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ABSTRACT
Local network coding is growing in prominence as a tech-
nique to facilitate greater capacity utilization in multi-hop
wireless networks. A specific objective of such local network
coding techniques has been to explicitly minimize the total
number of transmissions needed to carry packets across each
wireless hop. While such a strategy is certainly useful, we
argue that in lossy wireless environments, a better use of lo-
cal network coding is to provide higher levels of redundancy
even at the cost of increasing the number of transmissions
required to communicate the same information. In this pa-
per we show that the design space for effective redundancy
in local network coding is quite large, which makes opti-
mal formulations of the problem hard to realize in practice.
We present a detailed exploration of this design space and
propose a suite of algorithms, called CLONE, that can lead
to further throughput gains in multi-hop wireless scenarios.
Through careful analysis, simulations, and detailed imple-
mentation on a real testbed, we show that some of our sim-
plest CLONE algorithms can be efficiently implemented in
today’s wireless hardware to provide a factor of two improve-
ment in throughput for example scenarios, while other, more
effective, CLONE algorithms require additional advances in
hardware processing speeds to be deployable in practice.
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Figure 1: Local network coding example.

1. INTRODUCTION
Network coding [6] is a technique that combines multiple

data units at intermediate nodes in a way that allows even-
tual recovery of these data units at their respective destina-
tions while leading to fewer transmissions on the medium.
In wireless environments, network coding can be employed
at different layers, e.g., analog network coding at the sym-
bol level in the PHY layer [26, 15], at the byte level in the
MAC layer [16], and at the packet level just above the MAC
layer [25, 17]. Among these, packet level network coding is
readily deployable in existing commodity wireless platforms
and is the focus of our work.

Packet level network coding have been proposed to oper-
ate at two different scales — global and local. In global net-
work coding, multiple data packets continuously get coded
together by different nodes in the network, potentially in
a network-wide scale. Examples include MORE [9] and
growth codes [14]. In contrast, in the case of local net-
work coding, coding and decoding operations of data pack-
ets occur within the local neighborhood of individual relay
nodes, e.g., COPE [17] and work by Wu et. al. [25]. We
believe that global network coding approaches are likely to
be better suited in many sensor networking scenarios that
naturally allow for greater path diversity. Similarly, local
network coding has greater applicability to wireless mesh
networks, that are increasingly being designed by vendors to
have single, tightly-controlled paths. The focus of this paper
is on understanding the performance of local network coding
schemes and are specifically targeted to the common case of
unicast flows under lossy wireless environments. Given the
complexity in design of efficient, loss-aware, local network
coding schemes, we leave a similar treatment of global net-
work coding beyond the scope of this paper.



1.1 Local and opportunistic network coding
COPE is a good example of local network coding tech-

nique in which an intermediate node combines locally avail-
able packets without requiring coordination with any other
node in the wireless network using XOR operations allow-
ing them to be immediately decoded by next-hop neighbors.
We explain this with a simple three node example shown
in Figure 1. Node A wants to send a single packet (PA) to
node B, while node B wants to send single packet (PB) to
node A. Due to transmission range limitations both paths
go via relay node, R. Using standard techniques of packet
forwarding, four wireless transmissions would be needed to
complete these end-to-end packet transfers — one transmis-
sion by A and B to send packet PA and PB respectively to
R, and two transmissions by R to individually forward these
packets to their respectively destinations.

COPE-style network coding allows us to complete this en-
tire packet transfer using three transmissions instead of four
as follows. End nodes A and B use one transmission each
to forward packets PA and PB to node R as before. Un-
like common practice, nodes A and B also retain a copy
of packets PA and PB respectively. Relay node, R, creates
a new packet PC by XORing packets PA and PB together
(PC = PA ⊕ PB), and broadcasts it to both the end nodes.
On receiving PC , node A can recover its intended packet,
PB , by XORing the retained copy of PA with PC , since
PA ⊕ PC = PA ⊕ (PA ⊕ PB) = PB . Node B can, similarly,
recover packet PB by XORing PC with PA. Using prior
terminology [17], we will refer to the original packets (PA

and PB) as native packets while the packet PC derived as a
combination of native packets as a coded packet. Since the
number of transmissions required to carry the same amount
of information is three and four respectively for COPE-style
local network coding and no coding, COPE is able to im-
prove the information carrying capacity of the channel by
33%, in this simple example.

Note that the coding operation is only possible if both
packets PA and PB are available with the relay prior to the
time the relay has an opportunity to send out a packet. The
coding scheme in COPE is opportunistic in nature because
it only performs the coding operation when such coding op-
portunities arise. If no coding opportunity exists when the
relay gets to transmit a packet, the next native packet from
its output queue gets transmitted without any further delay.

1.2 Lossy links and network coding
The attractiveness of such local network coding schemes

stem from their simplicity. The XOR operation is easy to
implement and local decisions at intermediate nodes avoid
overheads of global coordination and aggregation of infor-
mation. While COPE-style network coding leads to be per-
formance gains in many scenarios when compared to no net-
work coding, its performance actually happens to be fairly
sub-optimal in lossy wireless environments. By minimizing
the number of transmissions necessary to carry information
across the wireless channel, such techniques eliminate all re-
dundancy from the traffic. We call such an approach, the
minimalist network coding approach. In contrast, we ar-
gue that through careful use of redundancy using network
coding (which might increase the number of transmissions
needed to carry the same volume of information) further per-
formance gains are achievable in face of wireless link losses.
We believe that such design is particularly important in ur-

ban mesh networks, where loss rates of 30% or higher are
observed on a significant fraction of wireless links [5].

The goal of this paper is to study the interaction between
lossy wireless environments and local network coding strate-
gies. Even in the setting of local network coding, the design
space of loss-aware coding is quite large, and finding optimal
solutions proves to be significantly difficult. After systemat-
ically exploring this problem space, we converge upon a suite
of algorithms for network Coding with LOss awareNEss, or
CLONE, that introduces adequate redundancy in local net-
work coding operations, thereby achieving further perfor-
mance gains. Coding decisions in CLONE algorithms con-
tinue to be local and opportunistic in nature, and can be
deployed as software-only updates in 802.11-based wireless
systems.

Overall, we believe that this is the first piece of work that
carefully evaluates the role of redundancy in local network
coding, and does so through analysis, simulations, and im-
plementation on a real testbed.

1.3 Key Contributions
Summarizing, the main contributions of this work is three-

fold: (i) It recognizes the important role of redundancy in
creating local network coding solutions for multi-hop wire-
less scenarios, and that minimization of transmissions is
not necessarily the right objective for achieving through-
put gains. (ii) It explores the rich design space in creating
effective loss-aware local network coding solutions. (iii) It
presents a suite of loss-aware network coding algorithms,
each with different performance points and computational
costs. The first among these can be readily deployed in exist-
ing 802.11 wireless hardware to provide throughput gains of
a factor of two. This is demonstrated through detailed evalu-
ation on our wireless testbed. The remaining two algorithms
can potentially provide even higher throughput gains, but
require increase in processing speeds of the wireless hard-
ware to be feasible.

