, the load is not evaluated (it returns the generic non-constant
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value, L1).

However simple, this profile-based specializer-driven identification of memory invariance is both
the most novel and most powerful part of the specializer: it enables generation of code that is spe-
cialized not only with respect to the hot object o, but also with respect to the (temporally) invariant
part of the heap. Let us compare our dynamic technique with the alternative of using a static pointer
analysis. Since the store profile monitors individual memory locations, invariance detection is more
accurate than static pointer analysis working on an abstract heap. It should also be noted that the
specializer sidesteps the scalability challenges of pointer analysis in a dynamic optimizer, because it
does not rely on any pointer analysis. In contrast to existing specializers, our technique can automat-

ically identify and exploit arbitrary semi-invariance in runtime data structures.

Obviously, the specialization technique is more involved than the above outline may suggest.
Firstly, before specialization can be performed, the specializer has to address the third question given
above — identifying specializeable code regions. This dissertation shows how a dynamic analysis
similar to the one above can be used to identify suitable specializeable code regions. We show
that this analysis runs as fast as a standard SCCP algorithm making it quite efficient. Secondly, for
more powerful specialization, the SCCP-based specializer is extended to unroll loops and specialize
them. Finally, the dynamic analysis must (sometimes) be guarded with checks protecting against
writes into run-time-constant memory locations. In this dissertation, we propose two techniques for
implementing these guards. The first is based on a recently proposed fine-grained programmable
memory protection scheme [90]. The second technique relies on the type safety of Java to insert

runtime guards at all potential modification sites.

Our specializer crucially relies on runtime profiles for a low-overhead, accurate, automatic iden-
tification of repetitive values, invariant memory, and specializeable code regions. Such profiling is
possible due to recent advances in sampling-based profiling both in software and hardware [13, 34,

51,77,78,88]. Of these existing proposals, one of them [77] is proposed and evaluated as part of this
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dissertation. This dissertation proposes general-purpose profiling support for use in dynamic opti-
mizers. This profiler can collect a wide range of profiles including store and object access profiles
needed by our specializer. This profiler is a h/w-s/w hybrid: it relies on simple hardware support
for accumulating profiling events and sending this information to software which processes it to
build the desired profiles. The profiling hardware implements stratified sampling — which is a sam-
pling technique in which the input population is divided into disjoint sub-populations and sampled
independently [43]. The profiler stratifies the input event stream with a hashing function. In our
experiments, for the same desired accuracy and profiling time, stratified sampling incurs half the

overheads of h/w random sampling.

1.5. Summary of contributions

Having presented the motivations that underlie this dissertation and the key ideas behind our
specialization technique, we now summarize the contributions of this dissertation.
This dissertation proposes the following techniques and shows how they enable a transparent

implementation of runtime program specialization.

e \We show that profile-guided invariance detection techniques can automatically identify invari-

ance in runtime data structures at fine granularities.

e \We show that using profile-guided dynamic analysis, specializeable code regions can be iden-

tified automatically with low overheads.

e \We show that the necessary value profiles can be collected accurately and with low overheads
using a general-purpose profiling technique suitable for dynamic optimizers. More specifi-

cally, we show that very simple stratified sampling hardware enables this profiling technique.

These techniques have been used to implement a transparent program specializer. We have eval-

uated this specializer for specializing Java bytecodes within a Java Virtual Machine [63]. We sum-
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marize the practical advantages of this specializer below:

e It can be performed entirely at run-time, without any user intervention or off-line preprocess-
ing. Our algorithms automatically specialize unmodified Java bytecode, avoiding the need for
programmer-inserted annotations required by other specializers (except for Calpa [71], which
however works pre-runtime). With hardware support similar to existing hardware or proposed

hardware [57,90], these techniques could also be adapted for programs written in C.

o |t offers accurate invariance detection. Our dynamic analysis detects invariance at fine gran-
ularities unlike existing specialization approaches which are limited in their ability to exploit
partially static data structures. Our analysis detects invariance of individual, concrete heap lo-
cations, not that of abstract ones. Guarded with run-time checks (either software or hardware),
the analysis can exploit specialization opportunities that may not be easily detectable or an-
notatable on the (abstract) source code, in particular: (i) temporally semi-invariant data struc-
tures, such as infrequently-updated hash tables, and (ii) spatially semi-invariant data structures,

such as a linked list containing both variant and invariant elements.

e It is sufficiently lightweight for run-time compilation. We show that the algorithm that identi-
fies specializeable code regions is as efficient as a Wegman-Zadeck sparse conditional constant
propagator (SCCP) [89]. Further, we show that we can adapt the SCCP algorithm to eliminate
invariant memory, unroll loops, and create multiple specialized versions of the same code re-
gion. Our reliance on the readily available SCCP makes our techniques easy to implement.
Despite its transformational simplicity, it can speedup some programs by up to a factor of

3.6X, and simple extensions (future work) can provide further significant improvements.

The dissertation also implements and evaluates the h/w-s/w hybrid profiling scheme that im-
plements the stratified sampling scheme in hardware. While this profiling scheme was developed to

enable runtime specialization, it is a stand-alone contribution of this dissertation and can be used out-
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side the context of our specific specialization system. Within the profiling domain, the contributions

of this dissertation can be summarized as follows:

e \We propose a h/w-s/w hybrid profiling model which is based on hardware preprocessing of a

stream of profiling events.

e \We present a framework of abstract profiling components which can be composed together to
construct and evaluate different profilers. In this dissertation, we study six different profiling

schemes.

o Specifically, we propose stratified sampling as the profiler of choice. Our evaluation shows that
with fixed profiling overheads and accuracy levels, this sampler achieves the desired accuracy

at least twice as fast as a random sampler.

1.6. Thesis Organization

In Chapter 2, we present a background for this dissertation and discuss work related to this
dissertation. As we present the details of our technique in later chapters, we will present work
related to that specific component being discussed. In Chapter 3, we present an overview of our
specialization technique. In Chapters 5 to 8, we present details of the various components of our
technique. In Chapter 9, we present an experimental evaluation of our technique and conclude with

a summary and future work in Chapter 10.
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CHAPTER 2
BACKGROUND AND RELATED WORK

In this chapter, we first present an overview of the area of program specialization. We then
discuss the phenomenon of computation reuse which helps us situate program specialization within
a broader context.

2.1. Program Specialization

Program specialization (in various forms) [8, 14, 30-32,47,56,58,61,65,71,73,75, 80,81, 86] is
a well-studied program optimization technique. In essence, it is a technique that speeds up program
execution by eliminating computation that depends on constant values.

In the following sections, we present an overview of some of these specialization techniques.
First, we present a discussion of partial evaluation, which is at the heart of most specialization tech-

niques. Next, we present a comparison of several existing specializers.

2.1.1. Partial Evaluation

Partial Evaluation is perhaps one of the most well-studied program specialization technique.® In
its classic form, partial evaluation [56] is a compile-time source-to-source optimization technique
applied to the entire program. It is used to speed up execution of a program P with input I = {S,D}
where $ is the subset of the input which is known a priori, and D is the subset of the input which
is not known a priori. Given S, a partial evaluator specializes P for S and yields a new program Ps.
When Ps is then provided the rest of the inputs D, it generates the same result as P would generate for

the input I = {S, D}, but presumably much faster. Thus, the essence of applying partial evaluation is

INeil Jones et al. [56] defines partial evaluation and program specialization to be equivalent. However, Mogensen [72]
defines partial evaluation to be an instance of program specialization. Mogensen lists the technique of writing generating
extensions as an example of non-partial-evaluation based program specializers. In this dissertation, we use program spe-
cialization to refer to the concept of specializing a program (rather than any specific technique), whereas partial evaluation
refers to a very specific specialization technique.
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to use some relatively static (unchanging) input S and generate faster special-purpose programs Psg.
Note that while partial evaluation is typically applied to an entire program, it can easily be applied

to smaller scopes such as procedures.

Many techniques for implementing partial evaluation have been developed. They can be classi-
fied into two categories: offline partial evaluation and online partial evaluation. These terms do not
refer to the times when the technique is applied (compile-time vs. run-time), rather either technique

can be performed at compile-time, or at run-time, or can be staged.

Offline partial evaluation is a two-stage process. In the first stage, a binding-time analysis (BTA)
uses the knowledge of the static input S and assigns binding times (static/dynamic) to all program
variables and annotates all program statements as being reducible (can be evaluated at partial eval-
uation time) or residual (has to be evaluated at run-time). During this analysis, the actual values of
the static inputs are never used. The only information used is the knowledge of what variables are
static. The second stage, known as the specialization phase, uses the values of the static variables
and eliminates all statements marked reducible and retains all statements marked residual. DyC [47],
Tempo [31], CMix [8], and Fabius [61] are some examples of the offline approach. While CMix,
DyC, and Tempo target the C programming language, Fabius targets the functional language ML.
Because of their design, offline partial evaluation techniques are perfectly suited for a staged compi-
lation model. The expensive BTA can be performed at compile-time without the knowledge of the
actual runtime values. The specialization phase (which in this case simply follows the BTA annota-
tions) can be performed at run-time when the actual runtime values become available. DyC [46] is
a good example of this approach. Tempo [31] can be performed entirely at compile-time or can be

staged like DyC.

In contrast with offline partial evaluation techniques, online partial evaluation techniques seem
more suitable for a runtime optimization environment since they make specialization decisions using

the knowledge of invariant values. An online partial evaluation technique [56, 76] is a single-stage
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process in which the values of the static variables are used to make specialization decisions. On-
line partial evaluation techniques can potentially discover more specialization opportunities when
compared to offline techniques because they have access to the runtime program state (including
memory state) which can be used to make better specialization decisions. The primary drawback
of online partial evaluation techniques is the high specialization overheads that will be incurred at
runtime. In addition, online partial evaluators tend to be more aggressive in duplicating code and
have to address problems of termination. FUSE [76], a partial evaluator for a subset of the functional
language Scheme, is an example of an online partial evaluator. FUSE is a compile-time online partial

evaluator.

2.2. Comparing Program Specialization Techniques

Having presented a brief overview of partial evaluation which forms the basis for many special-
ization techniques, we now discuss some of them in relation to how they answer the specialization
questions listed in Section 1.3. Recall that all specializers have to essentially find answers to three

questions before specializing the program:
¢ ldentifying repetitive inputs: what program variables exhibit repetition?
e Identifying semi-invariant memory: what parts of runtime data structures are (semi-)invariant?
¢ ldentifying specializeable code regions: what code regions can be specialized?
In this section, we present a comparison of several existing specialization techniques with respect to
how they answer these questions.
In order to specialize a program, it is important to identify the variables that exhibit repetition (if

the variable takes on only one value, it is called an invariant variable). Specialization techniques use

these repetitive variables to seed the specialization process.
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For specializers of functional languages, repetitive variables are specified by user annotations
or by using function currying [61]. In an annotation-based approach, the inputs to a function are
annotated as being static (invariant) or dynamic (Example: Mix [56]). The specializer uses these
annotations to specialize this function (and potentially other functions invoked by it) for the values
of the static variables. In the function currying approach, a function that requires multiple inputs
is only provided some of the inputs. The interpreter then returns a new function that takes the rest
of the inputs. Currying can be implemented by returning wrapper functions. However, program
specializers can return a more optimized function in which the computation dependent on the partial

input is specialized away.

CMix [8], Tempo [31], and DyC [47] — specializers for the C programming language — require the
user to provide a specification of both the input variables to specialize for as well as the code regions
to specialize. Recently, Calpa [70, 71] automated the process of generating annotations for DyC
by using runtime profiles collected with an instrumented executable. Calpa successfully generates
annotations that were hand-generated for DyC. However, Calpa requires a separate profiling run and
suffers from drawbacks similar to those of profile-driven recompilation systems. There might not
be any representative input available that captures the inputs during the non-profiling runs. One
approach to transparent runtime specialization would be to adapt Calpa for use within a dynamic
optimization system. However, the techniques used by Calpa to automate the annotation process does
not appear to be suitable for this purpose. Calpa requires extensive profiles of use and definition of
scalar variables, as well as profiles of loads of and stores to pointer variables. The cost of collecting
these profiles is very high. The profiling run incurs a slowdown from 170X to 2000X [70]. Thus,
while Calpa is well-suited as a tool to automate the annotation process for DyC, its high overheads

makes it hard to adapt it for a runtime implementation.

Our specializer relies on runtime profiles to identify variables exhibiting repetition and to identify

semi-invariant parts of data structures. Section 1.4 presented the profile-based technique that enables
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automatic identification of semi-invariant parts of runtime data structures. In addition, an automatic
scope-finding algorithm identifies the code regions that can be profitably specialized. Our technique
differs from most existing specialization techniques since it does not rely on any user annotations.
It is similar in spirit to Calpa in automating the specialization process. However, unlike Calpa,
our technique can be used to implement runtime specialization without any compile-time program
analysis. This is enabled by a combination of (i) low-overhead runtime profiling techniques, (ii)
restricted specialization model, and (iii) a greedy, but fast and efficient scope-building techniques.

We present an overview of our technique in Chapter 3 and present further details in the later chapters.

2.2.1. Exploiting invariance in Runtime Data Structures

In this section, we compare specialization techniques with respect to their support for exploit-
ing invariance in runtime data structures. Programs written in functional languages are side-effect
free. Consequently, data structure values are no different from primitive values. Specializers for
functional languages can exploit partially invariant data structures. However, computation via side-
effects is one of the defining characteristics of imperative languages like C and Java. As a result, data
structure values (pointers in C, object references in Java) cannot be treated the same way as primi-
tive values. Repetition of a pointer variable is not sufficient for using the contents of the locations
referenced by the pointer variable. The underlying referenced data structure must also be invariant.
Consequently, program specializers for C (CMix, DyC, Tempo) either rely on whole-program alias
analysis techniques [8, 31] or rely on programmer annotations to detect invariance of runtime data
structures [47].

Our specializer differs from these existing techniques in its ability to automatically detect invari-
ance in runtime data structures unlike existing specialization techniques. In Section 1.4, we described
how the specializer uses the store profile to accomplish this. In addition, unlike existing annotation-

based techniques, the store profile enables exploitation of fine-grained irregular invariance in data
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structures (Section 3.5.2).

2.3. Computation Reuse

In this section, we situate program specialization within the more general phenomenon of com-
putation reuse.

Most programs contain computation regions which compute the same results that they computed
previously, regardless of how one defines a computation region (individual machine instructions,
basic blocks, dependence chains, expressions, dynamic execution traces, functions, methods, or any
arbitrary code segment). Reusable computations present an optimization opportunity since the results
of repetitive computation can be stored and reused without having to compute the results again. As
an example, loop-invariant code motion [6] computes the value of a loop-invariant expression once
outside the loop, caches the result in a register, and it within the loop. Common subexpression
elimination (CSE), and partial redundancy elimination (PRE) are other examples of static compiler
optimizations that are also computation reuse techniques. As another example, classic memoization
[69] is an optimization in which the computation of entire functions is reused by caching the results
in a memo-table.

In general, computation reuse opportunities can arise either due to invariance in the input data or
because of program structure (the way programs are written). Loop-invariant code motion (LICM),
CSE, PRE are examples of reuse opportunities that arise due to program structure.

Program specialization is a computation reuse technique that eliminates reusable computation
that arises due to invariance in input data. The reusable computation regions need not be contiguous
— the specializeable code can be mixed in with non-specializeable code. These techniques optimize
a program by hard-coding the results of the reusable computation region within the program. When
compared to other computation reuse techniques (like memoization, instruction reuse, basic-block

reuse), program specialization is perhaps one of the more powerful computation reuse techniques
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because it can exploit reusable computation at far coarser granularities than these other techniques.
For the same reason however, they are quite general-purpose and can be expensive to apply at fine
granularities.

Another computation reuse technique closely related to program specialization is memoization.
One of the defining characteristics of memoization is that the reusable computation region is al-
ways contiguous, i.e. the region does not contain any non-reusable instructions. Memoization is the
underlying idea behind a number of specific techniques: standard memoization [18, 20, 28, 69], In-
struction Reuse [84], Polymorphic Inline Caching for virtual calls in object-oriented languages [53],
compiler-directed reuse proposed by Connors and Hwu [29], Basic-Block reuse by Huang and
Lilja [55], and Data Specialization [58]. These memoization techniques differ in what is memo-
ized, the key for looking up the reuse table, and how the reuse table is implemented. Classic mem-
oization [18, 20, 28, 69] reuses computation at the granularity of functions, data specialization [58]
reuses computation at the granularity of expressions, Instruction Reuse [84] reuses computation at

the granularity of individual instructions, and so on.
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CHAPTER 3
PROGRAM SPECIALIZATION IN DYNAMIC OPTIMIZERS: AN OVERVIEW

In Chapter 1, we sketched the main idea of our specialization technique. In this chapter, we

present a more detailed overview of our specialization technique using an example.

3.1. Specialization model

We first describe the specialization model that is the basis of our specialization technique. There

are three components to our specialization model:

e Specialization Scopes which are the atomic units of specialization and correspond to control-

flow regions in the program,

e Specialization Keys which correspond to input variables of a specialization scope that exhibit

repetition, and the

e Specialization Transformation which specifies a program transformation based on selected

specialization scopes and keys.

3.1.1. Specialization scopes and keys

Object
Specialization Key (k) Other H
(Object Reference) Inputs eap

I
Y

Specialization Scope
SS(k)

Figure 3.1. A specialization scope
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The unit of specialization is a single-entry, multiple-exit region of a control-flow graph (CFG),
called a specialization scope, or simply scope. A scope is entirely intra-procedural and does not
cross method boundaries, but may contain method calls. A scope may also contain entire loop nests.
A scope may have two kinds of inputs: explicit, consisting of object reference and scalar variables,
and implicit, consisting of the heap (see Figure 3.1). Of the variables making up the explicit input,
one object reference is selected to be the specialization key. A scope is specialized with respect to
this specialization key: the specializer creates multiple specialized versions of the scope, one for
each frequent value of the key. In the rest of this dissertation, we use SS(K) to denote a scope SS
with a key k. Also, for purposes of brevity, we will occasionally refer to SS(K) as a scope, even

though we mean scope SS with a key k.

We now translate some of these concepts into partial evaluation terminology. The key corre-
sponds to the static division of the explicit inputs of the scope. Creating multiple versions of the
same scope corresponds to polyvariant specialization (one for each value of k). Some partial eval-
uators also support polyvariant divisions — a partial evaluator that implements polyvariant divisions
specializes the same code region with different keys (i.e. different k’s). However, our model does

not support polyvariant divisions because given a scope, the key is fixed.

3.1.2. Specialization transformation

CFG Loop Unrolling +

Transformation
‘

Spec Scope - SS
Spec Key -k

Constant Propagation

| ookup( k)

Default Version

Default Version

k=v_1
SS clone

k=v_n
SS clone

‘Ss(vil) ‘ ‘Ss(vin) ‘ ‘ SS clone ‘

Figure 3.2. Pictorial representation of the specialization transformation
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Figure 3.2 shows the two-step process of specializing a scope. First, the scope is cloned for each
hot value v; of the key k. Second, each cloned scope is specialized under its hot value. Third, a new
instruction, lookup(k), is introduced to transfer the control to the appropriate specialized version

depending on the value of the key. A failed lookup will transfer control to the original scope.

3.2. Example

public Cct Node Fi ndTreeNode(Cct Node this, Point p)

{ if ( p.x < this.faces[0].verts[0].x SPECIALIZATION
|| p.x >= this.faces[3].verts[O0].x)
return nulTl; SCOPE
}

o

OctNod

(p.-x < 3.4549)
(p.x >=

I 73. 0974)
faces[ 3] Specialized Version 1
. this = 0x34ad8800
p this
p
‘ 'l \‘
(p.x < this.faces[0].verts[0].x) p.x < 5.3432)
|| (p.x >= this.faces[3].verts[0].x) || (p.x >= 71.1582)
Original unspecialized expression Specialized Version 2

this = 0x478d01f0

Figure 3.3. Example code region

Having presented the specialization model, we introduce an example which we use as a running
example in the rest of this section to illustrate the workings of our specialization system.

Figure 3.3 shows a fragment of the method FindTreeNode from the SpecJVM98 benchmark
raytrace. This method compares a Point against an OctNode, encoded as a relatively complex

pointer-based data structure (see Figure 3.3), which the method traverses whenever it evaluates an
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expression like this.faces[0] .verts[0].x. Altogether, five memory loads are needed in
this expression, an inefficiency caused in large part by Java semantics.

Since the octtree is invariant after it is constructed, this method can be specialized for frequently
visited nodes of the tree (those near the root). Let us assume that the specializer has identified the
specialization scope highlighted in the figure. The key variable is this. For this example, let us
consider a and b as the two frequently occurring values of the key. Note that the argument p is not
invariant and thus belongs to the dynamic scope input. Figure 3.3 shows the scope specialized for
this=a and this=b. For simplicity, we do not show the lookup(this) statement. Note that
all loads from invariant memory have been specialized away.

In this chapter, we will use this example to show how our specializer:

1. identifies the invariant portions of the octtree;
2. determines a beneficial scope, highlighted in the figure; and

3. creates the specialized versions of the scope.

Before we present the steps of our specialization process, we present the dynamic optimizer

environment within which it is implemented.

3.3. Dynamic Optimizer environment

Our specializer is designed to run in an adaptive dynamic optimizer like Hotspot [67] or Jikes
RVM [4] (aka Jalapeno). These optimizers execute continuously on separate threads of control
concurrently with the application. We assume that a dedicated thread collects the value profiles
needed by our specializer. We assume that specialization is triggered at fixed time intervals, or
whenever the count of profiled events reaches a certain threshold. This triggering could be done by a
dynamic controller that is part of adaptive compilation systems like HotSpot and Jikes. The length of

these profiling/specialization phases can be determined either empirically or by using some tuning
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algorithms that adapts to the working set of the program. In this dissertation, the length of these
phases have been determined empirically and are fixed for the entire execution of the application.
Our specializer faces the same issues as other dynamic optimizers, namely fast and efficient
code generation, identification of “hot” methods, on-stack replacement of optimized code [53], cost-
benefit analysis, and synchronization between the main thread and the optimizer threads. These
problems are not unique to our specialization technique. Existing solutions apply in our setting
[11,53,67] and we don’t specifically address them in this dissertation. For example, low-overhead
dynamic optimization techniques, such as [11, 12, 60, 67], reduce overhead by means of multiple
threads of control that share the processor with the optimized application. Krintz et al. [59] show that
by using compiler-generated annotations as part of Java bytecode classfiles, dynamic compilation
overheads can be reduced. Such techniques have broad applicability in a dynamic optimization

environment and can help reduce the optimization overheads of our specialization system too.

3.4. The specialization process

In Figure 3.4, we show the steps performed by our specializer when it is invoked. First, for
each hot method identified by the optimizer, specialization scopes are identified by an analysis that
relies on a dynamic analysis similar to that used by the SCCP-based specialization algorithm we
discussed in Section 1.4. We present the details of this algorithm in Chapter 5. This algorithm relies
on two value profiles: the object access profile and the store profile. In this dissertation, we propose
a general-purpose profiling solution for collecting a range of profiles at runtime with low-overhead.
We discuss the details of this profiling solution in Chapter 4.

After the specialization scopes are identified, the CFG is transformed as shown in Figure 3.2
and its scopes are specialized, as discussed in Section 1.4. The detailed algorithm is presented in
Chapter 6. During this specialization, the addresses of invariant memory locations participating in

specialization are collected. If the absence of modifications to these specialized memory locations
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while (true) {
Wait for a signal from the optimization controller;
Let hm = Set of hot methods (obtained from the optimization controller);
Let oap= Object Access Profile; /* global variable */
Let sp = Store Profile; /* global variable */
Let iml={}; /* Setof specialized memory locations */
foreach (m € hm){

SS = BuildScopes(m); [* Chapter 5 */
im = SCCP_Specialize(m, SS); /* Chapter 6 */
Add memory locations in imto iml;
Generate 1ookup implementations; /* Chapter 7 */
¥
Add guards for memory locations in iml; /* Chapter 8 */
Chain together specialized versions; [* Section 7.4.1 */
Reset sp;

Decay profile counters in oap by half;

Figure 3.4. Outline of the specialization process

cannot be proven at specialization time using type-safety, run-time guards are added to detect such
modifications. When a modification is detected, the particular specialized scope is immediately
invalidated (see Chapter 8). Next, for each scope, a suitable implementation of the lookup statement
is generated (see Chapter 7). Finally, a subset of lookup instructions are eliminated by “chaining”

specialized scopes together with direct calls.

3.4.1. Specialization Meta Issues

We now discuss some specialization meta issues: first, when and does the specializer system
become active, and second, how does the specializer deal with scenarios of no-performance-benefit
from specialization, and significant-performance-benefit from specialization. These issues deal with
how a runtime specializer fits in within the overall dynamic optimization system. These issues are

specific to the dynamic optimization setting and are not pertinent for an offline specialization system.
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Specializer startup

We first discuss how and when a specializer becomes active. Clearly, the specialization system
can be activated right at the beginning of the application’s execution. However, this has the dis-
advantage that the specializer might discover specialization opportunities that are short-lived and
correspond to the initialization phase. Therefore, there needs to be a mechanism for skipping over
the initialization phase. There are multiple ways of doing this.

One straightforward approach would be to set a fixed empirical time threshold after which the
specialization system is triggered. However, besides being ad hoc, it is not a robust technique.

Another approach would be to monitor the activity of the class loader and native compiler. When
a program first starts executing, a dynamic optimization JVM (like HotSpot or Jalapeno) loads the
necessary Java classes, compiles them to native code and also optimizes them (either right away or
based on feedback from runtime profiles). During the initialization phase, the class loader will be
very active as it loads up all the required classes. In addition, the compiler in a dynamic optimizer
like Jalapeno will perform an initial compile of the active methods and will also be very active in the
initialization phases. Thus, another approach would be to wait for the class loader activity and the
baseline optimizer activity to reach a low watermark before triggering the specialization system.

Having seen specializer startup, let us now examine steady state behavior of the specializer.
Very broadly, there are two scenarios: (i) where specialization provides no benefit, and (ii) where

specialization provides benefit.

Handling the case of non-zero specialization benefit

Let us first consider the steady-state behavior for programs which benefit from runtime special-
ization. This scenario closely follows the specialization process described in Section 3.4. After the
specializer starts up, the specializer is triggered periodically. At that time, it analyzes the profiles,

builds specialization scopes, and generates specialized code as described in Section 3.4.
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Handling the case of no runtime specialization benefit

Let us now consider the case when specialization is not beneficial. Note that specialization is
not a general purpose technique and might not lead to performance improvement for all programs.
Therefore, the specialization technique has to have small overheads on such programs. We now
describe techniques to accomplish this.

The specialization process in Figure 3.4 shows that profiling and scope building precede the
actual specialization transformation. These costs are incurred by all applications — irrespective of
whether specialization is beneficial or not. We now discuss ways of keeping these overheads small
to minimize slowing down programs that won’t benefit from specialization.

As regards profiling, our evaluation shows that the overheads of collecting these profiles using a
hardware stratified sampler will be about 5-10% of the program’s execution time. Using a software
profiling technique like that proposed by Arnold and Ryder [13], the costs are expected to be under
10%, but, with lower sampling rates than supported by hardware profiler. While these costs are
small, these costs are non-negligible. However, when the specializer determines that specialization
is not beneficial, profiling can be turned off (or alternatively, the sampling rate can be reduced). This
approach lowers the profiling cost and might keep it small. This is similar to Dynamo’s behavior;
dynamic optimization is turned off when Dynamo determines during the early part of the program
execution that the expected benefits might not offset the cost of dynamic optimization [15].

As regards identification of specialization scopes, evaluation of the specializer shows that build-
ing specialization scopes is a low-cost step. Even with an inefficient implementation of the special-
izer studied in this dissertation, the average cost of identifying specialization scopes for a hot method
was under 150 ms on an UltraSparc workstation — this cost is likely to be smaller in a well-tuned
dynamic optimizer. In addition, if specialization is performed by a separate optimization thread,
the cost will be further reduced. If the specializer does not identify any specialization scopes, no

additional transformation cost is incurred.
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A simple way of lowering the cost of scope identification for non-beneficial applications would
be to progressively increase the length of the profiling phases (either linearly, or exponentially). As
a result, the specializer waits longer and longer before trying to build new specialization scopes. For
programs where no scopes are identified, this back-off technique has the effect of lowering the cost
of scope building significantly.

Having presented the big picture, we now present an outline of the different components of our
solution. We first examine the profiling component enables the automatic identification of invariant

values and automatic identification of specialization scopes.

3.5. Profiling

The object access profile accumulates the frequency distribution of (i, object-address) pairs,
where i is any instruction of type getfield, getarray, and arraylength. The value object-
address is the actual address of the object referenced by 4. Note that in each specialization phase,

this profile is decayed by half, giving preference to specialization of recently accessed objects.

3.5.1. Profile-based Invariance Detection

The store profile accumulates addresses of recently stored-to memory locations. As mentioned
above, any memory location absent in the store profile is considered invariant.> Note that in each
specialization phase, the store profile is reset (see Figure 3.4). This is done to detect temporally
semi-invariant data. Due to this resetting, all store-addresses show up in the store profile once (if at
all?) and disappear after the next reset. Therefore, all previous modifications to a memory location
are forgotten enabling the specializer to exploit invariance during the periods when the content of the

memory location is unchanged.

THowever, one could also imagine implementing a more probabilistic notion of invariance where the store frequency
is used to determine the likelihood of the location being invariant.
2 store-address may not show up in the profile at all due to sampling errors
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So, all store addresses that correspond to data structure initialization disappear after they show up
the first time. Looking at the example in Figure 3.3, since the octree is invariant after it is constructed,
the store addresses corresponding to this construction will appear only in the initial phases. When
the scope and specialization algorithms query the profile during later phases, they will assume the

invariance of the memory locations in the octree.

Thus, our profiling technique enables us to identify arbitrary spatial and temporal invariance in

data structures — the store profile enables this spatially, the resetting enables this temporally.

3.5.2. Comparison with Annotation-based Invariance Detection

Let us compare the power of profile-based invariance detection with that of static annotations,

whether produced by a programmer or by a tool.

First, let us consider class-based annotations, where the annotation states that some fields of all
objects of a particular class are run-time invariant. This annotation would fail to specialize Figure 3.3.
In this example, we want to state, among other properties, that the fields x, y, zin all Point
objects in the octtree are invariant; unfortunately, there are Point objects outside the tree whose
fields are not invariant, for example the object passed via argument p, and so a class-based annotation

would be incorrect in this case.

