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Abstract. Recently, the database research literature has seen an explo-
sion of publications with the goal of using an RDBMS to store and/or
query XML data. The problems addressed and solved in this area are
diverse. This diversity renders it difficult to know how the various re-
sults presented fit together, and even makes it hard to know what open
problems remain. As a first step to rectifying this situation, we present
a classification of the problem space and discuss how almost 40 papers
fit into this classification. As a result of this study, we find that some
basic questions are still open. In particular, for the XML publishing of
relational data and for “schema-based” shredding of XML documents
into relations, there is no published algorithm for translating even sim-
ple path expression queries (with the // axis) into SQL when the XML
schema is recursive.

1 Introduction

Beginning in 1999, the database research literature has seen an explosion of
publications with the goal of using an RDBMS to store and/or query XML data.
The problems addressed and solved in this area are diverse. Some publications
deal with using an RDBMS to store XML data; others deal with exporting
existing relational data in an XML view. The papers use a wide variety of XML
query languages, including subsets of XQuery, XML-QL, XPath, and even “one-
off” new proposals; they use a wide variety of languages or ad-hoc constructs to
map between the relational and XML schema; and they differ widely in what
they “push to SQL” and what they evaluate in middleware.

This diversity renders it difficult to know how the various results presented fit
together, and even makes it hard to know what if any open problems remain. As
a first step to rectifying this situation, we present a classification of the problem
space and discuss how almost 40 papers fit into this classification. As a result
of this study, we find that some basic questions are still open. In particular,
for the XML publishing of relational data and for “schema-based” shredding of
XML documents into relations, there is no published algorithm for translating
even simple path expression queries (with the // axis) into SQL when the XML
schema is recursive. It is our hope that this paper will stimulate others to refine
our classification and, more importantly, to improve the state of the art and to
address and solve the open problems that the classification reveals.



Technique Scenario Subproblems Class of Class of
solved XML Schema XML Queries

considered handled

XPeranto XP/GAV VD,QT tree XQuery

SilkRoute XP/GAV VD,QT tree XML-QL

Rolex XP/GAV QT tree XSLT

[17] XP/GAV QT tree XSLT

[1] XP/GAV VD recursive -

Oracle XML DB XP/GAV, XS/SB VD,SS,QT recursive SQL/XML
restricted XPath1

SQL Server 2000 XP/GAV, XS/SB VD,SS,QT bounded depth restricted XPath2

SQLXML recursive

DB2 XML XP/GAV, XS/SB VD,QT non-recursive SQL extensions
Extender through UDFs

Agora XP/LAV QT non-recursive XQuery

MARS XP/GAV + QT non-recursive XQuery
XP/LAV

STORED XS/SO SS,QT all STORED

Edge XS/SO SS,QT all path expressions

Monet XS/SO SS all -

XRel XS/SO SS,QT all path expressions

[35] XS/SO SS,QT all order-based
queries

Dynamic XS/SO QT all XQuery
intervals [7]

[24, 32] XS/SB SS recursive -

[2, 16, 19, 21, 27] XS/SB SS tree -

XP/GAV: XML Publishing, Global-as-view XP/LAV: XML Publishing, Local-as-view
XS/SO: XML Storage, schema-oblivious XS/SB: XML Storage, schema-based

QT: Query Translation VD: View Definition SS: Storage scheme
restricted XPath1: child and attribute axes
restricted XPath2: child, attribute, self and parent axes

Table 1. Summary of various published techniques

The interaction between XML and RDBMS can be broadly classified as
shown in Figure 1. The main scenarios are:

1. XML Publishing (XP): here, the goal is to treat existing relational data sets
as if they were XML. In other words, an XML view of the relational data
set is defined and XML queries are posed over this view.

2. XML Storage (XS): here, by contrast, the goal is to use an RDBMS to
store and query existing XML data. In this scenario, there are two main
subproblems: (1) a relational schema has to be chosen for storing the XML
data, and (2) XML queries have to be translated to SQL for evaluation.

In this paper, we use this classification to characterize almost 40 published so-
lutions to the XML-to-SQL query translation problem.

