
Unraveling the Duplicate-Elimination Problem in
XML-to-SQL Query Translation

Rajasekar Krishnamurthy
University of Wisconsin

sekar@cs.wisc.edu

Raghav Kaushik
Microsoft Corporation

skaushi@microsoft.com

Jeffrey F Naughton
University of Wisconsin

naughton@cs.wisc.edu

ABSTRACT
We consider the scenario where existing relational data is
exported as XML. In this context, we look at the problem
of translating XML queries into SQL. XML query languages
have two different notions of duplicates: node-identity based
and value-based. Path expression queries have an implicit
node-identity based duplicate elimination built into them.
On the other hand, SQL only supports value-based duplicate
elimination. In this paper, using a simple path expression
query we illustrate the problems that arise when we attempt
to simulate the node-identity based duplicate elimination
using value-based duplicate elimination in the SQL queries.
We show how a general solution for this problem covering
the class of views considered in published literature requires
a fairly complex mechanism.

1. THE DUPLICATE ELIMINATION PROB-
LEM

Using a simple example scenario, we first explain why we
need duplicate elimination in XML-to-SQL query transla-
tion.

Consider the following relational schema for a collection
of books.

• Book (id, title, price, . . .)

• Author (name, bookid, . . .)

• TopSection (id, bookid, title, . . .)

• NestedSection (id, topsectionid, title, . . .)

The Book relation has basic information about books and
the Author relation has information about authors of each
book. Each book has sections and subsections, and the cor-
responding information is in the TopSection and NestedSec-
tion relations respectively.

Consider the XML view T1 defined over this relational
schema shown in Figure 1. We represent the XML view us-
ing simple annotations on the nodes and edges of the XML
schema. For example, each book tuple creates a new book
element. The title of the book is represented as a title subele-
ment. Each section is represented as a subelement and this
is captured by the join condition on the edge <2,5>. The
rest of the view definition can be understood in a similar
fashion.

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databases (WebDB 2004),
June 17-18, 2004, Paris, France
.

*

*

*

*

(ii) : TopSection.id = NestedSection.topsectionid

(i) : Book.id = TopSection.bookid

section

book

title

Book

title author
Book.title

section

Author

TopSection.title

7 NestedSection

TopSection

books

2

3 4 5

6

1

(i)

(ii)

NestedSection.title

title
8

Figure 1: XML view T1

Suppose we want to retrieve the titles of all sections. One
possible XML query is Q = //section//title. XML-to-SQL
query translation algorithms proposed in literature, such
as [6, 15], work as follows. Logically, the first step is to
identify schema nodes that match each step of the query. In
this example, there are three matching evaluations for Q,
namely S = {<5,6>, <5,8>, <7,8>}. The second step is
to generate an SQL query for each matching evaluation in
S. The final query is the union of queries generated for all
matching evaluations. For Q, the SQL query SQ1 obtained
in this fashion is given below.

select TS.title
from Book B, TopSection TS
where B.id = TS.bookid
union all
select NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid
union all
select NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

In the above query, we see that there are three entries in
S, and, as a result, SQ1 is the union of three queries. On
the other hand, looking at the view definition, we notice
that there are only two paths that match the query ending
at the two schema nodes 6 and 8. The path <1,2,5,7,8>
appears twice in S, once as <5,8> and again as <7,8>.
This occurs because the section step in the query matches
both the section elements in the schema. The following title
step matches the title element (node 8) for each of these
evaluations, due to the // axis in the query. As a result,
the second and third (sub)queries in SQ1 are identical and
generate duplicate results.

According to XPath semantics, the result of a query should
not have any duplicates. Here, duplicate-elimination is de-
fined in terms of node-identity. As a result, we need to add
a distinct clause to SQ1 to achieve the same effect. We re-
fer to this as the Duplicate-Elimination problem. The fact
that we need to simulate node-identity based duplicate elim-
ination using the value-based distinct clause in SQL creates
several problems and providing a complete solution to this
problem is the focus of this paper. Notice that this extra
duplicate-elimination step is required to make sure that ex-
isting algorithms work correctly for this particular example.