2. DESIGN CONSIDERATIONS AND
PROBLEM STATEMENT

The minimalist approach to local and opportunistic net-
work coding is quite efficient in loss-free environments. How-
ever, in presence of losses such an approach can limit per-
formance gains. In this section, we discuss how even very
simple redundancy mechanisms within network coding can
lead to performance improvements over the minimalist ap-
proach. Our examples in this section are intentionally simple
and will help in building the intuition behind the need for
redundancy in local network coding. In addition, the exam-
ples and the subsequent problem statement will also expose
the rich design space in creating local network coding solu-
tions under lossy environments. Therefore, the performance
gains of these schemes over the minimalist network coding
approach will be somewhat modest. However, in subsequent
sections we will define more sophisticated yet practical, loss-
aware, network coding schemes and show their efficiency in
providing higher throughput gains.

In both of our examples, we focus on the instants where
coding opportunities, indeed, exist at a relay node. Our
algorithms, simulations, and implementation, are, however,
operate over regular traffic flows where coding opportunities
arise in the natural course of operation.



Scheme p = 0 p = 0.2 p = 0.4 p = 0.6
No coding 0.25 0.2 0.15 0.1

COPE 0.33 0.27 0.2 0.13
COPE-dup 0.25 0.24 0.21 0.16

Table 1: Performance comparison of delivery rate
(successfully delivered packets per packet transmis-
sion time) for no coding, COPE, and COPE-dup, un-
der different loss rates in the simple two flow topol-
ogy.

2.1 Example I: Two flow topology
We first consider the simplest topology of network cod-

ing as is shown in Figure 1 with two flows (A → B) and
(B → A), with all traffic carried through the relay.

For the sake of illustration, let us assume that the links
incoming to the relay, i.e., A → R and B → R, are loss-
free, and the outgoing links from the relay, i.e., R → A and
R → B, have a loss rate of p. (In our algorithms, each of
these links are lossy and are assumed to have different loss
rates.) The relay node will learn these loss rates through
packet loss observations over time.

Let us consider the simplest scenario where there are no
re-transmissions of lost frames. The minimalist approach
to network coding, in this scenario, is COPE, which will
require one single coded packet PC = PA XOR PB to be
transmitted to both destinations, as was shown in Figure 1.
Let us consider a new network coding scheme, in which the
packet, PC , constructed as above, is transmitted twice back-
to-back. We will call this new scheme, COPE with dupli-
cation, or COPE-dup in short. Each packet is decodable
by a destination node, if either of the two coded packets is
successfully received by it. Thus, COPE-dup utilizes four
packet transmissions to carry the packets PA and PB to
their respective destinations (two for the incoming native
packets and two for the back-to-back duplicate coded pack-
ets). The probability of a successful end-to-end packet deliv-
ery in COPE-dup is (1− p2) and requires four transmission
slots. Therefore, the achievable delivery rate (in units of
successfully delivered packets per packet transmission slot)
in COPE-dup is (

`
1− p2

´
/4. In comparison, the probabil-

ity of a successful end-to-end packet delivery in COPE is
(1−p) and requires three transmission slots (two for incom-
ing native packets, and one for the outgoing coded packet).
Therefore, the achievable delivery rate is (1− p) /3.

Table 1 compares the delivery rate of no coding, COPE,
and this new scheme, COPE-dup, for different values of p.
It is easy to observe that under higher loss rates, this triv-
ial extension to COPE, although not likely to be very effi-
cient, already leads to a throughput gain of 25% over COPE.
Even though COPE requires fewer transmissions to convey
packets successfully across the relay node, COPE-dup with
its greater redundancy and higher transmission attempt re-
quirements, leads to better overall utilization of the channel
that ultimately leads to higher throughput. While COPE-
dup and no coding schemes both use four transmissions to
convey two packets, the former utilizes network coding to
achieve redundancy that provides the necessary performance
gains under higher losses.
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Figure 2: A three flow topology. Dotted lines in-
dicate which nodes are in communication range of
each other.

2.2 Example II: Three flow topology
We next consider a three flow topology, shown in Figure 2.

In this topology, node W has a packet PW to forward to node
X, node X has a packet PX to forward to node Y , and node
Z has a packet PZ to forward to node W . All traffic flows
through the intermediate relay, R. Let us assume that node
Y and Z are in communication range of each other, so that
node Y can “overhear” the packet PZ when its transmitted
by the latter to R. We again assume that the only lossy
links in this topology are all of the outgoing links from R,
i.e.,R → X, R → Y, R → Z, and the loss probability of each
of these links is p. If no coding is used, that the delivery
rate of each flow in the example is (1− p)/6.

We first observe that in this scenario, COPE cannot be
used. This is because if we try to combine any set of native
packets at the relay node, no more than one destination node
will be able to recover its intended packet. For example, if
a coded packet, PW ⊕ PX , is transmitted by the relay, then
node X will be able to recover packet PW by combining
this coded packet with its local copy of PX . However, node
Y cannot recover packet PX as it does not locally have a
copy of packet, PW . Hence, we first define a new minimalist
network coding solution for this scenario, and then extend
it to induce redundancy.

Scheme I - MIN-code: The minimalist network coding
scheme (or MIN-code, for short) requires the relay node to
create the following two coded packets, PQ(= PW ⊕ PX),
and PR(= PX ⊕ PZ), and send them out back-to-back. On
receiving these packets, each node can successfully decode
their intended packet, as follows: (i) node X recovers PW

as PW = PX ⊕ PQ where PX is available locally and PQ is
one of the received coded packets, (ii) node Y recovers PX

as PX = PZ ⊕ PR, where PZ was previously overheard by
Y when Z had transmitted this packet on the medium, and
PR is a received coded packet, and (iii) node W recovers PZ

as PZ = PW ⊕ PQ ⊕ PR, where PW is available locally, and
PQ and PR are received coded packets.

Thus all three native packets can reach the destination
using a total of five transmissions (three due to incoming
transmission of native packets to the relay, and two outgoing
transmission of coded packets from the relay), instead of six
in the no coding case.



Scheme p = 0 p = 0.2 p = 0.4 p = 0.6
No coding 0.167 0.133 0.1 0.067
MIN-code 0.2 0.149 0.104 0.064

LOOP-code 0.167 0.155 0.124 0.083

Table 2: Performance comparison of delivery rate
(successfully delivered packets per packet transmis-
sion time) for no coding, MIN-code, and LOOP-
code, under different loss rates for the three flow
topology.

In MIN-code, the delivery rate of the W → X and X → Y
flows is (1− p)/5, where as the delivery rate of the Z → Y
flow is (1− p)2/5.

Scheme II - LOOP-code: This is an alternate net-
work coding scheme with redundancy (originally introduced
in [12]), in which the relay transmits three coded packets:
PQ(= PW ⊕PX), PR(= PX ⊕PZ), and PS = (PZ ⊕PW ). In
this scheme, the packet PS is being added to the list of trans-
mitted packets to provide the additional redundancy. The
consequence of this additional packet is that each node can
now recover its intended packets in two different ways. For
example, node X can recover PW using the received coded
packets and the local copy of PX , either as (i) PX ⊕ PQ(=
PW ), or as (ii) PX ⊕PR⊕PS(= PW ). Similarly, node Y can
recover PX using the received coded packets and the local
copy of overheard packet PZ , either as (i) PZ ⊕ PR, or as
(ii) PZ ⊕ PS ⊕ PQ. Finally, node W can recover PZ , either
as (i) PW ⊕ PS , or as (ii) PW ⊕ PQ ⊕ PR.