The results of our survey are summarized in Table 1, where for each technique
we identify the scenario solved and the part of the problem handled within that



Schema Based

Requires the XML schema

Schema Oblivious

Does not require the XML schema

Ignores the schema even if available

Problem Space

XML−Publishing
Existing relational data
published as XML

XML−Storage
RDBMS used to store and 
query XML data

Fig. 1. High-Level Taxonomy
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Fig. 2. Focus of published solutions

scenario. We will look at each of these in more detail in the rest of the paper.
In addition to the characteristics from our broad classification, the table also
reports, for each solution, the class of schema considered, the class of XML
queries handled, whether it uses the “global as view” or “local as view” approach
(if the XML publishing problem is addressed), and what subproblems are solved.

The rest of the paper is organized as follows. We survey known algorithms
in published literature for XML-publishing, schema-oblivious XML storage and
schema-based XML storage in Sections 2, 3, and 4 respectively. For each scenario,
we first survey the solutions that have been proposed in published literature,
and discuss problems that remain open. When we look at XML support in
commercial RDBMS as part of this survey, we will restrict our discussion to those
features that are relevant to XML-to-SQL query translation. A full investigation
of XML support in commercial RDBMS is beyond the scope of this survey.

2 XML Publishing

The following tasks arise in the context of allowing applications to query existing
relational data as if it were XML:

– Defining an XML view of relational data.
– Materializing the XML view.
– Evaluating an XML query by composing it with the view.

In XML query languages like XPath and XQuery, part of the query evaluation
may involve reconstructing the subtrees rooted at certain elements, which are
identified by other parts of the query. Notice how materializing an XML view
is a special case of this situation, where the entire tree (XML document) is
reconstructed. In general, solutions to materialize an XML view are used as a
subroutine during query evaluation.

2.1 XML View Definition

In XPeranto [29, 30], SilkRoute [12, 13] and Rolex [3], the view definition lan-
guages permit definition of tree XML views over the relational data. In [1], XML
views corresponding to recursive XML schema (recursive XML view schema) are
allowed.

In Oracle XML DB [42] and Microsoft SQL Server 2000 SQLXML [43], an
annotated XSD XML schema is used to define the XML view. Recursive XML



views are supported in XML DB. In SQLXML, along with non-recursive views,
there is support for a limited number of depths of recursion using the max-depth
annotation. In IBM DB2 XML Extender [40], a Document Access Definition
(DAD) file is used to define a non-recursive XML view. IBM XML for Tables [44]
provides an XML view of relational tables and is based on the Xperanto [30]
project.

In the above approaches, the XML view is defined as a view over the relational
schema. In a data integration context, Agora [25] uses the local-as-view approach
(LAV), where the local source’s schema are described as views over the global
schema. Toward this purpose, they describe a generic, virtual relational schema
closely modeling the generic structure of an XML document. The local relational
schema is then defined as views over this generic, virtual schema. Contrast this
with the other approaches where the XML view (global schema) is defined as a
view over the relational schema (local schema). This is referred to as the global-
as-view approach (GAV).

In Mars [9], the authors consider the scenario where both GAV-style and
LAV-style views are present. The focus of [9, 25] is on non-recursive XML view
schema.

2.2 Materializing the XML View

In XPeranto [30], the XML view is materialized by pushing down a single “outer
union” query into the relational engine, whereas in SilkRoute [12], the middle-
ware system issues several SQL queries to materialize the view. In [1], techniques
for materializing a recursive XML view schema are discussed. They argue that
since SQL supports only linear recursion, the support for recursion in SQL is
insufficient for this purpose. Instead, the recursive materialization is performed
in middleware by repeatedly unrolling a fixed number of levels at a time. We
discuss this in more detail in Section 2.4.

2.3 Evaluating XML Queries

In XPeranto [29], a general framework for processing arbitrarily complex XQuery
queries over XML views is presented. They describe their XQGM query repre-
sentation, an extension of a SQL internal query representation called the Query
Graph Model (QGM). The XQuery query is converted to an XQGM representa-
tion and composed with the view definition. Rewrite optimizations are performed
to eliminate the construction of intermediate XML fragments and to push down
predicates. The modified XQGM is translated into a single SQL query to be
evaluated inside the relational engine.