Let us start with the simplest approach to eliminate du-
plicates from SQ1. By adding an outer distinct(title) clause,
we can eliminate duplicate titles. The corresponding SQL
query SQ1

1 is given below.

with Temp(title) as (
select TS.title
from Book B, TopSection TS
where B.id = TS.bookid
union all
select NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid
union all
select NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

)
select distinct(title)
from Temp

Notice that the above query does value-based duplication
and may eliminate more values than required. For example,
duplicates in the XML view that arise in the following ways
must be retained in the query result.

1. Two top-level sections have the same title
2. Two nested sections have the same title
3. A top-level section and a nested section have the same

title

Since SQ1

1 applies a distinct clause on title, it eliminates
duplicates that arise in the above three contexts. As a result,
SQ1

1 is not a correct query.
Let us next see if using the key column(s) in the relational

schema help us solve this problem. Recall that the id col-
umn is the key for both the TopSection and NestedSection
relations. So, by projecting this key column and applying
the following distinct clause: “distinct(id,title)”, we get the
following query SQ2

1.

with Temp(id,title) as (
select TS.id, TS.title
from Book B, TopSection TS
where B.id = TS.bookid
union all
select NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid
union all
select NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

)
select distinct(id, title)
from Temp

While the above query retains the duplicate values cor-
responding to 1 and 2 above, it does not retain duplicates
when a top-level section and a nested section have the same
title and the same id as well. This can occur because keys
in relational databases are unique only in the context of the
corresponding relation.

* * * *

* *
(i)

(ii)

(i) : Book.price <= P1

(ii) Book.price > P2

costlybooks

books

section

book

title

Book

title author
Book.title

section

Author

NestedSection

TopSection

title
NestedSection.title

section

book

title

Book5

title author
Book.title

section

Author

TopSection.title

NestedSection

TopSection

title
NestedSection.title

1

2
3

4

6 7 8 9 10 11

1514

1716

1312

cheapbooks

TopSection.title

Figure 2: XML view T2

In order to address this issue, we need to create a key
across the two relations. A straightforward way to do this is
to combine the name of the relation (or some other identifier)
along with the key column(s). This results in the following
query SQ3

1.

with Temp(relname, id,title) as (
select ‘‘TS’’, TS.id, TS.title
from Book B, TopSection TS
where B.id = TS.bookid
union all
select ‘‘NS’’, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid
union all
select ‘‘NS’’, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

)
select distinct(relname, id, title)
from Temp

Notice how the above approach creates a global key across
the entire relational schema. This duplicate-elimination tech-
nique is correct for this query, and in fact, it is correct for
any query over a class of views that we call non-redundant
(see Table 1 in Section 4). Unfortunately this solution is not
general enough and is incorrect when parts of the relational
data may appear multiple times in the XML view. In the
rest of the paper, we identify the techniques required for
different class of views ending with a generic solution that
is applicable over all views.

2. REDUNDANT XML VIEWS
In this section, we look at some of the simplifying as-

sumptions we implicitly made while generating the correct
duplicate-elimination clause for the query Q over view T1.
First, using a slightly modified XML view over the same
underlying relational schema we show how the correct solu-
tion gets more complex than before. Then, we look at the
scenario when the join conditions are not key-foreign key
joins.

2.1 A Hierarchical XML view example
The XML view T2, in Figure 2, has created a simple hi-

erarchy, partitioning the books into cheap and costly books
by the relationship of their prices to two constants P1 and
P2.

Let us look at how Q1 will be translated in this case by
some of the existing algorithms [6, 15]. The equivalent SQL
query is the union of six queries, three for cheapbooks and

three for costlybooks. Again, the nested section titles occur
twice and need to be eliminated through a duplicate elimi-
nation operation.