Next, let us consider expression-based annotations, which identify static expressions that always
access invariant memory locations. In Figure 3.3, we could annotate this.faces[0] -vert[0]
as invariant. However, if a part of the octtree were modified, then this annotation would be incorrect.
To conclude, although more fine-grain static annotations have been proposed runtime store-profile

based schemes are a simple and powerful way to detect invariance.

3in reality, the octtree is not modified in the raytrace benchmark
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3.5.3. Low-overhead Runtime Profiling

We now present an overview of our profiling scheme used to collect the above value profiles.

In this dissertation, one of our goals is to provide profiling support for dynamic optimizations.
Ideally, a profiler suitable for dynamic optimization should exhibit the following properties: (1)
have low overheads (2) have high accuracy, (3) converge rapidly, and (4) be broadly applicable to
enable collection of a variety of profiles. We propose a hybrid profiling model which leverages
the strengths of both hardware and software. Programmable hardware monitors events of interest,
collects data at high bandwidth, does some minimal preprocessing and passes on the information to
software. Software (virtual machine software, dynamic optimization runtime systems, etc.) collects
this information, analyzes it as necessary and builds the necessary profiles (edge profiles, basic block
profiles, etc.).

On the hardware side, we propose a family of hardware profilers based on a model of stream
compression. The processor generates a stream of (selected) profiling events which are then com-
pressed (in that the bandwidth is reduced) by a hardware preprocessor before sending the compressed
message stream to software. We show that hardware that implements stratified sampling [43] is a
good enough compressor. Stratified sampling divides (stratifies) an input population into multiple
disjoint subpopulations and samples them independently. It is a well-known statistical result that this
process is more accurate than ordinary random sampling. In our proposed solution, we use a hash-
ing scheme to stratify the input event stream. We show that a stratified sampler achieves a desired
accuracy twice as fast as a random profiler while incurring the same time overheads.

We present the full details of our profiling technique and present the results of our evaluation in
Chapter 4. While this profiling technique has been developed to enable our runtime specialization, it
can be used in other applications.

It should be noted that this hardware-based profiler is not a precondition for our transparent

specializer. Other profiling software or hardware profiling solutions [13] can be used in place of the
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profiling technique developed in this dissertation.

3.6. Guarding specialized memory locations

It should be clear that the store profile merely shows that a memory location is unlikely to be
modified in the future. Consequently, our store-profile based specialization is a speculative opti-
mization and we need to provide mechanisms to guarantee the correctness of this speculation. In
this dissertation, we show how the specialized memory locations can be guarded to detect modifica-
tions. When such modifications are detected, the corresponding specialized versions are invalidated.
We propose two techniques for guarding memory locations. The first technique employs fine-grain
programmable memory protection, such as Mondrian [90]. A less powerful version of such memory
protection is also available in Transmeta Crusoe processors [57]. This technique requires program-
ming the memory system to raise an interrupt after a store to any of the specialized memory locations.
It works for specialization of unsafe languages like C where efficient pointer analysis is very hard.
The second technique relies on the type safety of Java. We first examine the specialized locations
as object fields; if these fields are all final, or no putfields to these fields outside constructors exist,
these locations can never be overwritten. Otherwise, we instrument putfields to check if they are

overwriting a guarded location. These mechanisms are discussed in detail in Chapter 8.

3.7. Building scopes

Having presented an overview of most of the specialization system, it remains to outline how
our specializer determines beneficial specialization scopes. Creating a scope essentially boils down
to identifying a suitable specialization key variable and a suitable key lookup point (this is where
specialization based on the key will start). The choice of the two is extremely important for spe-
cialization quality. Consider a loop that traverses an invariant linked list. Ideally, we would like

to completely unroll and specialize away the entire loop. Clearly, a suitable key is the pointer that
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walks through the list. Regarding the lookup point for this key, a good choice is outside the loop,
as it will induce a scope that includes the entire loop; a bad choice for the lookup is inside the loop,
as this lookup placement will create a scope that includes only one iteration—a much less powerful
specialization because a lookup is invoked on each iteration and the loop is also not specialized away.

The goal is thus to find suitable key variables and build the largest possible specialization scopes
for these key variables (with the constraint that excessively large scopes cause too much code dupli-

cation). Let us now look at the main idea behind the algorithm.

Main Idea: For each program point p that accesses an object o, the algorithm computes a scope
starting at p and having o as the key. To do this, the algorithm essentially tries to construct a
skeleton of instructions (rooted at p and connected by data-flow dependencies) that access invariant
memory locations and identifies a single-entry, multiple-exit control-flow boundary that encloses
this skeleton. The algorithm only focuses on the subset of instructions involved in accessing objects:
getfield, getarray, and arraylength Java bytecode instructions.

The algorithm starts a new specialization scope whenever the process of growing a skeleton is
disrupted: due to a variant object access, due to an intervening call, and other reasons which are
precisely described in Chapter 5.

This process also determines which loops should be unrolled. The detailed algorithm is presented
in Chapter 5 formulated as a dataflow analysis. Note that just like the specialization algorithm,
the scope-building algorithm uses the value profiles to determine invariant memory accesses. It is
also similar to binding-time analysis used by offline partial evaluators in that it is a pre-pass that

determines what to specialize.

Example: Let us now walk through the steps involved in identifying the scope for the example
shown in Figure 3.3. The algorithm starts at the first getfield instruction p.x and retrieves the hot

object referenced at this site. On consulting the store profile, it finds that the field p . x is modified for
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this object. So, the algorithm proceeds to the next getfield instruction this.faces. By consulting
the object-access profile, the hot object is selected as a representative object for further exploration.
Let us assume it to be a = 0x34ad8800 as shown in the figure. The algorithm discovers that
a.faces is invariant by consulting the store profile. So, a new scope is started at this getfield in-
struction. Using this instruction as the skeleton, the algorithm proceeds to the dataflow successor:
getarray(faces[0]). By accessing the object-access and store profiles, the algorithm discov-
ers that this is an invariant access and grows the skeleton. Continuing in this fashion, the scope is

greedily grown to include both the expressions highlighted in Figure 3.3.

3.8. Restricted specialization model: Strengths & Limitations

In our current specialization model, we have imposed two restrictions on specialization keys.
Firstly, we disallow scalars from being specialization keys. Secondly, we only allow single-element
specialization keys. These restrictions are both our strength and our limitation. They help us in the

following ways:

e The no-scalar restriction reduces the profiling overheads by only requiring us to profile object
accesses which are far fewer in number than scalar accesses. This restriction also allows
us to implement low-overhead lookup mechanisms to transfer control to the right specialized

version. This will become clear in Chapter 7 when we present several lookup implementations.

e The single-element key restriction simplifies our automatic scope-building algorithm by elim-
inating the need to analyze the interactions of multiple invariant variables. This restriction also

reduces the profiling overheads by eliminating the need to profile multi-element tuples.
However, the restrictions limit us in the following ways:

e The single-element key restriction limits us by not allowing us to exploit specialization oppor-

tunities that require a multi-variable key. A good example is the equals Java method which
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is implemented by many classes. These methods essentially compare two objects for equality.

Currently, we cannot exploit these opportunities.

e The no-scalar key restriction limits us by not allowing us to exploit specialization opportunities
that do not arise from object references. For example, “pure” mathematical functions that only

operate on scalar values cannot be exploited by our approach.

In practice, this simple model appears to be adequate enough to exploit enough specialization
opportunities to make this approach beneficial. Addressing these limitations to enable better spe-
cialization is left for future work. This work is a first step in implementing transparent program
specializers in dynamic optimization systems. The goal is to get good performance, not necessarily
the best possible performance. Therefore, we made these above simplifications to enable us to study
simple and efficient specialization techniques. Future work can build on this work and lift these
restrictions. Lifting the no-scalar key restriction is easier than lifting the single-element key restric-
tion. With multi-element keys, there will be a cross-product of choices that need to be analyzed at
every two-input instruction. This affects both the profiling technique as well as the scope-building
algorithm. Developing efficient techniques to handle this potential blow-up in choices is the key
challenge in lifting this restriction.

Having presented an overview of the entire specialization process and the big picture, we are now
ready to present the individual components in greater detail in the following chapters. In Chapter 4,
we present a general-purpose profiling technique for dynamic optimizers. In Chapter 5, we present
the details of the scope building algorithm. In Chapter 6, we present the details of our specialization
algorithm. In Chapter 7, we discuss implementations of the lookup instruction, and in Chapter 8, we

present the guarding mechanisms needed to detect modifications to memory assumed to be invariant.
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CHAPTER 4
PROFILING

In this chapter, we present a profiler capable of collecting a variety of profiles at runtime with
low overheads and high accuracy. This profiler has been designed to collect profiles rapidly for use
within a dynamic optimization system. This profiler is a stand-alone contribution of this dissertation,
independent of the specializer, and can be used in a dynamic optimization system for collecting pro-
files for various runtime optimizations. Consequently, this chapter is presented from the perspective
of this broader context. Where applicable, we will present a discussion of the particular needs of the

specializer studied in this dissertation.

4.1. Profiling for Dynamic Optimizations Systems

The specialization technique proposed in this dissertation relies on runtime profiles to automat-
ically identify specialization opportunities. Like most optimizations implemented in dynamic op-
timizers, it is a profile-driven optimization. Profile-driven optimizations (also known as feedback-
directed optimizations) refer to program optimizations that improve program performance by an-
alyzing a program’s runtime profile to discover information static compile-time analysis typically
cannot infer. In general, runtime profiles have become indispensable in a spectrum of advanced opti-
mizations, both within the static compile-time optimization domain as well as the dynamic run-time
optimization domain. These optimizations include trace scheduling [41] and extend well beyond it:
basic-block, edge and path profiles [17,91] identify hot spots in the program; call-graph profiles [7]
guide procedure inlining [11,23,24]; dynamic-type profiling removes indirect calls in object-oriented
languages [53, 54]; value-invariance profiles lead to program specialization [22, 29, 71, 73]; and
memory-conflict profiles allow aggressive load-store reordering [39,42], and others [10, 26, 40, 57].

While low-overhead, rapid profiling support can benefit both static as well as dynamic opti-

mizers, such support is more critical for dynamic optimizers. In this dissertation, we are primarily
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interested in providing general-purpose profiling support for dynamic optimizers. Ideally, a profiler

suitable for dynamic optimization should have the following properties:

o |t should collect profiles with low overheads. Because profiling takes place during execution,
its overhead must be significantly smaller than the optimization benefit (which depends on the
specific runtime optimization). Optimizations like specialization can provide speedups beyond
2X whereas a more typical benefit from program optimizations is about 10% or less (Ex:
optimizations implemented in Jikes RVM [12]). This severely constrains the tolerable profiling
overhead for a general-purpose program profiler. Even with a more aggressive optimization
like specialization, low profiling overheads enable more fine-grained specialization than is

possible otherwise.

e The collected profiles must have high accuracy. The accuracy of the profiler impacts the
quality of optimizations. For example, if a memory location that is written does not show
up in the store profile, the specializer might incorrectly specialize it away and the specialized
version will get invalidated at a later time. In order to minimize invalidations, high accuracy
of the store profile is critical. In general, while the accuracy requirements vary across profiling
applications, the higher the accuracy of the profiler, the faster the profile converges to within
an acceptable error. Rapid profiling, in turn, leads to earlier optimization and correspondingly
longer execution in the optimized mode. In Dynamo [38], rapid selection of hot paths was

important for maximizing returns from dynamic optimizations.

e It should have broad applicability. The diversity of dynamic optimizations calls for a versatile

profiler that can measure diverse properties of control flow, addresses, and data values.

e |t should support simultaneous profiling. Sometimes it is convenient to collect multiple pro-
files simultaneously. For example, the specializer developed in this dissertation relies on

object-access and store profiles which are needed together to enable runtime specialization.
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Consequently, it is important to be able to collect these profiles simultaneously. As another
example, if the dynamic behavior of an optimized procedure changes, the optimizer may want
to trigger its re-optimization. If multiple profiles can be collected simultaneously, monitoring

of changes can run on the background of continuous optimizations.

e It should have low cost and complexity. Minimal hardware support and simple software algo-

rithms bring the well-known benefits of reduced power consumption and verifiability.

4.2. Related Work

Let us review related work with respect to the above ideal properties, focusing on three distinct

implementation categories: smart software profilers, custom hardware profilers, and hybrid profilers.

Smart software profilers: The first group of software profilers instruments the program with profiling
instructions. One method for reducing the overhead of executing the additional instructions is to
exploit the program structure: Ball-Larus edge profiling [16] and path profiling [17] use program
analysis and manage to restrict overheads to 10-30%. Other tricks for reducing the instrumentation
overhead include restricting profiling to a subset of instructions [22,73] and turning off profiling after
the profile stabilizes [22]. Despite recent advances, profiles that measure more than the control flow
incur high overheads. For example, the best software value profiler slows down the program 10-30
times [22,71].

The second software approach is sampling. Burrows et al. proposed sampling techniques to
collect value profiles with low overhead (about 10%) [66]. However, the low sampling rate (1 ev-
ery 32,000 instructions) increases the time before optimizations can be performed. More recently,
Arnold and Ryder [13] proposed a low-overhead instrumentation-based sampling technique for col-

lecting profiles within a Java Virtual Machine. Their results show within the Jalapeno JVM, with a
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sampling rate of 1000, they can collect two different profiles simultaneously with high accuracies
(99%) and low overheads (3%-6%). Hirzel and Chilimbi [51] extended this instrumentation tech-
nique and adapted it for use within Vulcan, a x86 binary rewriting system [85]. Using this technique,

they show that they can collect temporal profiles of data streams with low overheads (3%-18%).

Custom hardware support: Conte et al. proposed a profile buffer [33] and Merten et al. described a
hotspot detector [68]. While these specialized designs work very well for their specialized purpose,

they cannot be used to collect other kinds of profiles.

Hybrid profilers: In these solutions, programmable hardware collects profiling information, poten-
tially performs some simple profile preprocessing, and passes on the information to software which
then does a more complete profile analysis. ProfileMe [36], the Relational Profiling Architecture
(RPA) [88], and the programmable profiling co-processor [34] are examples of this approach. Pro-
fileMe [36] provides mechanisms of instruction-based profiling wherein the hardware picks instruc-
tions and collects a variety of information as instructions flow down the pipeline. The information
is post-processed by software. The other two solutions (RPA and the profiling co-processor) pro-
vide more flexible profiling abilities than ProfileMe, by supporting a wider range of profiles to be
collected in hardware and by enabling hardware preprocessing of profile information that reduces

post-profile analysis overheads in software.

4.3. Proposed Solution

We explore a method that combines the advantages of hardware and software profiling. While
hardware is suitable for high-bandwidth data processing, software is a better fit for irregular pro-
cessing of small amounts of data. We choose a hybrid hardware-software approach because purely

hardware approaches are usually inflexible and are targeted at specific optimizations. Purely soft-
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ware approaches tend to incur relatively large overheads and/or require low sampling rates which

can lead to long profiling times.

Our solution is motivated by the observation that most kinds of profiles compute execution counts
of certain events of interest (values computed by an instruction, targets of a branch, targets of a call,
or addresses of a load). This observation leads to a stream compression profiling model. In this
model, the processor generates a stream of profiled events whose type is selected by software. The
stream is a sequence of data tuples: for example, a value-profiling tuple contains the PC of a load
instruction and the loaded value. Dedicated hardware compresses this stream before passing it on
to software. The basic compression method collapses and counts identical tuples. Consequently,

profiling overhead is reduced because software processes a shorter stream.

A conceptual view of the hybrid stream compression profiling model is shown in Figure 4.1. The
selector creates a tuple for each retired instruction chosen for profiling and sends the tuple to the
compressor. The compressor, placed off the processor’s critical path, consumes the selected tuple
stream. The compressor summarizes the input stream and feeds it to profiling software through an
intermediate buffer. In Figure 4.1, the input tuple stream t1, ¢2, 1, to, t3, t2 may be compressed into
an output tuple stream (1, 2), (2, 3), (t3,1). The second element in the output pairs denotes the

number of occurrences of the tuple.

S | Tuple Compressed
CPU - © mme Compressor Software
Core S | Stream Message Stream | Profiler
N
t1, 12, t1, 12, 13, t2 (t1,2), (12, 3), (t3,1)

Figure 4.1. Abstract diagram of the stream-compression profiling model.

The variety of profiles that can be collected by the stream-compression model depends on the
flexibility of the software-controlled selector. In this study, we evaluate our profiler on value profiles

of load instructions [22], a very demanding profiling application. Besides that, we also show that
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the hybrid profiling scheme can collect multiple profiles simultaneously. As an application, we show
that edge profiles can be collected simultaneously with call target profiles with high accuracy and
low overhead.

In this dissertation, we primarily focus on designing “efficient” compressors that incur low over-
head by means of high compression of the tuple stream, while preserving adequate profile accuracy.
We present a set of profiling components that can be composed in a number of ways to yield dif-
ferent compressors. Because optimizations can tolerate some profiling errors, we allow the stream
compressor to be lossy, thereby enabling a low-cost sampling-based hardware design. Conventional
simple random sampling, simple periodic sampling, stratified random sampling, and stratified peri-
odic sampling are among the compressors considered. Stratified sampling is a technique in which
the population is split into multiple disjoint sub-populations (strata) which are then sampled inde-
pendently [43]. In our implementation, we use a hash function to split the input stream. Using load
value profiling as a case study, we experimentally show that given a fixed overhead budget and a
desired level of accuracy, the stratified periodic sampler achieves the desired accuracy the fastest.

Having presented the broad contours of our profiling technique, we present the details of this
technique in the following sections. In Section 4.4, we present some details of the selector shown in
Figure 4.1. In Section 4.5, we show a variety of sampling compressors and discuss their properties
using Monte Carlo simulations. In Section 4.6, we describe a more sophisticated, tagged compressor
that serves as a reference point in our experiments. We present the results of our evaluation in

Section 4.7.

4.4. Details of the hybrid profiling scheme

There are three main components of the hybrid profiling model: the selection mechanism, the
compression mechanism, and the communication of information to software. In this section, we

discuss the first and third of these components. Compression mechanisms are central to our profiling
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solution and are discussed in greater detail in the following section.

4.4.1. Selecting profile information

Referring to Figure 4.1, the “front-end” of the profiler is a selection mechanism. Although
specific selector implementations are not our main focus, one possibility is programmable selector
hardware. In particular, registers in the selector can be written by profiling software via special
instructions. These registers can then be used by hardware to select the specific instructions to be
profiled. Heil and Smith [88] describe such mechanisms as part of their relational profiling architec-

ture. Below, we describe a few selection mechanisms.

e Selection by opcode: A number of profiling applications can be implemented by selecting
instructions on the basis of opcode. This strategy is a low-cost solution that does not require
any modification to the ISA or the program binary. This mechanism is proposed in [88] and

[34].

e Selection by PC range: This strategy is useful for focusing on hot segments of a program
or for reducing the profile bandwidth to the hardware profiler. This mechanism was proposed

in [34].

e Binary modification: This mechanism places explicit instructions in the binary immediately
before an instruction to be profiled. This mechanism requires one extra opcode in the ISA
and also introduces overheads in the instruction stream. However, this method can be used to
supplement the above two selection methods because it enables profiling sets of instructions

that are not otherwise easily selected.

For collecting the store and object-access profiles needed by the specializer, we simply select instruc-
tions for profiling based on the opcode. For the value profiling application we use to evaluate the

profiler, opcode-based selection is sufficient. For most of the commonly used profiles, opcode-based
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selection seems to be sufficient. Furthermore, in general, while the profiling tuples can be arbitrarily
long, two-word profile tuples seem to be sufficient for most profiling applications.
Since the compressor does not interpret the contents of profile tuples, the same hardware can be

used without modification for collecting a variety of profiles as listed below.

o Store Profile: the tuple is <O, memory-address>.

e Object-Access Profile: the tuple is <load-PC, memory-address>.
e Load Value Profile: the tuple is <load-PC, load-value>.

e Value Profile: the tuple is <PC, instr-output>.

e Edge Profile: the tuple is <branch-PC, branch-target>.

e Call Target Profile: the tuple is <cal 1-PC, call-target>.

e Type Profile: the tuple is <cal 1-PC, method-table-addr>;this profile enables feed-

back-directed inlining [11] and polymorphic inline caching [54].

Since the compressor does not interpret the tuple, it is possible to run multiple profiling appli-
cations simultaneously. The software is responsible for distinguishing between the incoming tuple
messages. When profiles being collected can be distinguished solely on the basis of opcode, the
software can distinguish between incoming messages on the basis of the message PC. For example,
if an edge profile and call target profile are being collected simultaneously, they can be distinguished
on the basis of the PC: the former profiles branches and indirect jumps and the latter profiles pro-
files direct and indirect calls. Likewise, for our specializer application, when we collect the store
profile and object-access profiles simultaneously, we can distinguish them simply on the basis of the
PC. For the store profile, the PC is always 0, whereas for the object-access profile, it is non-zero.
However, this technique for distinguishing between profiles does not always work. For example, if

edge profiles and a profile of mispredicted branches are to be collected simultaneously, this approach
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cannot be used because the same branches might be present in both profiles. One possible approach
is to add tags to profiling events belonging to different profiling application. For example, the selec-
tor can assign mispredicted branches with a different tag than correctly predicted branches. These
tags enable the software in separating messages belonging to the two profiles and construct them
accurately. The tags could also be used by the compressor to enable better compression by keeping
the streams separate. These tagging mechanisms have not been studied in this dissertation and are

presented here for the sake of completeness.

4.4.2. HW-SW communication mechanisms

There are two mechanisms for communicating tuple messages to software. The first mechanism

is based on processor interrupts and the second is based on message passing.

Interrupt-based approach.

In this approach, tuple information is stored in a hardware buffer. When the buffer fills, the main
processor is interrupted. The interrupt handler reads the buffer and folds the tuple information into

the profile data being collected. This approach is used in [9, 34].

Message-passing based approach.

In this approach, profile information is communicated to concurrent software threads via shared
queues in memory. These concurrent threads read profile messages from the shared queues and
compute the profile. An example of this approach are the service threads outlined in [88]. Service
threads running on simple service processors read and process the messages. The relevant overhead
metric for this approach is the time between consecutive messages sent to the service threads. The
time should be long enough so that the profile service thread can completely process the message.

In our experimental evaluation, we assume a interrupt-based communication model because it is
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readily implementable in current generation processors.

4.5. A framework for designing compressors

This section focuses on the lossy stream compressor, which is the most novel part of our hy-
brid profiling scheme. Instead of presenting a few independent compressor designs, we describe a

framework of components from which various compressors can be built.

4.5.1. Samplers as compressors

Samplers can serve as stream compressors because selecting a subset of the input stream reduces
the bandwidth of the output stream. Samplers count the input events statistically: an event ¢ se-
lected by a sampler operating at a rate = can be interpreted by software as r occurrences of tuple
t compressed into one. Clearly, such stream compression is lossy, because events skipped by the
sampler may have been different than ¢. However, when the stream is biased towards tuple ¢ (i.e.,
the stream is dominated by t), the sampler’s accuracy may be sufficient for profiling purposes. This
subsection presents two basic samplers used in our framework, and the following subsection focuses

on increasing the bias in the input stream.

e A random sampler with rate r, denoted R,., selects an element of the input stream with prob-
ability p = 1/r. Note that random samplers in [9, 36, 66] are slightly different; they select an

element via a countdown register initialized with a random number from the interval (1, 2r).

e A periodic sampler with rate r, denoted P,, selects every rth element of the input stream. In

statistical literature, this sampler is known as a systematic sampler [43].

In order to design an accurate compressor, the inherent accuracy of the two samplers must be under-

stood. In this section, we assume an idealized input stream in which tuples are randomly permuted
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(the reason for this assumption is that an input stream with periodic behavior may cause large errors

with the periodic sampler P,). In Section 4.7, we will evaluate the compressors on real workloads.

We compare R, and P, using a very simple profiling problem. Assume the output stream of
the compressor contains k elements. The problem is to determine how many elements were in the
input stream. Clearly, the answer for both R, and P, is k. More precisely, rk is the most likely
number of elements seen in the input. The important difference between the two samplers is how
likely it is that their input actually contained r& elements. The P, sampler is more confident about
its answer because it effectively counts the input stream; its input stream length is guaranteed to
contain between rk and rk + (r — 1) elements. On the other hand, the length of the input stream
for R, can range from k to infinitely many elements. Therefore, R, estimates the lengths of the
input stream. This explanation is validated experimentally. The error of the two samplers is shown

in Figure 4.4 using an experiment described in detail in Section 4.5.3.

We can address the drawback of R, by adding to it a counter that measures the length of the
input stream. We use C to denote a counter component of our framework, and C R, to denote a
random sampler equipped with such a counter. With this enhancement, C'R,. has access to the same
information as P and the two are thus equivalent. We later show that C R, is equivalent to P, in
terms of profiling accuracy. The extra information provided by C' can be used to more accurately

estimate the desired input parameter when compared to R,.

One problem of a periodic sampler (P,) is that the sampling period might synchronize with
periodic behavior in the input stream (for example, those generated by programs) which can lead
to greater inaccuracies. Figure 4.10 shows examples of inaccuracies due to such periodicity that is

present in profiling input streams generated by programs.
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4.5.2. Stratified sampling via hashing

As mentioned in the previous subsection, the accuracy of sampling increases with the bias in
the input stream: the more a tuple dominates the stream, the less likely is the sampler to make
a mistake. An effective technique for increasing the bias is to stratify the input population into
disjoint sub-populations which are then independently sampled. This technique, known as stratified
sampling [43], can be conveniently implemented in the profiling context using hashing. Because
the input stream is split based on tuples having the same hash signature, it can be reasoned that
any given substream has a greater bias (or, smaller entropy, in information theoretic terms; lower
variance, in statistical terms) than the original input stream. Hence, the samples that are selected
from each substream are more accurate representatives of the input stream than a corresponding
same-size sample selected from the original input stream.

We use H[X,], to denote a hash-based splitter that splits the input stream into n disjoint sub-
streams using a hash function. Each of the substreams is independently sampled at the rate of r
using any sampler X. We discuss the stratified sampler in more detail in the following subsection.

Its implementation details are described in Section 4.5.5.

4.5.3. Composing profiling components

Figure 4.2 pictorially shows the four profiling components R,., P,, C, and H[X], that we pre-
sented in the previous subsections.

The input to each of these components is the input stream. The random and periodic samplers
produce on the output a sample of the input stream. The hash-based splitter produces multiple
disjoint input streams. The counter produces the length of the input stream, i.e. the number of
input tuples. We now show how these components can be composed to produce different sampling
schemes.

Figure 4.3 shows six different samplers created by combining the four basic components: P,,
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Figure 4.2. Hardware profiling components.

R.,CR,, H[P,],, H[R,],, and H[CR,],,. All samplers compress the input stream into a stream of
messages (tuple, count). For the samplers with the counter component C, the value count equals
the count since the last sample was taken. For samplers without the counter component, the value

count is implied and equals the sampling rate r.

We will show that the stratified periodic sampler H|[P,], sampler is the most successful design.
In statistical literature, such a sampler is called stratified systematic sampler [43]. We evaluate the
accuracy of these samplers using the problem of estimating the number of times, ¢, that a given
tuple p occurs in the input stream of length NV (note that this is a slightly harder problem than the
one introduced in Section 4.5.1). We evaluate the samplers using Monte Carlo simulations. We
generated the input stream by randomly permuting a sequence of N tuples containing ¢ copies of the
tuple p (¢ = 0.3N). The randomly generated stream is input to each sampler and the output stream
is used to estimate the value of ¢, as follows. For each sampler without a counter, if the output stream
contains 7 copies of tuple p, then ¢ is estimated to be EST = ir. For each sampler with a counter, ¢
is estimated to be the sum of count’s from all messages that contain the tuple p. We plot the error in

the estimate ERR = |100(¢t — EST)/EST).

Figure 4.4 shows the error in estimating the frequency of the tuple for stream lengths ranging
from 1000 to 20000, for a sampling rate of 10. For each input stream length IV, we performed 2500

experiments and plotted the mean value of ERR. As expected, the graph shows that with increasing
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Figure 4.4. Estimating the frequency of a tuple: Mean error for different input stream lengths.

stream length, the error decreases.

Note that all the samplers in Figure 4.4 have the same sampling rate and hence incur the same
overhead. It is therefore interesting to compare their convergence rate. Assuming that we fix the
maximum tolerable error at 4%, Figure 4.4 shows that R, needs to sample almost three times longer
than H[P,],, (12000 versus 4600). This experiment shows that, with a fixed profiling overhead, the
stratified periodic sampler reduces the error below a maximum tolerable error faster than a random
sampler. Most importantly, experiments with real benchmarks yield similar results, as we will show

in Section 4.7.

Furthermore, the graph shows that, based on their accuracy, the samplers divide into three equiv-
alence classes. In decreasing error order, the three classes are {R,,H[R,],}, {P-,CR,}, and
{H|[P;]n, H[CR,],}. Let us now explain why some samplers have the same accuracy. The intu-
ition behind the equivalence of P, and C'R, was explained in Section 4.5.1. This intuition also
explains the equivalence of H[P,], and H[CR,|,. Perhaps more surprising is the equivalence of R,

and H[R,],. Intuitively, it may appear that H[R,],, should perform better than R,.. The reason why
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this is not the case stems from the fact that our random sampler R, is stateless, i.e., each element
in the input stream is selected independently from the other elements, with a probability 1/r. This
observation allows us to think of R,., equivalently, as if each of its input elements was directed into
a separate substream (of length one), which is sampled with a separate R, sampler. This alterna-
tive view is equivalent to H[R,],, which explains why stratification with our proposed R, is of no
benefit.!

Finally, let us intuitively explain why the most successful design, H[P,],, is superior to P,.
Consider the simple example of an input stream consisting of eight 1’s and eight 0’s, randomly
permuted. A Pg sampler produces a sample size of 2. Using this sample, we would estimate the ratio
of 1’s and 0’s accurately only half the time. Now assume that H|[Pg]s splits the input stream into
separate 1 and O substreams. H[Psg]. will also produce two messages. But, since the substreams are
fully biased, the messages will always convey the correct ratio of the number of 1’s and 0’s.