In SilkRoute [12], a sound and complete query composition algorithm is pre-
sented for evaluating a given XML-QL query over the XML view. An XML-QL
query consists of patterns, filters and constructors. Their composition technique
evaluates the patterns on the view definition at compile-time to obtain a modi-
fied XML view, and the filters and constructors are evaluated at run-time using
the modified XML view.

In [17], the authors present an algorithm for translating XSLT programs into
efficient SQL queries. The main focus of the paper is on bridging the gap between



XSLT’s functional, recursive paradigm, and SQL’s declarative paradigm. They
also identify a new class of optimizations that need to be done either by the
translator or by the relational engine, in order to optimize the kind of SQL
queries that result from such a translation. In Rolex [22], a view composition
algorithm for composing an XSLT stylesheet with an XML view definition to
produce a new XML view definition is presented. They differ from [17] mainly
in the following ways: (1) they produce an XML view query rather than an SQL
query, (2) they address additional features of XSLT like priority and recursive
templates.

As part of the Rainbow system, in [39], the authors discuss processing and
optimization of XQuery queries. They describe the XML Algebra Tree (XAT)
algebra for modeling XQuery expressions, propose rewriting rules to optimize
XQuery queries by canceling operators and describe a cutting algorithm that
removes redundant operators and relational columns from the XAT. However,
the final XML to SQL query generation is not discussed.

We note here that in Rolex [3], the world view is changed so that a relational
system provides a virtual DOM interface to the application. The input in this
case is not a single XML query but a series of navigation operations on the DOM
tree that needs to be evaluated on the underlying relational data.

The Agora [25] project uses an LAV approach and provides an algorithm for
translating XQuery FLWR expressions into SQL. Their algorithm has two main
steps — translating the XML query into a SQL query on the generic, virtual
relational schema, and rewriting this SQL query into a SQL query over the real
relational schema. In the first step, they cross the language gap from XQuery
to SQL, and in the second step they use prior work on answering queries using
views.

In MARS [9, 10], a technique for translating XQuery queries into SQL is
given, when both GAV-style and LAV-style views are present. The basic idea
is to compile the queries, views and constraints from XML into the relational
framework, producing relational queries and constraints. Then, a Chase and
BackChase (C&B) algorithm is used to find all minimal reformulations of the rela-
tional queries under the relational integrity constraints. Using a cost-estimator,
the optimal query among the minimal reformulations is obtained, which can
then be executed. The MARS system also exploits integrity constraints on
both the relational and XML data. The system achieves the combined effect
of rewriting-with-views, composition-with-views, and query minimization under
integrity constraints.

Oracle XML DB [42] provides an implementation of the majority of the op-
erators that will be incorporated into the forthcoming SQL/XML standard [41].
SQL/XML is an extension to SQL, using functions and operators, to include pro-
cessing of XML data in relational stores. The SQL/XML operators [11] make
it possible to query and access XML content as part of normal SQL operations
and also provide methods for generating XML from the result of an SQL Select
statement. The SQL/XML operators allow XPath expressions to be used to ac-
cess a subset of the nodes in the XML view. In XML DB, the approach is to



translate the XPath expression into an equivalent SQL query through a query
re-write step that uses the XML view definition. In the current release (Oracle9i
Release 2), simple path expressions with no wild cards or descendant axes (//)
get rewritten. Predicates are supported and get rewritten into SQL predicates.
The XPath axes supported are the child and attribute axis.

Microsoft SQL Server 2000 SQLXML [43] supports the evaluation of XPath
queries over the annotated XML Schema. The XPath query together with the
annotated schema is translated into a FOR XML explicit query that only re-
turns the XML data that is required by the query. Here, FOR XML is a new
SQL select statement extension provided by SQL Server. In the current release
(SQLXML 3.0), the attribute, child, parent and self axes are supported, along
with predicates and XPath variables.

In IBM DB2 XML Extender [40], powerful user-defined functions (UDFs)
are provided to store and retrieve XML documents in XML columns, as well as
to extract XML element or attribute values. Since it does not provide support
for any XML query languages, we will not discuss XML Extender any further in
this paper.

2.4 Open Problems

A number of problems remain open in this area.