At the end of the previous section, we saw how a distinct
clause over the three fields: relname, id and title may suffice
(see query SQ3

1 in Section 1). Applying the same idea here,
we obtain the following query, SQ1

2.

with Temp(relname, id,title) as (
select ‘‘TS’’, TS.id, TS.title
from Book B, TopSection TS
where B.id = TS.bookid and B.price <= P1
union all
select ‘‘NS’’, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1
union all
select ‘‘NS’’, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1
union all
select ‘‘TS’’, TS.id, TS.title
from Book B, TopSection TS
where B.id = TS.bookid and B.price > P2
union all
select ‘‘NS’’, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price > P2
union all
select ‘‘NS’’, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price > P2
)
select distinct(relname, id, title)
from Temp

Let us now consider three possible scenarios: P1 = P2,
P1 < P2 and P1 > P2. If P1 = P2, then the XML view
has information about all the books exactly once, while if
P1 < P2 the XML view has information about only certain
books. On the other hand, when P1 > P2, the XML view has
information about the books in the price range {P2 . . . P1}
twice.

For the two cases, P1 = P2 and P1 < P2, each book
appears at most once in the XML view. As a result, the
SQL query SQ1

2 eliminates duplicates correctly. But when
P1 > P2, books in the price range {P2 . . . P1} appear twice
in the XML view. So, the corresponding section titles must
appear twice in the query result. But, since SQ1

2 applies a
distinct clause using the triplet “relname, id, title”, it will
retain only one copy of each section title and the query result
is incorrect.

The main problem in this example scenario is that some
parts of the relational data appear multiple times in the
XML view. For the XML view T2, notice that multiple oc-
currences of the same section title are associated with differ-
ent schema nodes. One way to obtain the correct result in
this case is to keep track of the schema node corresponding
to each result tuple. The distinct clause in this case will
include the schema node instead of the relation name. The
corresponding SQL query SQ2

2 is shown below.

with Temp(nodeid, id,title) as (
select 12, TS.id, TS.title
from Book B, TopSection TS
where B.id = TS.bookid and B.price <= P1
union all
select 16, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1

union all
select 16, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1
union all
select 14, TS.id, TS.title
from Book B, TopSection TS
where B.id = TS.bookid and B.price > P2
union all
select 17, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price > P2
union all
select 17, NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price > P2
)
select distinct(nodeid, id, title)
from Temp

The above query will be a correct translation for all the
three cases: P1 = P2, P1 < P2 and P1 > P2. The above
solution is correct for any query on a class of views that we
call well-formed (see Table 1 in Section 4).

Notice how simple syntactic restrictions on the view def-
inition language will not allow us to differentiate between
views T1 and T2. As a result, unless we know that T1 is a
non-redundant view, when we translate Q over T1, we have
to use the schema node number to perform duplicate elimi-
nation. In Section 4, we present a way for identifying when
XML views are non-redundant.

2.2 Beyond key-foreign key joins
For the two example views, T1 and T2, we saw how a cor-

rect translation for query Q1 results in queries SQ3

1 and SQ2

2

respectively. The join conditions present in both these view
definitions are key-foreign key joins. Under these circum-
stances, the duplicate elimination technique used is correct.
An interesting point to note is that the class of views con-
sidered in literature, such as [1, 5, 6, 15], allow the join con-
ditions to be between any two columns (in particular, non
key-foreign key joins). Also, excepting [5], the XML-to-SQL
query translation algorithms in literature do not know (or
use) information about the integrity constraints that hold on
the underlying relational schema. In this section, we look
at what needs to be done to perform duplicate-elimination
correctly when the join conditions are allowed to be over any
two columns.

Suppose id is not a key for the Book, TopSection and Nest-
edSection relations. Then, the join between Book.id and
TopSection.bookid in the view definition T2 is not a key-
foreign key join. Similarly, the join between TopSection.id
and NestedSection.topsectionid is also not a key-foreign key
join.

What happens in this case is that some parts of the re-
lational data may appear in the XML view multiple times.
For example, part of an instance of the relational data is
shown in Figure 3.

Suppose the XML view T2 was defined with P1 = 65 and
P2 = 65. For the above data instance, the corresponding
view will have three book elements. Since two of the books
have the same value for the id column, the sections of each of
these two books will be repeated under both of them. For
example, the Introduction and Motivation sections will ap-
pear twice in the XML view, once for each of the two books
with id 1. But, both occurrences of these section titles cor-
respond to the same schema node (node 12 in Figure 2). As
a result, our earlier technique using schema node numbers
does not work. Note how the XML view has redundant data

id title

1 ABC

EFG

EFG2

1

Book TopSection

id bookid title

1 1

2 1
Introduction
Motivation

....