While we have shown six specific compressor designs, it should be clear that within this frame-
work, other combinations of components are possible. A complete and systematic study of other

sampling schemes is outside the scope of the current work.

4.5.4. Two-Level Compressors

While sampling techniques are lossy stream compression methods, a straightforward lossless
stream compression method can be built using a cache-like associative table of counters that ac-
cumulate frequency counts of the input tuples. When a table entry must be replaced, or when the
counter reaches a maximum value, the tuple is dispatched to software with its corresponding fre-
quency count. Although this method works, it is hardware-intensive. First of all, the table entries

can be quite wide. Assuming a 4-byte word (32 bits), two words of profiling information per tuple

Istratification of the input population improves performance when the size of the subpopulations is known ( [43], CR.,
P,) or when the samples are not picked independently (P,, countdown random sampling used in [9, 36, 66]).
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and a 1-byte counter yields 9 bytes per entry. Furthermore, to avoid frequent tuple replacements (and
frequent communication with software), the table needs to capture the working set of the profiling
application. For a table with as few as 4K entries the total is 36 KB of storage. With 64-bit words,
this grows to 68 KB. Finally, accessing such a table associatively would require compare/match logic
the width of the tuples being held in the table. Hence, any practical implementation of a compressor
would not use this straightforward approach. However, we will show that the associative counter ta-
ble is nevertheless a useful profiling component besides being an useful starting point for exploring
other compression schemes. We use A, to denote an associative counter table with & entries.

While the associative counter table alone is an unrealistic compressor, it can be combined with
the samplers we presented in the previous section as a second-level compressor. Compressing the
messages generated by the samplers will further reduce overheads without affecting accuracy. The
accuracy is not affected since the compression performed by Ay is lossless. Therefore, the H[ P, ], A
and the H[P,], compressors have equivalent error characteristics, but the H[P,], A, compressor
incurs lower overhead than the H[P, ], compressor.

Furthermore, since the tuple stream that is input to the A, component is already a compressed
stream, the compression requirements of the A, component are not stringent. Therefore, a table
as small as 16 entries suffices to achieve a further compression ratio between 1.15 and 2.5 for our

benchmarks.

4.5.5. Stratified periodic sampling

We now look at the stratified sampling scheme (H[P,],) in greater detail.

Figure 4.5 shows the design of a stratified sampler. Each cycle, a tuple is picked from a tuple
queue (that absorbs burstiness in the incoming tuple stream). The hash function computes a signature
of the tuple. The signature is used as an index to select a counter in the counter table. The selected

counter is then incremented. If the counter reaches its maximum threshold value r, the counter is
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Figure 4.5. Stratified Sampling Technique

reset to zero, and a message consisting of the complete tuple (with an implied occurrence count of
r) is sent to profiling software via the output queue.

In our implementation, we use the following hash function. Given a tuple <pc, w>, the index
is computed as follows:

npc = Flip(randomize(pc));

nw = randomize(w);

index = xor-fold(npc xor nw, iIndex-size);
The function randomize (w) looks up a 256-entry random number table for each of the individual
bytes of w and composes the new bytes together. 11 p(w) reverses the bytes of w. xor-fold(w,
n) splits w into n-bit chunks and xors the chunks together.

We used this elaborate hashing function since it provides the best accuracy of all the hashing
functions that we experimented with. We have not systematically studied different hashing functions
and the trade-offs between profile accuracy and hardware cost. In practice, an actual implementation

of the stratified sampler might use a cheaper hash function.

4.5.6. Hardware cost of the stratified sampler

The biggest cost of the stratified sampler is the counter table. Assuming a 2K-entry counter table,

and a 8-bit counter (which can support a sampling rate between 1 and 256), the country table requires
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2KB of hardware space. Assuming an implementation of a hashing function described above, we
require an additional 256 bytes for encoding the random number table. Besides this, additional space
is required for the input and output buffers. Assuming an 128-entry input buffer with 2-word tuple
entries, we require another 1KB. Assuming that we buffer 128 messages before raising an interrupt,
we need another 1KB space for the output buffer. Thus, we require a total of 4.25KB for this design.
This is a small hardware cost because the stratified sampler can be placed away from the processor

core.

4.6. Reducing Collisions: Adding tags to stratified sampling

The stratified periodic sampling described in Section 4.5.3 makes no effort to resolve tuples
that hash to the same substream. At the other extreme, the associative table of counters described
in Section 4.5.4 avoids all aliasing, by comparing tuples against complete tags. Unfortunately, the
latter design is relatively expensive. This section presents a compromise solution that reduces (but

does not eliminate) aliasing by maintaining partial tags.

4.6.1. Design detail

In this design, the signature generated by the hash function has more bits than are required for
indexing into the table. The more additional bits, the better the ability to discriminate amongst tuples.
The signature is subsequently divided into an index and a tag.

Given a tuple <pc, w>, the index is computed as described in Section 4.5.5. The tag is com-
puted as tag = xor-fold(pc xor w, tag-size). The index is used to select a table en-
try; if the tags match, there is a hit in the table, otherwise there is a miss. Like a cache memory, the
table can be direct-mapped, set-associative, or fully-associative.

Each entry in the table contains the tag, a hit counter, and a miss counter. The hit counter keeps

track of the number of occurrences of a tuple. The miss counter is used in making replacement
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decisions and is discussed below, following an informal description of the replacement process.

At some point, it becomes necessary to evict a tuple’s entry from the table, either because its hit
count has reached a maximum threshold or because another tuple (with a different tag) maps to the
same table entry. If it reaches the maximum threshold, the current tuple is reported to software. In
the case of an eviction, the replaced tuple and its occurrence count should be passed to software, but
this is not possible because only the hashed signature is available in the entry, not the complete tuple.
This problem is solved by deferring eviction and placing the to-be-evicted entry into an eviction state

in which it waits for the same signature to be seen once again.

If the to-be-evicted tuple occurs frequently, then it is likely to occur again soon, and the entire
tuple is available so complete information can be passed to the software. If the to-be-evicted tuple

occurs only rarely, and it does not occur again soon, its value will eventually be discarded.

Figure 4.6 shows a state machine diagram that describes the detailed operation of a table entry,
including the states that an entry goes through, and conditions under which an entry is allocated,
evicted, or replaced.

Initially, all entries in the table are Empty. When an incoming profile tuple accesses an entry,
the entry is allocated for the tuple and the entry transitions to a Val id state (Transition E1). In this
state, the entry accumulates matching tuples in the hit counter (Transition E3). When the hit counter
saturates, a summary message containing the counter value and the tuple is sent to the message queue
and the entry transitions to Empty (Transition E2).

If there is a miss in the Val 1d state, some other tuple is seeking access to the entry. Because
the necessary tuple information for the to-be-evicted entry is not available, the entry transitions to an
Evict state (Transition E4). The entry is left in the Evict state until the matching tuple is seen
again (Transition E6). However, the state machine waits until “enough” hits have accumulated in
the counter (Transition E6a). This reduces the flood of messages that can be caused by repeatedly

aliasing tuples. The ShouldEvict condition in the state diagram specifies the exact value of “enough”.
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Figure 4.6. State diagram describing the states of a profile entry
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In the Evict state, misses to the entry will accumulate in the miss counter (Transition E5a), but
if “too many” misses are accumulated, the state machine gives up and replaces the current tuple with
the new conflicting tuple (Transition E5). In this case the original entry is lost. The ShouldReplace
condition in the state diagram specifies the exact value of “too many”. This replacement policy is
similar to the replacement policy in the value profiling algorithm presented in [34].

The unusual manipulation of the hit and miss counters by Transitions E5 and EG6 illustrates an
important point — it is important not to drop counts when assigning the entry to a new tuple. We
found after extensive experimentation that resetting counters almost always leads to lower accuracies
because valuable information concerning the input stream is discarded. For every entry, the hit and
miss counters together maintain the length of the stream that access that entry. The examples in
Section 4.5.1 implied that it is this exact knowledge of the stream length that leads to increased
accuracy. Resetting the hit/miss counters to zero would obscure this valuable information.

Transition E5 represents replacement of a previous tuple by a new tuple. The hit counter is not
reset as might be expected. Instead, the hit count of the evicted tuple is assigned to the new tuple
along with the miss count. Although the hit count does not belong to the new tuple, this avoids losing
track of the stream size.

During Transition E6, we initialize the hit counter of the entry with the miss count of the evicted
entry. The next tuple to hit in this entry (hopefully the tuple that caused the miss count to be in-
cremented via Transitions E4 and E5a) will assume the new count. Again, the exact stream size is

maintained.

4.6.2. Hardware cost

The tagged profiler incurs extra space overhead beyond the stratified sampler. Besides the hit
counter, every entry requires a tag, a miss counter, and bits to code the current state of the FSM.

Using a 1-bit tag to encode the FSM state (the Evict state can be inferred by a non-zero value in the
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miss counter), a 3-bit miss counter, and a 1-bit tag, this is 5 extra bits per counter. With the same
sized counter table, and a 8-bit hit counter, this is at least a 62% increase in space requirements over

the stratified sampler, in addition to the logic required to implement the state machine.

4.7. Experimental Results

We evaluate the proposed profiling hardware designs through a timing simulation of the value
profiling application described below. The timing simulation is needed for measuring the profiling

overhead.

4.7.1. Example Application: Load Value Profiling

A number of micro-architectural studies have demonstrated that programs exhibit significant
value locality, the phenomenon that a small number of values occur repeatedly in the same register
or memory location [45, 55, 64,79, 84]. In Chapter 2, we discussed how this phenomenon leads to
computational reuse opportunities. While there exist different techniques for exploiting computation
reuse, all techniques rely on some kind of value profiling to identify value locality of instructions [22,
29,71,73]. This dissertation also relies on collecting two forms of value profiles. In this dissertation,
we focus on load value profiling to evaluate the stratified sampling profiler and compare it with other
profilers. A load value profile computes the frequency distribution of values loaded by different load

instructions.

4.7.2. Methodology

We used the Simplescalar toolset [37] to model a 4-way machine with 64-KB L1 data and in-
struction caches, 1-MB unified L2 data cache, and a gshare branch predictor. The cycle-level timing
model is used for computing profiling overheads and does not affect the actual sampling algorithms.

We use a collection of SpecINT95 benchmarks and Java programs listed in Table 4.7.2. The
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Specint95 benchmarks were compiled for the SimpleScalar ISA by gcc with optimization flags “-
03”. The Java programs (including strata) were compiled by strata [83], a Java-bytecode to native-
ISA compiler for the SimpleScalar ISA. For all programs, simulation was performed after skipping
the initialization phases. For the SpecInt95 benchmarks, the recommendations of Sherwood and
Calder [82] were used in determining the simulation starting points. For the Java benchmarks, the
starting points were determined empirically (by examining the source code, knowledge of benchmark

and output, and experimentation).

| Benchmark | Comment \ Input |
go Specint95 5stone21 files (Ref)
li SpeciInt95 8-queens.Isp (Test)
m88ksim SpeciInt95 Ref input
gcc SpecInt95 ceep.i
perl Speclint95 primes.pl, primes.in
raytrace SpecJVM98 Speed 100
strata Java-bytecode to Some class file
Simplescalar-ISA compiler
jess SpecJVM98 speed 100
jack SpecJVM98 Jack.jack
db SpecJVM98 speed 100

Table 4.1. Benchmarks used to evaluate the profiling schemes

4.7.3. Evaluation Metrics
Profiling Error

The errors in our value profiles is computed using an ideal value profile. Examining the same
stream as our profilers, the ideal profile accumulates all generated events, rather than just the samples.
When computing the error, we remove from both profiles all (load, value) tuples that are highly
unlikely to be used by a realistic value-reuse optimizer. Taking these tuples into account would in-
troduce error that is irrelevant to the optimizer. Analogous to the error metric in [34], from both

profiles, we discard loads that execute infrequently, as well as values that are infrequent for a given
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static load. Namely, we select for profiling a static load only if it executes at least 1000 times. Fur-
thermore, only sufficiently invariant tuples are selected. A (load, value) tuple is sufficiently invariant
if it accounts for at least 10% of the executions of the load. Finally, we select only those loads that
have at least 40% of their dynamic execution accounted for by sufficiently invariant tuples.

The profiling error is computed as follows. Let v = (pc, val) be a tuple that has been selected
from the ideal value profile. The ideal invariance of v is computed as I;(v) = n;(v)/n;(pc) where
n;(v) is the number of times v occurs in the ideal profile, and n;(pc) is the execution count of pc. Let
»(v) = ny(v)/ny(pe) be the tuple’s invariance estimated by our profiler; n,(v) and n,(pc) denote
the number of times our profiler sees the tuple v and the load pc, respectively. Then, the error in
profiling the invariance is e(v) = |i;(v) —ip(v)|. We compute the error for the entire profile by taking
a frequency-weighted average of e(v) over all selected tuples, i.e., the errore = 3 f(v)/f X e(v)
over all selected tuples v, where f(v) is the cumulative execution frequency of v, and f is the

execution frequency of all selected tuples.

Profiling Overhead

Our evaluation assumes interrupt-driven communication between the compressor and the soft-
ware profiler (see Section 4.4.2). We use an analytical model to compute profiling overhead. The

overhead is dependent on:

e Per-interrupt fixed costs: This is a fixed cost that depends on the OS and the specific processor.
Anderson et al [9] show that for their system, per-interrupt fixed costs are about 214 cycles.

We use this value in our model.

e Number of messages processed per interrupt: In our model, we assume at least 100 messages
per interrupt to amortize the per-interrupt fixed cost. This requires an output buffer that can

buffer at least 100 messages.
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e Processing time per message: This is the time required to fold the message into the profile;

the actual value is specific to the profiling application. We assume a fixed cost in our model,

as described below.

In their paper, Zilles and Sohi [34] state that with careful assembly coding of their interrupt handler,

every message can be processed in 10-30 cycles. Because we do not perform convergent profiling

checks as in [34], at least 3 cycles per message are saved. On the other hand, by processing at least

100 messages per interrupt, we incur under 3 cycles in fixed interrupt costs per message (214 cycles

per 100 messages). Therefore, in the worst case, we assume the interrupt overheads will be 30 cycles

per message. Based on this number, we estimate the profiling overhead to be Overhead = 30 x

NumMessages, where NumMessages is the number of messages dispatched. The percentage

overhead is computed with respect to the total simulation time.

4.7.4. Evaluating compressors
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Figure 4.7. Results for gcc: The first graph shows the variation of % error with program progress (up to 4M
events). The second graph shows errors for a longer duration (up to 16M events).
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Figure 4.8. Results for gcc: The graph shows the variation of cumulative % overhead with increasing time (up
to 16M events). The plots for the Ry56 and P56 cCOMpressors overlap.

In this section, we evaluate the following compressors: Ross, Pase, H[Pas6)2048, H|[Ps12]2048
(presented in Section 4.5.3), and a 2-bit tagged compressor (presented in Section 4.6) with an 8-bit
hit counter (equivalent to a sampling rate of 256) and a 2-way set associative 2048-entry counter
table. We do not present results for other tagged compressors since our results indicate that for our
tagged implementation, the 2-bit tagged compressor has the best error-overhead behavior among all

tagged compressors.

Figure 4.7 shows for gcc the variation of % error with program progress. The first graph is
plotted for 4M profiling events (27M instructions). The second graph is plotted for 16M profiling
events (105M instructions). Figure 4.8 shows the variation of % overheads with program progress.
We selected gcc because it is one of the hardest programs to profile and has a much bigger working

set than the other programs.

We first compare the random and periodic samplers. The graphs show that the two are almost

identical in performance both in error and overhead. It is interesting to compare these results with the
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Monte Carlo simulation results presented in Section 4.5.3. For randomly generated input streams,
Monte Carlo simulations showed that the periodic sampler performs better than the random sampler.
However, in practice, programs do not generate random input streams and this seems to explain why
P56 does not perform better than Ras6 0N real workloads. For the rest of the discussion, we discuss

the random profiler only.

Next, we discuss the tagged compressor. The error graphs show that the tagged compressor has
the best accuracy of all compressors, but the low error comes at the cost of almost three times the pro-
filing overhead, as shown in Figure 4.8. Furthermore, from the graphs, we conjecture that for gcc, the
improvement in accuracy over the much simpler stratified sampler is not significant enough to merit
the higher overheads and the higher hardware complexity of the tagged compressor design. At this
juncture, we wish to point out that the tagged compressor design presented in Figure 4.6 is only one
of many possible implementations of a tagged compressor. There could be other implementations

(not examined in this dissertation) that could perform better.

We now compare the H|[Pas6]2048 and the Rose compressor. The graphs in Figure 4.7 show
that the stratified sampler outperforms the random sampler in its accuracy. Assuming an arbitrary
maximum tolerable error threshold of 4%, the graphs show that the H|Pas56]2048 profiler reaches this
error threshold after about 200K events whereas Ros5¢ reaches this threshold after about 1.4M events

— seven times longer than the stratified sampler.

The overhead graph shows that the stratified sampler always has a lower overhead than the ran-
dom sampler because the H[P,s56]2048 COMpressor retains up to 256 x 2048 = 512K tuples in the
counter table, which means that up to 2K fewer messages are dispatched to the software when com-
pared to the random sampler. However, if the programs are profiled for a long time, this advantage

vanishes as shown by the converging overhead plot.

Let us now examine how to reduce profiling overheads for the stratified samplers while main-

taining the same accuracy as a random profiler. If we compare the H[Ps;2)204s and the Rgs6 com-
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pressors, we find both have similar accuracy, but the H|[Ps12]204s incurs half the overhead when
compared to Ras6. This shows that with the stratified sampler, we can achieve the same accuracy as
a random sampler at a lower sampling rate, and hence at lower profiling overheads. The factor by
which the sampling rate can be reduced is benchmark-specific as can be seen from Figure 4.9. The
graphs show that, except for go, the sampling rate can be reduced by at least a factor of two while
maintaining the accuracy level of a random sampler.

One final conclusion that we can draw from the error graphs is that the stratified sampler and the
tagged compressor stabilize more quickly than the random and periodic samplers, i.e. they converge
to their “final” errors much more quickly than the random and periodic samplers.

By using profile convergence checks and instruction filtering techniques proposed in [34], the
performance of the stratified sampler can be improved further. Instruction filtering reduces aliasing
in the hashed substreams and can lead to faster convergence of profiles.

The preceding discussion focused on gcc. Figure 4.9 shows the error curves for the five com-
pressors for all the other benchmarks. A closer examination of the graphs for db and perl show that
both these graphs do not have an error plot for the periodic sampler (P25s6). This is because the errors
are significantly higher than those for all the other samplers.

Figure 4.10 shows the plots for perl and db — these are similar to that shown in Figure 4.9
except for the range of the Y-axis. The larger range shows that the errors for the periodic sampler is
indeed quite high when compared to the other profilers. These higher errors for perl and db could be
because the sampling period aligns with some periodic behavior of the program which leads to large

inaccuracies.

4.7.5. Sensitivity study of the stratified sampler

We now present results of a sensitivity study of the stratified sampler by considering four dif-

ferent table sizes (512, 1024, 2048, and 4096). Figure 4.11 shows error plots for the H[Pas6]512,
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Figure 4.10. Large profiling errors for Ps5¢ due to periodicity in program behavior — for db and per|

H{[Pys6)1024, H[Pas6)2048, and H[Pasg]409¢ cOmMpressors for gecc and raytrace.

The graphs show that with increasing number of table entries, the performance gets better but
only after a sufficient number of tuples have been seen. Because the counter table accumulates tuples
that are not sampled until the counters overflow, during the initial phases, when the ratio of stream
length to the output messages is small, more messages are sent out from a smaller table. Hence, for
some benchmarks (raytrace, for example, shown in Figure 4.11) the accuracy is better with fewer

counters during the initial phases. As the program progresses, this effect diminishes.

4.7.6. Two-level compression

If a small associative counter table is added, additional reductions in overhead can be achieved.
Figure 4.12 shows the profiling overheads for the H[Pxas6]204g profiler with and without a 16-entry
associative buffer. First, the graph shows that except for db, the H[Pass]204g Stratified sampler
incurs under 6% overhead. Second, the graphs shows that by adding the second compressor, there
is a reduction of overheads across the board for all benchmarks. The augmented stratified sampler

incurs less than 4.5% overhead for all benchmarks.
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Figure 4.11. Sensitivity results of the stratified sampler for four different table sizes for gcc and raytrace (up
to 16M profiling events)

The overhead reduction due to the counter table is pronounced for m88ksim, jack and strata.
For these programs, the output message stream is dominated by a few prominent tuples. It is these
repetitive output messages that enables the high second-level compression of the message stream.
This result shows that the associative array of counters is a useful component in building efficient

compressors.

[E H[P-256]2048 CIH[P-256]2048+A-16

% overheads

82

Figure 4.12. Reduction in overheads due to the A, component
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4.7.7. Simultaneous profiling: Edge and Call target profiling

In Section 4.4.1, we stated that the hybrid profiler can collect multiple profiles simultaneously.
To demonstrate the feasibility of this application, we collected call-target and edge profiles simul-
taneously using the H[Pas6]2048 COmpressor. These profiles are used by the runtime optimizer to
select inline candidates and to build traces, respectively. Call target profiles are especially important
for Java programs because, unlike C programs, the presence of virtual calls in Java makes it difficult
to statically determine the call targets at a call site. Call target profiles enable the optimizer to deter-
mine the likely call targets and inline sites and implement optimizations such as feedback-directed

inlining [11] and polymorphic inline caching [54]. Edge profiles enable the optimizer to build traces
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Figure 4.13. Final error and cumulative overhead for simultaneous call and edge profiling after 4M profiling
events

Figure 4.13 shows the results of simultaneously collecting edge and call target profiles. The
graphs show that for all benchmarks, the error is less than 3%. For six of the benchmarks, the error

is negligible. Furthermore, the overheads are also very low; the profiling overheads are under 4%
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for all benchmarks. The accuracy is significantly better than the accuracy in the preceding value
profiling application because branches, jumps, and calls take values from a much smaller value set

than load instructions.

4.8. Summary

Profile-driven optimizations require flexible profiling support that can collect a variety of profiles
accurately, rapidly, and with low overheads. In this chapter, we presented a hybrid hardware-software
profiling model in which the hardware compresses the input profile stream to generate a smaller
stream of output messages that is processed by software to construct the required profile. Since
optimizations can tolerate profiling errors, we show that the compression can be lossy in that the
occurrence counts reported for tuples in the input stream need not be exact.

On the basis of the lossy compression metaphor, we presented a framework of profiling compo-
nents that can be composed in multiple ways to build hardware compressors. Conventional random
sampling, periodic sampling, and stratified sampling were proposed and studied. The stratified sam-
pling scheme uses a hashing scheme to split the input stream into multiple disjoint streams that
index into a table of counters. In addition, we proposed a more sophisticated compression scheme
that builds on the stratified sampling scheme by using tags to detect aliasing in the counter table.

We used load value profiling as an example application for evaluating the proposed compressors.
We showed that the stratified sampling scheme has the best error-overhead performance among all
the compressors we studied. For gcc, we showed that with the same or smaller profiling overheads,
the stratified sampler achieves a desired accuracy twice as fast as a random sampler. We also showed
that for gcc, if the profiling time and the desired accuracy level are fixed, the stratified sampler can
achieve these thresholds with half the overheads as a random sampler. The overhead factors are
benchmark-specific (more than two for perl, db and other benchmarks).

We also showed that while the tagged compressor has better accuracy than the stratified sampling
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scheme, the improved accuracy comes at significantly higher overheads (twice or more) and higher
hardware complexity.

We then proposed an enhancement to the different compression schemes by introducing a second-
level lossless compression that can further reduce profiling overheads without affecting accuracy. We
show that additional lossless compression between 1.15 and 2.5 can be achieved by using an asso-

ciative buffer of 16 entries that summarize the messages from the first level compressor.
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CHAPTER 5
IDENTIFYING SPECIALIZATION SCOPES

Section 1.3 presented the key challenges in implementing a specializer transparently within a
dynamic optimizer. One of the key challenges is determining the code regions (called specialization
scopes) that can be profitably specialized. This chapter presents an algorithm that identifies prof-

itable specialization scopes.

5.1. Outline of algorithm Bui | dScopes

In Section 3.7, we presented the central idea of the algorithm using an example. For each program
point p that accesses an object 0, the algorithm computes a scope starting at p and having o as the
key. To do this, the algorithm essentially tries to construct a skeleton of instructions (rooted at p
and connected by data-flow dependencies) that access invariant memory locations and identifies a
single-entry, multiple-exit control-flow boundary that encloses this skeleton.

In this section, we present an outline of the algorithm and fill in the details in the rest of the
chapter.

Input: Given a candidate method m, the algorithm requires the CFG as well as the SSA form of m.
The loops of the CFG are expected to be in canonical form where loop headers have exactly one
entry edge and exactly one back edge. The SSA dataflow graph is also expected to be in canonical
form where all constant assignments and copies have been propagated and eliminated. *

Output: Given a candidate method m, the algorithm identifies a set of specialization scopes S(m)
within the method for which specialized code is generated. These scopes satisfy the following prop-

erties.

e Every scope in S(m) is a single-entry, multiple-exit region of the CFG.

n practice, the algorithm handles copies.
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e No two scopes in S(m) overlap with each other. As a special case, no two scopes in S(m)
can be nested within each other. In principle, while nested scopes can be implemented, this
dissertation does not consider nested scopes for the sake of simplicity of the scope-building

algorithm.

Algorithm Outline: Conceptually, the algorithm consists of the three steps shown in Figure 5.1. In

Scope Set BuildScopes(Method m)
{
/* 1. Build candidate scope skeletons */
skeletons = BuildScopeSkeletons(m); /* Figure 5.9 */
/* 2. ldentify single-entry, multiple-exit scope boundaries */
scopes = {};
for each (Skeleton sk € skeletons) {
Scope s = ldentifyScope(sk); /*Figure5.16 */
Add s to scopes;
}
/* 3. 1dentify non-overlapping/non-nested scopes */
return ResolveConflicts(scopes);/* Section 5.4 */
¥

Figure 5.1. High-level outline of the Bui | dScopes algorithm

the first step, the algorithm identifies a set of scope skeletons. In the second step, these skeletons are
converted into single-entry, multiple-exit specialization scopes. In the final step, the algorithm uses
a cost-benefit model to identify a subset of these scopes that are non-overlapping, non-nesting, and
profitable.

Skeletons of a scope are made up of instructions which can be eliminated using the knowledge
of the value of the lookup key of the scope, i.e. if an instruction 1 belongs to a scope S(K), then, the
output of I is computable from the value of k. However, a scope contains instructions that might not
be specializeable (in addition to all the instructions in the skeleton). It is a CFG region that satisfies

the single-entry, multiple-exit property.
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5.1.1. Defining an acyclic scope skeleton

We first define a scope skeleton on acyclic SSA dataflow graphs and present an algorithm to
build acyclic scope skeletons. We use this simplified problem context to highlight the design deci-
sions made in developing the scope-building algorithm. These same design decisions are part of the
complete scope-building algorithm that also deals with cyclic SSA graphs.

A scope skeleton of an SSA node p is essentially a forward slice of the SSA graph seeded at
p and extending only upto those SSA nodes that are specializeable, i.e. those that access invariant
locations of objects and SSA nodes that represent invariant scalar computations. A specialization
scope is essentially just a single-entry, multiple-exit CFG region that encloses the skeleton. Thus, a
scope skeleton is defined on SSA graphs, whereas a scope is defined on CFGs. Thus, the shape of a
scope is determined by the skeleton — scopes can be computed only after skeletons are built.

We formalize the definition of a scope skeleton below. In order to do so, we need the following
two definitions.

Definition 1: A SSA node is defined to be an object reference node if it represents a getfield,
getarray, or arraylength instruction. All other SSA nodes are defined to be scalar compu-
tation nodes. If p is an object reference node, we use the predicate oref(p) to refer to the SSA
variable that holds the object referenced by the node.

Definition 2: Let p be an object reference node. Let o = oref(p). Let oy, be the hottest object
referenced by p. The value of oy, is obtained by querying the object-access profile. p is considered
an invariant object reference node if p accesses an invariant memory location of o, (object field
or array element). The invariance of the accessed memory location is verified by querying the store
profile.

In the rest of this chapter, we will use the following three terms interchangeably: SSA node,
instruction, and program point since every SSA node encodes a single program instruction, and

every program instruction is associated with a program point.
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Given these two definitions, a scope skeleton in an acyclic SSA graph is defined as follows. Let p
be an invariant object reference node. Then, S, (p), a scope skeleton seeded at p (called the skeleton
root) is a forward slice of the SSA graph. If S (p) contains a node z, then z satisfies one of the

following conditions:

e I ==

z is an invariant object reference node and all its input nodes are in S (p).

x is a ¢-node, all its input nodes are in S, (p) and compute the same value along all incoming

edges.

z is a non-¢ scalar computation node, and all its input nodes are in S (p).

Note that if z belongs to S, (p), then, the output of z is computable at specialization time using the
value of oref(p).?

The above definition is a constructive definition and it is straightforward to design an algorithm
to build a scope skeleton starting at an invariant object reference node. This algorithm is presented

in Figure 5.2.

5.1.2. Building acyclic scope skeletons

For every invariant object reference node, Bui IdAcycl icScopeSkeletons builds a max-
imal scope skeleton. A scope skeleton is maximal if it cannot be grown any further. The algorithm
uses the membership conditions presented earlier to add new instructions to a scope skeleton. In
order to add a getarray instruction to the skeleton, the algorithm has to determine the array el-
ement being accessed and verify its invariance. As shown in Figure 5.3, the algorithm uses vMap
(a mapping from SSA variables to values) for this purpose. Whenever an instruction is added to the

skeleton, its output value is added to vMap.