1. With the exception of [1, 42], the above work considers only non-recursive
XML views of relational data. While Oracle XML DB [42] supports path
expression queries with the child and attribute axes over recursive views, it
does not support the descendant ( //) axis. Translating XML queries (with
the // axis) over recursive view schema remains open. In [1], the problem of
materializing recursive XML view schema is considered. However, as we have
mentioned, that work does not use SQL support for recursion, simulating
recursion in middleware instead. The reason for this given by the authors
is that the limited form of recursion supported by SQL cannot handle the
forms of recursion that arise in with recursive XML schema. We return to
this question at the end of this section. The following are open questions in
the context of SQL support for recursion:
– What is the class of queries/view schema for which the current support

for recursion in SQL are adequate?
– If there are cases for which SQL support for recursion is inadequate,

how do we best leverage this support? (Instead of completely simulating
recursion in middleware.)

2. Any query translation algorithm can be evaluated by two metrics: its func-
tionality, in terms of the class of XML queries handled; and its performance,
in terms of the efficiency of the resulting SQL query. Most of the translation
algorithms have not been evaluated thoroughly by either metric, which gives
rise to a number of open research problems.
– Functionality: Among the GAV-style approaches, except XPeranto, all

the above discussed work deals with languages other than XQuery. Even
in the case of XPeranto, the class of XQuery handled is unclear from [29].



It would be interesting to precisely characterize the class of XQuery
queries that can be translated by the methods currently in the literature.

– Performance: There has been almost no work comparing the quality of
SQL queries generated by various translation algorithms. In particular,
we are aware of no published performance study for the query translation
problem.

3. GAV vs. LAV: While for the GAV-style approaches, XML-to-SQL query
translation corresponds to view composition, for the LAV-style approaches
it corresponds to answering queries with views. It is not clear for what class of
XML views the equivalent query rewriting problem has published solutions.
As pointed out in [25], state-of-the-art query rewriting algorithms for SQL
semantics do not efficiently handle arbitrary levels of nesting, grouping etc.
Similarly, [9] works under set-semantics and so cannot handle certain classes
of XML view schema and aggregation in XML queries. Comparing across
the three different approaches — GAV, LAV and GAV+LAV, in terms of
both functionality and performance is an open issue.

Recursive XML View Schema and Linear Recursion in SQL In this
subsection we return to the problem of recursive XML view schema and whether
or not they can be handled by the support for recursion currently provided by
SQL.

Consider the problem of materializing a recursive XML view schema. In [1],
it is mentioned that even though SQL supports linear recursion, this is not
sufficient for materializing a recursive XML view. The reason for this is not
elaborated in the paper. The definition of an XML view has two main compo-
nents to it: the view definition language and the XML schema of the resulting
view. Hence, it must be the case that either the XML schema of the view or
the view definition language is more complex than what SQL linear recursion
can support. Clearly, if the view definition language is complex enough (say the
parent-child relationship is defined using non-linear recursion), linear recursion
in SQL will not suffice. However, most view definition languages proposed define
parent-child relationships through much simpler conditions (such as conjunctive
queries). The question arises whether SQL linear recursion is sufficient for these
view definition languages, for arbitrary XML schema.

In [6], the notion of linear and non-linear recursive DTDs is introduced. The
natural question here is whether the notions of linear recursion in SQL and DTDs
correspond. It turns out that the definition of non-linear recursive schema in [6]
has nothing to do with the traditional Datalog notion of linear and non-linear
recursion. For example, consider a classical part-subpart database. Suppose that
the DTD rule for a part element is: part → pname, part*.

According to [6], this is a non-linear recursive rule as a part element can
derive multiple part sub-elements. Hence, the entire DTD is non-linear recursive.
Indeed, it can be shown that this DTD is not equivalent to any linear-recursive
DTD. Now, suppose the underlying relational schema has two relations, Part and
Subpart with the columns: (partid,pname) and (partid,subpartid) respectively.
Now, the following SQL query extracts all data necessary to materialize the
XML view:



WITH RECURSIVE AllParts(partid,pname,rtolpath) as (

select partid,pname,’’

from Part(partid,pname)

union all

select P.partid,P.pname,rtolpath+A.partid

from AllParts A, Subpart S, Part P

where S.partid = A.partid and S.subpartid = P.partid)

select * from AllParts

In the above query, the root-to-leaf path is maintained for each part element
through the rtolpath column in order to extract the tree structure. Note how-
ever that the core SQL query executes the following linear-recursive Datalog
program.
AllParts(partid,pname) ← Part(partid,pname)
AllParts(subpartid,subpname) ←

AllParts(partid,pname) Subpart(partid,subpartid) Part(subpartid,subpname)
So, we see that a non-linear recursive rule in the DTD gets translated into

a linear recursive Datalog (SQL) rule. This implies that the notion of linear
recursion in DTDs and SQL (Datalog) do not have a direct correspondence.
Hence, the class of XML view schema/view definition languages for which SQL
linear recursion is adequate to materialize the resulting XML views needs to be
examined.

3 Schema-Oblivious XML Storage

Recall that in this scenario, the goal is to find a relational schema that works
for storing XML documents independent of the presence or absence of a schema.
The main problems addressed in this sub-space are:

1. Relational schema design: which generic relational schema for XML should
be used?

2. Query translation algorithms: given a decision for the relational schema, how
do we translate from XML queries to SQL queries.

3.1 Relational Schema Design

In STORED [8], given a semi-structured database instance, a STORED map-
ping is generated automatically using data mining techniques — STORED is
a declarative query language proposed for this purpose. This mapping has two
parts: a relational schema and an overflow graph for the data not conforming
to the relational schema. We classify STORED as a schema-oblivious technique
since the data since data inserted in the future is not required to conform to the
derived schema. Thus, if an XML document with completely different structure
is added to the database, the system sticks to the existing relational schema
without any modification whatsoever.

In [14], several mapping schemes are proposed. According to the Edge ap-
proach, the input XML document is viewed as a graph and each edge of the
graph is represented as a tuple in a single table. In a variant known as the
Attribute approach, the edge table is horizontally partitioned on the tag name
yielding a separate table for each element/attribute. Two other alternatives, the



Universal table approach and the Normalized Universal approach are proposed
but shown to be inferior to the other two. Hence, we do not discuss these any
further.

The binary association approach [28] is a path-based approach that stores
all elements that correspond to a given root-to-leaf path together in a single
relation. Parent-child relationships are maintained through parent and child ids.

The XRel approach [37] is another path-based approach. The main difference
here is that for each element, the path id corresponding to the root-to-leaf path
as well as an interval representing the region covered by the element are stored.
The latter is similar to interval-based schemes for representing inverted lists
proposed in [23, 38].

In [35], the focus is on supporting order based queries over XML data. The
schema assumed is a modified Edge relation where the path id is stored as in [37],
and an extra field for order is also stored. Three schemes for supporting order
are discussed.

In [7], all XML data is stored in a single table containing a tuple for each
element, attribute and text node. For an element, the element name and an
interval representing the region covered by the element is stored. Analogous
information is stored for attributes and text nodes.

There has been extensive work on using inverted lists to evaluate path ex-
pression queries by performing containment joins [5, 18, 23, 26, 33, 36, 38]. In [38],
the performance of containment algorithms in an RDBMS and a native XML
system are compared. All other strategies are for native XML systems. In order
to adapt these inside a relational engine, we would need to add new containment
algorithms and novel data structures. The issue of how we extend the relational
engine to identify the use of these strategies is open. In particular, the question
of how the optimizer maps SQL operations into these strategies needs to be
addressed.

In [15], a new database index structure called the XPath accelerator is pro-
posed that supports all XPath axes. The preorder and postorder ranks of an
element are used to map nodes onto a two-dimensional plane. The evaluation of
the XPath axis steps then reduces to processing region queries in this pre/post
plane. In [34], the focus is on exploiting additional properties of the pre/post
plane to speedup XPath query evaluation and the Staircase join operator is pro-
posed for this purpose. The focus of [15, 34] is on efficiently supporting the basic
operations in a path expression and is complementary to the XML-to-SQL query
translation issue.

In Oracle XML DB [42] and IBM DB2 XML Extender [40], a schema-
oblivious way of storing XML data is provided, where the entire XML document
is stored using the CLOB data type. Since evaluating XML queries in this case
will be similar to XML query processing in a native XML database and will not
involve XML-to-SQL query translation, we do not discuss this approach in this
paper.