A packet of a flow, say W → X, is successfully delivered,
if either PQ is correctly received by X, or both PR and PS

are correctly received by X. The probability of this event is
1 − p · (1 − (1 − p)2) = 1 − 2p2 + p3. The delivery rate of
each flow in LOOP-code is, therefore, (1− 2p2 + p3)/6.

We present a comparison of the average delivery rate across
the three flows for the three schemes, no coding, MIN-code,
and LOOP-code, in Table 2. We can see that minimalist
coding, that reduces the number of transmissions needed to
carry the traffic, is quite efficient in loss-free scenarios, but
redundant transmissions plays an important role in improv-
ing the delivery rates, as loss rates increase.

2.3 Loss-aware network coding: Problem
statement

The general problem of local network coding can be stated
as follows: A set of packets, P1, P2, . . . , Pn, are available at
a relay node, R, to be forwarded to next-hop recipient nodes
N1, N2, . . . , Nn, respectively.

Each next-hop recipient, Ni, also has a copy of a subset of
these packets locally available (this subset does not include
packet Pi). There are two ways in which a node Ni will
have a packet Pj(6= Pi) locally available. First, if Ni was
the previous-hop node of the packet Pj and was, therefore,
the node that had sent this packet to R. Second, if some
other node, Nl is the source of packet Pj , and Ni “overheard”
the transmission of the packet from Nl to R.

R has probabilistic knowledge of the availability of these
packets at the different destination nodes. For example, if
node Ni was the previous hop of a packet sent to R, then
R knows that this packet is certainly available at Ni. On
the other hand, if the packet was sent by another node Nl

to R, and if the loss rate on the wireless link Nl → Ni is p,

when R can “guess” that the packet is available at Ni with
a probability p.

Under these assumptions, the key question of local net-
work coding is the following:

In the upcoming transmission opportunities at the relay
node, what coded and native packets should the relay node
transmit, that maximizes some metric (e.g., throughput,
packet delivery rate, etc.) across all of the intended next
hop recipients?

COPE answers this question using the following minimal-
ist rule. It creates a coded packet Pq by XORing a set of
packets, P, out of the entire set of packets available at R
using the following rule. For every packet, Pw ∈ P, its next-
hop recipient Nw already has every packet XORed together
in Pq except the packet Pw, i.e., ∀Pw ∈ P, Nw has all pack-
ets in P − {Pw}. Only such a packet, Pq, is transmitted by
the relay at each instant.

While, the MIN-code network coding scheme also uses a
different minimalist rule to answer the above question, the
LOOP-code scheme uses redundant network coding scheme.
Clearly, these are not the only three network coding schemes
that are possible. There is a whole gamut of different lo-
cal network coding schemes that can be defined for different
topologies and flow scenarios. Some network coding schemes
may choose to limit coding operations to create a coded
packet out of two native packets at a time, while others
might use three or more native packets to create a coded
packet. Redundancy is generated through creation of addi-
tional packets that lead to multiple ways of decoding one or
more native packets at the intended next-hop recipients.

In general, given a set of n native packets, the number of
possible coded packets is 2n−1 (we can treat a native packet
to be a special case of a coded packet). Therefore, the real
challenge in loss-aware network coding design is to choose
an appropriate subset of all possible coded packets at each
instant in time that should be transmitted by the relay to
all its intended recipients. Since exploring this exponential
search space is likely to have high computation costs, in the
next section we will discuss more tractable versions of this
problem that will lead to a practical design of loss-aware
network coding.

3. CLONE ALGORITHMS
In this section we present our algorithms for selecting cod-

ing strategies that answer the question raised in the previous
section. Throughput is our metric of optimization and our
network coding strategies are designed to aware of loss con-
ditions on different links. All of our algorithms are local,
i.e., the algorithms only utilize information that can be de-
termined locally by the relay node within its neighborhood.
In addition, the algorithms are opportunistic, i.e., the relay
node only uses the set of native packets that are already
available with itself due to transmissions from its neighbors
to create coded packets.

Algorithmic approach and overview: A general net-
work coding strategy may choose to create coded packets,
each of which may eventually be constructed of two or more
native packets. As discussed before, if the number of native
packets available at the relay is n, then the total possible
number of coded packets is 2n − 1. Let us denote a coding
strategy chosen by the relay node (essentially a subset of all
the possible coded packets) to be S. For example, in COPE,
S consisted of a single packet, shown in Figure 1 as PC . In



COPE-dup, S consisted of two packets (two occurrences of
PC).

Under the assumption of lossy wireless links, each native
and coded packet transmitted by the relay will be received
by next-hop node, Ni with some probability. Depending on
the packet receptions, Ni will be able to decode its intended
packet, Pi, with a probability that is a function of link loss
probabilities and the coding strategy, S. We will denote
this decoding probability of packet Pi by qi(S). Assuming
all coded packets are of the same size, and are transmitted
at the same physical data rate 1, then the total transmission
time of all the coded packets is proportional to |S|. The ex-
pected number of packets decoded as a result of this strategy
is

P
i=1...n qi(S).

Let the metric of interest be aggregate throughput over
all next-hop recipients. This metric will be given by the av-
erage number of successfully decoded packets per unit time,
i.e.,

P
qi(S)/|S|. Thus, we can define our optimal coding

strategy, S∗, as the one that maximizes
P

qi(S)/|S|.
This maximization formulation turns out to be a fairly

complex non-linear program. Therefore, we first consider a
simpler coding rule where we limit the maximum number of
native packets that are combined in a single coded packet
to two. We refer this form of network coding as as binary
network coding. This form of network coding is somewhat
simpler because the total number of possible coded packets
is n(n− 1)/2 + n.

It turns out that even a simplified version of the loss-aware
binary network coding problem is NP-hard. In this section,
we start by presenting this binary network coding formu-
lation and explain why it is NP-hard. Then we present
an initial heuristic for the binary network coding problem,
called CLONE-kDSP. Next, we present an even simpler, and
more practical algorithm, called CLONE-k-Loop, which is a
special case of the CLONE-kDSP algorithm. Both CLONE-
kDSP and CLONE-k-Loop provide effective solutions for the
binary network coding problem.

For the general version of the network coding problem
when more than two native packets can be combined into
a single coded packet, we develop another heuristic, called
CLONE-MultiXOR, which is greedy in nature. Since this
heuristic solves the more general formulation, its perfor-
mance is better than the heuristics developed for the binary
network coding versions.

An important requirement of all these different network
coding algorithms is that they need to be computation-
ally very efficient. Our three heuristics, CLONE-k-Loop,
CLONE-kDSP, and CLONE-MultiXOR, have increasing com-
putational complexity, so much so that with current pro-
cessing speeds on wireless nodes, only CLONE-k-Loop is
deployable in practice. In simulations we show the supe-
rior performance of CLONE-kDSP and CLONE-MultiXOR
algorithms (compared to CLONE-k-Loop) by ignoring pro-
cessing delays. In our implementation, it was only feasible
to implement the CLONE-k-Loop algorithm using process-
ing limits of current hardware. Nevertheless, we present
all three algorithms in this section, because it is likely that
processing speeds will continue to get faster, and it might
become feasible to deploy the other two algorithms in the
future.