2This is not always true as we will discuss later on in this section.
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ScopeSkeletons BuildAcyclicScopeSkeletons(Method m)
{
Let SS = {}; /* Set of scope skeletons */
LetN Set of all SSA nodes in m’s SSA graph;
while (N # {}) {
Remove a node n from N;
LetS = BuildScopeSkeleton(n);/* Line A*/
if (S # null)add Sto SS;

}

return SS;

}

ScopeSkeleton BuildAcyclicScopeSkeleton(SSA-Node n)

{

if (n is not an object access node) return nul I;

Let vMap = {}; /* Mapping from SSA registers to values */
if (*IslnvariantObjectAccessNode(n, vMap))return null;

LetN = {}; * Work list of SSA nodes */
LetS = {n}; /*instructions in the skeleton */
Add all target nodes of nto N;
while (N # {}) {
Remove a node x from N;
if (all input nodes of x are in S) {
if ( (X isan object access node)
&& (IslnvariantObjectAccessNode(x, vMap)))
{
Add x to S and add all target nodes of x to N;
} else if ((x is a ¢-node) and (all inputs of x compute the same value)) {
vMap(outputRegister(x)) = ComputeOutput(x, vMap);
Add x to S and add all target nodes of X to N;
} else if (x is a non-¢ scalar computation node) {
vMap(outputRegister(x)) = ComputeOutput(x, vMap);
Add x to S and add all target nodes of x to N;

}

}
}
return S;

}

Figure 5.2. Bui | dAcycl i cScopeSkel et ons: Algorithm to build scope skeletons for acyclic SSA
dataflow graphs
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bool IslnvariantObjectAccessNode(SSA-Node n, Map vMap)
{
Let oap be the object-access profile;
Let sp be the store profile;
Let op,t = Oap.GetHottestObject(n);
if(nisr = getfield(o, )){
if (sp- Islnvariant(op.:-T)) {
vMap(r) = opet-F;
return true;

}

else return false;

}

if (nisr = arraylength(o)){
vMap(r) = op.-arraylength;
return true;

}

if(nisr = getarray(o, 1)){
if (vMap(i) = null) return false;
ivag = (Wisaconstant) ? 1 - vMap(i);
if (sp- IsInvariant(opotfiva])) {
VMap(r) = Ohot[ival];
return true;

}

else return false;

Figure 5.3. Routine | sl nvar i ant Obj ect AccessNode

While this algorithm only handles acyclic SSA dataflow graphs, the design designs behind this
algorithm are also central to the scope-building algorithm that is presented later on in this chapter.

These design decisions are presented below.

e Greedy strategy: In building maximal scope skeletons, the algorithm greedily tries to build
the largest possible specialization scopes starting at the skeleton root. While a non-greedy
algorithm can potentially identify better and more profitable scopes, a greedy strategy has been

chosen for the sake of simplicity. Chapter 9 shows that this strategy is effective in identifying
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profitable specialization scopes with low runtime overheads.

e Hot-object approximation heuristic: In deciding whether a node p is an invariant object refer-
ence node (Figure 5.3), the algorithm uses the hottest object referenced by p as a representative
object referenced by p. If the accessed field in the hot object is invariant (or variant), the algo-
rithm assumes that this property holds true for all objects accessed by p. This is a necessary
approximation since it is not feasible to construct scopes (skeletons) for every possible object
referenced by p. Due to this approximation, if = belongs to S, (p), then, the output of z may

not always be computable at specialization time for all values of oref(p).

Because of these heuristics, the skeleton that is built by this algorithm is suboptimal. Later in this
section, we will show using the example shown in Figure 5.4 how the algorithm selects suboptimal
skeletons because of the several simplifying heuristics used by the algorithm.

The skeleton-building algorithm that handles cyclic SSA dataflow graphs (presented in Sec-

tion 5.2) is also designed around these decisions.

5.1.3. The skeleton inheritance heuristic

In this section, we point out a source of high runtime costs in Bui IdAcycl icScopeSkele-
tons and present a simplifying, but suboptimal, heuristic that leads to reduced costs.

Note that Bui IdAcycl icScopeSkeletons builds a new skeleton at every invariant object
reference node (Line A in Figure 5.2). After converting these skeletons to scopes, a cost-benefit
analysis selects the most profitable set of non-overlapping scopes. However, this process can be
expensive because a method typically has many object reference nodes. The number of skeletons

built by the algorithm affects the scope-building cost in two ways:

e Cost of building the skeletons, and
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e Cost of identifying a profitable set of non-overlapping scopes. More the scopes, more the

choices that the cost-benefit analysis has to analyze.

This cost can be reduced by building a new skeleton only when necessary rather than build a
new skeleton at every invariant object reference node. Consider the example shown in Figure 5.4.

The figure shows the SSA dataflow graph for an expression from the FindTreeNode method in

S _sk(I1)

r2 = getarray(ri, 0); ]

S_sk(I2) [

|§, [ r3 = getfield(r2, verts); ]

getarray(r3, 0); ]

|4 [ r4

|5\\\[ r5 = getfield(r4, x); ]

SSA dataflow graph for the expression t hi s. faces[0].verts[0].x

Figure 5.4. Example showing two nested skeletons where the outer skeleton subsumes the inner one

raytrace. The SSA graph for this expression contains five chained object reference nodes. Since
we know that the octtree is invariant, all these nodes also happen to be invariant object reference
nodes. Therefore, all of them are candidates for building scope skeletons. The figure shows two
of the skeletons, Ssx(I1) and Ssi(I2). As shown in the figure, the inner skeleton is fully contained
within the outer, i.e. Sgx(I2) is a subgraph of Sg,(I1). This is true in general, not just for this
particular example. Given a SSA dataflow edge © — v where both « and v are invariant object
reference nodes, the scope skeleton S, (v) will be a subgraph of S (u) (put another way, Ssx(v)
will be completely nested in S (u)).

Let us understand the implications of this nesting property for specialization. Refer back to



79

the example in Figure 5.4. For this example, the scopes happen to span the same instructions as
their corresponding skeletons. Specializing the inner scope will eliminate instructions I, through
Is. Specializing the outer scope will eliminate instructions I; through Is. However, this does not
necessarily imply that the outer scope is a better specialization scope than the inner one. If the object
reference profile shows that there are 500 frequently seen values of this and only 5 frequently seen
values of r; (due to data structure sharing), it is beneficial to select the inner scope over the outer
scope. However, if there are 20 frequently seen values of this and 20 frequently seen values of 1, it

is clearly beneficial to select the outer scope over the inner scope.3

This scenario can be recast into the following skeleton-building question: given a SSA dataflow
edge v — v where both » and v are invariant object reference nodes, and « belongs to a skele-
ton, should a new skeleton be built at v? One answer to this question has been given in Bui ld-
AcyclicScopeSkeletons. It always builds a new skeleton at v. The cost-benefit analysis step
shown in Figure 5.1 selects the best set of scopes in the end. However, besides being a high-overhead

approach, in some cases, it is not necessary to build a new skeleton at v.

In this dissertation, we use a simplifying, but suboptimal, heuristic to answer the above question.
Given a SSA dataflow edge u — v where both « and v are invariant object reference nodes, a scope
skeleton is never built for v — it inherits the scope of u. However, this skeleton inheritance heuristic is
suboptimal, because for the earlier example (Figure 5.4), this heuristic will essentially always select

the outer scope over the inner scope.

We now briefly examine the implications of the skeleton inheritance heuristic. Given an invariant
object reference node u and its skeleton S, (u), skeletons are never built for the nodes in Sg(u)
except for w. In combination with the greedy strategy that always builds maximal skeletons, this

heuristic minimizes the number of skeletons built by the algorithm which reduces the runtime cost

3Note that the third scenario: 5 values of this and 500 values of 71 is not possible. The number of unique values of
r1 = this. faces cannot be greater than the number of unique values of this because this. faces is invariant.
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of skeleton building.

Thus, in the course of this discussion, we have presented two answers to the skeleton-building
question: always-build vs. never-build. The always-build answer can ultimately lead to the “best”
scopes, but has high runtime execution costs. In contrast, the never-build answer can be very ef-
ficiently implemented at runtime, but can lead to suboptimal scopes. Clearly, these two answers
represent two extremes of a spectrum. Exploring other alternatives and improving upon the subopti-

mal skeleton inheritance heuristic studied in this dissertation is left for future work.

5.2. Building scope skeletons for arbitrary SSA graphs

In this section, we present an algorithm that computes scope skeletons for arbitrary SSA graphs.
We first present a definition of scope skeletons that is valid for both cyclic as well as acyclic SSA
graphs. Then, we present the skeleton-building algorithm formulated as a dataflow analysis on the

SSA graph.

5.2.1. Defining a scope skeleton for arbitrary SSA graphs

In this section, we first describe the properties of a scope skeleton for cyclic SSA graphs using
examples to clarify the definition.

Figure 5.5 shows a code snippet with a loop and the corresponding SSA dataflow graph. The fig-
ure also shows a scope skeleton for the getarray instruction. The skeleton includes the two dataflow
loops shown in the figure. The intent behind including dataflow loops within a skeleton is to al-
low unrolling of the control-flow loops that compute the values of the dataflow loops. Therefore, in
the example, the scope corresponding to the skeleton would include the entire loop which will be
unrolled during specialization.

The cyclic skeleton shown in Figure 5.5 does not meet the definition of a skeleton defined in

Section 5.1.1. First, the skeleton is no longer a forward slice seeded at the getarray instruction (the



'\ a = receive_arg(0);

I s = 0;

o for (i =0; i < 10; i++) {
P x =al[i]; /xgetarray(a, i) *
! S += X;

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Example Loop

SSA dataflow graph with a cyclic skeleton

Figure 5.5. Example showing a skeleton in a cyclic SSA graph. The high level source code contains a loop
which leads to the two data-flow loops shown in the SSA graph. Since the SSA graph is in canonical form,
the constant assignments i =0, and s=0 are folded into the u-nodes

skeleton root). The skeleton shown in the figure includes the backward slice of the getarray instruc-
tion along the dataflow edge that provides the array index. Second, it is unclear what invariance of
the getarray node means because the array index comes from i-loop (a dataflow loop) which is not a
constant.

We now provide a revised definition of a scope skeleton that generalizes the acyclic skeleton
definition. Let p be an object reference node (not necessarily invariant). Then, S (p), a scope
skeleton seeded at p is a forest of connected subgraphs of the SSA graph that includes p. If a node z

is in Sg(p), then z satisfies one of the following conditions:

1. zisan invariant object access node and oreft(z) = oref(p).

2. z is an invariant object reference node, and all its input nodes are in Sk (p).

3. z isa ¢-node, all its input nodes are in S (p) and compute the same value along all incoming

edges.
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4. x is anon-¢ scalar computation node, and all its input nodes are in S (p).

5. x represents getarray(a, 1), 1 iscomputed by a dataflow loop (called 1 -1oop), and all

the following conditions are satisfied:

(a) Letd be the instruction that defines a. Then, either p or d control-dominates all the nodes
in i-loop.
(b) The invariance of some arbitrary element of the array can be verified using the store

profile.

Note that the skeleton shown in Figure 5.5 satisfies the above definition (assuming that the array a
is completely invariant). Except for the root instruction (getarray(a, 1)), all other instructions
in their skeleton have their input nodes in the skeleton. For the getarray(a, 1) node, the
definition node of a (a = receive_arg(0)) control-dominates all the nodes of i-1oop.

We now discuss the need for these conditions in greater detail. Conditions 1-4 are similar to those
presented for an acyclic skeleton in Section 5.1.1. Condition 5 is new. Let us understand why it has
been included. If z, agetarray(a, 1) node, receives its input from a dataflow loop, this implies
that = accesses multiple array elements within loop(s). Therefore, if the node is included in the scope
skeleton, the loops can be unrolled. However, an unrolled array access can be specialized only if: (1)
the unrolled array values can be computed at specialization time, (2) the unrolled index values can
be computed at specialization time, and (3) the unrolled array accesses are invariant. Conditions 5a
ensures that the first requirement is met. Conditions 1-4 ensure that the second requirement is met.
Condition 5b ensures that the third requirement is met.

Condition 5a verifies that the array is either defined outside the loop (d control-dominates -
loop), or is computable from the specialization key values available at p (p control-dominates 1-
loop). The need for these checks is clarified by the examples in Figure 5.6 and Figure 5.7. In

Figure 5.6, suppose we were trying to build a skeleton for the use a[i] node. In order to add
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for (i = 0; i < 100; i++) {
int[] a = GetRandomIntArray();
--- use a[i] --.

}

Figure 5.6. Example illustrating the utility of condition 5a in the definition a scope skeleton. In this example,
the loop cannot be unrolled because the array is defined within the loop.

a[ 1] to the skeleton, conditions 5a and 5b have to be satisfied since 1 comes from a dataflow loop.
However, since a is defined within the loop, the definition point does not control-dominate the loop.
Neither does the skeleton root (use a[i]), control-dominate the loop. Therefore, a[ i] cannot
be added to the skeleton. It can be verified that this is the right decision since it is not beneficial
to unroll and specialize the unrolled iterations; the value of the array is not known and hence, the

array access a[ 1] cannot be eliminated. In Figure 5.7, suppose we were trying to build a skeleton

o0 = receive_arg(0);

X = o.F; /* skeleton root */

for (i = 0; 1 < 10; i++) {
foo(X); * foo could potentially modify x */
int[] a = x.a;
-.- use a[i] --.

¥

Figure 5.7. Example illustrating the utility of condition 5a in the definition of a scope skeleton. In this example,
the loop can be unrolled even though the array is defined within the loop.

for the x = o.F node. Let us assume that the access x.a is invariant. In this example, a[ 1] can
be added to the skeleton even though a is defined within the loop* because the skeleton root (x =
0. T) control-dominates the loop. It can be verified that this is the right decision because the loop
can be unrolled and specialized. The value of a is known for all the unrolled iterations because the
X.a access is invariant. Therefore, the array accesses a[ 1] can be eliminated (assuming that they
are invariant).

Condition 5b is a heuristic that generalizes the (in)variance of all array elements referenced by z

“In this example, the “loop-invariant” expression x. a has been left alone because of the intervening call to f 0o.
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based on the (in)variance of a single arbitrary array element. This heuristic is similar in spirit to the

hot-object approximation heuristic.

5.2.2. Algorithm Bui | dScopeSkel et ons

Unfortunately, unlike the acyclic scope skeleton definition, the definition for a general scope
skeleton is not constructive. From the definition, it is not directly clear how to identify a forest
of connected subgraphs starting at the skeleton root that satisfies the conditions 1-5. Satisfying
conditions 1-4 is also not straightforward in the presence of loops because these conditions imply a
topological order of processing the nodes which is not possible for cyclic graphs.

In this section, we present a skeleton-building algorithm that is formulated as a dataflow analysis.
We first present the heuristics that are central to this algorithm. We then present an overview of the

algorithm and then present the details of the dataflow analysis.

Background: Simplifying heuristics

Algorithm Bui 1dScopeSkeletons is built on various ideas that have been explored so far.
Three heuristics (that we presented in the course of acyclic skeleton building) are integral to the

algorithm and these are summarized below:

¢ Hot-object approximation heuristic: At all object reference nodes, the algorithm uses the hot

object as a representative object to decide the (in)variance of the object reference node.

e Building maximal scope skeletons: The algorithm greedily grows a scope skeleton till it can

no longer be grown.

e Skeleton inheritance heuristic: Given a SSA dataflow edge © — v where both « and v are

object reference nodes, v inherits the skeleton of w, if u has one.
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Overview of algorithm

In this section, we present an overview of the algorithm and the key ideas behind it. Just like
the acyclic scope building algorithm presented in Section 5.1.2, this algorithm starts new skeletons

at object reference nodes and grows them by processing all target nodes.

The basic algorithmic step involves processing a node v, in the context of its input nodes. While
processing v, the algorithm employs all the three heuristics presented previously. The specific details
of processing v depends on the nature of v and its input nodes. We present these details later on in
this section. As an example, let us assume that v is an object reference node and has exactly one input
node, u, which is also an object reference node. First, to determine if v is invariant, the algorithm
uses the hot-object approximation heuristic. Second, if v is invariant, and » belongs to skeleton S,
the algorithm uses the greedy strategy and expands S to include » without any cost-benefit analysis.
Third, the algorithm uses the skeleton inheritance heuristic to avoid building a new skeleton at . In
the second step above, before adding » to .S, the algorithm verifies that the resulting skeleton satisfies
the conditions in the skeleton definition provided earlier. The specific checks depend on the nature
of u.

Let us now understand how the algorithm handles dataflow loops and discovers those that can
be unrolled and specialized. In SSA graphs, p-nodes® signal the presence of dataflow loops. During
dataflow analysis, if the p-node receives constant (but, different) values along its two input edges, the
algorithm assumes that, if unrolled, the computed values will all be constant. At the output of such
u-nodes, the algorithm uses a special lattice value L£C to capture the loop-constant abstract value. By
propagating £C through the SSA graph during dataflow analysis, the algorithm abstractly propagates

the information that the unrolled loop will produce a sequence of constant values.

This process is pictorially shown in Figure 5.8. Figure 5.8 shows the example from Figure 5.5

®Recall that p-nodes are ¢-nodes in loop headers.
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receive_arg(0);
0

i for (i’ =0; i <10; i++) { i
P x = alil; [ getaray(a,i)¥ @ EXample Loop
! s += X; 1

Conceptual

!
—_—
Loop Collapsing

Original SSA dataflow graph Transformed SSA dataflow graph

Figure 5.8. Conceptual loop transformation that is implemented by the algorithm to collapse dataflow loops
that compute a sequence of constants. In the transformed SSA graph, LC represents a loop-constant abstract
value.

and a conceptual loop collapsing step which collapses dataflow loops and transforms the cyclic SSA
graph into an acyclic one. The abstract loop-constant value captures the information that the loop
will be unrolled and that the values computed after unrolling will be constant. After this conceptual
collapsing, when the getarray node is processed, the algorithm recognizes that the getarray
is accessing a sequence of array elements with constant indices. It verifies that the getarray node
satisfies conditions 5a and 5b in the skeleton definition and adds the node to a new skeleton. In the
process, it conceptually adds the constant loop index (i-loop LC node) to the skeleton which marks

the corresponding control-flow loop for unrolling.

Having seen an overview of the algorithm, we now turn our attention to the details of the dataflow

analysis that incorporates all the ideas discussed in this section.
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Skeleton Lattice

The skeleton building algorithm (implemented as a dataflow analysis) uses the dataflow lattice
shown in Table 5.1. During dataflow analysis, instructions are associated with values from the SS-

Lattice lattice.

Ly : T — Skeleton — L Ly: T —wc— L

c denotes all possible constants and includes £C, a special

Skeleton denotes all possible | ..ot \which denotes a sequence of constants computed

skeletons by an instruction in a loop nest.
SNT =25, cnT=c¢
TNS=25; TMNe=c;
S1M8Sy,=8114f (51282); ciMee=crif (Cl :CQ);
S1M8Sy=1;if (Sl #* SQ); c1Meo =15 i4f (01 # 02);

SSLattice: L1 XLy
(51,61) M (52,02) = (Sl M SQ,Cl 1 Cg);

Table 5.1. Lattice used by the dataflow analysis algorithm that computes scope skeletons on a SSA graph

The L lattice is used to record skeletons and propagate them along SSA edges during dataflow
analysis. If a node has T as its L lattice value, this means that the node does not yet belong to
any skeleton. If a node has 1 as its L, lattice value, this means that the node cannot be part of any
skeleton. Let us now understand the intuition behind the M operator. In our specialization model,
since scopes are restricted to single-variable specialization keys, whenever a multi-input instruction
z (like ¢, u, OP, getarray) receives non-identical skeletons along its input edges, neither skeleton
can be expanded to include x because the output of = can be computed only when values from all
its input skeletons are available. Therefore, S1 M .Sy is L if S1 # Ss. In a specialization model that
can handle multi-variable keys, potentially, a new merged scope can be created in which case the M
operator will be different from the one shown in Table 5.1.

The Lo lattice captures the nature of value flow along dataflow edges and it is present for two

reasons: (1) for getarray instructions, it enables the array index to be discovered (2) it also enables
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unrollable dataflow loops to be discovered — this is accomplished using the special lattice value £C

as discussed in the algorithm overview. The details will become clearer when the transfer functions

are explained.

Dataflow Analysis: Preliminaries

}

{

}

class Skeleton {

Node root;
Set instrs;
Set loops;

/* The skeleton root */
* Instrs that belong to this skeleton */
/* Loops that have be unrolled */

SSA-reg lookupReg; /* Key for the enclosing scope — oref(root) */

Instr

Let
Let
Let
Let
Let
Let
Let

Sp
oap
cfg
ssa
sIMap

lookupPt;

skeletonMap =

loopMap

/* Lookup point for the enclosing scope */

Skeleton Set BuildScopeSkeletons(Method m)

Store Profile;

Object-Access Profile;

m.cfg;

m.ssa;

new HashMap; /* SSA-Reg — SSLattice*/
new HashMap; /* SSA-Reg — Skeleton*/
new HashMap; /* SSA-Reg — Loop Set?*/

Initialize: sIMap(r) = (T, T) for all SSA registers r;

Perform a dataflow analysis on the SSA graph using SSLattice and the
transfer functions shown in Table 5.2.

return GetSkeletons(sIMap, loopMap);/* Figure 5.15 */

Comments

sIMap(r:SSA-Req) returns the SSLattice value for r;
sIMap(c:Constant) returns (T, ¢);
skeletonMap(r:SSA-ReQ) returns the skeleton with lookup key r;

Figure 5.9. Bui | dScopeSkel et ons routine

Figure 5.9 shows the scope building algorithm as a dataflow analysis. For every instruction in the

SSA graph, the analysis essentially computes the skeleton it belongs to. After the analysis completes,
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the set of valid skeletons are recovered from the dataflow facts (GetSke letons routine).

A skeleton is represented using the class definition shown in the figure. The first three fields
of this class are self-evident. The second two fields of this representation correspond to the scope
enclosing the skeleton. Given a skeleton S (p), the lookup key for the enclosing scope will be
oret(p) where p is the skeleton root, root. For many skeletons and scopes, the lookup point
will be identical to the skeleton root, root. However, for some cyclic loops, the scope lookup point
will be in a loop pre-header whereas the root will be within the loop. This is true for the example
shown in Figure 5.5 where the scope lookup point is outside the loop, whereas the skeleton root is
the getarray instruction (x = a[i]).

The algorithm uses sIMap to keep track of dataflow facts associated with a SSA node. This
map associates dataflow information with registers because the dataflow analysis processes only
those instructions that compute a result in a register. If a constant ¢ is used to lookup sIMap, it
returns (T, c). This trick eliminates many checks in the algorithm and simplifies its presentation.

The algorithm uses skeletonMap to keep track of the lookup keys used by the enclosing
scopes of the skeletons identified by the algorithm. This map is used to merge skeletons whose
enclosing scopes use the same lookup key. We will illustrate the importance of skeleton merging
using an example later on in this chapter.

The algorithm uses loopMap to keep track of the loops that are unrolled by a skeleton. These
loops are associated with instructions that induce unrolling (getarray or getfield instruction).
Since instructions are uniquely associated with their destination registers, loopMap uses the desti-

nation register of an instruction to track unrolleable loops.

Transfer functions

The transfer functions for various SSA nodes are shown in Table 5.2, Figure 5.11 and Figure 5.12.

It can be verified that all transfer functions maintain the invariant that if either element of the SS-



| Instruction

| Transfer Function

r = recv._arg(...); | slMap(r)= (L,L1);
r = call(...); slMap(r) = (L, 1);
r = new(...); slMap(r) = (L, 1);
r = 0P(ry,r3) (S1,v1) = s1Map(ry);
(S2,va) = s1Map(rsy);
S =54 18,;
v = 0P(vy,Va);
slMap(r) = ((S=L)[[(v=L1)7(L,L): (S,v);
r = ¢(r1,...,Tx) (S,v) = s1Map(ry) M... M s1Map(ry);

s1Map(r) = ((8 = L)|[(v=1)) 7 (L, 1) : (8,v);

(Se,ve) = s1Map(re);

(Sp, vp) = s1Map(ry);

S = S¢ M Sp;

if (5= L)[[(ve = L)[[(vp = 1)) s1Map(r) = (L, L);
elseif (vp, = T) s1Map(r) = (S, ve);

elseif (ve = T) s1Map(r) = (S, vp);

elseif (ve = vp) s1Map(r) = (S, ve);

else s1Map(r) = (8, LC);

r = getstatic(f);

s1Map(r) = sp.IsInvariant(f)
?(T,StaticValue(f)): (L,L);

r = arraylen(a)
r = getfield(o, f)
r = getarray(a, i)

slMap(r) = ProcessArrayLength(I);
slMap(r) = ProcessGetField(I);
slMap(r) = ProcessGetArray(I);

Lattice value is L, both elements are lowered to L.

We now provide an intuitive interpretation of the output of some of the transfer functions.

90

Table 5.2. Transfer functions used by Bui | dScopeSkel et ons to build the scope skeletons on the SSA

e |f the output of a transfer function is (T, ¢), this means that the instruction does not belong to

any skeleton, and computes the value c.

e The transfer function output for a cal l instruction is (L, L). This means that the call does

not belong to any skeleton, nor is the output of the call available for instructions that use the

call result. Clearly, this transfer function can be improved in certain cases. For example, when
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the callee is a pure function (ex: library mathematical functions), the input skeleton can be

expanded to include the call, and the call result can be made available to target SSA nodes.

e Examining the transfer function for the ¢-node, it can be verified that this implements condi-
tion 3 of the definition of a skeleton. Therefore, if a ¢-node receives two different values along

its branches, the ¢-node is not added to any skeleton.

e Let us now examine the transfer function for a y-node. A p-node signals the presence of
dataflow loops. The transfer function shows that if the inputs to the node are constant, but,
non-identical values, the output goes to £C. For example, the index computation for (i =
0; 1 < 10; i++) will have a u-node of the form: i; = p(0,42). It can be verified that
this node will stabilize with the lattice value (T, £C). This captures the fact that this index
computation is not part of any skeleton but computes a sequence of constant values. Note that

this lattice value is similar to (T, ¢) for the scalar constant c.

s2 = 0;
for (i =0; i < 10; i++) {
11 x = all[i]; [ getarray(al, i) */
sl += x;
12 y = a2[i]; [*getarray(a2,i)*
S2 +=y,

Figure 5.10. Example showing the importance of the T-skeleton

Figure 5.10 shows an example which highlights the importance of T as a skeleton lattice value.

The figure shows two separate arrays being accessed in the loop. For the i-loop u-node, the
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analysis will compute the lattice value (T, £C). By not including u-node in any skeleton, it
enables both getarray nodes to use it for unrolling the loop. As a result, the algorithm will
identify two skeletons, one each for the two arrays. The cost-benefit analysis will then pick

the better scope.

e For the getstatic node, if the accessed field is invariant, note that the transfer function
does not assign it to any skeleton. This is because getstatic instructions do not have any
input values — therefore, as long as the content of the static field is invariant, its value can be

used by any skeleton.

The algorithm focuses on object reference SSA nodes (arraylength, getfield, and get-
array). New skeletons are built only at these instructions — this follows the definition of a skeleton
whose roots are always object reference nodes. The transfer functions for ProcessGetField
and ProcessArraylLength are shown in Figure 5.11, and the transfer function for Process-
GetArray is shown in Figure 5.12. We discuss these transfer functions in the following paragraphs.

Note that all these three transfer functions first check for the presence of a hot object. The object-
access profile might not find any hot object for an instruction if the instruction is in an infrequently

basic block. In such cases, the instruction is not processed any further.

Transfer function for arraylengthand getfield: Since conditions 1, 2, and 5 of the defini-
tion of a skeleton requires all object reference nodes to be invariant (except getarray instructions
whose index computation comes from a dataflow loop), the transfer function for getfield in Fig-
ure 5.11 first checks for invariance of the referenced field of the hot object. However, there is no
such check in ProcessArraylLength because array lengths are immutable.

Since both arraylengthand getfieldare single-input object reference nodes, they inherit
the skeletons of their source nodes if one exists. If not, they build a new skeleton as shown in the

transfer functions.



SSLattice ProcessArrayLength(l: r = arraylen(a))

{
/* 1. Check for existence of a hot array */
apot = 0ap.GetHotObject(l);
if (apot = null)return (L, L);
* 2. Build new skeleton or grow existing skeleton */
(S, ) = siMap(a);
if (S = T)return (T, T);
if (S = 1)S = BuildNewSkeleton(l, 1, a); /* No existing skeleton */
return (S, apet - lENgth);
}
SSLattice ProcessGetField(l: r = getfield(o, T))
{
/* 1. Check for invariance of the hot object */
o, = oap.GetHotObject(l);
if (Cop, = null) || !'sp-Islinvariant(op-T))return (L, 1);
* 2. Build new skeleton or grow existing skeleton */
(S5, v) = sIMap(o);
if (S = T)return (T, T);
if (S = 1)S = BuildNewSkeleton(l, 1, 0); /*No existing skeleton */
else { /* Expand existing skeleton */
Instr src = ssa.GetDefinition(o0);
if (v = LC) && (srcis a p-node)) {
[* o is defined by the p-node which is in skeleton S. If 1 is in
muLoop, o takes on new values in each iteration. Therefore, we
decide to unroll muLoop. If I is outside muLoop, the value of
o will be known only if S unrolls muLoop. If not, we have to
build a new skeleton starting at I. */
Let muLoop = src.InnerLoop;
if (1. 1nnerLoop = muLoop) loopMap.AddLoops(r, mulLoop);
else S = BuildNewSkeleton(l, I, 0);
¥
}

return (S, oy -T);

Figure 5.11. ProcessArrayLengt h, ProcessCet Fi el d transfer functions
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SSLattice ProcessGetArray(l: r = getarray(a, i))

{

/* 1. Check for existence of a hot array */
apot = O0ap.GetHotObject(l);
if (apor = null)return (L, 1);

siMap(a);
sIMap(i);
/* 2. Index not computable */
if ((v;=1) |1 (Si=L))return (L, L);
if ((oi=T) |l (Se=T))return (T,T);
/* 3. Array and index come from different skeletons */
if ((S; #T) && (S, # S;)) return (L, 1);
I* 4. Access of single array element */
if (vi # LC) {
if (1sp. Islnvariant(ape|v;])) return (L, L);
if (Sq =1)S = BuildNewSkeleton(l, I, a);
return (S, apot[vi]);

}else {

(Say—)
(Si, i)

/* 5. 1 is computed by a dataflow loop involving p-node(s). Thus, I is access-
ing multiple elements of the array ay,;. In order to specialize away these array
accesses, we have to unroll all the loops involved in computing i. This is possi-
ble only if: (1) I is present in the innermost loop, and (2) Condition 5a in the

skeleton definition is satisfied */
loops = GetLoops(i);

ol = OutermostLoop(loops);
il InnermostLoop(loops);
if (1.innerLoop # il)return (L, 1);
if (Se =1){
Instr d = ssa.GetDefinition(a);

if (Ycfg.Dominates(d, ol _header))return (L, 1);
/* If a is not part of an existing skeleton, the lookup point will be in the

preheader of the outermost loop. */
Instr lookupPt = ol.preheader.tail;

S = BuildNewSkeleton(l, lookupPt, a);
}else {
S =8
if (Ycfg.Dominates(S.lookupPt, ol_header))return (L, L);

}
loopMap.AddLoops(r, loops);

return (S, LC);

Figure 5.12. Pr ocessGet Ar r ay transfer function
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[* We want a new skeleton at 1 with lookup-reg r. If some other instruction has
already built a skeleton (S) with this same lookup register, we can use it if (1) the
S. lookupPoint dominates I, and (2) if S is still valid (During dataflow analysis,
the lattice values keep changing. Therefore, the instruction that originally built S might
have changed its lattice value.) */

Skeleton BuildNewSkeleton(lnstr I, Instr lookupPt, SSA-Reg r)

{

Skeleton S = skeletonMap.get(r);

if ((S # null) && cfg.Dominates(S. lookupPt, lookupPt)){
SSA-Reg d = S.root.destinationReg;
(5S¢, -) = siMap(d);
if (S = Sg)return S;

}

S = new Skeleton();

S.root =1

S.lookupPoint = lookupPt;

S.lookupReg = r;

skeletonMap.put(r, S);

return S;

¥
Optimizations:

1. If the lookup reg r comes from a memory-allocation instruction, then, there is no
use building a new skeleton and the routine can return 1.