3.2 Query Translation

In STORED [8], an algorithm is outlined for translating an input STORED
query into SQL. The algorithm uses inversion rules to create a single canonical
data instance, intuitively corresponding to a schema. The structural component
of the STORED query is then evaluated on this instance to obtain a set of
results, for each of which a SQL query is generated incorporating the rest of the
STORED query.

In [14], a brief overview of how to translate the basic operations in a path
expression query to SQL is provided. The operations described are (1) returning
an element with its children, (2) selections on values, (3) pattern matching,
(4) optional predicates, (5) predicates on attribute names and (6) regular path
queries which can be translated into recursive SQL queries.

The binary association method [28] deals with translating OQL-like queries
into SQL. The class of queries they consider roughly corresponds to branching
path expression queries in XQuery.

In XRel [37], a core part of XPath called XPathCore is identified and a
detailed algorithm for translating such queries into SQL is provided. Since with
each element, a path id corresponding to the root-to-leaf path is stored, a simple
path expression query like book/section/title gets efficiently evaluated. Instead
of performing a join for each step of the path expression, all elements with a
matching path id are extracted. Similar optimizations are proposed for branching
path expression queries exploiting both path ids and the interval encoding. We
examine this in more detail in Section 3.3.

In [35], algorithms for translating order based path expression queries into
SQL are provided. They provide translation procedures for each axis in XPath,
as well as for positional predicates. Given a path expression, the algorithm trans-
lates one axis at a time in sequence.

The dynamic intervals approach [7] deals with a larger fragment of XQuery
with arbitrarily nested FLWR expressions, element constructors and built-in
functions including structural comparisons. The core idea is to begin with static
intervals for each element and construct dynamic intervals for XML elements
constructed in the query. Several new operators are proposed to efficiently im-
plement the generated SQL queries inside the relational engine. These operators
are highly specialized and are similar to operators present in a native XML
engine.

3.3 Summary and Open Problems

The various schema-oblivious storage techniques can be broadly classified as:

1. Id-based: each element is associated with a unique id and the tree structure of
the XML document is preserved by maintaining a foreign key to the parent.

2. Interval-based: each element is associated with a region representing the
subtree under it.

3. Path-based: each element is associated with a path id representing the root-
to-leaf path in addition to an interval-based or id-based representation.

We organize the rest of the discussion by considering different classes of
queries.



Reconstructing an XML sub-tree This problem is largely solved. In the
schema-oblivious scenario, the sub-tree corresponding to an XML element could
potentially span all tables in the database. Hence, while solutions that store all
the XML data in only one table need to process just that table, other solutions
will need to access all tables in the database.

For id-based solutions, a recursive SQL query can be used to reconstruct a
sub-tree. For interval-based solutions, a non-recursive query with interval pred-
icates is sufficient.

Simple Path Expression Queries We refer to the class of path expression
queries without predicates as simple path expression queries. For interval-based
solutions, evaluating simple path expressions entails performing a range join
for each step of the path expression. For example the query book/author/name
translates into a three-way join. For id-based solutions, each parent-child(/) step
translates into an equijoin, whereas recursion in the path expression (through
//) requires a recursive SQL query. For path-based solutions, the path id can be
used to avoid performing one join per step of the path expression.

Path Expression Queries With Predicates Predicates can be existential
path expression predicates, or positional predicates. The latter is dealt with
in [35, 37]. We focus on the former for the rest of the section.

For id-based and interval-based solutions, a straightforward method for query
translation is to perform one join per step in the path expression [8, 14, 38]. With
path ids, however, it is conceivable that certain joins can be skipped, just as they
can be skipped for some simple path expressions. A detailed algorithm for doing
so is proposed in [37]. That algorithm is correct for nonrecursive data sets — it
turns out that it does not give the correct result when the input XML data has
an ancestor and descendant element with the same tag name. For that reason,
the general problem of translation of path expressions with predicates for the
path-based schema-oblivious schemes is still open.