1We make these simplifications only for the formulation, but
not in our implementation.
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Figure 3: Graph based formulation for binary coding

3.1 Binary network coding
We model the binary network coding problem through a

graph-based formulation, as follows. Consider a relay node
that needs to deliver n packets P = {P1, P2, . . . , Pn} to next-
hop nodes D = {N1, N2, . . . , Nn}, where packet Pi has next-
hop Ni.

We model the encoding and decoding operations as a
graph H = (V, E) The vertex set of this graph is defined
as V (H) = P ∪D∪{σ}. σ represents a special vertex in this
formulation which will be used to model packet availability
at different next-hop nodes, as described below. The edges
E(H) of the graph are classified into the following types:

1. Type 1 - (Pi, Pj): There is a bidirectional edge be-
tween all pairs of native packets (Pi, Pj) representing
the possibility of transmitting the corresponding coded
packet Pi ⊕ Pj .

2. Type 2 - (Pi, σ) There is a directed edge from each Pi

to σ denoting the possibility of transmitting the native
packet Pi.

3. Type 3 - (σ, Nj): There is a directed edge between σ
and every node Nj .

4. Type 4 - (Pi, Nj): These directed edges denote that
next-hop node Nj already has packet Pi (with a cer-
tainly probability), possibly through overhearing of an
earlier transmission or because packet Pi passed through
node Nj in a previous hop.

Coding strategies: A valid coding strategy can be repre-
sented as a subset of edges on the induced subgraph of H
on vertices P ∪ {σ}. Selection of edges (Pi, Pj) imply the
transmission of coded packet Pi⊕Pj while selection of edges
(Pi, σ) imply the transmission of native packet Pi.

Now consider any given next-hop Ni. It may not receive
all transmitted packets due to packet loss. Consider the
subgraph H(i) corresponding to next-hop Ni that consists
of (i) all edges of type 3 and 4 above, and (ii) subset of edges
from the induced subgraph on vertices P∪{σ} corresponding
to successfully received native and coded packets. Then, the
following lemma states the conditions under which Ni can
decode packet Pi:



Lemma 1. When coding two packets at a time, next-hop
node Ni can decode packet Pi if and only if there is a (di-
rected) path from node Pi to node Ni in graph H(i).

We will use this basic property of decodability at each
next-hop node to derive optimization models for selecting
coding strategies at each node.

Decoding strategy: Each receiver node Ni can deter-
mine when a packet can decoded by maintaining a simpli-
fied version of the above graph, with node s and nodes Nj ,
j 6= i removed. Edges (Pj , Pk) are included in the subgraph
when this node has received coded packet Pj⊕Pk, and edges
(Pj , Ni) are included when this node has native packet Pj

(either overheard or because that packet passed through this
node earlier). Then, by Lemma 1, packet Pi can be decoded
whenever a path becomes available from Pi to Ni in this
graph.

In our implementation, a relay node which selects a coding
strategy, explicitly sends out information (in packet headers)
about the possible decoding paths (in the above graph) for
each packet, thus making the decoding strategy trivial.

Simplified formulation for binary network coding:
Our original formulation of the loss-aware network coding
problem to maximize

P
qi(S)/|S| happens to be a non-linear

program and is difficult to solve efficiently. Therefore, we
consider a simpler formulation of the problem, as follows.
We define a probability threshold parameter, p, which rep-
resents a target delivery rate for all packets, Pi to their cor-
responding next-hops, Ni. Let the successful delivery prob-
ability of the link between the relay and each next-hop, Ni,
be ri. Then our modified objective is to choose a coding
strategy S that requires the minimum number of transmis-
sions from the relay, so as to meet this delivery probability
threshold for each packet, Pi to next-hop, Ni.

We can formulate this problem as follows. Let S denote
the desired coding strategy, which is a subset of edges from
the induced subgraph on vertices P ∪ {s} corresponding to
transmitted native and coded packets. For each i, the proba-
bility that packet Pi can be successfully decoded at next-hop
node Ni can be computed as follows. Assign a weight of ri

to each edge in S. For edges (Pi, Nj), the weight is the
probability estimate that node Ni already has packet Pj (if
sure, then this is 1). Each edge of type 3 has weight 1. All
other edges have weight zero. The weight on an edge can
be interpreted as the probability that the edge is up. Then,
the probability qi(S) that packet Pi can be successfully de-
coded at next-hop node Ni under coding strategy S is the
probability that this graph has a path from node Pi to node
Ni. This problem can be formally stated as follows:

minS |S|
subject to

qi(S) ≥ d ∀ i = 1, 2, . . . , n

The computation of qi(S) on a general graph is a vari-
ation of the “network reliability problem” which is known
to be #P -complete [23]. Thus, the problem of even veri-
fying whether a given coding strategy |S| satisfies a given
probability threshold is #P -complete. To solve any version
of this problem, we need to make the computation of qi(S)
more tractable. We do this by considering only edge-disjoint
paths from Pi to Ni in the graph H. Of course, such paths
can have the edge (σ, Ni) in common, since that denotes the
usage of any native transmitted packet. Hence, we will use
the term “edge-disjoint” with this reservation.

The probability wi(π) that a path π from Pi to Ni is up is
simply the product of the weights associated with each edge
on the path. If we choose a set of ki edge-disjoint paths
πi

1, π
i
2, . . . , π

i
ki

for delivering packet Pi to next-hop Ni, then
we have

qi(S) = 1−
kiY

k=1

[1− wi(π
i
k)]

The selected paths must have all their edges in S∪{(σ, Ni)},
so the optimization problem now becomes

minS |S|

subject to

1−
kiY

k=1

[1− wi(π
i
k)] ≥ p ∀ i (1)

πi
k ⊆ S ∪ {(σ, Ni)} ∀ 1 ≤ k ≤ ki, ∀i (2)

πi
k ∩ πi

k′ ⊆ {(σ, Ni)} ∀ k, k′, i (3)

Constraints (1) correspond to the probability threshold
that packet Pi can be successfully decoded at node Ni. Con-
straints (2) denote that the paths must contain only edges
corresponding to the (transmitted packets) coding strategy
S. Constraints (3) enforce that the paths πi

k, for a given i,
are edge-disjoint (except possibly for edge (σ, Ni)).

While the constraints can be verified in polynomial time
for a given set of edge-disjoint paths for each (Pi, Ni) pair,
the evaluation of the optimal strategy, S∗, is still NP-hard,
as can be shown by reduction from the generalized Steiner
network problem [24]. Therefore, instead of attempting an
optimal solution to the problem defined above, we define
multiple heuristics to minimize this objective function.

3.1.1 TheCLONE-kDSP algorithm
Our first heuristic for binary network coding tries to solve

minS |S|, under Constraints 1 to 3 using the graph based
problem formulation presented in the previous section. The
algorithm works as follows: Given a set of the (Pi, Ni) pairs,
we first generate the graph H and then sort (Pi, Ni) in an
increasing order of delivery probability ri to next-hop node
Ni. For each such (Pi, Ni) pair in this sorted order, we
generate minimum cost edge-disjoint paths in the graph H
from node Pi to node Ni in an incremental manner using
the successive shortest paths algorithm [3]. Note that our
pre-sorting based on delivery probabilities imply that we
consider packets destined to lossy next-hop nodes, earlier.
For the successive shortest path computation, the cost of an
edge is taken to be zero if it has been used by an earlier
(Pj , Nj) pair, and 1 otherwise. After each new edge-disjoint
path is added, we compute the decoding probability qi(S).
We terminate if the threshold probability p is met or ex-
ceeded, or if no more disjoint paths exist from Pi to Ni.
The coding strategy, S, is the set of all type 1 edges that
are selected as part of the different edge disjoint paths.