...

....price

70

50

60

Figure 3: Sample data instance

even when P1 = P2.
Previously, we just had to keep track of some information

concerning the properties of the query result schema nodes.
Once the joins are allowed to be general joins, we need to
keep track of the actual relational tuples that contribute
to the result tuple. The distinct clause needs to trace the
lineage of the resulting value.

One way to do this is as follows: project the values of
the key fields for each relation in the query. Also project
the node identifier of the return schema node. Finally, the
distinct clause is applied across these fields. If the number of
relations is different across various paths (like our example,
in which retrieving NestedSection titles requires two joins
while retrieving TopSection titles requires only a single join),
we add appropriate number of null columns as required. The
SQL query in this case, SQ3

2 is given below. Here we assume
that R.key is the key field for relation R.

with Temp(nodeid, key1, key2, key3, title) as (
select 12, B.key, TS.key, null, TS.title
from Book B, TopSection TS
where B.id = TS.bookid and B.price <= P1
union all
select 16, B.key, TS.key, NS.key, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1
union all
select 16, B.key, TS.key, NS.key, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1
union all
select 14, B.key, TS.key, null, TS.title
from Book B, TopSection TS
where B.id = TS.bookid and B.price > P2
union all
select 17, B.key, TS.key, NS.key, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price > P2
union all
select 17, B.key, TS.key, NS.key, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price > P2
)
select distinct(nodeid, key1, key2, key3, title)
from Temp

The above technique will work when T is a tree XML view
as the schema node id for a node n uniquely identifies the
root-to-leaf path to n. This, in turn, identifies the name of
the relations that appear on the root-to-leaf path and the
corresponding schema node ids.

We would like to emphasize the fact that we are not ar-
guing that scenarios like the above one are likely to be com-
mon. But, since existing XML-to-SQL query translation
techniques do not place any restrictions on the class of al-
lowable views and also are not aware of what relational in-
tegrity constraints hold over the underlying data, the above
relational schema is a valid input and we need the above

(i) : Book.price <= P1

(ii) Book.price > P2

* *

(i) * (ii)*

section

book

title

Book

title author
Book.title

section

Author

NestedSection

TopSection

title
NestedSection.title

4

TopSection.title

cheapbooks costlybooks

books
1

2 3

5 6 7

8 9

10

Figure 4: DAG XML view T3

techniques to obtain the correct results.

3. DAG XML VIEWS
If the schema for the XML view is a directed acyclic

graph (DAG), the solution for duplication-elimination be-
comes more complex. Recall that the complete solution for
tree XML views (in Section 2.2) is to project the schema
node id of the projected element along with the key fields
of the joining tuples. The underlying idea was that the
schema node id uniquely identifies the root-to-leaf path up
to the projected element, which in turn identifies the names
of the corresponding relations. For DAG XML views, the
node id of the projected node no longer uniquely identifies
the root-to-leaf path. So, we need a slightly more complex
mechanism to achieve the same goal.

For example, consider the XML view T3 in Figure 4, which
is similar to the XML view T2 in Figure 2. The only differ-
ence between these two views is that while T2 is a tree view,
T3 is a DAG view. So, while T3 is a more compact schema
compared to T2, both the views will generate identical XML
documents from any given relational instance.

In this case, notice how the section titles for the cheap
books and costly books correspond to the same schema node.
So, just projecting the node id of top level and nested sec-
tion titles will not suffice. This happens because there are
multiple paths from the root to the title nodes. We need
to identify the complete path and apply the distinct clause
over this path identifier. One way to do this is to associate
a pathid with respect to each root-to-leaf path in the XML
view and use this path id to eliminate duplicates. A sim-
ple pathid is the concatenation of the node ids of all nodes
appearing on the path. The SQL query obtained SQ1

3 is
similar to the query SQ3

2 in Section 2.2 with the following
difference: the nodeids 12, 16, 14 and 17 will be replaced by
pathids 1.2.4.5, 1.2.4.7.8, 1.3.4.5 and 1.3.4.7.8 respectively.