2. If the object-access profile shows that r has “too many” (value decided empirically)
values seen at runtime, the routine could return L with the assumption that only a
certain maximum number of specialized versions can be created for any scope.

Figure 5.13. Bui | dNewSkel et on routine
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For getfield, the transfer function also checks if a loop can be unrolled. A loop can be
unrolled if the getfield receives a value from a dataflow loop. The special lattice value L£C signals
this. The additional check (src is a y-node) is an optimization — if the definition node is not a u-node,
it means that some other node would have dealt with the dataflow loop already (another getfield

or getarray instruction).

Transfer function for getarray: The transfer function for the getarray instruction is the
most complex of all — this is due to the fact that it is a two-input instruction and can induce unrolling

of multiple nested loops.

e If the index is not computable, then the array element access cannot be specialized and there-

fore, the instruction cannot be added to any skeleton.

e If the index and the array come from non-identical skeletons, the instruction cannot be added
to either skeleton because the specialization model only allows single-element specialization
keys. However, if the index comes from a T skeleton, the index might be a scalar or a loop

constant (Ex: Figure 5.8) and therefore the instruction can potentially be added to the skeleton.

e If the index is not LC, the transfer function checks for the invariance of the array element
being accessed. Condition 5b (for getarrays that access multiple array elements) is satisfied
by this check as explained next. When a u-node is processed for the first time, it passes
along the value coming in from outside the loop (v) since the back-edge value (v) will be
T. Therefore, when a getarray is processed for the first time, it will always have a constant
array index. Therefore, this dataflow analysis uses the (in)variance of a[v.] to generalize for

all elements accessed by the instruction.

e |f the index is LC, the transfer function checks if condition 5a in the skeleton definition is

satisfied. The specific clause that is checked depends on whether the array belongs to an
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existing skeleton or not.

Building New Skeletons Having discussed the transfer functions for all instructions, we now dis-
cuss how new skeletons are built. Figure 5.13 shows the routine that builds new skeletons. The
routine first checks whether the new skeleton can be merged with an already existing skeleton that
has r as the lookup key. If there exists one (say .S), it can be used if S satisfies some conditions.
Firstly, S must control-dominate the lookup point requested for the new skeleton. Secondly, the S
must still be valid. S might be invalid because the instruction that built S might have changed its
lattice value (the skeleton component might have gone to L or to a different skeleton). The check
verifies that S is still valid by comparing it with the current lattice value of the instruction that built
S. Figure 5.13 also shows a couple of self-explanatory optimizations that can be performed on this

basic routine.

int s = this.start;/* New skeleton S */
int cs = this.chars;/* New skeleton Sy */
int n = cs.length;

for (i = s; 1 <n; i++) {

char c = cs[i]; /* Skeleton conflict at the getarray node */
..usec..

}

Figure 5.14. Example illustrating the importance of merging skeletons whose scopes use the same lookup key.
The example shows that without merging, there will be unneeded skeleton conflicts.

Figure 5.14 shows why it is important to merge skeletons, where possible. When this.start
is processed, the algorithm builds a new skeleton S with lookup key this. When this.charsis
processed, the algorithm requests another new skeleton. If the algorithm does not use S; and builds
a new skeleton Sy instead, there will be a skeleton conflict at the cs[ 1] getarray instruction. cs
will be defined in S, whereas 1 will be defined in S;. As a result, the analysis will fail to unroll the
loop in the figure. However, by merging S, with Sy, this problem is avoided. In general, skeleton

merging leads to a forest of connected subgraphs (rather than a single connected subgraph) that are
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Skeleton Set GetSkeletons(HashMap sIMap, HashMap loopMap)
{
/* Add unrolleable loops to appropriate skeletons */
foreach ((r, loops) € loopMap) {
(Sr,-) = sIMap(r);
if (S, # L) add loopsto S, . loops;
}

/* 1dentify all valid skeletons with their instructions */
Skeleton Set SS = {};
foreach (entry (r, (S;,-)) insIMap) {
if (S, # 1) {
Instr i = ssa.GetDefininglnstr(r);
add 1 to S, . Instrs;
add S, to SS;

}
}

return SS;

Figure 5.15. Get Skel et ons routine

part of the scope skeleton. For example, the FindTreeNode method shown in Figure 1.1 leads to

such a skeleton starting at the getfield expression this.faces with this being the lookup key.

Recovering the set of valid skeletons

After the dataflow analysis terminates, the set of valid skeletons are recovered from the dataflow
facts recorded in sIMap using the GetSkeletons routine shown in Figure 5.15. This routine is

straightforward and the figure is self-explanatory.

5.3. ldentifying scopes from the skeleton set

In this section, we show how to build specialization scopes from the set of skeletons that were

identified by the dataflow analysis presented in the previous section. In this section, we also present
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the routine that compute the costs and benefits from creating specialized versions for a scope.

| Instruction | Benefit | Remarks |

getfield 2.0 if loaded value is not float/double
0.5 if loaded value is float/double
getstatic 2.0 if loaded value is not float/double
0.5 if loaded value is float/double
getarray 3.0 if loaded value is not float/double
1.0 if loaded value is float/double
arraylength 2.0
X =Yy 0.5 many copies get eliminated
mul/div 10.0 | for float/double operands
5.0 for int/long operands
add/sub 2.0 for long operand
1.0 for other operands
everything else 1.0

Table 5.3. Table showing the values used by the cost-benefit analysis to estimate benefit of a scope

Figure 5.16 shows the code that builds the scope, and determines the number of specialized
versions to create for the scope. The first step is to build a single-entry, multiple-exit CFG region. To
do this, for every instruction ¢ € sk.instrs, the algorithm adds the basic block of 4 to the scope. More
basic blocks are added to this initial set to grow the scope such that the single-entry, multiple-exit
property is satisfied.

In order to determine the number of specialized versions to create for the scope, the algorithm
first determines the cost and benefit of specializing the scope. In this dissertation, the cost-benefit
model used is rudimentary and is presented here for the sake of completeness. It is shown in Fig-
ure 5.16, Figure 5.17, and Table 5.3.

The cost-benefit model presented here can be improved to better predict the benefits of special-
ization. It does not account for compilation costs very well — as a result, the specializer causes
signification slowdowns for certain programs (presented in Chapter 9). In addition, it does not have

a good model to account for i-cache effects due to code bloat. However, a more sophisticated spe-
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class Scope {

Set bbs; /* Basic blocks of this scope */

Set loops; * Loops that have be unrolled */

SSA-reg lookupReg; /* Key for the enclosing scope — oref(root) */
Instr lookupPt; I* Lookup point for the enclosing scope */

int numVersions; /* Number of versions of this scope */

float profit; * Profit from specializing this scope */

}
Scope ldentifyScope(Skeleton sk)

/* Expand the scope such that the scope encloses loops in their entirety. Once
that is done, the scope will satisfy the single-entry, multiple-exit property */
Scope s = new Scope(sk); /* sets loops, lookupReg, lookupPt */
s.bbs = AddBasicBlocks(sk.instrs);
MakeSingleEntryMultipleExitRegion(s);

/* Compute benefit */

float benefit = 0;

foreach (I € sk.instrs){
float x = GetBenefit(i); /* uses benefit values shown in Table 5.3 */
float If = (i.innerLoop € s.loops) ? 5.0 : 1.0;
benefit += (x * IT);

¥

/* Compute incremental cost of creating a specialized version; Combine two fac-
tors: cost due to loop specialization, and cost due to regular specialization. */

float ¥ = |sk.instrs|/totallnstrs; /* fraction of instrs. eliminated */
float fl = |s.bbs|*(1-)*0.05; /* code bloat factor */

float 2 = |s.loops|*(1-)*2.5; /* code bloat factor due to loops */
float 3 = F1*((f2 == 0)?1.0:F2); /*overall code bloat factor */

/* Determine # of specialized versions to create */
float dispCost = 8; /* dispatch cost — assumes a pseudo-method dispatch */
float incrCost = T3;
Instr root = sk.root;

/* Figure 5.17 */
(n, ) = GetNumVersions(root, benefit, dispCost, incrCost);
s.numVersions = n;
s.profit benefit*f - dispCost - incrCost*n;

return s;

Figure 5.16. Building a scope for a skeleton
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(int,float) GetNumVersions(lnstr root, float benefit,
float dispCost, float incr)
{
/* Get number of versions for 97% profile coverage */
int n = oap.Get97PercCoverage(root);
float totX = 0.0;
float oldX = 0.1;
float oldcb = -oo;
for (i = 0; 1 <n; i++) {
[* x = contribution of spec. version i to total execution of the scope */
float x = oap.GetCoverageOfVersion(i);
float ratio = oldX/x; /* used to detect sharp knee in curve */
float cb = benefit*(totX + xX) - dispCost - Incr*(1+i);
float diff = cb - oldcb;
if ((diff < 0.05) || ((ratio > 10) && (diff < 1)))
break;
totX += x; oldcb = cb; oldX = x;
¥
return (i, totX);
¥

Figure 5.17. Determining number of specialized versions for a scope

cializer can minimize slowdowns by using a better model that accounts for i-cache effects.

We did not do a very thorough job of researching and developing a good cost-benefit model in
this dissertation because in the absence of a true dynamic optimization environment, the parameters
and fine tuning of the cost-benefit model will be useless. The specific details and parameters of the
model will be closely tied to the characteristics of the specialization system — the cost of compilation,
the size of the i-caches, the cost of a memory access, and several other empirical measurements.

Even though we use a rudimentary cost-benefit model, there is one point worth mentioning. In
determining the number of specialized versions to create, the routine GetNumVersions tries to
detect a sharp knee in the curve of profile coverage vs. the number of specialized versions. For
example, if the object-access profile shows that the object access frequencies at the lookup point are:
0.45, 0.02, 0.01, 0.005, 0.003, then the algorithm decides to create just a single specialized version.

This technique proved to be quite useful in limiting the number of generated specialized versions.
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5.4. ldentifying a set of non-overlapping scopes

The final step of the automatic scope-selection algorithm is to identify the “best” set of non-
overlapping and non-nesting scopes. This step uses the results of cost-benefit analysis in selecting
scopes.

In this dissertation, a very ad hoc mechanism was used to implement this step. However, a
more systematic way would be to use graph-coloring to solve this problem as follows. Firstly, an
interference graph is created where scopes are nodes and there is an edge between two nodes if the
corresponding scopes overlap with each other. Secondly, a graph coloring algorithm is applied to
this graph using a single color. The single color is used to capture the fact that all scopes must be
completely non-overlapping. The algorithm then selects those scopes that have been colored and

rejects those that have not been colored.



103

CHAPTER 6
CREATING SPECIALIZED VERSIONS

In this chapter, we present an algorithm to create specialized versions of the scopes identified
by the scope building algorithm. Given a scope S(K), the specialization algorithm creates multiple
specialized versions of the scope S, each of which is specialized with respect to:

e the (hot) value v; of its key k;

o the values of the invariant portion of the heap.

This is accomplished with a two-step algorithm shown in Figure 6.1. The first step in this algorithm
is to transform the CFG of the candidate method as shown in Figure 3.2. At this point, the CFG
resembles the graph shown in Figure 3.2, at the right. After this transformation, the second step is
to run a SCCP-based specializer on the transformed CFG. This automatically creates the required
specialized versions. During the specialization process, we collect the set of memory locations that
were specialized away to guard them against future modifications. We first present the details of the

CFG transformation process and then present the details of our SCCP-based specializer.

6.1. Creating clones of specialization scopes

In more detail, the CFG transformation involves the following steps:
e creating clones of S

¢ splicing the clones into the cfg

e updating the SSA form

The pseudo-code shown in Figure 6.2 implements the above three steps. Lines 1 and 2 incrementally

update the SSA form. An alternative to incrementally updating the SSA form would be to rebuild
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MemoryLocation Set SCCP_Specialize(Method m, Scope Set SS)
{

TransformCFG(m, SS); /* Figure 3.2, Figure 6.2 */

return SCCP_Specialize lLoops(m, new SCCP_State());

}

Figure 6.1. Algorithm SCCP_Speci al i ze

TransformCFG(Method m, Scope Set SS)

{
CFG cfg = m.cfg;
foreach (Scope S € SS){
/* Refer to Figure 5.16 for a definition of a Scope */
k = S.lookupReg;
n = S.numVersions;
for(i = 1ton){
S; = Create a clone of S;
Add k = v; at the entry of S;;
1. Update SSA form — rename variables defined in S; to use new names;

}

Splice the clones 8;..8, in cfg;
Update SSA form — for every variable defined in S and live at the

2. exit of S, add ¢-nodes in basic blocks that correspond to control-flow
merges of the clones.

Figure 6.2. The Tr ansf or nCFGroutine

the SSA from scratch after the CFG is transformed 1

6.2. SCCP-based specialization of the transformed CFG

SCCP-based specialization is carried out using a modified version of the Wegman-Zadeck Sparse
Conditional Constant Propagation (SCCP) [89] algorithm. Due to its sparsity and linear-time effi-
ciency, SCCP is a good fit for run-time specialization. More importantly, SCCP processes instruc-

tions conditionally which makes it possible to exploit it as a simple, but, powerful specializer based

1n our implementation, the SSA form is built from scratch after the CFG is transformed.
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on the online partial evaluation strategy [56]. By evaluating conditionals (some of which may be
run-time constants), SCCP ignores an instruction until it has been discovered to be reachable. In
essence, SCCP performs two distinct optimizations simultaneously: unreachable code elimination
and constant propagation. This combination allows SCCP to discover more constants and also elim-

inate more unreachable code than either optimization performed separately.

This property confers the online partial evaluation ability to SCCP. Like an online partial eval-
uator, it uses actual values (as opposed to just a knowledge of a variable being constant) in making
specialization decisions: knowledge of constant values of other variables, as well as knowledge about
the unreachability of basic blocks. However, clearly, this is not a very powerful online partial evalua-
tor since it does not unroll loops, nor does it separate control-flow paths. These code transformations
enable greater specialization to be performed. Later in this chapter, we present an extension which

allows SCCP to unroll loops.

We now present an example to illustrate the power of SCCP as a specializer.

int foo(int 1)
{
X =10
if (x == 2)
y =3
else
y = read_input();
z =y + 1
return z;

}

Figure 6.3. Example showing the power of SCCP as a specializer

Consider the example code in Figure 6.3. Suppose we know i is a constant and always takes the
value 2. For this input, it can be verified that the method always returns 4. A specializer based on
the offline partial evaluation strategy will use a binding time analysis (BTA) to annotate expressions

and statements as static or dynamic. Since BTA does not use the actual values of the static input to
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perform its analysis, it will not be able to infer that the branch (x == 2) is always true. Therefore
it will not be able to infer that y is always 3 and will thus annotate the statement z = y + 1;
as dynamic. Thus, an offline partial evaluator cannot specialize this method to the single statement
return 4.2

In contrast, it can be verified that an online partial evaluator which uses the value of i during the
analysis process will be able to specialize this method to the single statement return 4. Anonline
partial evaluator can infer that the value of X is 2 and can use this information to evaluate the branch
and compute the value of y to be 3 which leads the specializer to determine the value of z to be 4.

Let us now consider a typical (non-SCCP) constant propagation algorithm that does not use
conditional processing and initialize it with the mapping I = 2. Even though it can infer that the
branch x = 2 is always true, it can be verified that this algorithm will assume that y is not a constant
because on the true-arm of the branch, y is 3, and on the false-arm of the branch, y is L. Therefore,
it will assume that z is not a constant. Thus, this constant propagator cannot effectively specialize
this example.

Let us now consider the SCCP algorithm and initialize it with the mapping I = 2. It can be
verified that SCCP will be able to infer that z is a constant with the value 4. SCCP can do this because
it processes instructions conditionally and will never process the instruction y = read_input().
As a result, it only uses the value of y coming in from the statementy = 3. Thus, for this simple

example, SCCP is as powerful as an online partial evaluator.

6.2.1. Eliminating invariant memory accesses

Having presented an example of the utility of SCCP as a good basis for designing a specializer,

we now show how it can be extended to eliminate invariant memory accesses.

2However, more aggressive offline specializers will be able to do this specialization by separating the two control-flow
paths in the figure and maintaining BTA state for the duplicated control-flow paths. This is an example of polyvariant
specialization and is implemented by DyC, among other offline partial evaluators.
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As shown in Figure 6.2, to create a specialized versions of a scope S, a k = w; instruction is
added at the beginning of each clone of S. Recall that in our specialization model (Section 3.1), only
object references can be keys. Hence, v; will be an address of an object. So, when SCCP is invoked
on the transformed CFG, SCCP will work over a lattice containing concrete memory addresses, not
only integers.

In order to eliminate invariant memory accesses, we need to modify how SCCP evaluates loads
(which in our setting are the getfield, getarray, and arraylengthbytecodes). SCCP uses

the Visitlnstr routine [89] to process instructions. We extend the routine as shown in Figure 6.4.

if (1is<r = load p>){
a = LatticeVal(p);
if (a is not a constant) { /* T or L */
Latticeval(r) = g;
1 }else if (sp-Islnvariant(a)) {
2. v = LoadMemory(a);
3. LatticevVal(r) =v;
4 add (a,v) to GuardedLocations
} else {
Latticeval(r) = 1;
}
¥

Figure 6.4. Modification to the Vi si t | nst r routine

The effect of the extension (lines 1-3) is that when the analysis encounters a load whose argument
is an address a (a constant generated by some other instruction), the store profile, sp, is consulted
to check if a is an invariant memory location. If the profile shows that a has not been written, a
is considered invariant. Then the load is performed on the concrete heap, and the loaded value v
is used as if it were a constant. This load is considered constant and is eventually removed. Since
the memory-invariance detection is based on optimistic dynamic analysis, in line 4 the pair (a,v) is
added to the set of memory locations that will be guarded with run-time checks. We also maintain

the value v for the purpose of avoiding race conditions between the application and the specializer,
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which runs in a separate thread (see Chapter 8). Store instructions are not specialized away (unless

they become control-flow unreachable).

Interaction with relocating garbage collectors

The above extension to SCCP to eliminate invariant memory accesses replaces symbolic object
references in the program with the actual memory addresses of the objects. However, this is a
problem if the garbage collector relocates objects because this changes the memory addresses of
objects. This can lead to incorrect program behavior unless all instances of old object addresses
in the program are replaced with the new relocated addresses. One simple way to do this address
fixup is to maintain a table of all instructions into which object addresses are hardwired during
specialization. Whenever the garbage collector relocates objects, it can consult this table to replace

the old address with the new address in all instructions with hardwired object addresses.

6.2.2. Specializing Loops

Let us refer to the specialization algorithm we just presented as SPEC _Special ize Basic.
This algorithm does duplicate code either in the form of loop unrolling or in the form of path du-
plication. However, the authors of DyC [47] note that loop unrolling and specialization was crucial
to getting good speedups in their specialization system. In this dissertation, code duplication in the
form of loop unrolling has been implemented and studied. In the following section, we present an
extension to SPEC_Special ize Basic which enables it to unroll loops and specialize them.

The loops to be specialized are identified by the scope-finding algorithm (Section 5.2). The spe-
cializer attempts to unroll and specialize only these candidate loops. The specializer treats the input
from the scope-finding algorithm as hints and aborts the unrolling if it discovers that the unrolling
process might not terminate.

In the rest of this section, we use the term loop specialization to refer to the optimization where
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loop iterations are peeled/unrolled and specialized.

Overview: Main idea

The central idea in specializing entire loops (and loop nests) is to peel loop iterations and spe-
cialize them one at a time until the loop terminates. To do this, the algorithm creates a copy of the
iteration, and specializes it upto the loop back edge. Before peeling further iterations of the loop,
the algorithm verifies that the peeling process will terminate. Effectively, the algorithm examines
the loop exit conditionals of the specialized iteration. Consider an exit condition branch b. If the
branch has been resolved to stay within the loop, the specializer peels off another iteration and re-
peats the process. If the branch has been resolved to exit the loop, the peeling stops — and we would
have unrolled and specialized the entire loop. However, if the branch direction cannot be resolved at
specialization time, the specializer terminates the unrolling process (because the loop exit condition
is no longer a constant) and generates loop code for the remainder of the loop. In this case, the

specializer will have unrolled an initial portion of the loop.

Details

Having presented the central idea, let us now examine this optimization in further detail. SCCP
optimistically assumes [27] that (i) an instruction computes a constant value, unless proved other-
wise, and that (ii) a basic block is unreachable, unless proved otherwise. This makes it harder to
transform the program in the middle of the analysis because the intermediate dataflow state might
not be correct. For example, during the analysis, SCCP might assume that a branch condition is
constant. However, at the end of the analysis, it might find that the branch condition is not con-
stant. Therefore, it would be incorrect to transform the program to eliminate the unreachable arm of
the branch before the analysis terminates. More generally, the intermediate dataflow state of SCCP

cannot be used for performing any CFG transformations or optimizations.
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One way to overcome this limitation would be to perform loop specialization in a second pass

over the CFG after SCCP_Special ize Basic completes. However, as the following (contrived)

example will show, this requires each candidate loop nest to be specialized one at a time. For the

following example, four passes are required to fully specialize this method.

aawN e

o

© o~

}

10.

11.

int foo(ClassO p)

int s1 = 0O;
int nl = p.x;
int[] al = p.ial;

for (i = 0; i < nl; i++)
sl += all[i];
int n2 = (s1 <20) ? p-nl: p.nz
int s2 = 0;
int[] a2 = p.i1az;
for (i = 0; i < n2; i++)
s2 += az[i];
return s2;

/* Loop 1 */

[* Stmt. A*/

/* Loop 2 */

Figure 6.5. Example to clarify the interactions between a loop specialization pass and SCCP_Speci al i ze -

Basi c

Consider the code shown in Figure 6.5. Let us assume the following:

1. The entire method Foo is a specialization scope.

2. p is the specialization key.

3. All fields of objects referenced by p are invariant.

4. The spec-scope algorithm marks both loops (1 & 2) as specializeable.

It can be verified that the specialization of Loop 2 requires the value of n2 which depends on the

value of s1, which in turn, requires the specialization of Loop 1. Because of these dependencies,

four passes are needed to fully specialize the method as described below.

1. SCCP_SpecializeBasic: This pass computes the value of nl.
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2. This pass computes the value of s1 by specializing Loop 1.

3. SCCP_Specialize Basic: This pass computes the value of n2 using the value of s1

computed in pass 2.

4. This pass specializes Loop 2.

While this would work, clearly, this is too inefficient. We now show how loop specialization can be
integrated with the SCCP algorithm. As noted earlier, the primary obstacle in this integration is the
problem of incorrect intermediate SCCP dataflow state.

The problem of incorrect intermediate dataflow state can be addressed by imposing a specific
order on instruction processing. Let us revisit the example in Figure 6.5 and see how an inte-
grated algorithm might specialize the method. If we apply SCCP_Specialize Basic to in-
structions 1-3 that appear before Loop 1 (and control-dominate it), we can unroll and specialize
Loop 1 without having to process Stmt A and the instructions in Loop 2. After that, we can apply
SCCP_SpecializeBasic to instructions 6-7 before processing Loop 2. After this, we can
unroll and specialize Loop 2. Finally, we can apply SCCP_Specialize Basic to instruction
11. Thus, for this example, we were able to integrate loop unrolling and specialization by process-
ing the instructions of the method in a very specific order. This is the idea behind integrating loop

specialization with SCCP.

Computing a suitable visit order: We now show how to compute a visit order suitable for our
purposes. We first consider an acyclic CFG. If we process the control-flow and data-flow edges in
such a manner that the associated basic blocks are always processed in topological sort order, then

it can be easily verified that when a target basic block b is visited, the SCCP dataflow state for all

3Any arbitrary depth-first visit order [6] suffices — we choose the topological sort order for reasons of clarity in ex-
plaining this algorithm. A topological sort order can be computed using a depth first search algorithm — and in this case,
the topological sort order will be identical to the depth-first visit order.
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of b’s control-flow predecessors will be the correct final state. Therefore, the subgraph that has been

already processed can be transformed before SCCP terminates.

We now show how to compute a suitable visit order for cyclic CFGs. One possibility is to com-
pute a topological sort order by ignoring the back edges. Yet another possibility is to use a depth-first
visit order. However, neither of these strategies is sufficient, as shown by the example in Figure 6.6.

It can be verified that both the visit orders shown in Figure 6.6 satisfy the topological ordering prop-

1 1
2 6 2 6
7 8 7 8
9 9
4| |5 5| |4
10 10
(a) Desired visit order (b) Problematic visit order

Figure 6.6. Example SCCP visit order

erty (on a graph where back edges have been removed) as well as the depth first ordering property.
The only difference between the two visit orders is the position of the nodes with ids 4 and 5 as
shown in bold in shaded nodes. However, only the visit order shown in Figure 6.6(a) is suitable for
integrating loop specialization with SCCP. With the visit order shown on the right, the instructions
in basic block 4 cannot exploit the results of unrolling and specializing the loop because it has been
specialized even before the loop has been unrolled. Referring back to the example shown in Fig-
ure 6.5, a visit order similar to that in Figure 6.6(b) will fail to specialize Loop 2 because the value

of n2 depends on the value of s1 which is not available till Loop 1 is specialized.
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void ComputeBBVisitOrder(CFG c)
{
List readyList = {};
intvisitlD = O;
readyList.Add(c.entry);
do {
/* Assign visit id to b */
BasicBlock b = readyList.GetHead();
if (b.visitlD == -1) b.visitID = visitID++;
/* Add ready target nodes of b */
Set dsts = b.TargetNodes();
foreach (d € dsts){
bool dIsReady = true;
/* Check if d is ready */
List nested = same = exit = {};
Set dsrcs = d.SourceNodes();
foreach (x € dsrcs) {
if (IsNotBackEdge(x, d) && (x.visitlD == -1)) {
dIsReady =false;
break;
}
¥
/* Add d to appropriate ready list */
if (dIsReady) {
if (d.loopDepth > b.loopDepth) nested.Append(d);
if (d.loopDepth == b.loopDepth) same.Append(d);
if (d.loopDepth < b.loopDepth) exit.Append(d);
¥
}
/* Nodes are visited in depth-first visit order. Therefore, nodes are inserted
to the head of the ready list. In addition, amongst all ready nodes, nested
nodes are visited first, and nodes outside the loop are visited last. */
readyList. InsertListAtHead(exit);
readyList.InsertListAtHead(same);
readyList. InsertListAtHead(nhested);
} while (readyList. IsNotEmpty());
¥

Figure 6.7. Algorithm to compute a basic block visit order suitable for loop specialization
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However, with a small modification to the topological sorting algorithm, we can handle this
scenario. Whenever there is a choice of multiple nodes to visit, the topological sort algorithm chooses
the node which is nested deeper.

The algorithm for computing visit orders is shown in Figure 6.7. The computed visit order is
a valid topological sort order on the CFG with back edges removed. However, the topological sort
order satisfies the constraint that all nodes within a loop are visited before nodes outside the loop are
visited. An additional property satisfied by the visit order is that the nodes of the loop will have a
tight numbering (i.e. if the loop has n nodes, they will be numbered z,z + 1,...,z + (n — 1)).

With the visit order computed by the algorithm shown in Figure 6.7, the SCCP algorithm will

always process an entire loop before it processes the exit nodes of the loop.

Imposing a visit order on SCCP: Having shown a suitable visit order, we now show how to
impose this visit order on SCCP_Specialize Basic.

SCCP uses two work lists in its processing: a flow work list holds CFG (control-flow) edges for
processing, and a ssa work list holds SSA (data-flow) edges for processing. Whenever a control-
flow or data-flow edge is processed, its successors are added to the appropriate work list. While the
SCCP algorithm does not specify any particular order for visiting and processing these edges, we
now have to process edges according to the basic block visit order computed by the algorithm shown
in Figure 6.7.

For a basic block b, b.visitlD specifies b’s position in the visit order. These ids are used to
assign ids to edges as follows. For a control-flow edge ezx — y, €.visitlD = y.visitlD.
For a data-flow edge ez (p — Qq), (e-visitlD = p.basicBlock.visitlD).

Given two basic blocks uand v suchthatu.visitlD < v.visitlD,the visit order specifies
that edges associated with u have to be processed before those associated with v. This translates to

an equivalent rule for edges. Given edges e and F, such that e.visitlD < F.visitlD, e has
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to be processed before F. Since SCCP always processes edge targets, and we assign edges the ids of

their targets, this ensures that the basic block visit order is satisfied.