3.1.2 TheCLONE-k-Loop coding algorithm
We now present CLONE-k-Loop coding algorithm, a spe-

cial case of CLONE-kDSP coding algorithm, which essen-
tially outputs a sequence of k Type 1 edges forming a loop.
The LOOP-code algorithm presented earlier in Section 1 is
an example of CLONE-k-Loop coding algorithm with k = 3.



Let us consider R a relay which is surrounded by a set of
neighboring nodes N1, N2, .. Nk to which it has to send
packets P1, P2, .. Pk respectively. Now, consider a sce-
nario where the N1 has packet P2 already available with
it (either because this packet was routed through it or be-
cause it overheard a transmission), similarly N2 has packet
P3 and so on, with Nk having packet P1 with it. In this
scenario, CLONE-k-Loopoutputs a sequence of coded pack-
ets S : C1(= P1 ⊕ P2), C2(= P2 ⊕ P3), C4(= P3 ⊕ P4) ..
Ck(= Pk ⊕ P1). This gives each node Ni two ways to de-
code the packet Pi, either as (1) Ci ⊕ P

(i+1)mod k
or as (2)

P
(i+1)mod k

⊕ sm, (∀sm ∈ (S − {Ci})). If the loss prob-

ability of each of the links is p, it can be shown that the
probability that a packet Pi is successfully delivered to Ni

using CLONE-k-Loop is given by (1− p.(1− (1− p)k−1)).

3.2 General network coding
Selecting a coding strategy while allowing for coding more

than two packets at a time is computationally expensive as it
involves selecting an appropriate subset of all possible coded
packets which is exponential in search space. As an example
of the class of algorithms which can code more than two
packets, we present a greedy heuristic, CLONE-MultiXOR,
described next.

3.2.1 TheCLONE-MultiXOR heuristic
Let P = {P1, P2..Pn} be the packets that have to be for-

warded to next-hop nodes N = {N1, N2, ..Nn}. Let K =
{K1, K2..Kn} be the corresponding set of packets already
available at these next-hop nodes. Note that each Ki is a
subset of P . Let S be the set of packets (native or coded)
selected for transmission. Let NPATH(Pi, Ni, S) be the
number of ways in which Ni can decode packet Pi using the
set of packets S. The CLONE-MultiXOR coding algorithm
works as follows:

Let COMB(Ki) be the set of coded packets derived by
XORing of all possible subsets of elements of Ki. For each
(Pi, Ki), we generate a row of packets, ti = Pi∪ {Pi ⊕
COMB(Ki)}. For example, if N1 which is the next-hop
node of P1 has a set of packets K1 = {P2, P3} already avail-
able with it, then t1 = {P1, P1⊕P2, P1⊕P3, P1⊕P2⊕P3}.
A next-hop Ni will be able to directly decode the packet Pi

from any of the packets in ti using the packets present in
Ki. We now have a table of packets T = {t1, t2, ..tn}.

The goal of CLONE-MultiXOR now is to select S, a sub-
set of these packets, such that (1) every next-hop Ni should
be able to decode the packet Pi i.e. NPATH(Pi, Ni, S) ≥ 1
and (2) the number of ways in which a native packet Pi can
be decoded by Ni is maximized. CLONE-MultiXOR ad-
dresses (1) by selecting at least one packet from each of the
rows ti, thus guaranteeing that each next-hop Ni will able
to decode the packet Pi. In order to address (2), CLONE-
MultiXOR assigns a usefulness count to each of the packets
in T . Given a set S of packets which have already been se-
lected for transmission, the usefulness count of a packet d
is defined as the additional number of ways in which each
packet Pi can be decoded by Ni i.e. usefulness count(d)

=
Pi=n

i=1 {NPATH(Pi, Ni, S ∪ {d}) −NPATH(Pi, Ni, S)}.
Initially, S = φ, thus usefulness count(d) is just the num-
ber of rows of T containing d. On every iteration, CLONE-
MultiXOR simply selects a packet d with the maximum use-
fulness count and adds it to S. The usefulness count of each
packet in T is then updated and the process is repeated until

Table 3: Different ways of decoding a packet when
using CLONE-MultiXOR for the illustrative topology
in Figure 4.

Next-Hop Decoding sequences
N1 (C1), (C2, C3), (C3, C4, C5), (C3, C5, C6)
N2 (C2), (C1, C3), (C4, C5), (C5, C6)
N3 (C6), (C2, C5), (C1, C3, C5)
N4 (C1), (C4), (C2, C5, C6), (C3, C5, C6)
N5 (C2), (C1, C4), (C3), (C1, C5, C6)
N6 (C5), (C1, C2, C4), (C1, C2, C3),

(C1, C2, C6), (C1, C3, C6)

|S| = n. More details about CLONE-MultiXOR algorithm
including the pseudo-code are presented in [27].

4. SIMULATIONS
In this section we evaluate the performance of the CLONE

coding schemes presented in Section 3 using simulations on
some example network topologies and show their effective-
ness in reducing the effective loss rates of the wireless links.
We compare the relative performance of various CLONE
coding schemes under different link loss rates, overhearing
patterns and network topologies. Later in Section 5, we
present an implementation of CLONE, followed by the re-
sults from a real testbed.

Evaluation Metrics: We use the following evaluation
metrics for our simulations and implementation:

• Post coding loss rate: This is the effective loss rate
as perceived by a receiver after applying the decoding
algorithm. That is, this is the perceived loss rate at
the receiver after all the possible decoding options have
been explored.

• Throughput gain: We measure the network through-
put, which is the sum of end-to-end throughput of
all the flows present in the network. We present the
corresponding throughput gains, which is the ratio of
the measured network throughput with and without
CLONE coding schemes applied.

4.1 Results on an Illustrative Topology
In order to illustrate certain key properties of the CLONE

coding algorithms, we start with a simple topology shown in
Figure 4 where a relay R has six neighboring nodes N1, N2,
.. N6. The dotted lines indicate that the nodes are in the
communication range of each other and the arrows represent
the flow of packets Pi that have to be routed to destination
Ni through the intermediate relay. That is, the following six
packets have to be forwarded by the relay R, P1 : N5 → N1 ,
P2 : N6 → N2, P3 : N1 → N3 , P4 : N2 → N4 ,P5 : N3 → N5

and P6 : N4 → N6. Figure 4 also shows the set of packets
available at each of the nodes Ni. For example, N1 has
packets {P3, P2, P4} available with it because N1 was the
source of the packet P3 and it overheard the packets P2 and
P4 during their corresponding transmissions by N2 and N6.
In the absence of coding, the relay needs six transmissions to
forward these packets to their corresponding next hops. We
now illustrate the performance of each of the coding schemes
for this scenario.
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Figure 4: An Illustrative Topology.
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Figure 5: Post coding loss rates on
an illustrative topology (N = 6).
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Figure 6: Post coding loss rates for
a random topology (N = 6).
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Figure 7: Effect of Relay Node De-
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Figure 8: Impact of flow structure
and overhearing (N = 6)
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CLONE-k-Loop : In this scenario, CLONE-k-Loop coding
scheme identifies 2 loops of length 3: N1 → N3 → N5 and
N2 → N4 → N6. This results in a total of six transmissions
(P1⊕P3, P3⊕P5, P5⊕P1, P2⊕P4, P4⊕P6, P6⊕P2), thus
providing each of the next-hops with 2 ways to decode the
packet. As shown in Figure 5 this results in a considerable
decrease in the post coding loss rate when compared to the
no coding case. For example, when the link loss rate is
10%, the post coding loss rate is reduced to 2%. Further,
we observe that the post coding loss rates for all the coding
schemes increase with increase in the link loss rate.