A point to note here is that if the DAG view has two nodes
u and v such that there are two edges from u → v, then the
pathid needs to include edge identifiers as well.

4. A GENERAL SOLUTION
From the previous examples, we see that a generic solu-

tion for the simple class of views considered in this paper
requires a fairly complex mechanism. On the other hand, if
we know something about the properties of the XML view
much simpler solutions suffice. In this section, we categorize
the solutions based on the properties of the XML views.

4.1 Definitions
We use the simple approach of defining an XML view with

annotations on the XML schema nodes and edges. A non-
leaf node may be annotated with a relation name, while a

Table 1: Summary of duplicate-elimination tech-
niques

XML View Type Duplicate elimination mechanism
all views Use key field(s) for each relation

in the query +
identifier for the root-to-leaf path

well-formed views Use key field(s) corresponding
to projected value +
identifier for the root-to-leaf path

non-redundant views Use key field(s) corresponding
to projected value +
Relation name

leaf node is annotated with the name of a relational column.
Each edge may be annotated with a join condition and/or
a selection condition.

We define an XML view to be a well-formed XML view if
each join condition involved in an edge annotation is a key-
foreign key join. The relation corresponding to the parent
node should be the relation with the key field in this join
condition.

We define a relational column R.C to be non-redundantly
mapped in the XML view if for every valid data instance, no
tuple value in this column R.C will appear more than once
in the XML view. Otherwise R.C is redundantly mapped.
Note that two different tuples t1 and t2 in R may have the
same value for this column and, in turn, create two different
XML elements.

For example, every column in the view T1 (Figure 1) is
non-redundantly mapped. On the other hand, for the view
T2 (Figure 2), if P1 > P2, then the columns TopSection.title
and NestedSection.title are redundantly mapped.

An XML view T is non-redundantly mapped if each of the
relational columns annotating some leaf node in T is non-
redundantly mapped. Otherwise, the view is redundantly
mapped.

Finally, T is a tree XML view if the corresponding XML
schema is a tree schema. If the XML schema is a DAG
schema, then T is a DAG XML view. If the XML schema
is recursive, then T is a recursive XML view.

4.2 The solutions
The different duplicate elimination techniques presented

in this paper are summarized in Table 1. For a generic
solution over all XML views, the correct solution is to use
the key field(s) of all the joining relations along with a pathid
identifying the root-to-leaf path. While in our examples, we
used one column per key field in the select clause and a single
column for the pathid, other alternatives are also correct.
For example, we can create a single value by concatenating
all the key field(s) and the pathid, and apply a distinct clause
on this value.

If the input XML view is well-formed, then the key field(s)
corresponding to the projected schema node suffices (instead
of key field(s) of all joining relations).

Furthermore, if we know that the XML view is
non-redundantly mapped, then we can replace the schema
node id with the relation name. If the query results are from
a single relation, we can just use the key of this relation. We
no longer need the relation name in this case.

Recall that for DAG XML views, a string representing
the entire root-to-leaf path is a valid pathid. For tree XML
schemas, the node id of the projected schema node uniquely
identifies the entire root-to-leaf path. So, just the node id is
a valid pathid for tree XML views.

Going a step further, let us look at what more needs to be
done for recursive XML views. The main difference in this
case is that the actual depth of the XML document cannot
be determined at query translation time. So, this means that
the path id cannot be hard-coded into the query, but needs
to be constructed as part of the query. Similarly, the number
of iterations in the recursion will depend on the actual data.
As a result, the key field(s) of all joining relations need to
be represented as a string field, which will be constructed as
part of the query.