}

{

}

{

class EdgeSet {

MemoryLocation Set SCCP_Specialize Basic(CFG ¢)

void AddEdge(Edge e:<u, v>)

int visitlD; /*visitid for the edges in this set */
Set edges; /*e_visitlD == visitlDforalle € edges;?*/

iml = {}; /* Set of specialized memory locations */
while (edgeSetListis not empty) {
EdgeSet es = edgeSetList.GetHead();
while (es.edges # ¢) {
Edge e = es.RemoveEdge();
if (eisaCFGedge) ProcessCFGEdge(e, iml);
else ProcessSSAEdge(e, iml); /[*eisaSSA edge */
}

edgeSetList._Remove(es);

}

return iml;

int id = (eisaCFGEdge)? v.visitlD - v.basicBlock.visitlD;
EdgeSet es = null,
if (edgeSetList.EdgeSetExists(id)){
es = edgeSetList.GetEdgeSet(id);
}else {
es = new EdgeSet(id);
edgeSetList. InsertinVisitOrder(es, id);

}
es.AddEdge(e);

Figure 6.8. Enforcing a visit order on SCCP_Speci al i ze_Basi c

Figure 6.8 shows the modified SCCP_Special i1ze Basic algorithm which processes edges

in the visit order. In order to do this, the algorithm collects all control-flow and ssa data-flow edges

that have the same visit id in an edge set. As shown in the figure, all the edges within an edge set are
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processed before a new edge set is processed.

Since the algorithm operates on edge sets, there is no need to maintain two work lists that SCCP
uses (one for CFG edges and another for SSA edges). A single work list of edge sets suffices; the
algorithm uses edgeSetList to record these edge sets. However, unlike SCCP, where the order
of selecting elements from the work lists does not matter, edgeSetList is sorted by the visit ids
of the member edge sets. Whenever new data-flow and control-flow edges are added to the work list
(by ProcessCFGEdge and ProcessSSAEdge), they are either added to an existing edge set in
edgeSetList, or added to a new edge set which is inserted into edgeSetList in sorted order.

The AddEdge routine shown in Figure 6.8 maintains the sorted order of edgeSetList.

Unrolling loops and specializing them: Having presented several modifications to SCCP and
the basic specialization algorithm, we now present an extension to SCCP Specialize Basicto
specialize loops. This algorithm is called SCCP_Special ize Loops and is shown in Figure 6.9.
This algorithm is similar to SCCP_Special ize Basic except for the addition of line a and lines

0-8 marked in Figure 6.9.

Recall that this routine is invoked by the main specialization routine (SCCP_Specialize in
Figure 6.1). Also recall from Section 6.2.2 that loops are specialized by peeling iterations one at a
time and specializing the peeled iterations. We now discuss the extensions shown in Figure 6.1 that
implement this loop specialization.

As shown in line 1 of Figure 6.9, loop iterations are only peeled when loop entry edges are
processed (whose targets are loop headers). Assuming that the ShouldPeelLooplteration
routine in line 1 decides that a loop iteration can be peeled, the code in lines 2-8 is straightforward.
The PeelLooplteration routine creates a copy of the loop iteration, and updates the SSA
property by renaming all variables defined within the loop. The algorithm then recursively invokes

the specialization routine (line 3) by passing s, the current SCCP state of the algorithm. The SCCP
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MemoryLocation Set SCCP _Specialize Loops(CFG ¢, SCCP State s)
{
iml = {}; /* Set of specialized memory locations */
while (edgeSetListis not empty) {
EdgeSet es = edgeSetList.GetHead();
a. if (CanUnrol INestedLoops(es.-bb)) continue;
while (es.edges # ¢) {
Edge e = es.RemoveEdge();
if (e isa CFG edge) {
BasicBlock t = e.dst;
if (. isLoopEntry && s.ShouldPeellLooplteration(e, t)){
CFG Ic = PeelLooplteration(t.innerLoop);
SCCP_Specialize_Loops(lc, s);
if (Ic.LeadsTolnfiniteUnrolling())
s. IgnoreLoop(t. innerLoop); continue;
else
Splice Icinto c;
}

ProcessCFGEdge(e, iml); /*sameas SCCP Specialize Basic?*/

}else {
ProcessSSAEdge(e, iml); /*sameas SCCP Specialize Basic?*/
¥
}

edgeSetList.Remove(es);

}

return iml;

N~ WD EF O

Figure 6.9. Algorithm SCCP_Speci al i ze_Loops

state s contains the mapping of variable names with their SCCP lattice values. Therefore, by passing
S to the recursive invocation, the unrolled iteration is able to access the values of variables that
are constant on entry to the loop. In addition, when the recursive invocation completes, the calling
invocation is able to access the new constants that are discovered by specializing the peeled iteration.

This is possible because the SCCP state s is shared among the recursive invocations.

After the peeled iteration is specialized, the algorithm uses the LeadsTolnfiniteUnroll-
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ing routine to check if any loop exit condition was specialized to a constant.*

If none of the loop exit conditions specialized to a constant value, the algorithm assumes that
the loop unrolling process will not terminate and stops the specialization of the loop. Therefore, the
specialized iteration is thrown away and the loop is ignored (future calls to ShouldPeellLoop-
Iteration will return false for this loop). Note that since all variables in the specialized loop
iteration were renamed prior to specialization, no fixup of the SCCP state s is necessary.

If at least one loop exit condition is a constant, the algorithm heuristically assumes that the un-
rolling process will terminate. In reality, it is necessary to use some cut-off metric to prevent infinite
loop unrolling. Such a cut-off metric will be useful even when the loop unrolling process might ter-
minate. If the LeadsTolnfiniteUnrollingroutine determines that the loop unrolling process
will terminate, the specialized loop iteration is spliced into the CFG. If this happens to be the last
iteration of the loop that will be executed, the residual loop body will become dead code and will be
removed by a dead code elimination pass. If not, the loop header will be visited again which leads
to further peeling and specialization.

During splicing, besides adding the control-flow subgraph of the specialized iteration into the
CFG, variable renaming is also performed; variables used in u-nodes® as well as variables defined
within the loop and used outside the loop are renamed.

We now discuss how to decide if a loop iteration can be peeled (routine ShouldPeelLoop-
Iterationin Figure 6.9). Whenever SCCP_Special ize_Loops processes a loop header, the
ShouldPeelLooplteration routine decides whether the loop should be unrolled and special-
ized using the FSM shown in Figure 6.10.

The state of the FSM is tracked by s (the SCCP-state variable in Figure 6.9). The state machine

can be in one of four states: (default) peel-loop state, specialize state, no-peeling state, delay-peeling

“Note that a loop can be exited from multiple places within a loop. There will be one loop exit condition corresponding
to every br eak statement.
S¢-nodes in loop headers
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o oo ' s--SCCPstate
1= Ss.currLoo . . :
! P L -- Loop being specialized :

(Leads to infinite unrolling)
Set s.currLoop =L

SPECIALIZE

NO-PEELING -

(L is a specialization
: candidate)
. (L == s.currLoop)

&& (L exited) (does not lead to

infinite unrolling)

(L is not a peel candidate)

Set s.currLoop =L

(L == s.currLoop)
&& (L exited)
Process pendingLoops

(L '= s.currLoop)
Add L to pendingLoops
if L is a peel candidate

PEEL-LOOP

The text in regular font are the transition conditions.
The text in bold font are the actions carried out when the FSM transitions along that edge.

Figure 6.10. State machine used to unroll and specialize loops

state. The FSM allows loop peeling and specialization only if it is in the peel-loop state and the loop
is a specialization candidate (decided by the scope-building algorithm). If so, the FSM transitions
to the specialize state. In this state, the loop is peeled and specialized (lines 3 and 4 of Figure 6.9).
Based on the check on line 4, the FSM now transitions to either the peel-loop state or the no-peeling
state (line 5). In the no-peeling state, all nested loops are ignored even if the spec-scope algorithm has
identified them for unrolling. This is based on the (untested) heuristic that peeling of a nested loop
is beneficial only when the specialized context of the outer loop is available. But, since the special-
ization of the outer loop failed, it is assumed that specializing the inner loop is not useful. The FSM
enters the peel-loop state from the no-peeling state on exit from the loop for which specialization

failed.

Next, let us consider the delay-peeling state. The FSM enters this state when SCCP _Specia-

11ze_Loops encounters a loop which has not been marked for unrolling. In this state, unrolling of
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all nested loops is delayed till the loop is exited. Since the algorithm processes all edges contained in
the loop before processing any outside edges, it processes an external edge only after the SCCP state
for the loop reaches a fixed point. Therefore, once SCCP_Special ize Loops exits the loop, it is
guaranteed that the SCCP state for the loop will be the correct state. Once this loop is exited, pending
loops (nested loops that are also specialization candidates) are considered for specialization. This is
shown on the transition from the delay-peeling to peel-loop state. This is also shown as the check in
line a in Figure 6.9. Processing pending loops involves adding the loop entry edges for these loops
into the edgeSetListworklist. When these edges are picked up, the nested loops will be unrolled

(if marked for unrolling).

This completes the description of our specialization algorithm that integrates loop unrolling and

specialization with SCCP. We now present a discussion of the time complexity of this algorithm.

Time complexity of the algorithm:  Let us first consider the complexity for acyclic CFGs. Topo-
logical sort order has a linear time complexity O(|V'|+|E|) as does the main SCCP routine. However,
SCCP_Specialize_Loops can potentially have a worst-case complexity of O(|V'|2) whereas
SCCP has a worst-case complexity of O(|V| + |E|). The |V|? term arises because the algorithm
inserts edge lists in sorted order in the AddEdge routine in Figure 6.8. But, this worst-case com-
plexity be avoided by ignoring the visit order for acyclic CFGs.

For cyclic CFGs, the worst-case upper bound for the algorithm is O (|V |2+ (m|V]) 2" ~2) where
m is the highest unrolling count of any unrolled loop and d is maximum loop nesting depth that is
unrolled and specialized. For example, if only one loop within a loop nest is unrolled and specialized,
the value of d will be 1, and the worst-case upper bound will be O(|V|? + (m|V])?).

Thus, this loop specialization algorithm has an exponential unrolling cost. This is because the
algorithm processes loops from outside to inside one iteration at a time. Therefore, if the outer loop

has m iterations, and the inner loop has n iterations, there will be m * n total unrollings. In contrast,
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if the algorithm could process loops inside to outside, the exponential cost will disappear. However,
unrolling loops from inside to outside is not always possible because the loop count of the inner loop
might depend on the specialization of the outer loop.

This algorithm could potentially be improved to minimize unrolling overheads for nested loops.
However, for our evaluation, the maximum value of d for two, and it was one for most benchmarks.

Chapter 9 presents an empirical evaluation of the specialization cost.

6.2.3. Comments on the Loop Specialization algorithm

Having presented the loop specialization algorithm, we make some observations about it.

e While it was not necessary in the experiments we carried out, it might be useful to use some

cut-off metric to prevent code bloat due to unrolling.

e The loop specialization algorithm can also be implemented using a structural dataflow anal-
ysis algorithm like interval analysis or T1-T2 algorithm [6]. Using such algorithms, CFG
transformations like loop unrolling can be performed before the analysis terminates using the

intermediate state of the analysis.

e In our algorithm, specialization of a loop iteration fails only when it might lead to infinite
unrolling, i.e., when the loop exit condition is not a specialization-time constant. However, one
might decide to abort unrolling earlier using a cost-benefit analysis. If the cost-benefit analysis
of the specialized iteration reveals that unrolling was not beneficial, the loop specialization

process can be aborted.

e In our technique, only loops selected by the spec-scope finding algorithm (Figure 5.1) are
specialized. However, another option could be to attempt specialization of every loop in a

scope and use a cost-benefit analysis to decide whether to continue unrolling or abort unrolling.
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While this technique might potentially result in better specialization, the drawback is that this

can lead to higher specialization overheads.

e Another completely different approach to loop unrolling would be to use profiling to determine
the unrolling factors for different loops. These profiles can be used to unroll the loops prior to
performing SCCP. However, this approach will work well only when the loop unrolling count
is independent of the lookup key. Otherwise, it will be hard to determine the unrolling count
for different lookup keys. This is a problem, for example, when unrolling for recursive data

structures like linked lists.

6.3. Related Work

Muth et al [73] have previously attempted using constant propagation for performing compile-
time specialization of programs based on value profiles. They perform a similar CFG transformation
as shown in Figure 3.2. However, their lookup is organized as a binary search tree coded using 1 -
then-else chains whereas we use several low-overhead lookup techniques which are discussed
further in Chapter 7. Another significant difference between the two techniques is in the imple-
mentation of loop unrolling. The algorithm presented in this chapter integrates loop unrolling with
SCCP which enables it to perform much better specialization. In the work by Muth et al., unrolling
is determined by profiling loop index expressions. As such, this technique will only be able to unroll
loops that have simple loop indexing.

In contrast with existing specializers based on the offline partial evaluation technique [8, 30, 48,
75], our specializer is a hybrid technique. By using the scope-building algorithm to identify scopes
and loop unrolling candidates, our specializer resembles offline partial evaluators. However, the
specialization itself that is carried out within a spec-scope resembles an online partial evaluation

strategy.
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However, the loop unrolling technique implemented in this dissertation is weaker when compared
to DyC [47]. DyC implements multi-way unrolling, whereas we do not implement this. For simple
loops, such as those that merely increment a counter or those loops that traverse linear linked lists, the
unrolling technique described in this chapter can completely unroll and specialize them. However,
for other complex loops where, there are multiple alternatives for the next iteration, our specialization
technique cannot unroll the loop. An example of such loops are interpreter loops where the next pc
depends on input data and can be one of multiple values. DyC specializes these kind of loops by
creating multiple alternative specialized loop iterations. In general, DyC generates a directed graph

of specialized loop iterations. This is called multi-way unrolling.
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CHAPTER 7
IMPLEMENTING LOOKUPS: DISPATCHING TO SPECIALIZED CODE

In the specialization model presented in Chapter 3, given a scope SS(k), the specializer creates
multiple specialized versions of S'S, one for each value of the key k. A Fookup instruction uses the
value of & to dispatch (transfer control) to the appropriate specialized version.

At a conceptual level, the dispatch can be implemented by searching a table of specialized ver-
sions using the value of & as the search key. At a detailed level, the lookup table can be implemented
in many ways: as a single centralized software table, as a single centralized hardware table, or as a
distributed search table (which is not a table at all). In this chapter, we discuss some implementations

of the dispatching mechanism.

7.1. Centralized software hashtable

In this straightforward implementation, a centralized software hashtable is used to implement
the lookup table. The dispatch is then implemented as a hashtable lookup that uses <k, p> as the
hash-key, where p is the pc of the lookup instruction. These lookups can be expensive because of the
cost of (i) generating the hash-key (ii) indexing the hash table using the hash-key, and (iii) traversing
collision chains. This dispatching mechanism is presented only for the sake of completeness and our
specializer does not use this technique. Instead, it implements other more inexpensive dispatching

mechanisms which we discuss in the following sections.

7.2. i f-then-el sechain

This technique implements the lookup instruction as a chain of 1f-then-else statements.
For example, if there are two specialized versions S1 and S2, corresponding to K = oy and k =

09, the dispatch is implemented as:
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it (k == 07) goto S1;
elseift (k == 09) goto S2;

else goto default-version;

Referring back to our conceptual model of the lookup table, note that this implementation can be
considered to be an inlined implementation of a distributed lookup table. This technique is similar to
the implementation of Polymorphic Inline Caches (PICs) in Self and other object-oriented languages
to minimize virtual call overheads [54].

To minimize dispatching overheads, the checks are ordered in descending order of the expected
execution frequencies of the specialized versions. The specializer consults the object-access profile
and uses the profiled frequencies of the specialization keys as an estimate of the expected execution
frequencies of the corresponding specialized versions. In the example above, if the object-access
profile indicates that o, is seen 30% of the time, and o, is seen 50% of the time, the specializer will
reverse the order of the checks above.

The cost of dispatching to a specialized version accumulates as the search proceeds down the
chain. Thus, the dispatching cost is the lowest for the most frequently executed specialized version
and is the highest for the default case. Therefore, this technique is best implemented when there are
a small number of specialized versions.

An alternative to implementing the dispatch as a linear chain would be to implement this as a
binary search tree. However, our specializer does not find a need for a binary search tree since the
i F-then-elseimplementation is considered only when the number of specialized versions is less
than three. When the number of specialized versions if greater than three, dispatching mechanisms

presented in the following sections are used.

In contrast to the two lookup implementations we presented which have variable dispatching

costs, the two implementations we present next have a constant dispatching cost.
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7.3. Scopes as pseudo-methods
In this implementation, the specializer tries to dispatch to the specialized version of a scope using

the virtual call mechanism (where it applies).

Class C

Met hod 0
Met hod 1

Met hod n
Method table of C

Object instances of class C

Figure 7.1. Object implementation assumed by the dispatch implementations specific to Java (and potentially
other OO-languages)

This implementation is specific to Java (and potentially other object-oriented languages) and
assumes an object implementation in which object headers have a pointer to the shared method table
of the defining class. This object implementation is shown in Figure 7.1. As shown in the figure,
the header of objects of class C point to a method table that is shared between them. The method
table has a hidden pointer to the JVM-specific internal class structure.® Thus, method tables are one
object reference away and the defining class is two object references away.

To do this, the specializer considers a scope SS(O) to be a pseudo-method of O’s class and
considers the specialized versions of SS to be the inherited methods of the default version of SS.

Let 8S;...8Sy be the specialized versions corresponding to key values oy, ..., 0. Suppose these

1This class structure is also a regular Java object.
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objects are instances of class C. The specializer promotes SS to the status of a method of class C
by allocating it a method table entry in C’s shared method table. Referring back to the figure, the
specializer allocates a new slot at position n + 1 in the shared method table. This entry is filled with
the address of the default (unspecialized) version of SS.

To implement the dispatch, the specializer creates a clone of the shared method table for each

o; and modifies the object header of o; to use the cloned method table. The (n + 1) slot in this

cloned method table (of o;) is modified to point to SS;. This modification is shown pictorially in

Object instances of class C Key values for scope SS

(Object instances of class C)

! C’s method table Method table clone Method table clone
; PtrioClassC! | Ptrto Class C | PrtoClassC' !
| Met hod O Met hod 0 Met hod O |
! Met hod 1 ! Met hod 1 Met hod 1 !
i Met hod n 3 Met hod n Met hod n |
} Scope SS | SS1 SS k !
| A Ok |

Figure 7.2. Implementing a specialization scope as a pseudo-method

Figure 7.2. With this modification, the lookup instruction Tookup(O) is implemented as jump

O.mtbl[n+1] which corresponds to the 3-instruction sequence shown below:

r = load O.mtbl;
a = load r[n+1];
imp a;

This dispatch implementation has a fixed cost for all specialized versions and is suitable even

when there are a large number of specialized versions. However, there is a space cost due to the
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duplication of method tables. Greater the number of specialized versions, greater the space cost. In
this sense, this dispatch implementation trades off space cost to reduce time costs. Depending on the
footprint of the duplicated method tables, the extra space might manifest as increased execution time
due to increased data cache miss rates.

Note that the pseudo-method technique works for array keys too, at least in Java. In Java, all array
objects are instances of java.lang.Object and inherit the methods of this class. In addition,
this implementation works only when the specialization key is a single-element object reference.
Since our specialization model makes this exact restriction, this lookup implementation technique

can be used in all cases.

7.4. Piggybacking onto the method virtual table

This is an optimization of the pseudo-method implementation when: (1) O is the receiver of
method m, and (2) SS(O) is the only scope in method m.? In this scenario, the specializer expands
the scope to the entire method and creates specialized methods m, ..., mg. As in the previous imple-
mentation, method table clones are created for each specialized version. However, instead of creating
a new pseudo-method slot for SS, the existing method table entry for m is used (since SS = m). For
the key value o;, the method table entry for m in o;’s cloned method table is changed to point to
m;. With this change, when m is invoked as call O0.m(), o; transfers control to the specialized
method m;. Unlike the other implementations, no extra instructions are required to implement the
lookup. However, the drawback is that there can be unnecessary code duplication — instructions of
the method not in SS are also duplicated.

However, this implementation is not always suitable since this relies on m being invoked with

2This condition is strictly not necessary for correctness. However, this check is used to prevent excessive code dupli-
cation. Consider the case where mhas two scopes: S1 with n; versions and S> with na versions. Assuming that the key
of S1 is the method receiver, n1 versions of mare created. In each of these ni versions, ns versions of S, would have to
be created. Thus, this leads to n1 * n2 copies of S, rather than just n, copies.
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an indirect call rather than a direct call. If the dynamic optimizer optimizes an indirect virtual call
with a direct call (based on type analysis), then control will not be transferred to the specialized
version. Therefore, this implementation should be considered an optimization of the pseudo-method

technique and requires the optimizer to keep track of direct calls.

7.4.1. Chaining of specialized versions

An additional advantage of this dispatch implementation is that in certain cases, dispatching via
virtual call can be eliminated with a direct call — this has the effect of chaining together specialized
versions.

Consider the FindTreeNode code shown in Figure 1.1. In a specialized version of the method,
each iteration of the unrolled loop will (recursively) invoke the FindTreeNode method. Some of
these calls might correspond to specialized versions of the method. For the calls for which spe-
cialized versions exist, the virtual call dispatch can be replaced with a direct call to the specialized

version of the method.

7.5. Choosing a lookup implementation

Since the specializer has a choice of lookup implementation techniques available, it needs a
decision procedure to pick the appropriate one. As must be clear from the preceding discussion of
the different lookup implementations, the pseudo-method implementation is the preferred technique
because it is applicable in all cases (with the specialization model studied in this dissertation) and
has a fixed lookup cost independent of the number of specialized versions.

In our evaluation, the 1f-then-else chain is used only when the number of specialized ver-
sions is less than three. In all other cases, the pseudo-method implementation is used. In those cases

where the method table piggybacking optimization can be performed, the specializer uses it.
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7.6. Related Work

Dispatching techniques have been studied previously in other contexts. For example, most com-
pilers for the C programming language implement some switch statements (where the case labels are
densely packed) using jump tables. The pseudo-method implementation is, in some ways, analogous
to this technique, but, is different in other ways. Firstly, jump-table implementations include a range
check to jump to the default case. Secondly, the jump-table implementation is most useful when
the case labels are not sparsely distributed (Ex: 0, 10, 3045, 10034). In this example, a jump-table
implementation would be very expensive in terms of space since a table with 10035 entries would
have to be allocated. In contrast, a pseudo-method implementation is not impacted by this constraint
since it piggybacks onto an already-existing virtual method table implementation of virtual method
calls.

The pseudo-method dispatch implementation is similar in spirit to the to the distributed memo-
table implemented in data specialization [58] where new fields are added to objects to store the result
of commonly executed invariant expressions. However, while data specialization adds data fields
to objects to record values of expressions, the pseudo-method technique studied in this dissertation
adds method address fields to method tables to record code addresses. These two techniques are

orthogonal and can be used in the same implementation of a specializer.

7.7. Future Work

When the restrictions on the specialization model are relaxed as part of future work, other lookup
implementations will have to be considered since the pseudo-method technique will not always be
applicable. This is left for future work when more powerful specialization models are studied.

Also left for future work is potential hardware implementations of lookup tables. Hardware

reuse techniques have been previously proposed that rely on memo table support for exploiting com-
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putation reuse. For example, Sodani and Sohi [84] study instruction reuse techniques which relies
on a centralized hardware reuse table in the processor core. Connors and Hwu [29] study more
coarse-grained compiler-directed computation reuse techniques. They rely on sophisticated hard-
ware support for efficient dispatch to reusable computation regions. While special-purpose hardware
for specialization is unlikely, general-purpose memo table support might be potentially useful. For
this support to be low-overhead, the hardware would have to support index computation via hashing
of the lookup keys. Such memo-table support might be used by optimizers (static or dynamic) to
reuse computations at varying granularities. For example, it could be used by specializers (like that
studied in this dissertation) to lookup addresses of specialized versions. Or, it could be used by reg-
ular memoization optimizations typically implemented in software. The exploration of this design

space is left for future work.
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CHAPTER 8
ENSURING CORRECTNESS OF SPECIALIZED CODE

Section 3.5.1 presented the store-profile based profiling analysis used by the specializer to iden-
tify invariant parts of runtime data structures. However, since a runtime profile only captures past
program behavior, the specialized memory locations might be written at a later point in the program’s
execution. Such writes may invalidate® all specialized code that rely on the invariance of the written
memory locations. Therefore, the specializer has to provide mechanisms to guarantee the correctness
of specialized code in the face of such writes to specialized memory locations.

This problem is not unique to our specialization system. Any specializer that attempts to exploit
invariance in runtime data structures faces this problem. For example, Tempo [31] relies on full-
program alias analysis to detect specialization opportunities in the presence of pointer manipulation
and side-effects. Tempo uses this analysis to identify potential invalidation locations. In cases where
Tempo does not have access to source code, like libraries, it relies on the programmer to specify
the alias relationships and side-effects of that code. As another example, DyC [47] relies on the
programmer to annotate invariant memory accesses as well as annotate program points that can
invalidate specializations that depend on them. While Calpa [70] generates these annotations for
DyC automatically, as we noted in Chapter 2, the overhead of Calpa’s analysis prevents its efficient
deployment at runtime.

In the context of a dynamic optimization system, the requirements of low overheads and trans-
parency render the above approaches infeasible. Given the requirements of transparency, a spe-
cializer cannot rely on programmer annotations to guarantee correctness. Neither can it rely on
full-program alias analysis because low-overhead scalable versions of this analysis are not available

to be implemented at runtime. However, variants of the alias analysis approach can be implemented

INote that if the store does not change the contents of the memory location, there is no need to invalidate. Stores that
do not change the content of the memory locations being written are known as silent stores [62] and have been used to
reduce coherence traffic in multiprocessor applications.
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for Java to detect invalidation of specialized code.

This chapter proposes mechanisms for guaranteeing correctness of specialized code. Before pre-
senting techniques that can detect potential invalidations (due to modification of specialized memory
locations), we first describe the invalidation process since this process is independent of the specific
detection technique. We then present several solutions to detect modifications of specialized memory

locations.

8.1. Implementing Invalidation of Specialized Code

Since invalidations are expected to be rare, the cost of invalidation is insignificant. We now
present a simple technique for implementing invalidations.

Whenever the specializer detects a store to a specialized memory location, only a subset of the
specialized versions need to be invalidated. To do selective invalidation, the specializer maintains a
mapping from specialized memory locations to dependent specialized versions. This mapping can
be maintained using a binary search tree or a hash-table.

Suppose that the specializer detects a store to a memory location L with address A. The address
A is used to fetch the specialization scope S(k) and the specific specialized version SV that uses
L. The details of invalidating SV depends on the specific lookup mechanism implemented by S(Kk).
If S used the method table of k (either by creating pseudo-methods or by using actual methods) to
implement the lookup, the specializer can invalidate SV be reverting the method table entry of O (SV’s
key value) to point to the default version of S.2 If S used a i F-then-else chain to implement the
lookup, then the specializer can invalidate SV by changing the appropriate jump address to point to
the default version of S. If S relied on a centralized software hashtable, then SV can be invalidated

by removing SV from the hashtable.

ZNote that the method table pointer of O could also be reverted to point to the default method table. While this is a
solution maintains program correctness, this is not a desirable solution because other entries in O’s cloned method table
could be pointing to other specialized scopes.
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Understanding how to implement invalidations, let us now see how to detect invalidations in the

first place.

8.2. Detecting Invalidation of Specialized Code

In the context of a dynamic optimization system, coupled with the invalidation mechanism pre-
sented in the previous section, a specializer can guarantee correctness of specialized code using one

or more of the following approaches:

e Guaranteeing invariance of specialized memory locations: In this approach (invariance guar-
antees), software analysis guarantee that the specialized memory locations will not be written
after they are specialized. The advantage of this approach is the low overheads: the cost is
paid only once — during specialization. The disadvantage is that this approach is not widely
applicable and other approaches would have to be used to guarantee correctness of other spe-
cialized memory locations. In this chapter, we present a solution that exploits the semantics of

Java to guarantee the invariance of a restricted set of specialized memory locations.

e Guarding specialized memory locations: In this approach (memory guarding), the specializer
guards the specialized memory locations to detect writes to these locations. This guarding
can be accomplished with custom hardware support (ex: protection bits in memory — like
error-correction bits), or with OS-based support. The advantage of this approach is that it is
widely applicable. The disadvantage of this approach is that there is no existing low-overhead
memory guarding support available. In this chapter, we present a memory guarding solution
based on a recently proposed OS-based fine-grained memory protection schemes — but, this is

still a research proposal is not available in existing systems.

e Monitoring stores to detect writes to specialized memory locations: In this approach (store

monitoring), all stores that could potentially write into specialized memory locations are mon-
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itored. In Java, software solutions for store monitoring involves instrumenting a subset of all
putfield, putarray bytecodes in the program that could potentially write into special-
ized memory locations. The advantage of this approach is that it is widely applicable and can
be implemented in existing Java Virtual Machines. The disadvantage of this approach is that
it introduces overheads in the execution of non-specialized code. In this chapter, we present
a software solution for store monitoring and present a qualitative discussion of its overheads.
One could potentially think of hardware-based approaches for store monitoring. However,

hardware-based approaches have not been studied in this dissertation.

e \erifying specialized memory locations at scope entry: In this approach, rather than monitor
stores or guarding specialized memory locations, the content of specialized memory locations
is verified at the entry of a specialized version. The advantage of this approach is that non-
specialized code does not incur extra overheads and the cost of detecting invalidations is easily
quantifiable and can be used in the cost-benefit model. Furthermore, it can be implemented
in existing JVMs. However, this approach is only applicable in restricted scenarios — when
a specialized version only uses a much smaller set of specialized memory locations when
compared to the expected benefit from the specialized version. This approach has not been

studied in this dissertation and is left for future work.

Having presented several approaches to detecting modifications to specialized memory loca-
tions, we present techniques that follow the above approaches. We first present a memory guarding

technique.

8.3. Memory Guarding via fine-grained memory protection support

Recently, Witchel et al. [90] proposed Mondrian Memory Protection, a fine-grained memory

protection scheme implemented in the operating system that relies on hardware support. In this
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scheme, permissions are granted to memory segments which can be as small as individual words.
Using this scheme, the specializer can grant read-only permissions to specialized memory locations
(the set aml in Figure 3.4). Whenever these memory locations are written, the memory protection
scheme traps to software which invalidates the specialized versions that used these locations.

Thus, the Mondrian scheme is perfectly suited for our purposes and does not require any software
analysis or instrumentation of non-specialized methods. While this scheme is not yet available in
current systems, fine-grained memory protection has many uses [90] and future OS and hardware
systems might provide such support. For example, Transmeta Crusoe [57] processors have custom
hardware support to enable aggressive load speculation performed by their code morphing software.
To detect failure of these speculations, these processors have hardware that detects writes to memory

locations that were optimized away.