CLONE-kDSP : The CLONE-kDSP algorithm transmits
the following sequence of packets, given the requirement of
providing 2 edge-disjoint paths (i.e. k = 2): P3⊕P4, P5⊕P3,
P1 ⊕ P4, P1 ⊕ P5, P6 ⊕ P1, P2 ⊕ P6, P3 ⊕ P2. Note that
CLONE-kDSP in this case sends out 7 packets instead of
six i.e., it increases the number of transmissions by one.
However, as shown in Figure 5, this results in post-coding
loss rates lower than that provided by CLONE-k-Loop cod-
ing (CLONE-kDSP has a loss rate of 0.9% when link loss
rate is 10%, while the corresponding loss rate for CLONE-
k-Loop is 2%). This is because of the fact that even though
CLONE-kDSP with k = 2 guarantees providing only 2 edge-
disjoint paths, there might be other partially edge-disjoint
paths through which a next-hop might be able to decode the
packet. For example, in this case N1 can decode P1 using
any of the following decoding sequences: (1) P1 ⊕ P4, (2)
P6 ⊕ P1, P6 ⊕ P2 or (3)P1 ⊕ P6, P6 ⊕ P5, P5 ⊕ P3.

CLONE-MultiXOR : The CLONE-MultiXOR coding al-
gorithm takes advantage of the fact that more than 2 pack-

ets can be coded together. For the topology in Figure 4,
CLONE-MultiXOR transmits a total of six coded packets,
C1 : P1⊕P4, C2 : P2⊕P5, C3 : P1⊕P2⊕P5, C4 : P4⊕P5⊕P6,
C5 : P2⊕P3⊕P6 and C6 : P3⊕P4⊕P5⊕P6. In Table 3, we
show the corresponding decoding sequences (i.e. the differ-
ent ways in which a packet can be decoded by a next-hop).
Elements of a decoding sequence when XORed together re-
sult in decoding the native packet either directly or by a few
other XORs with the native packets already present with
the next hop. For e.g. next-hop N1 can decode packet P1

using (C1⊕P4) or (C2⊕C3) or (C3⊕C4⊕C5⊕P3⊕P4) or
(C3⊕C5⊕C6⊕P4). As shown in Table 3, although the total
number of packets transmitted by the relay remain the same
as no coding case (i.e. 6 transmissions), on an average each
next hop is able to decode its packet in four ways. CLONE-
MultiXOR coding scheme therefore achieves the lowest post
coding loss rates (Figure 5) amongst the CLONE schemes
discusses. For e.g., when the link loss rate is 10%, the
loss rate for CLONE-MultiXOR is 0.6%, lower than that
of CLONE-k-Loop (2%) and CLONE-kDSP (0.9%).

4.2 Results on Random Network Topologies
We now present the simulation results on randomly gen-

erated network topologies.
Simulation setting: We generate the network topologies

for evaluation purpose as follows: We place the relay node
R at the origin and define a transmission radius r. We then
randomly choose a point at a distance d, where r/2 ≤ d ≤
r and place a neighboring node with transmission radius
equal to d. For each neighboring node N , we randomly



select a node M (not in the range of N) and set up a flow
from M to N which is routed through the relay R. The
set of packets already available at each of the neighboring
nodes (for use in coding) is then calculated based on the
transmission ranges. For determining the available coding
opportunities, we assume that the relay node has a packet
to send to each of its neighboring nodes (which is true under
steady state assumptions). We varied the loss rates from 0
to 30%. We evaluated the CLONE schemes presented in
the paper on a variety of topologies generated using this
approach and found that a number of factors affect the post
coding loss rates:

Evaluation #1 – Post coding loss rates: Figure 6
shows the post coding loss rates for CLONE-k-Loop ,CLONE-
kDSP and CLONE-MultiXOR in a network where a relay
is surrounded by N = 6 nodes. As the link loss rates in-
crease, the post coding loss rate also increases. For this
topology, we observed that CLONE-k-Loop and CLONE-
MultiXOR schemes achieve a considerable amount of reduc-
tion in the loss rates while requiring the same number of
transmissions as no coding case (i.e. 6 transmissions). On
the other hand, while CLONE-kDSP algorithm (with k = 2)
increased the number of transmissions from 6 to 7 (i.e. it
transmitted an extra packet), it performed the best among
the CLONE schemes in terms of post coding loss rates. For
e.g., as shown in Figure 6, for a link loss rate of 20% in
this network, the post coding loss rate for CLONE-kDSP is
4.7% which is lower than that of CLONE-k-Loop (9%) and
CLONE-MultiXOR (6.1%).

Evaluation #2 – Impact of flow structure and over-
hearing: Figure 8 shows the post coding loss rates for
CLONE coding schemes on a network with a relay sur-
rounded by N = 6 nodes. The link loss rate was set to
20%. We plot the results for varying percentage of packets
available at the neighboring nodes. A greater percentage of
packets might be available with the surrounding nodes be-
cause of an increased overhearing phenomenon in the broad-
cast wireless medium. We observe that the post coding loss
rates decrease with increase in the percentage of available
packets due to increased coding opportunities. As shown in
Figure 8, the CLONE-MultiXOR coding algorithm lowers
the post coding loss rate to 11.4% when 20% of the packets
are available and further to 2% when 60% of the packets are
available.

Evaluation #3 – Degree of the relay node: For
this simulation, we created a topology where a relay is sur-
rounded by N = 4 nodes and calculated the post coding
loss rates as before. We then successively added 2 nodes
to the topology, creating a network with relay surrounded
by N = 6 and N = 8 nodes. Figure 7 shows the results
for CLONE-MultiXOR algorithm for varying percentages of
the number of packets already available at the neighboring
nodes. We see that while the post coding loss rate decreases
with the increase in the percentage of available packets at
the neighboring nodes, the decrease is much more for a net-
work with higher degree of nodes. This is because greater
the degree of the relay node, greater is the possibility of cod-
ing several packets together. Figure 7 shows that the post
coding loss rates are the lowest for N = 8.