4.3 Identifying non-redundant views
We briefly outline a technique for identifying when a tree

XML view is non-redundant. For a leaf node n in the
schema, we define the root-to-leaf query Query(n) as the
SQL query obtained by (conjunctively) combining the an-
notations on the edges of the root-to-leaf path of n and pro-
jecting the annotation of node n, along with the key field(s)
of the corresponding relation. For example, Query(16) in
Figure 2 is the query shown below.

select NS.id, NS.title
from Book B, TopSection TS, NestedSection NS
where B.id = TS.bookid and TS.id = NS.topsectionid

and B.price <= P1

In order to determine if a relational column R.C is non-
redundantly mapped, we need to check if for every pair of
schema nodes u, v annotated with R.C, Query(u)∧Query(v)
is empty. If so, then the view is non-redundantly mapped.
We can check this by using the techniques proposed in liter-
ature for solving conjunctive query containment, such as [4,
18].

Notice that the above solution can be applied for any DAG
XML view by constructing an equivalent tree XML view
from the DAG view through unrolling of the DAG schema.
Extending the same techniques to identify non-redundant
recursive XML views is future work.

An important class of non-redundant XML views arise in
the context of XML Storage. Here, an RDBMS is used to
store and query XML data. As discussed in [16], it is pos-
sible to use techniques from the XML publishing domain
in the XML storage domain. To see this, notice that once
XML data is shredded into relations, we can view the re-
sulting data as if it were pre-existing relational data. Now
by defining a reconstruction view that mirrors the XML-to-
relational mapping used to shred the data, the query trans-
lation algorithms in the XML publishing domain are directly
applicable. Most of the techniques in published literature [2,
9, 12, 13, 17] result in reconstruction XML views that are
non-redundant.

In general, the problem of checking if a given XML view is
non-redundant is closely related to the classical query con-
tainment problem. While the general problem over recursive
XML views is undecidable, investigating the complexity of
this problem for different classes of XML views and identi-
fying when it is tractable is future work.

5. DISCUSSION
We have seen how even for a very simple class of XML

views, a fairly complex duplicate-elimination technique is
required. In this section, we first look at how the solutions
proposed in this paper extend to more complex view defi-
nition mechanisms proposed in literature. We then look at
whether we can avoid the duplicate elimination problem by
not generating duplicates in the first place during XML-to-
SQL query translation.

5.1 Complex view definitions
Consider a more general class of annotation-style XML

views, where each edge annotation is allowed to be a con-
junctive query. We refer to this class of views as general-
ized views. The duplicate-elimination techniques proposed in
Section 4 for well-formed views and non-redundant views are
directly applicable for their generalized counterparts. This
is due to the fact that the solution for these two classes
of views requires just the key field(s) of the relation cor-
responding to the projected element. The solution for an
arbitrary generalized view needs a minor extension though:
we need to use the key field(s) for all relations occurring in
the conjunctive queries annotating each of the edges from
the root to the projected element.

We now look at the various view definition languages pro-
posed in literature. In Silkroute [7], Relational to XML
Transformation language (RXL) was introduced to define
XML views over relational data. In [8], XQuery was used as
the view definition language. In both these cases, the inter-
nal representation used by the Silkroute system for the XML
view definition was a view forest. The view query specifica-
tion used in [3] (schema tree query), and in [10] (View Tree)
are adapted from view forests. The core representation of a
view forest is identical to a generalized tree XML view. So,
the techniques proposed in this paper are directly applicable
for a large class of view forest views.

In [1], a view definition language based on Attribute Trans-
lation Grammars is presented. Here, a DTD is extended by
associating semantic rules in the form of SQL queries. The
semantic rules are logically equivalent to the annotations de-
scribed in this paper. The class of ATG views defined with
conjunctive queries corresponds to generalized XML views
discussed above.

In MARS [5], the view definition mechanism uses skolem
functions to generate unique identifiers for each XML ele-
ment in the XML view. While it is true that in the presence
of such skolem functions the duplicate elimination problem
can be trivially handled, it should be noted that all the tech-
niques presented in this paper are applicable in the design
of skolem functions.

In XPeranto [15], XQuery is used as the view definition
language and XML Query Graph Model (XQGM) is used
as the intermediate representation. Similarly, in [5, 14]
LAV-style (Local-As-View) views are allowed. In all these
cases, the view definition mechanisms are a lot different from
the class of annotation-style views considered in this paper.
Adapting the duplicate-elimination techniques proposed in
this paper to these techniques is future work.