8.3.1. Overheads: Qualitative discussion

In order to study the space and time overheads of the Mondrian Memory Protection scheme,
the authors experimented with two extreme cases. In the first experiment, they tried to compare
their scheme with existing virtual memory operating systems with coarse-grained memory protection
schemes. For this experiment, the number of memory segments were under 50. In this experiment,
the space overheads were under 0.7% and the number of extra memory references introduced were
lesser than existing virtual memory schemes. Thus, their scheme can efficiently support coarse-
grained memory protection.

At the other extreme, where they attempted to stress the fine-grained memory protection scheme,
new memory segments were created for every object allocated by the application. For allocation-
intensive applications (Java benchmarks), over 1.5 million segments were created. For this experi-
ment, the space overheads were under 9% and the number of extra memory references were under

8%.
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In contrast with this extreme case, our specializer had to guard at most 8KB memory for the
programs we used to evaluate our specialization system (see Table 9.1). In this extreme case, the
8KB specialized memory was spread over 830 objects and 500 arrays. Compared to the 1.5 million
segments used to stress MMP, this is a small fraction. Therefore, we believe that memory guarding

using fine-grained memory protection is an attractive solution where such support is available.

8.4. Software Store Monitoring Schemes

We now present a software-based invalidation-detection technique that is based on the store-
monitoring approach. This software store monitoring technique can be implemented in existing Java
Virtual Machines to monitor stores to detect writes to specialized memory locations. This technique
relies on Java semantics to do this efficiently. The central idea is to instrument putfields and putarrays
that could write into the specialized memory locations. We first present a baseline store monitoring
technique and then present various optimizations which help reduce the overheads store monitoring.

One of these optimizations is based on the invariance guarantee approach.

8.4.1. Baseline store monitoring

We first present a store monitoring technique for non-array objects and then extend it to handle
arrays.

Let SO = {01, 09, ...0,, } be the set of objects that had at least one of their fields specialized. Let
Fy = {f1,..., fm} be the specialized fields of objects in SO.3 Pick an arbitrary field f € F, and
proceed. Let O(f) C SO be the set of objects that assume the invariance of field f. Let PF(f)
be the set of putfield sites that modify f. Since Java does not have pointer arithmetic, PF(f)
can be precisely computed for all f € Fs. An optimizer thread could compute this information

during specialization. Alternatively, PF'(f) sets can be incrementally computed (for every f in the

3k, = {f | 3o0s € SO such that o;. f was assumed invariant}.
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application) at class loading time and incrementally updated during optimizations (like inlining). So,
given f,O(f), and PF(f), in order to ensure correctness, all putfield sites in PF(f) have to be
monitored to detect any modifications to objects in O(f).

The specializer can implement these monitors cheaply using a two-step process described below.
First, all objects in O(f) are marked. Object marking can be implemented by utilizing an unused
bit in object headers. Second, all putfield sites in PF(f) are instrumented to detect stores to marked

objects. This can be implemented with a 3-instruction snippet shown in Figure 8.1. The putfield

X = load obj.specmark;
y = X | SPEC.MASK;
if (x == y) invalidate(obj, T) /*obj.fis being overwritten */;

Figure 8.1. Store monitor inserted before the instruction: putfiel d (val ue, obj.f)

monitor checks if the object being written is marked, and if so, it invokes an invalidation routine
which invalidates the relevant specialized code using the technique presented in Section 8.1.

For arrays, a similar analysis can be carried out. If SA is the set of specialized arrays, then,
depending on the types of arrays in S A, putarray sets can be computed for each array type (similar
to the putfield sets for each specialized field). As in the case of putfields, monitors are inserted at
all sites in these putarray sets to detect stores into marked array objects. The store monitor is shown

in Figure 8.2. However, the putarray monitor cannot distinguish between writes to individual array

X = load a.specmark;
y = X | SPEC.MASK;
if (x == y) check.and_invalidate(a, 1) /*a][i]is being overwritten */;

Figure 8.2. Store monitor inserted before the instruction: putarray (value, a[i])

elements. If all the elements of the marked array were used in specialization, then no further checks
are necessary and the relevant specialized code can be invalidated. However, if only a few individual
elements of the marked array were specialized, blanket invalidation will lead to lost performance.

Therefore, the specializer checks whether the array element being written was specialized. Clearly,
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this is a more expensive store monitor than that for putfields. Another option would be to conserva-
tively invalidate all specialized code that used any element of the marked array. While this would
reduce overheads of the monitor, this can potentially lead to lost performance. This is similar to the
problem of false hits in cache coherence schemes in multiprocessor systems.

Having looked at the baseline scheme, in the following sections, we present optimizations of this

technique which helps reduce overheads.

8.4.2. Optimization 1: Guaranteeing invariance through program analysis

This optimization of store monitoring is based on the approach of guaranteeing invariance of
specialized memory locations.

Referring back to F, the set of specialized fields, if f € F is a field with a Final declaration
or if it is a private field that is modified only in constructors or in methods accessible only from
constructors, language semantics guarantees that f will not be modified after initialization. All such
fields can be safely eliminated from F,;. Example of such fields are the fields of String objects
(instances of the java.lang.String class) which are immutable. If all fields are eliminated

from Fj, the specializer has a guarantee that no specialized location will be overwritten.

8.4.3. Optimization 2: Reducing the size of the putfield/putarray sets

The previous optimization shrinks F, the set of specialized fields. The same analysis can also
be used to shrink the putfield sets of the fields in Fs. Given a field f, during the computation
of its putfield set, PF(f), putfield sites in constructors or in methods that are reachable only via
constructors can be eliminated. These putfield sites correspond to object initialization and can be
safely ignored.

Other analysis could also reduce the size of the putfield/putarray sets. Referring back to the

description of the baseline store monitoring scheme, for a field f, the specializer has to monitor
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putfield sites in PF(f) to check if they write to objects in O(f). Therefore, all putfield sites that

write into newly allocated objects can be removed from PF(f).

8.4.4. Optimization 3: Integrating store monitors with write barriers

The store monitors shown in Figure 8.1 and Figure 8.2 resemble write barriers used by some
concurrent and generational garbage collectors. Write barriers perform a similar function for incre-
mental garbage collectors (generational, concurrent, and other flavors) as store monitors do for our
specializer. For example, generational garbage collectors place write barriers around all pointer-
updating stores to detect inter-generational pointers.

As a more specific example, in Figure 8.3, we show a write barrier used by Heil [50] to detect

heap modifications made by the application in parallel with the concurrent garbage collector. In

mtp load obj.mtp; /* load method table pointer */
liveMtp = mtp | LIVEMASK; /* check for live mark */
it (mtp # liveMtp) RecordObject(obj);

Figure 8.3. Write barrier used in a concurrent garbage collector by Heil [50]

general, many write barrier implementations have a fast path consisting of a few instructions (be-
tween 2 and 3) and a slow path consisting of more elaborate checking. The fast path is typically
inlined at the store site.

For this example, store monitors at pointer-updating putfield sites can be combined with the
write barriers at those sites and is shown in Figure 8.4. This requires that the object marking bits for

the store monitor and the write barrier be allocated in the same header word. This code loads the

= load obj.marks; /* load object marks */
w & (SPECMASK | LIVEMASK) ; /* check for specialize and live marks */
f (X # LIVEMASK) ProcessintegratedMonitor(w, obj, );

W
X
i

Figure 8.4. Integrated store monitor and write barrier

common header word and does a single check to test for both bits simultaneously. This integration
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essentially eliminates the overhead of the store monitor (or the overhead of the write barrier — if one
is looking at it from the viewpoint of a garbage collector). Similar integration might be possible for

other write barrier implementations.

8.4.5. Overheads: Qualitative discussion

Due to infrastructural limitations, invalidation schemes have not been implemented in the spe-
cializer studied in this dissertation. Consequently, this dissertation has not performed an experimen-
tal evaluation of the store monitor schemes. However, in the following sections, we make several
qualitative arguments to judge the utility and overheads of store monitors.

Assuming that writes into specialized memory locations are rare, the checks in the store monitors
shown in Figure 8.1 and Figure 8.2 will fail with high probability. This common case will be quickly
learnt by branch predictors on modern out-of-order superscalar processors. As a result, the check
snippets will not be on the critical path of execution since the branch predictor will successfully
predict the result of the check. The processor uses the actual execution to verify the results of the
prediction. This reliance on non-criticality of the store monitor is similar to the technique used
by Heil [50] to perform speculative object inlining (called object co-location). Once an object x
is inlined in object y, the load of x from y can be performed using a simple add operation (y +
offset(x)). Since the inlining is speculative, correctness is verified by checking code. As in our
example, the branch is highly predictable.

In order to better understand the overheads of store monitoring, we turn to studies of write barrier
schemes in concurrent and generational garbage collection. As we noted earlier, store monitors
resemble write barriers. By examining the overheads of various write barrier implementations, we
can get an idea of store-monitor overheads. For Smalltalk programs, Heolzle [52] reports a maximum
of 8% overhead using a fast 2-instruction store barrier. For Lisp programs, Zorn [92] reports a

maximum of 6% overhead for a write barrier. We interpret these results to be indirect evidence for
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the low overheads of the store monitoring solution. Implementation of invalidation techniques and

evaluation of store monitoring technique is left for future work.

Evaluation

For most of our benchmarks (Table 9.1), we found that the software analysis we discussed in
Section 8.4.2 can guarantee the invariance of all specialized memory locations without any store
monitors. However, for some of the benchmarks, memory guarding or store monitoring is required
for correctness. As we discussed in the previous sections, these can be implemented with low over-
heads using hardware/OS fine-grained memory protection schemes or using software monitoring

techniques.

Synchronization Issues

Before concluding this chapter, we discuss a synchronization issue that needs to be addressed.
Consider the following race condition which may arise when our specialization requires placing a
memory guard (or store monitor). Assume that the specializer runs concurrently with the applica-
tion. First, we specialize a scope S, using the content of a memory location a as an implicit input to
specialization. Next, the invalidation algorithm determines that we need to guard « against writes,
and turns on such a guard. Now, if the application overwrote a between the specialization and the ac-
tivation of the guard, the specialization may be incorrect. Our solution is to verify that after the guard

is activated, the guarded locations contain the same values as assumed during the specialization.
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CHAPTER 9
EXPERIMENTAL EVALUATION

In this chapter, we present an experimental evaluation of our specialization technique. In Sec-
tion 9.1, we describe the research infrastructure used to implement the specializer, present bench-
marks and describe the evaluation methodology used to evaluate the specializer. In Section 9.2—
Section 9.4, we evaluate the key properties of our specialization technique. In Section 9.5, we present
the final speedup results for the various benchmarks which includes an estimate of runtime special-
ization costs.

9.1. Research infrastructure and Methodology

This section describes the research infrastructure used to implement the specializer and the
methodology used to conduct our experiments.

This dissertation uses Strata,* a static-compiler based JVM, for implementing the specializer
and evaluating it. Strata does not support multi-threading and supports only a subset of the JDK1.1
API. Strata does not have any direct support for runtime compilation. However, it supports profile-
driven recompilation which we use to emulate the process of runtime specialization. We describe
this emulation process in Section 9.1.2.

Figure 9.1 shows a pictorial representation of the Strata VM which consists of the Strata compiler
and the Strata runtime system. The Strata compiler translates Java bytecodes into Sparc V8 assembly
code, which is linked together with the Strata runtime system and standard libraries to produce
a stand-alone executable. The Strata runtime system contains object allocation routines, garbage
collection routines, I/O primitives, the Java Native Interface (JNI), Java primitives like hash code
computation, and implementation of a subset of native methods from the JDK1.1 libraries. The Java

run-time system is written in C and compiled with gcc. The Strata compiler itself is written in Java.

1Some of this description of the Strata JVM has been borrowed from the dissertation of Timothy Heil [50] because the
JVM infrastructure used in this dissertation is very similar to that used by Timothy Heil.
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9.1.1. Details of the Strata compiler

1. Convert bytecodes to high-level IR

2. Perform local optimizations

3. Inline user-specified methods

4. Perform Sparse Conditional Constant Propagation
5. Convert to low-level IR

6. Perform jump optimization

7. Perform Global Register Allocation

8. Layout basic blocks

9. Generate code

Figure 9.2. Passes of the Strata compiler

The operation of the Strata compiler is shown in Figure 9.2. Bytecodes are first loaded and
converted from the stack-based representation into a register-based high-level bytecode IR. Local
(intra basic-block) optimizations are performed at this point, primarily to reduce the size of the
IR. Local optimizations include copy propagation, constant propagation, common sub-expression
elimination, and null-check elimination.

Function inlining is performed next. The compiler inlines only those methods that are specified
by the user. In this dissertation, the inlineable methods were determined using a combination of
profiling and source-code inspection.

Next, Sparse Conditional Constant Propagation (SCCP) [89] is performed after converting the
IR into SSA form. The algorithm has been extended to automatically eliminate null-reference and
array-bounds checks required by the Java bytecodes.

After the IR is converted back from SSA form, it is transformed into a low-level IR to make
explicit the register requirements of the IR instructions. Due to both SCCP and conversion to low-
level IR, a number of spurious jumps are introduced. A pass of jump target optimization eliminates
many of these spurious jumps. Register allocation is performed on this low-level IR using a graph-
coloring global allocator that also eliminates unnecessary copy instructions [44]. Unneeded copies

are produced by the conversion out of SSA form, and by marshalling function call parameters.
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Basic block layout is the final transformation before code generation. Basic block layout orders
basic blocks to minimize jumps and taken branches. This algorithm is driven by heuristic-based
predictions of branch directions. For instance, loop back edges are estimated to be taken 66% of
the time. For many branches, such as those related to exceptions, the direction of the branch can be
predicted statically with high accuracy.

While the Strata compiler also implements the Lazy Code Motion optimization, it has been
turned off in our experiments because of some implementation problems in the interaction between
the specializer and the lazy code motion phase. The absence of PRE-based optimizations (on register
values or memory) can lead us to report higher speedups than otherwise possible. However, the
effects does not affect the conclusions of our study because specialization provides benefits beyond
that captured by PRE-based optimizations. First, not all eliminated instructions can be captured by
PRE-based optimizations. Second, specialization unrolls loops which is one of the more significant
sources of speedups in our evaluation. Therefore, the absence of PRE-based optimizations in the

Strata compiler does not affect the conclusions in any significant way.

9.1.2. Emulating runtime specialization

Since Strata does not support runtime compilation, we “emulate” runtime specialization using a
two-step process similar to profile-driven recompilation.

Briefly, the emulation process runs the program for IV steps, creates specialized code using the
profile collected in these IV steps, and then continues with the execution using the specialized code
in a second run.

Let P represent the program being specialized. In the first step, P is instrumented to generate
profiling events for building store and object-access profiles. Let P,.o¢ represent this instrumented
executable. When P« is executed, it generates profiling events which are processed by the stratified

sampler implemented in the runtime system which simulates a hardware version of the sampling
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profiler. The output of the stratified sampler is used to build the store and object-access profiles
needed by the specializer. Whenever the number of profiled events reaches a predefined threshold
N, (whose value is determined empirically), Pp-.¢ is stopped and the specializer is invoked. Let ¢
be the “time” when Py is stopped. The specializer uses the runtime profiles as well as the runtime
state of the interrupted program (at time ¢) to build scopes and generate specialized code. Note that

in contrast with profile-driven recompilation, we do not run the program to completion.

In the second step, the specialized code generated during the profiling run is linked into the
original program to create a new specialized program, Pgpec, Which is then run with the same inputs
used in the profiling run. During this “specialized” run, Ppe. links in the specialized code at time ¢,

the time when Py..¢ Was interrupted.

Specialization Phases

The previous discussion assumed that specialization is performed only once. However, in gen-
eral, specialization is a continuous process with multiple specialization phases. During the profiling
run, the specializer is triggered every N, profiling events. This corresponds to multiple specializa-
tion phases in a dynamic optimizer. In a dynamic optimizer, the specialized code generated during
each of these specialization phases is linked into P. However, in our emulation environment, we
empirically select one “best™ specialization phase and use it to generate the specialized executable,
Pspec. Because of this infrastructural limitation, we cannot fully exploit all the available special-
ization opportunities in P. For example, different specialization opportunities might be exposed at
different points in the program’s execution. Exploiting both these opportunities will lead to better

speedup than picking the better of these two opportunities.
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Synchronizing the profiling and specialization runs

In Section 9.1.2, we mentioned that during the specialization run, the specialized code is picked
up at time ¢, the execution point at which profiling run was interrupted. In our emulation, we use
object allocation to keep track of time, i.e. whenever the program allocates an object, the clock moves
forward by one tick. Therefore, time ¢ corresponds to ¢ objects allocated by the program. While other
metrics like instruction counts, basic block counts, or method invocation counts could be used for the
same purpose, we found that object allocation count is a low-overhead synchronization technique.
However, because of our time-keeping methodology, the specialized code can be picked up earlier
than when the program was interrupted during the profiling run. But, this synchronization error is
bounded by the largest time between two object allocations. As long as the program does not have
big execution phases (big relative to the entire execution of the program) where there is no object
allocation, the synchronization error will be small and does not affect our reported speedup results

significantly.

Detecting invalidation of specialized code

Since our infrastructure does not permit implementation of memory guarding or store monitoring
schemes, our specializer implementation cannot automatically detect invalidations of specialized
code. These invalidations were determined empirically as follows. If specialized memory locations
change, and the associated specialized code is not invalidated, then this might manifest as a program
crash or incorrect output. Using empirical investigation of the crash or incorrect output (debugging,
examination of specialized code), we identified invalidations due to writes to specialized memory
locations. However, this only identifies invalidations which manifest as incorrect program behavior
and misses cases where the effect of the invalidation does not produce any visible difference in
program behavior. This is a shortcoming of our current evaluation methodology and can be fixed in

a runtime implementation of a specializer.
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9.1.3. Benchmarks

We conduct our experimental runs on a lightly loaded UltraSparc10 processor with 256M RAM
and use a 32M heap for object allocation. Table 9.1 shows the programs used to evaluate the special-
izer. The table provides a short description of the program along with the input to each benchmark.

jJess and raytrace are programs from the SPECjvm98 benchmark suite used to evaluate JVMs.

| Program | Description | Input |
dotproduct Computes dot product of | Two 100-element vectors
two vectors One vector is 75% zero-filled
query Searches database entries | query with 21 comparisons
interpreter | Interpreter microbenchmark | Bubblesort of a 50-elt array
convolve Image processing kernel 5x5 random convolution matrix

(12 zeros, 8 ones, 4 negative ones)
and a 860x550 gif image

Jscheme Scheme interpreter Simple Scheme Partial Evaluator
raytrace SPECjvm98 benchmark 300 300 input/time-test.model
jess SPECjvm98 benchmark 100

Table 9.1. Benchmarks used to evaluate the specialization technique

query and dotproduct are microbenchmarks used to evaluate DyC [47] that we converted to
Java. interpreter is a tiny interpreter microbenchmark. convolve has been carved out of
ImageJ, a publicly available Java image processing toolkit [2]. jscheme is a publicly available
Scheme interpreter in Java [74]. Note that the input to raytrace benchmark is different from the
input configurations of the SPECjvm98 suite. We provided a different input to the benchmark to run
the program for twice as long as the longest-running SPECjvm98 input. This longer-running input
was provided to get the program to run for more than 30s to allow for the relative specialization

overheads to be lower — the longer a program runs, the greater the benefit of specialization.
Table 9.2 shows the sampling rate (for profiling) as well as the specialization trigger threshold

used in generating the specialized versions. For all the benchmarks, the stratified sampler used a

table with 2K counters. For the microbenchmarks, the sampling rates and the length of the spe-
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Profile Specialization
Program Sampling | Trigger Threshold
Rate (1/n) | (# profiling events)
dotproduct 64 64K
query 64 64K
interpreter 64 64K
convolve 256 4M
Jscheme 256 0.5M
raytrace 256 4M
jess 256 4M

Table 9.2. Specialization parameters (sampling rate and specialization trigger threshold) for the benchmarks

cialization phases are smaller than the bigger benchmarks. For jscheme, we have used a smaller
specialization phase than the rest because it enables earlier specialization (and better speedups) than
with a longer specialization interval. In a transparent specializer, these parameters (sampling rate
and length of a profiling phase) have to be determined automatically. While this dissertation has not
studied techniques for doing this, we present some possible solutions for achieving this.

A simple way of determining the sampling rate would be to use a default sampling rate (for
example, 1/256) and vary it based on the number of messages generated by the profiler within a
fixed time. If the number of messages are higher than an empirical threshold, the sampling rate can
be reduced, and if lower, the sampling rate can be increased.

A straightforward way of determining the length of a profiling phase would be based on the
size of the working set. The profiling phase should be long enough so that the number of samples
collected during the phase cover a minimum number of executions of the working set. Therefore,
with small working sets, the profiling phase will be short, and with larger working sets, the profiling

phase will be long.

Baseline measurements: Comparison of Strata with Hotspot Client VM

Table 9.3 shows a comparison of Strata-generated code with Hotspot generated code. Note that

Hotspot is a state-of-the-art dynamic optimizer which has been optimized for the Sparc architecture.



151

Compilation Execution time
Program Time (Strata) | Strata VM Java Hotspot
(secs) (secs) Client VM (secs)

dotproduct 5.8 10.9 111
query 7.6 114 8.7
interpreter 7.9 23.2 244
convolve 18.3 37.6 47.0
Jscheme 36.6 48.7 22.7
raytrace 45.9 41.1 82.5
jess 102.6 49.1 27.0

Table 9.3. Baseline times for all benchmarks: time to generate Sparc V8 assembly using Strata, time to execute
the program with the Strata VM, and time to execute the program with the Hotspot Client VM

We make this comparison to demonstrate that specialization is not optimizing over an inefficient
compiler. This is important because a number of commonly-used optimizations can speed up pro-
gram execution. Comparing the execution times of the different Java programs, we see that the
execution times of Hotspot and Strata are similar for most programs except for jscheme and ray-
trace. For jscheme, Strata-generated code is 2X slower than that generated by Hotspot. For
raytrace, Strata-generated code is 2X faster than the code generated by Hotspot. We interpret
these results to signify that Strata generates code as good as would be generated by a real dynamic
optimizer.

The Strata compiler generates code that is not optimized for the Sparc architecture. For example,
it does not fill up delay slots. Combined with lazy code motion (or some other more efficient version
of partial redundancy elimination algorithm suitable for a dynamic optimizer), the performance of
Strata-generated code can be improved. However, these improvements might not significantly impact
the specialization benefits reported in this dissertation because some of the code improvements carry
over to the code generated by the specializer.

For the couple of cases when Hotspot runs slower than Strata, this might be due to the compila-
tion overheads that Hotspot incurs at runtime.

More pertinent to the results that we will present later in this chapter are the compilation over-
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heads. For specialization to be beneficial, compilation overheads should be small. By comparing
Strata’s compilation costs to Hotspot’s dynamic compilation costs, we want to show that Strata’s

high compilation costs is not representative of runtime compilation overheads.

The Hotspot VM is a dynamic optimization system. It does as well (or better) than the Strata
static compilation system despite incurring compilation overheads at runtime. This underscores
the fact that dynamic optimization systems have well-engineered compilation systems designed for
speed and low runtime overheads. In contrast, the Strata compiler has not been designed for fast op-
timization and code generation. One reason why Hotspot has a low-compilation cost when compared
to Strata is because Hotspot probably only optimizes hot methods. However, Table 9.3 shows that
Hotspot does much better on query, a simple micro-benchmark, which has just a few methods to
be compiled. Hotspot compiles and executes the program much faster than it takes Strata to compile
and execute the program. Therefore, Strata’s high compilation costs are probably an artifact of the

design of the Strata VM and do not reflect the true costs of dynamic compilation.

Having presented the research infrastructure used to implement the specializer and the methodol-
ogy for evaluating it, we now present results of our experimental evaluation in the following sections.
We first present an evaluation of the store profile: its time and space overheads and its ability to de-
tect invariance. Next, we present an evaluation of the time overheads of scope building, and creating

specialized versions. Finally, we present the speedups from specialization and discuss the results.

9.2. Evaluating the store and object-access profiles

In this section, we present an evaluation of the store and object-access profiles to understand their
suitability for use within a dynamic specializer. First, we present a discussion of the time and space
overheads of the profiles. Then, we discuss the accuracy of the store profile in determining runtime

invariance.
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9.2.1. Time and space overheads

Our evaluation shows that the time overheads of profiling will be between 5% and 10% and
that the space overheads of profiling will be under 1MB for most applications. We now present a
discussion of these results next.

In our implementation, we use the stratified sampling based profiler presented in Chapter 4 for
collecting the store and object-access profiles. We do not perform a separate evaluation to determine
the time overheads to collect these profiles. Instead, we rely on the earlier evaluation presented in
Chapter 4 where we showed that a stratified-sampling based profiler can collect a load value profile
with overheads a little over 5%; with a two-level compression scheme, the overheads are a little
over 4% (Figure 4.12). The object-access profile will have a similar time overheads because in Java,
object and array accesses are primary source of load instructions (others are virtual table accesses,
accesses in the runtime system, stack refill, restores, etc). The store profile will have much smaller
overheads than 5% because a program executes far fewer stores than loads. Thus, the overheads of
simultaneously collecting both these profiles will definitely be less than 10%, and not significantly
more than 5%.

Let us now examine the memory requirements of the object-access profile. The object-access
profile had a maximum footprint of 3MB for raytrace. For jess, it is under 2MB, and for
the other benchmarks, it is under 250KB. This is not a significant memory overhead. Some of this
overhead is an artifact of the Strata implementation and can be reduced significantly with better
engineering. We now describe one optimization which can lead to a reduction in space overheads
of the object-access profile. Right now, the specializer retains profile records for all instructions.
However, for some instructions (those that access “too many” objects), there is no use retaining
this information since the specializer will not specialize that instruction. By freeing profile records
for these instructions, the space overhead of the object access profile can be reduced considerably

without impacting its accuracy for the purpose of specialization.
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Let us now examine the memory requirements of the store profile. For the sampling rates and
specialization trigger thresholds shown in Table 9.2, convolve had the biggest memory footprint
at 223KB. This is small compared to memory footprints of applications today — with a application
memory footprint of 20MB, 223KB is around 1% space overhead. This space overhead can be
further reduced by a better engineered implementation; like most parts of our specializer, the profile
representation has not been engineered for efficiency.

Thus, the combined space overhead of the store and object access profiles is expected to be
under IMB which is an acceptable space overhead for today’s applications with much larger memory

footprints.

9.2.2. Accuracy of the store profile

In the rest of this section, we show that a store profile enables accurate invariance detection. Ac-
curate invariance detection is important because if a profile fails to identify that a memory location
is actually variant, then specialization may need to be frequently invalidated, reducing the effec-
tiveness of specialization. For our benchmarks, we encountered invalidations only in a couple of
cases, one for the interpreter microbenchmark and the other for the j scheme benchmark. In
both these cases, the invalidation was rare and in fact beneficial, because it enables more aggressive
specialization. We discuss these scenarios next.

There are two sources of potential inaccuracy in the store profile. The first, and fundamental,
potential source of inaccuracy is due to the fact that the invariance detection is based on execution
history, i.e. the store profile predicts the invariance of a memory location based on the absence of
any stores to the location in the past. However, clearly, this is not a guarantee of invariance — the
location could be written in the future. The second source of inaccuracy arises because the stores are
sampled. Therefore, many stores do not show in the sample and adds to the first source of inaccuracy

— more locations are predicted to be invariant than if every store were monitored.
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Invalidation in the interpreter microbenchmark:

We now show an invalidation scenario in the interpreter benchmark and show that it is rare
and can, in fact, enable more aggressive specialization. This invalidation is a result of the first kind
of inaccuracy — where history-based prediction is not a guarantee of invariance.

A snippet of the benchmark code is shown in Figure 9.3. Looking at the figure, we see that it
accesses three different arrays: pgm, reg, and mem. These arrays are the three potential sources of
invariance within the interpreter. We now discuss the scenario where elements of the reg array are

modified after they are used for specializing the method.

int Interpret(Instruction[] pgm, int pc)
{
for (; ;) {
Instruction 1 = pgm[pc]; int newpc = pc+l;
switch(i -opc) {
case LI creg[i.rt] = i.imm; break;
case GOTO :newpc = 1i.imm; break;
case SUBI :reg[i.rt] = reg[i.rs] - i.imm;break;
case LD creg[i.rd] = mem[reg[i.-rs] + reg[i.rt]]; break;
¥
pc = newpc;
¥
}

Figure 9.3. Interpreter Program

First, pgm, the instruction array that contains the input program will be invariant throughout the
program’s execution (assuming no self-modifying code). The specializer commonly creates multiple
specialized versions of the interpreter loop iteration — one for each frequently interpreted instruction
of the source program. These specialized code rely on the invariant memory locations that are identi-
fied by the store profile — specifically, elements of the pgm array, but also elements of the reg array
as we discuss next.

Second, the interpreter uses the integer array reg, to record the register values of the source pro-
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gram. Thus, a register access r1 in the source program corresponds to the memory access reg[1]
in the interpreter. Therefore, if the source program stores constant values in its registers, these con-
stants manifest as invariant elements in the reg interpreter array.

Third, the interpreter uses the mem array to store the memory contents of the source program.
Therefore, if the source program has invariant memory, it directly manifests as invariant locations in
the mem interpreter array.

While the pgm array is invariant throughout the program’s execution, this is not necessarily true
about the reg and mem arrays. Figure 9.3 shows that these arrays are modified during interpretation.
However, individual elements in these arrays can be invariant for extended periods during interpre-
tation. If the specializer exploits these temporally semi-invariant values in the reg and mem arrays,
it can lead to the invalidation of specialized code when these elements are modified. This scenario is

seen when interpreting the bubble-sort program shown in Figure 9.4.

void BubbleSort(int[] a)
{
int tmp;
int n = a.length;
for (int 1 = 0; 1 < nj; i++) {
for (int jJ = 1+l; J < n; j++)
it (ali]l > alj1) tmp = a[il; a[i] = a[jl; alil = tmp;

Figure 9.4. Bubble Sort input program to the interpreter

The bubble-sort source program uses indices 1 and j for its nested (sorting) loops. In the com-
piled version of bubble-sort, let us suppose that these indices are in registers r1 and r2 respec-
tively. Within the interpreter, these indices will be in the interpreter’s register array at reg[1] and
regl[2].