Evaluation #4 – Tradeoffs: redundancy Vs trans-
mission minimization: Figure 9 shows the post coding
loss rates for CLONE-kDSP on a network where a relay is
surrounded by N = 6 nodes. The results are plotted for

values of k = 1, k = 2, and k = 3 for varying percent-
age of packets already available at the neighboring nodes.
The numbers in parenthesis show the total number of pack-
ets transmitted by the relay in each case. The link layer
loss rate for this simulation was 20%. We observe that for
k = 1, CLONE-kDSP reduces the number of packets that
need to be transmitted by the relay. Further, greater the
percentage of already available packets at the receiver, more
is the reduction. Surprisingly, in this case, we also see that
k = 1, not only reduces the number of transmissions, but
also decreases the loss rate. We note that, while CLONE-
kDSP algorithm guarantees k disjoint paths, in general there
might be more partially disjoint paths available. We also ob-
serve that increasing the value of k, while reducing the post
coding loss rate considerably can result in increased number
of packets that need to be transmitted. Thus, the degree
of reliability (determined by the value of k) that can be
provided by CLONE-kDSP must be carefully chosen based
on the observed link layer loss rates and the set of packets
already available at the neighboring nodes.

Summary: We observed that while CLONE schemes
achieve low post coding loss rates, the amount of improve-
ment depends on a number factors such as the flow structure,
overhearing pattern, degree of the nodes and the link loss
rates. In general, we find that among the schemes consid-
ered, CLONE-MultiXOR performs the best in terms of im-
proving the loss rates. Algorithms like CLONE-kDSP show
that it is important to choose a coding strategy that bal-
ances the tradeoffs between redundancy and transmission
minimization. However, it is promising to note that even
simple schemes like CLONE-k-Loop provide a considerable
reduction in the loss rates.

5. IMPLEMENTATION
We have implemented CLONEon an real testbed and stud-

ied its performance.Our implementation builds upon the
concepts of opportunistic listening and opportunistic cod-
ing introduced in [8, 17] and extends these architectures
by introducing special packet headers, data structures and
by changing the control flow of a router to enable CLONE
schemes to code and decode packets. In this section, we pro-
vide an overview of the design issues involved in developing
CLONE and then present the implementation specifics.

5.1 CLONE: Design Issues
We now highlight the system design issues involved in im-

plementing CLONE so that it integrates well into the cur-
rent 802.11 systems:

(a) Information about neighbor packet pools: In
order for the relay to code packets, it must first know what
packets are available with the neighboring nodes. Like in
COPE [17], nodes periodically exchange reception reports
which announce the set of packets available in their respec-
tive packet pools. When information from these reports is
not available, intelligent guessing [17] based on the ETX
metric [11] (provided by the underlying routing protocol)
is used to populate information about the neighbor packet
pools.

(b) Determining the set of packets to code: Each
node in the system maintains an output queue of pack-
ets that are to be transmitted. At a given point of time,
there might be many coding opportunities available to relay
node. Searching for a coding opportunity might be com-



putationally expensive, as a node might have to try outPm=k
m=1

nCm possibilities when using CLONE-k-Loop (al-
though we might limit the length k to a small number). In
order to avoid this, each node also maintains a per next-hop
virtual queue (a virtual queue essentially contains pointers
to the actual packets in the output queue). The CLONE cod-
ing procedures only use the packets from head of each virtual
queue to determine the coding opportunities. We note that
this might lead to reduction in the number of coding op-
portunities. However, maintaining virtual queues not only
enables efficient coding, but more importantly reduces the
possibility of reordering within a flow.

(c) Opportunistic coding: The CLONE coding schemes
operate on a set of packets (derived from the heads of the
virtual queues) and output a set of coded packets based on
the available coding opportunities. We identify this set of
packets as a group. Each group is uniquely identified using
a, group ID, which is incremented for each group. In our
implementation, we take an opportunistic coding approach
i.e. we look for coding opportunities that can arise with the
head of the output queue and in case none are available, we
send it out as one of the packets in the group in order to
reduce introducing any delays due to coding.

(d) Packet decoding: CLONE schemes allow the possi-
bility of decoding the native packet using multiple encoded
packets. This not only requires a node to buffer the received
encoded packets, but also increases the computational com-
plexity as the node would now have to try out all possible
ways of XORing these encoded packets to determine whether
it can decode its packet. CLONE avoids this by adopting a
simple approach: a relay node explicitly sends the list of pos-
sible decode sequences in special headers annotated on each
of the coded packets. Decode sequences explicitly mention
which coded packets might be needed to decode a certain
packet. Thus, a node only buffers packets which can be use-
ful for the decoding procedure. Further, these buffers are
flushed either when a packet has been successfully decoded
or after a certain timeout. Since, we selectively buffer pack-
ets from only the current group of a relay, we observed that
this additional memory overhead in our system was negligi-
ble.

(e) Broadcast with Asynchronous Acks: Unlike COPE
which tries to reduce the number of packets to be trans-
mitted, CLONE schemes try to improve the link loss rate.
That is, CLONE schemes acknowledge the fact that trans-
mitted packets can be lost and recover from it by provid-
ing more than one way to decode a native packet. Using
802.11 synchronous acknowledgments would not be efficient
because each coded packet in a group might be useful to
multiple next-hops, sending of acks by all these next-hops
would cause an ack implosion at the relay. We therefore
use 802.11 broadcast for sending out the coded packets and
we recover from the packet decoding failures by using asyn-
chronous MAC level acknowledgments and retransmits.

(f) Retransmission Timeouts: Scheduling a retrans-
mission timeout for a packet now becomes non-trivial. For
e.g. consider packets P1, P2, .. Pn which are coded into a
group of C1, C2, .. Cn packets. When should we trigger
a retransmit for a packet Pi ? Depending on the decoding
sequences generated, it is possible that the intended next-
hop Ri might be able to recover the packet on receipt of
packet Cn. We therefore adopt a conservative approach –
we start the retransmission timer for all the native pack-

ets when the last packet of a coded group is transmitted.
Though this may slightly delay the retransmit event for a
particular packet, the approach would avoid unnecessary re-
transmits that can otherwise happen due to premature time-
outs.

5.2 Implementation Details
We present an overview of CLONE’s control flow imple-

mentation. Each node maintains a packet pool, per next-hop
virtual queues and hash table which gives information about
the availability of a particular packet at a neighboring nodes
(this is populated using reception reports or by guessing). In
addition, each node also maintains a hashmap group buffer
keyed on the IP address of each neighbor, which buffers po-
tentially useful coded packets and the current group number
for this node.

CLONE schemes may generate more than one packet per
group, the first of these is transmitted immediately while
the rest of the packets of the group are enqueued in a sepa-
rate queue, pending subsequent transmissions. Whenever a
transmission opportunity arises, we first check for any pend-
ing packets to transmit. In case such a packet exists we de-
queue the first one and transmit it, else, we try to form the
next group.

On a packet reception, the node checks if the packet is
useful to it by checking whether its ID is present in one of
the group units. If the packet is useful, the node checks if the
group ID on the packet is higher than the sender’s current
group. If it is, then the the packets belonging to older group
are flushed, the new packet is buffered and current group
is updated. Further, the node checks if it has enough pack-
ets decode its native packet using the information from the
decode sequence array. In case it is able to decode, then it
either forwards the packet (if it is an intermediate hop) or it
sends the packet to the higher layer (if it is the destination).

A more detailed description of the control flow implemen-
tation and clone packet header format is presented in [27].
This additional shim header contributes to about 6 - 9% of
typical packet lengths.