5.2 Avoid generating duplicates: An alterna-
tive to duplicate elimination

For the simple query we considered in this paper, there is
an alternative way to avoid the duplicate-elimination prob-
lem. Recall that the first step in XML-to-SQL query trans-
lation is to find the schema nodes that match the various
elements in the query. By adding a duplicate elimination
step that removes duplicate root-to-leaf paths at this stage,
it is possible to avoid generating duplicate results in the first
place. In [11] we presented an XML-to-SQL query transla-
tion algorithm for path expression queries that follows this
methodology. For the class of path expression queries with-
out predicates, this technique avoids generating duplicate
results completely. On the other hand, for branching path
expression queries, this algorithm does not eliminate dupli-
cate paths completely and may generate duplicate results.
The duplicate elimination techniques presented in this paper
are applicable in this context.

Most of the other published XML-to-SQL query transla-

tion algorithms [5, 6, 15] do not explicitly keep track of the
actual matching paths. As a result, it is not obvious as to
how these techniques can be augmented to avoid generat-
ing duplicate results in the first place. In these cases, the
techniques proposed in this paper are necessary to perform
duplicate-elimination correctly.

Acknowledgement: This work was supported in part by
NSF grant ITR-0086002.

6. REFERENCES
[1] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi,

S. Zheng, and A. Zhou. DTD-Directed Publishing with
Attribute Translation Grammars. In VLDB, 2002.

[2] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
XML schema to relations: A cost-based approach to
XML storage. In ICDE, 2002.

[3] P. Bohannon, H. Korth, P.P.S. Narayan, S. Ganguly,
and P. Shenoy. Optimizing view queries in ROLEX to
support navigable tree results. In VLDB, 2002.

[4] A. Deutsch and V. Tannen. Containment and Integrity
Constraints for XPath Fragments. In KRDB, 2001.

[5] A. Deutsch and V. Tannen. MARS: A System for
Publishing XML from Mixed and Redundant Storage.
In VLDB, 2003.

[6] M. Fernandez, A. Morishima, and D. Suciu. Efficient
Evaluation of XML Middle-ware Queries. In
SIGMOD, 2002.

[7] M. Fernández, D. Suciu, and W.C. Tan. SilkRoute:
Trading Between Relations and XML. WWW9, 2000.

[8] M. F. Fernandez, Y. Kadiyska, D. Suciu,
A. Morishima, and W. C. Tan. SilkRoute: A
framework for publishing relational data in XML.
ACM Trans. Database Syst., 27(4), 2002.

[9] S. Hongwei, Z. Shusheng, Z. Jingtao, and W. Jing.
Constraints-Preserving Mapping Algorithm from
XML-Schema to Relational Schema. In EDCIS, 2002.

[10] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT
Programs to Efficient SQL Queries. In WWW, 2002.

[11] R. Krishnamurthy, V.T. Chakaravarthy, R. Kaushik,
and J. F. Naughton. Recursive XML Schemas,
Recursive XML Queries, and Relational Storage:
XML-to-SQL Query Translation. In ICDE, 2004.

[12] D. Lee and W.W. Chu. Constraints-preserving
Transformation from XML Document Type Definition
to Relational Schema. In ER, 2000.

[13] M. Mani and D. Lee. XML to Relational Conversion
using Theory of Regular Tree Grammars. In VLDB
Workshop on EEXTT, 2002.

[14] I. Manolescu, D. Florescu, and D. Kossman.
Answering XML queries over heterogeneous data
sources. In VLDB, 2001.

[15] J. Shanmugasundaram, J. Kiernan, E. J. Shekita,
C. Fan, and J. Funderburk. Querying XML Views of
Relational Data. In VLDB, 2001.

[16] J. Shanmugasundaram, E. Shekita, J. Kiernan,
R. Krishnamurthy, S. D. Viglas, J. Naughton, and
I. Tatarinov. A General Technique for Querying XML
Documents using a Relational Database System.
SIGMOD Record, 30(3), 2001.

[17] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. In VLDB, 1999.

[18] X. Zhang and Z. M. Ozsoyoglu. Implication and
referential constraints: A new formal reasoning.
TKDE, 9(6), 1997.