While interpreting the bubble-sort program, the interpreter spends most of its time in bubble-

sort’s inner loop. This interpretation of the inner loop might span multiple specialization phases
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depending on the size of the array being sorted. During this time, the value of the outer-loop index
(1) does not change. Therefore, there will be no stores to the interpreter memory location reg[1]
in this time. Consequently, the specializer optimistically assumes that reg[ 1] is invariant and uses
the value of reg[ 1] in generating the specialized code. However, when the outer-loop index ¥ is
eventually updated, all specialized code that used the value of reg[1] have to be invalidated. For
the specialized code generated by the specializer, only one of the eight specialized versions have to
be invalidated — that corresponding to the use of the value of reg[1].

Since our current specializer implementation does not support invalidation, for the purposes of
evaluation, we changed the input set so that invalidation is avoided. We reduced the input array size
to size 50 (shown in Table 9.1) so that the index value change is recorded by the store profile. All
our results for the interpreter benchmark are based on this small input size.

Thus, in general, while invalidation signals bad store-profile based predictions of memory in-
variance, in cases such as this example, it can be beneficial since it enables more aggressive special-
ization. Within a dynamic optimization environment, this semi-invariance of § can be exploited by
respecializing the loop iteration whenever i is modified. Exploiting such respecialization opportu-

nities is left for future work.

Invalidation in the jscheme benchmark

Jscheme is an interpreter for the functional language, Scheme. The normal operation of the
interpreter is to process user input provided at the interpreter prompt. In this mode, the user defines
variables and functions and/or loads existing definitions from a file. These definitions are stored
in a lookup environment which maps names of variables and functions to their definitions. During
interpretation, lookup environments are consulted to fetch the values that variable and function names
are bound to.

In a batch-processing environment, where all input is provided at the beginning of the program,
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the contents of the lookup environment is invariant or rarely changes. In such a scenario, the special-
izer creates a specialized version of the lookup function in which the traversal of the environment
is eliminated. However, when new definitions are added, the lookup environment changes and the
specialized version has to be invalidated.

In the original experiment, input to the interpreter was presented interactively. However, this
invalidates specialized code at every instance when a new definition is provided by the user. Just
like the interpreter microbenchmark, these invalidations signal a need for respecialization and
is not an erroneous detection of invariance by the store profile.

In our evaluation, we got around this scenario by converting the interactive input into a batch

input. All results for the jscheme benchmark are reported for this input.

9.2.3. Conclusion

Based on our evaluation, we conclude that the store profile accurately identifies invariant data. In
the cases where specialized code was invalidated, we discovered that this resulted from temporally
semi-invariant data and can potentially enable more aggressive specialization. When combined with
the low time and space overheads, we are led to conclude that store-profile based invariance detection

is a useful technique for transparent runtime specializers.

9.3. Runtime compilation costs

In this section, we present the runtime compilation costs of our scope-building and specialization
algorithms. In Section 9.1.2, we described the emulation process used to implement runtime special-
ization. We rely on emulation because the Strata VM does not support runtime compilation. This
emulation, unfortunately, prevents us from directly measuring the overhead our specializer would
incur when implemented in a dynamic optimizer. Therefore, we present estimates of runtime com-

pilation costs in the following sections.
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9.3.1. Scope-Building Algorithm

In this dissertation, we estimate the compilation cost of the scope-building algorithm by com-
paring its execution time with that of a SCCP constant propagator which is an extremely efficient
linear-time algorithm. If the two speeds are comparable, then this would demonstrate that the scope-
building algorithm can be efficiently implemented in a runtime setting since SCCP is a basic constant

propagation algorithm likely available in most dynamic optimizers.

Scope Building Costs
Program Num. | tscopes/tsccp | Worst absolute
Scopes (min, max) time (milli-secs)
dot pr oduct 1 (0.6, 0.6) 50
query 1 12,12 150
interpreter 1 (1.5,1.5) 170
convol ve 1 (0.2,0.2) 50
j schene 1 (3.3,3.3) 100
raytrace 6 (3.0,6.1) 1040
j ess 5 (2.2,6.7) 270

Table 9.4. Scope-building costs relative to SCCP

In Table 9.4, we show the compilation overheads for the scope-building algorithm relative to
the standard SCCP algorithm. The second column shows the number of beneficial scopes that were
identified.2 The third column shows the ratio tScopes/tscop, Where tgeopes 1S the time taken by
the scope-building algorithm to build scopes for hot methods, and ¢sccp is the time taken by the
SCCP algorithm to process the same methods. This ratio is only presented for the methods for which
beneficial scopes were identified. The fourth column shows the maximum time taken by the scope
building algorithm for any method.

The table shows that the scope building algorithm runs quite efficiently for the microbench-

marks and the convolve benchmark. For the more larger applications jscheme, raytrace,

2For j schene, dot product , query, and i nt er pr et er, the scope-building algorithm identified more than one
scope. However, many of the scopes are only active during the initialization phase (reading input files, building data struc-
tures) and do not contribute significantly towards either the cost of specialization or towards the benefit from specialization
and therefore have been eliminated.
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and jess, the scope-building algorithm runs within 3X the speed of the SCCP algorithm in the
best case and within 7X in the worst case. In terms of absolute times, the fourth column shows that
the absolute time are well under a second except for the OctNode . Intersect method in the
raytrace benchmark. This method is one of the larger methods in the application.

These compilation times can be reduced with a better engineered implementation. In addition,
a part of the scope-building cost is an artifact of our emulation methodology. During the emulation,
the specializer incurs interprocess communication overheads while accessing the application runtime
state via the profiler process.

Even with our relatively poorly-engineered implementation, the per-method average absolute
scope-building cost for all hot methods (not just for methods with beneficial scopes) processed by
the specializer across all benchmarks was only 137 milliseconds. The cost exceeded 500ms for only
4% of all processed methods. This is a very encouraging result because such low costs can enable a
runtime implementation of an automatic, profile-driven scope-building algorithm.

This result is encouraging for an additional reason; the scope-building algorithm can run in the
background all the time and can continue processing hot methods periodically and trigger special-
ization whenever a beneficial scope is identified. The actual cost of specialization (which is much
higher) is incurred only for beneficial scopes. This result enables a runtime implementation of a

specializer within a dynamic optimizer which is active for the entire execution of a program.

9.3.2. Specialization Algorithm

In this section, we present an evaluation of the costs of generating specialized code for the scopes
identified by the scope-building algorithm.

In Table 9.5, we show the cost of specializing a method relative to regular compilation costs for
the same method. This specialization cost includes the costs of scope building, creating multiple

specialized versions of beneficial scopes, global register allocation, basic block layout, and code
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Total Specialization costs

Program Num. | Versions L oops unrolled | tspec/tnoSpec Total
Scopes iterations | (min, max) | time (secs)

dot pr oduct 1 1 1 100 (2.6,2.6) 4.0

query 1 1 1 22 (1.3,13) 2.7

interpreter 1 8 0 0 (1.7,1.7) 3.1

convol ve 1 1 2 (nested) | 25 (5x5) (10.6, 10.6) 13.2

j schene 1 1 1 235 (28.9, 28.9) 13.0

raytrace 6 70 1 153 (1.3,33.0) 39.4

j ess 5 28 5 157 (25,37.0) 26.9

Table 9.5. Total specialization costs relative to regular compilation

generation. For benchmarks with multiple scopes, the sixth column also shows the best and worst
ratios. The last column shows the total absolute time for specialization. The table also shows the
number of specialized versions created, number of loops unrolled, and the total number of unrolled
iterations across all scopes.

For dotproduct, query, convolve, and jscheme, the specializer identifies only one ben-
eficial scope with only one specialized version. For these benchmarks, it can be verified that the
higher relative compilation costs are directly correlated with loop unrolling. However, except for
convolve, the compilation ratio is about an order of magnitude smaller than the unrolling factor.
This shows that the SCCP-based specialization algorithm can efficiently unroll and specialize the
selected specialization scopes.

For interpreter, the compilation ratio (1.7) is smaller than the number of generated special-
ized versions (8). This strengthens the conclusion that SCCP-based specialization is efficient when
deployed.

For raytrace, the largest compilation cost was incurred for generating specialized versions
of the FindTreeNode method shown in Figure 1.1. The specializer creates 53 versions of this
method and many of them had loops unrolled upto 8 times. For this method, the relative compilation
cost is 33X the cost of regular compilation.

For jess, the largest compilation cost was incurred for generating 12 specialized versions of
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the ValueVector .equals method which had a loop unrolled in each of them for a total of
84 unrolled iterations. For this method, the relative compilation cost is 37X the cost of regular
compilation.

For both these SPECjvm98 benchmarks, the relative compilation costs follow a similar trend as
those for the smaller benchmarks. The costs are much smaller when compared to the amount of code

duplication (through unrolling and multiple specialized versions).

Reducing specialization costs

For all these benchmarks, despite the favorable compilation ratios, the absolute compilation times
seem quite high. Some of this high compilation time comes from the design of the Strata compiler
which has not been engineered for fast compilation, as we noted in Section 9.1.3. Some of it also
comes from the emulation methodology which requires inter-process communication with the profil-
ing process. Therefore, we believe that specialization times can be reduced within a well-engineered
dynamic optimizer. Besides this, compilation costs can be reduced further by using multiple threads
of control that share the processor with the application [11, 60, 67]. Thus, we conclude that SCCP-
based specialization (with loop unrolling) can be implemented efficiently within a dynamic opti-

mizer.

9.3.3. Summary

Based on our evaluation of the compilation costs of profile-driven automatic scope building
(Chapter 5) and SCCP-based specialization (Chapter 6), it appears that these algorithms can be effi-
ciently implemented within a dynamic optimizer.

The automatic scope building algorithm is especially promising since it is quite efficient and is
comparable in speed with a SCCP algorithm. Our evaluation shows that the average cost of the scope

building algorithm is less than 150ms. This cost can be further reduced with a better-engineered
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implementation.

While the SCCP-specialized algorithm incurred high compilation costs relative to regular com-
pilation, these higher costs correlate directly with the code duplication performed by the specializer.
Our evaluation shows that the extra costs lines up quite favorably when compared to the code dupli-
cation performed by the specializer.

With a well-engineered implementation of a dynamic optimizer that uses multiple concurrent
compilation threads, specialization costs can probably be reduced sufficiently enough to enable the

implementation of a specializer at runtime.

9.4. Speedup estimates without including specialization costs

In this section, we present the speedups due to specialization and discuss the results. These
speedups do not include overheads for profiling, scope building, specialization, or software guards
for invalidation. We obtained these numbers by taking the average of 8 runs out of 10 after eliminat-
ing the best and worst runs. In order to minimize variation due to code layout effects, we used the
same executable to time the specialized and unspecialized runs using a command-line flag passed to

the Strata runtime system.

Program Asymptotic Speedup | tnoSpec tSpec
(without overheads) | (in secs) | (in secs)

dotproduct 51 10.7 2.1
query 3.7 11.0 3.0
interpreter 1.7 23.7 14.1
convolve 2.0 36.1 175
Jscheme 3.6 52.1 14.3
raytrace 1.07 49.3 46.2
jess 1.03 47.5 46.1

Table 9.6. Speedups due to specialization: ratio and absolute times

Table 9.6 shows the results of specialization for all the benchmarks. The second column shows

the asymptotic speedups. The third and fourth columns show the absolute execution time (in seconds)
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for the unspecialized and specialized code versions respectively (timed using the same executable as

explained earlier).

On the microbenchmarks, the image-processing kernel, and the Scheme interpreter, specializa-
tion yields good speedups. The speedup numbers shown in this table should be interpreted that the
specialization technique (without regard to whether it is done at compile-time or run-time) is pow-
erful enough to identify specialization opportunities and exploit them. However, this table does not
tell us whether the technique is good enough to be employed at runtime since it does not show us the

overheads. These numbers are presented later on in this section.

dotproduct and query are microbenchmarks used to evaluate the DyC specializer and it
is encouraging that our specializer could automatically identify and exploit the same specialization

opportunities with low overheads.

On the Interpreter benchmark, while the speedup of 1.7 is encouraging, there is a lot of
room for improvement. In Section 10.2, we examine some limitations of our specialization approach
and argue that the limitations are an artifact of our specialization model, which can be, in principle,

easily removed.

The impressive speedup on jscheme is especially encouraging since it reflects the potential
of runtime specialization in speeding up interpreters, especially because it is not a toy interpreter.
All the benefit for this benchmark comes from the specialization of the lookup method shown in
Figure 9.6. To specialize this method, we had to make minor source-code modifications to overcome
a limitation of our intermediate representation. This is explained further in greater detail in Sec-
tion 9.4.1. Preliminary investigations of the source code of the interpreter reveal that there are further
specialization opportunities in the interpreter which can potentially be exploited. These opportunities
come from the eval method — the core evaluation routine of the Scheme interpreter (similar to the
core interpretation loop in interpreters of imperative languages, like the interpreter benchmark

shown in Figure 9.3). Further investigation is left for future work.
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The larger SpecJVM98 benchmarks show a more disappointing performance, mainly because
they are not easily specializeable, but also because of the limitations of our specialization system.
Most of the benefit in raytrace comes from the FindTreeNode method shown in Figure 1.1.
The specializer specializes away the pointer traversal of the octree for the commonly referenced
octree nodes. The application spends about 25% of its time in this method and the speedup of 1.07 is
a good result for speedups coming primarily from this method. While the specializer identified and
created specialized code for scopes in other methods, the resulting benefit was minimal. The reasons
for this have not been investigated at this time and is left for future work.

For jess, most of the benefit comes from creating specialized versions of the Node2 . run-
Tests method. Since jess is an expert system shell, ideally, the specializer should do better on this
benchmark. However, one of the reasons for the poor specialization is because of our restrictions
on lookup keys. jess performs a number of equality comparisons which can be exploited if the
specialization model supported 2-element keys. It should be noted that multi-variable scope-building
algorithms exist (ex: Calpa [71]), and some of the ideas from existing work could be adapted to

extend the scope-building algorithm studied in this dissertation.

9.4.1. Caveats
Discrepancies in baseline execution times due to emulation overheads

In this section, we examine the discrepancies in the run times between the regular baseline run
of an executable (shown in Table 9.3 and the unspecialized run of the specialized executable (shown
in Table 9.6). ldeally, these two run times should be the same. However, in our system, they will be
different for two reasons: due to emulation overheads in the JVM runtime system of the specialized
executable, as well as due to code layout effects due to presence of the extra specialized code in the
specialized executable. Some emulation overheads are incurred even though specialized code is not

executed, and the code layout effects will also manifest themselves even though specialized code is
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not executed.

By comparing the execution times for the unspecialized version shown in Table 9.6 with the
baseline execution times shown in Table 9.3, we notice that except for raytrace, the times are
with 4% of each other. For dotproduct, query, convolve and jess, the baseline times are
slightly slower. For interpreter and jscheme, the baseline times are slightly faster. However,
the variations are small enough (within 4%) that this has not been investigated closely, especially
since this is just an artifact of our evaluation methodology.

However, the specialized executable (without exercising specialization) for raytrace runs
about 20% slower than the baseline version. To investigate this discrepancy, we created a new
executable for raytrace which has the JVM runtime with the emulation system used for spe-
cialization, but without linking in any specialized code. This new executable takes 46.3 seconds
which is slower than the original baseline code — this could be due to the emulation overheads in the
runtime system. However, the unspecialized code still runs 6% slower than with this new executable
(49.3 secs vs 46.3 secs). This is very likely a result of i-cache effects due to the specialized code.
The executable size increases by about 7% for raytrace which is much higher than all the other
benchmarks (about 2 to 3% for the others). Even though the extra 7% specialized code is never
referenced in the unspecialized run, the code layout might influence the i-cache miss rates. A more
precise investigation requires access to a cache simulator or a micro-architectural simulator for the

UltraSparc architecture.

Source-code change for jscheme

Jscheme benefits significantly from specialization. The specializer identifies the Environ-
ment. lookup method for specialization and completely unrolls and specializes the loop that
searches the lookup environment for the value that a variable is bound to.

In order to enable the scope-building algorithm to identify the unrolling opportunity in this scope,



Obj ect | ookup(String sym {
Object vs = vars, cs = vals;
while (vs = null) {
1. X = (vs instanceof Pair) ?((Pair)vs).first null;
if (x == sym) {
return first(cs);
} else if (vs == sym) {
return cs;
} else {
2. VS
cs

(vs instanceof Pair) ?((Pair)vs).rest :null;
rest(cs);

Figure 9.5. Original lookup method in j schene
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Obj ect | ookup(String sym {
Object vs = vars, cs = vals;
while (vs = null) {

ifT ((vs instanceof Pair) && (((Pair)vs).first == sym))

return first(cs);
else it (vs == sym)
return cs;
else it (vs instanceof Pair)
vs = ((Pair)vs).rest;
else
break;
cs = rest(cs);

}

/* Generated specialized code for the lookup method */
Object lookup_SPEC(String sym) {
if ((a1 == sym)) return ci; /*aq,ao,cy,cs,... are constants */
else if (by == sym) return d;;
ifT ((aa == sym)) return c;;
else it (b == sym) return ds;

Figure 9.6. Modified lookup method in j schene and the corresponding specialized code
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we made some source-code modifications shown in Figure 9.5 and Figure 9.6. The specialized code
generated after this transformation is shown in Figure 9.6. The changes stem from lines 1 and 2 in
Figure 9.5 both of which get encoded into ¢-nodes in the SSA graph. As a result, the values of X in
Line 1 and the value of vs in Line 2 come from these ¢-nodes. Our current scope-building algorithm
handles these ¢-nodes conservatively as we explain now. Referring back to the transfer function for
¢-nodes in Table 5.2, we notice that this function computes a meet of the incoming values. As a
result, the values of x and vs go to L during the analysis. This forces the algorithm to end the
scope at Line 1 and Line 2. However, on examining the code in Line 1, we see that the value of x
can be determined at specialization time if we know the value of vs. This is because the branch is

computable at specialization time. The same holds true for Line 2.

This scenario can be handled automatically (without code modification) in one of two ways. One
approach would be model the dataflow analysis shown in Table 5.2 along the lines of SCCP — where

values are evaluated conditionally (only after the controlling branch has been evaluated).

A second approach would be use a gated-SSA form which links up the ¢-node with its controlling
branch. This will enable control-flow information to flow from the branch to the output of the ¢-
node. If the specializer uses this representation, the algorithm can automatically eliminate the ¢ and

continue growing the scope.

In the absence of either of these approaches, we modified the method as shown in Figure 9.6 to
eliminate both the ¢-nodes. With this modification, the algorithm identifies the entire loop as the
specialization scope and marks the loop for unrolling. This source-code modification is similar in
spirit to binding-time improvements in offline partial evaluators [56]. As a result of the modification,
the specializer was able to unroll the loop and create specialized code that resembles the code shown

in Figure 9.6.
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Program tNoSpec teost tSpec New speedups
(in secs) | (insecs) | (insecs) | tnospec/ (teost + tspec)

dotproduct 10.7 4.0 2.1 1.7
query 11.0 2.7 3.0 1.9
interpreter 23.7 3.1 14.1 1.4
convolve 36.1 13.2 175 1.2
Jscheme 52.1 13.0 14.3 1.9
raytrace 46.9 39.4 43.7 0.56
jess 48.0 26.9 46.1 0.66

Table 9.7. Consolidating results from Table 9.5 and Table 9.6: the lost column shows speedups when the
compilation costs from Table 9.5 are included.

9.5. Speedup estimates after including specialization costs

Table 9.7 consolidates the results from Table 9.5 and Table 9.6. Note that the specialization costs
shown in Table 9.5 includes the cost of scope building, the cost of creating specialized versions of
beneficial scopes, the cost of other optimization passes shown in Figure 9.2, and code generation. We
add this specialization cost to the execution time of the specialized version and compute new speedup
numbers which are shown in column 5. The table shows that even with our poorly-engineered
specializer, the resulting benefit from specialization is non-trivial for five of the benchmarks. For
raytrace and jess, there is significant slowdown. Firstly, the improvement due to specialization
is minimal. In addition, the specialization costs are significant. Both of these can be addressed:
the improvements due to specialization can be increased, and the overheads due to specialization
can be reduced. In addition, when the specializer is implemented at runtime, the cost-benefit model
presented in Section 5.3 would have to be improved to include the costs of runtime specialization —
such a cost-benefit model will be able to prevent large slowdowns where there is not much benefit.

When seen in this new light, these speedup numbers look quite encouraging. But, they should
be consumed with *“a pinch of salt” because these numbers only include specialization costs from
a single specialization phase, and still do not include profiling and invalidation-support costs. In

addition, they do not incorporate costs involved in processing other “non-beneficial” methods, and
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other dynamic optimization overheads which we might not be aware of (in the absence of a real
dynamic optimization environment).

Nevertheless, these numbers are promising for the following reasons. The specialization over-
heads shown in column 3 can be reduced further with better engineering as we discussed in Sec-
tion 9.3.3. In addition, there exist known limitations of our specializer, which if fixed, can provide

better results than presented in this dissertation.
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CHAPTER 10
CONCLUSIONS AND FUTURE WORK

Recent times have seen the advent and development of a number of dynamic optimization sys-
tems [3,15,21,25,35,53,57,67], some of which have been spurred by the need to optimize execution
of Java programs. Program development in Java is probably indicative of the nature of component-
based software development today: object-oriented programming, reliance on dynamic linking tech-
niques, and use of generic software libraries.

Dynamic optimizers, by virtue of having the ability to monitor program behavior and having
access to the program’s runtime state, can tailor program optimizations to the program’s runtime
context (runtime state, hardware characteristics). However, existing optimizers implement control-
flow optimizations and leave unexploited data-specific optimizations.

Program specialization can exploit these data-specific optimizations within dynamic optimizers
by eliminating computation that depend on runtime constants. This dissertation explored the possi-
bility of implementing program specialization transparently, at runtime, within dynamic optimizers.

10.1. Summary of contributions

Program specialization is a powerful optimization technique that relies on powerful program
analysis and transformations. Even in its compile-time incarnation, specialization techniques for
imperative languages [8, 31,47, 70] are not easily implemented due to their conceptual and imple-
mentation complexity. This is so even when the user tells the specializer what is invariant, and what
to specialize. Within the context of transparent dynamic optimizers, a newer challenge pops up — the
entire process has to be automated with low runtime costs. Earlier, where the user or compile-time
program analysis provided the specializer with the information about what is invariant and what to
specialize, now, the specializer has to find all this information on its own at runtime.

In this light, the approach taken in this dissertation is that of simplicity: “what will happen if
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all the pieces of the puzzle are kept as simple as possible?” This approach is reflected in the various
pieces of the dissertation: specialization model, runtime profiling, invariance detection, automatic
scope building, specialization, dispatching mechanisms, and store monitoring techniques. With re-

spect to these various pieces of the problem, this dissertation makes the following contributions:

e Stratified-sampling based runtime profiling: We showed that rather than design complex hard-
ware to collect low-overhead profiles, using the samples provided by a simple hardware strat-
ified sampler, the software can build a variety of runtime profiles with low overheads and high
accuracy. Our evaluation shows that even a very demanding profiling application like load

value profiling has runtime overheads of under 6%.

e Store-profile based invariance detection: We showed that, by profiling program stores, it is
possible to detect invariance in data structures at fine granularities. This approach is much
simpler and also more powerful than program analysis techniques that detect data structure
invariance. In addition, we also showed that this approach also makes it possible to detect

temporal semi-invariance in data structures.

e Profile-driven automatic scope building: We showed that using information provided by the
store and object-access profiles, and by employing several simplifying heuristics, suitable spe-
cialization scopes can be automatically identified by a data-flow analysis algorithm. Our eval-
uation shows that even our unoptimized implementation can identify specialization scopes
efficiently. The speed of the scope-building algorithm is comparable to the linear-time SCCP
algorithm. Our evaluation showed that on an UltraSparc10 processor, on average, the scope-

finding algorithm takes under 150ms to process a hot method.

e SCCP-based specialization: We showed that a Sparse Conditional Constant Propagator can be
turned into an effective specializer (based on the online partial evaluation strategy) by relying

on a store profile to eliminate invariant memory references. In addition, we showed that SCCP
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can be extended to unroll loops and specialize them. Our evaluation shows that while the
specialization overheads are non-trivial, the overheads are directly correlated with the amount
of code duplication (in the form of multiple specialized versions, and loop unrolling). Better-

engineered implementations can reduce these overheads further.

e Pseudo-method based dispatching to specialized code: We showed that the restricted special-
ization model can be exploited to implement low-overhead dispatching to specialized code.
This technique treats specialization scopes like methods and uses object method tables to im-

plement dispatching.

e Techniques for detecting violations of memory invariance: We showed that violations of mem-
ory invariance can be detected using several techniques. The simplest technique relies on
fine-grained memory protection that has been proposed recently [90]. In addition, we pro-
posed several software techniques for detecting memory violations. We showed that in certain
cases, store monitors can be combined with garbage collector write barriers which eliminates
the overheads of store monitors in these cases. However, these proposed techniques need
implementation and evaluation which could not be accomplished in this dissertation due to

infrastructural limitations.

In this dissertation, we showed that all these techniques can be effectively combined to imple-
ment a transparent runtime program specializer. The current implementation has two shortcomings
arising out of the limitations of our research infrastructure: (1) in the absence of runtime compilation
support, we evaluate our specializer using emulation techniques, and (2) while we have proposed
several techniques for detecting memory invariance violations, we have not implemented any tech-
nique and assumed the presence of a fine-grained memory protection scheme in our evaluation.

Despite the limitations of the specializer implemented in this dissertation, our evaluation shows

that it provides good program speedups. The specializer was able to speedup an image processing
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convolution kernel by 2X and was able to speedup a scheme interpreter by 3.6X.

10.2. Future Work

This work is the first step towards the goal of implementing specializers transparently within
a dynamic optimizer. Our implementation has been geared towards simplicity, with the goal of
investigating how powerful a simple specializer can be. Our technique is limited in a few ways,
but we believe that more powerful run-time specializers can build upon our work, especially on the
profile-driven dynamic analysis (that detects invariance and builds specialization scopes).

Throughout this dissertation, we have pointed out the restrictions of our model, the simplifying
assumptions that have been made, the limitations of our techniques and left it to future work to
address all these restrictions, assumptions, and limitations. In this section, we summarize some

areas of future work.

10.2.1. Improved specialization model

The foremost area where future work can improve on the techniques proposed in this dissertation
is in lifting the restrictions of our specialization model.

In Section 3.8, we presented the restrictions that has been imposed on the specialization model
studied in this dissertation. One of the fundamental design choices in our technique was to restrict
the specialization key to a single object reference variable. While this choice enabled us to design
a simple scope building algorithm and allowed for efficient implementations of the lookup mech-
anisms, we lost specialization opportunities. For example, with two-element keys, we would be
able to exploit specialization opportunities in java. lang.String.equals and other similar
methods.

Secondly, by allowing scalars to be part of specialization keys, it is possible to improve perfor-

mance further. For example, using scalars in specialization keys would enable chaining of specialized
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versions of the interpreter loop shown in Figure 9.3, thus eliminating lookup overheads. We examine
this further now.
Figure 9.3 shows a snippet of our interpreter benchmark. Let us suppose that it is interpreting the

factorial assembler program shown in Figure 10.1. In this example, the bulk of the interpretation

1 LI r31, 1

2 LI r2, O

3. LO: BEQ r1, r2, L1
4, MUL r31, ri1, r31
5 SuBl r1, r1, 1

6 GOTO LO
7 L1: RET

Figure 10.1. Factorial assembly program input to the interpreter shown in Figure 9.3

happens for the loop consisting of instructions 3-6. The specializer recognizes the “hotness” of
the instruction objects representing these instructions and creates four specialized versions of the
entire switch statement of Figure 9.3, named S3, S4, S5, Sg, one each for instructions 3, 4, 5, and
6. The specialized interpreter performs a lookup in each iteration of the loop and dispatches to
the appropriate specialized version. However, the specializer is not powerful enough to recognize
that these specialized versions can be chained together (chaining is a transformation that would
eliminate the three high-overhead lookups connecting the specialized versions: Sy — S5 — Sg —
S3). Chaining is prevented in the specializer because the specialized interpreter body, shown in

Figure 10.2, invokes a getarray operation between each specialized version.

for(; ;) {
pc = p(pco, pe1);
i = getarray(pgm, pc);
lookup(1);
... Specialized versions of the switch statement S...

pci = ¢(pca,pCs, -.-);

Figure 10.2. Specialized body of the interpreter loop shown in Figure 9.3
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Clearly, the ideal scope in this example should include the entire iteration of the for loop and
be keyed on the variable pc. The identified specialization scope, however, is smaller. It contains
only the switch body and is keyed on the variable . The reasons for this suboptimal decision is the
initial design decision to restrict keys to object references, for efficiency’s sake. Since pc is a scalar,
it cannot serve as a key. This lost opportunity explains the somewhat disappointing performance on
the interpreter benchmark (Table 9.6).

Extending the specializer to scalars is rather straightforward, at least in principle. In practice,
some re-engineering of our specializer is necessary. For one, profiles would have to collected for
scalar uses too, and it is not sufficient to collect value profiles at object accessing instructions. Sec-
ondly, the scope-building algorithm would have to be extended to handle scalar keys — using more
sophisticated transfer functions for scalar instructions might be sufficient. Addressing this is left for

future work.

10.2.2. Improved scope-building and specialization

In Chapter 5, we presented various simplifying heuristics using in building scopes. While de-
veloping this algorithm, the goal was efficient and fast detection of specialization scopes which led
us to adopt a greedy strategy in building specialization scopes. However, our evaluation reveals that
the algorithm studied in this dissertation is efficient and the implementation can be engineered better
to further reduce runtime costs. In the light of this result, it might be worthwhile to explore other
possible non-greedy scope-building strategies.

In Chapter 6, we presented a SCCP-based specialization algorithm. However, this algorithm only
implements simple single-way unrolling. While this works well in many cases, in Section 6.3, we
discussed how multi-way unrolling can enable better specialization for certain applications like the
interpreter loop shown in Figure 9.3. This is one potential area for future work. Existing specializers

like DyC [47] implement multi-way unrolling and the technique used there could potentially be
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adapted to our specializer.

10.2.3. Systematic study of techniques that detect violations of memory invariance

In Chapter 8, we have proposed several techniques for detecting violations of memory invariance.
However, due to infrastructure limitations, these techniques could not be implemented and studied.
The proposed store-monitoring techniques need closer study since they appear quite promising with

their potential for low overheads and integration with garbage collection write barriers.
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