5.3 Experimental Results
We implemented CLONE using the Click modular router

toolkit [1] that allows it to run as a user space daemon in
Linux. Our implementation of CLONE currently runs on a
12-node testbed spanning three floors of our building. Each
node on the testbed is a Soekris 4326 [2] running the 2.6.6.19
Linux kernel, and is equipped with Atheros 5212 mini-PCI
wireless card. We used the Srcr [7], as the underlying rout-
ing protocol which is based on the ETX [11] metric. In all
our experiments we measure the aggregate UDP throughput
over 802.11g running at 1 Mbps PHY data rate, for a packet
size of 1000 bytes.

We first report on the computational complexity of all
the three network coding algorithms proposed in Section 3
which shows that processing is still a limiting factor for
the CLONE-MultiXOR and the CLONE-kDSP algorithms.
Therefore, in the testbed we have deployed a full implemen-
tation of the CLONE-k-Loop algorithm alone. The other
two algorithms are likely to also provide significant perfor-
mance gains as our simulation results indicate, and we ex-
pect the continued increase in processing speeds to facilitate
its feasibility in the future.



Scheme COPE CLONE- CLONE- CLONE-
Neighbors k-Loop kDSP MultiXOR

4 25 37 714 13,489
6 74 83 3,801 31,894

Table 4: Computational complexity of different al-
gorithms. Time reported in µs.
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Figure 10: Throughput gains of CLONE and COPE
for a 4-node illustrative topology. The numbers in
the parenthesis represent the average throughput
for each of the cases. Five runs of each are shown.

In our experiments, we first compare the performance of
CLONE-k-Loop to both no coding and COPE in a repre-
sentative four node topology. Subsequently, we explore the
performance gains of our CLONE-k-Loop algorithm on the
full 12-node testbed.

5.3.1 Computational complexity
The first task in understanding the performance of the

three proposed algorithms is the study their computational
complexity. Table 4 presents our measurements on the com-
putation times for each algorithm, running within the user
level daemon, when combining packets for four and six neigh-
bors, running on a relay node.

Both COPE and CLONE-k-Loop finish their computation
within 83 µs. The currently popular 802.11a/g standards
use a DIFS value of 34 µs, default CWmin value of 16, and
a slot time duration of 9 µs, leading to an average time
duration between back-to-back packets of 106 µs. Thus,
in a firmware level implementation with careful optimized
software optimizations, CLONE-k-Loop should not add any
noticeable delays in the data path. The same is not true
for the other two schemes. Hence, we believe that further
improvements in processing speeds need to occur before the
performance gains of these two schemes can be realized in a
real wireless system.

5.3.2 Results on a 4-node Illustrative Topology
We now present the relative performance of no-coding,

CLONE and COPE schemes on a 4-node topology similar
to the one shown earlier in Figure 2, where a relay N routed
flows for three of its neighboring nodes. Figure 10 plots the
relative throughputs of no coding, COPE and CLONE , the
latter two with both guessing enabled and disabled, for 5
different runs. All throughputs were normalized to the low-
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Figure 11: CDF of UDP Throughput gains for
CLONE over no coding.

est performing scenario among all runs. Also, the measured
throughputs take the overhead due to CLONE header(∼9%)
into account. We observed that throughput improvements
when using CLONE were upto a factor of 2, with an average
throughput gain of around 57%. The average throughput
gains with COPE over no coding were around 21%. This is
because, COPE has very few coding opportunities (available
due to overhearing) while CLONE formed a simple 3-Loop.
In this scenario, CLONE sends out groups of 3 coded pack-
ets and each node can decode a packet in two ways. The
performance gains stem from the fact that not only does
CLONE tolerate losses (of more than 33% on an average in
this case), but also avoids the overheads involved in retrans-
missions. We further note that, the gains of CLONE and
COPE due to guessing vary – when CLONE correctly guesses
the information about the neighbor packet pools the gains
are signficant (a gain of 2x in run 4), on the other hand
throughput gains would lower down when it fails to guess
correctly.

5.3.3 Results on a 12-node Testbed
We repeated the UDP throughput measurements on our

12-node testbed. We set up UDP flows by choosing the
source-destination pair in a random fashion. The date rate
for each flow was set to 250 kbps and the flows lasted for
a duration of 120 seconds. We observed that most of the
flows in this experiment were 2-hop flows, while a few of
them being 3-hop flows. We the measured the aggregate
UDP throughput with and without CLONE. We enabled
guessing for CLONE, in order to be able to exploit the ETX
information provided by the Srcr routing protocol. Figure 11
shows the CDF of UDP gain for CLONE over the no cod-
ing case. We observe that the throughput gains vary from
around 10% to more than 2x. We note that the main source
of improvement comes from the fact that CLONE is able to
recover from wireless losses, which were of the order of 30%
in our experiments. The average throughput gains observed
for CLONE were around 43%.

6. RELATED WORK
Network coding was first proposed by Ahlswede et. al. [6]

for multicast communication. Subsequently, a large body of
work has studied various ways of creating efficient network
codes [19, 18, 10, 22]. In wireless environments, network
coding has been employed to reduce energy costs [21] and
to maximize total flow in the network [4]. Jaggi et. al. [13]
have studied the resilience of network coding mechanisms to



attacks under assumptions of various malicious forwarding
nodes. These results are quite complementary to our work.

In the context of unicast sessions on multi-hop wireless
settings, the benefits of network coding has been demon-
strated by Li and Li [20], Wu et. al. [25], and by Katti
et. al. in COPE [17]. In particular, COPE demonstrates
the potential of the performance gains achievable through
local network coding and by using XOR operations and is
the starting point for the work presented in this paper. The
key difference between COPE (as a representative of other
such prior work) and the results of this paper is the follow-
ing. While COPE assumes losses do happen on the wireless
path, it does not directly provide protection against losses on
the wireless path through use of network coding structures.
In contrast, our design explicitly uses redundancy in design
of network coding structures to guard against the negative
impacts of such losses. In particular, we show that the ob-
jective of minimizing the number of transmissions needed to
carry the information over multiple wireless hops does not
lead to best throughput gains. Often, redundant transmis-
sions of packets, in which redundancy is provided through
network coding, can lead to significant throughput gains.
Thus, the key difference of our work from prior work is in
explicit loss-awareness on the wireless paths in the design of
coding structures.

7. CONCLUSIONS
Network coding as a primitive has been shown to be quite

useful in improving traffic carrying capacity in many wired
networking scenarios and have direct applications in wire-
less environments as well. However, to gain the best ben-
efits of this primitive, such a primitive should not be ap-
plied in isolation. Instead, it should be effectively combined
with characteristics of the environment. This paper shows
that network coding, when applied to wireless environments,
can lead to further performance gains when it is effectively
made aware of the potential losses on different wireless links.
We believe that this work should be treated as a starting
point for significant further research in understanding in-
teractions of network coding with different aspects of the
wireless protocol stack. The availability of the network cod-
ing primitive should lead us to revisit the design of protocol
mechanisms at different layers, including rate control and
contention resolution at the MAC layer, routing and for-
warding decisions to facilitate greater coding opportunities
at the network layer, congestion control mechanisms at the
transport layer, and application-specific coding mechanisms
at the application layer as well.
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