More Complex XQuery queries The only published work that we are aware
of that deals with more general XQuery queries is [7]. The main focus of the
paper is on issues such as structural equality in FLWR where clauses, full com-
positionality of XML query expressions (in particular, the possibility of nesting
FLWR expressions within functions), and the need for constructed XML doc-
uments representing intermediate query results. As mentioned earlier, special
purpose relational operators are proposed for better performance. We note that
without these operators, the performance of their translation is likely to be in-
ferior even for simple path expressions. As an example, using their technique,
the path expression /site/people is translated to an SQL query involving five
temporary relations created using the With clause in SQL99, three of which in-
volve correlated subqueries. To conclude, excepting [7], all prior work has been
on translating path expression queries into SQL. Using the approach proposed
by [7], we observe that functionality-wise, a large fragment of XQuery can be
handled using dynamic intervals in a schema-oblivious fashion. However, without
modifications to the relational engine, its performance may not be acceptable.



4 Schema-Based XML Storage

In this section, we discuss approaches to storing XML in relational systems that
make use of a schema for the XML data in order to choose a good relational
schema. The main problems to be addressed in this subspace are

1. Relational schema selection — given an XML schema (or DTD), how should
we choose a good relational schema and XML-to-relational mapping.

2. Query translation — having chosen an XML-to-relational mapping, how
should we translate XML queries into SQL.

4.1 Relational Schema Selection

In [32], three techniques for using a DTD to choose a relational schema are
proposed — basic inlining, shared inlining, and hybrid inlining. The main idea
is to inline all elements that occur at most once per parent element in the parent
relation itself. This is extended to handle recursive DTDs.

In [21], a constraint preserving algorithm for transforming an XML DTD to a
relational schema is presented. The authors chose the hybrid inlining algorithm
from [32] and showed how semantic constraints can be generated.

In [2], the problem of choosing a good relational schema is viewed as an
optimization problem: given an XML schema, an XML query workload, and
statistics over the XML data choose the relational schema that maximizes query
performance. They give a greedy heuristic for this purpose.

In [16, 24], the theory of regular tree grammars is used to choose a relational
schema for a given XML schema.

In [4], a storage mapping that takes into account the key and foreign key
constraints present in an XML schema is presented.

There has been some work on using object-relational DBMS to store XML
documents. In [19, 27], parts of the XML document are stored using an XML
ADT. The focus of these papers is to determine which parts of the DTD must
be mapped to relations and which parts must be mapped to the XML ADT.

In Oracle XML DB [42], an annotated XML Schema is used to define how
the XML data is mapped into relations. If the XML Schema is not annotated,
XML DB uses a default algorithm to decide the relational schema based on the
XML Schema. This algorithm handles recursive XML schemas.

A similar approach is made in Microsoft SQL Server 2000 SQLXML [43]
and IBM DB2 XML Extender [40], but they only handle non-recursive XML
schemas.

4.2 Query Translation

In [32], the general approach to translating XML-QL queries into SQL is illus-
trated through examples without any algorithmic details.

As discussed in [31], it is possible to use techniques from the XML publishing
domain in the XML storage domain. To see this, notice that once XML data
is shredded into relations, we can view the resulting data as if it were pre-
existing relational data. Now by defining a reconstruction view that mirrors



the XML-to-relational mapping used to shred the data, the query translation
algorithms in the XML publishing domain are directly applicable. Indeed, this
is the approach adopted in [2]. While this approach has the advantage that
solutions for XML publishing can be directly applied to the schema-based XML
storage scenario, it has one important drawback. In the XML storage scenario,
the data in the RDBMS originates from an XML document and there is some
semantic information associated with this (like the tree structure of the data and
the presence of a unique parent for each element). This semantic information
can be used by the XML-to-SQL translation algorithm to generate efficient SQL
queries. By using solutions from the XML publishing scenario, we are potentially
making the use of this semantic information harder. We discuss this in more
detail with an example in Section 4.3.

Note that even the schema-oblivious subspace can be dealt with in an analo-
gous manner as mentioned in [31]. However, in this case, the reconstruction view
is fairly complex — for example, the reconstruction view for the Edge approach
is an XQuery query involving recursive functions [31]. Since handling recursive
XML view schema is open (Section 2.4), this approach for the schema-oblivious
scenario needs to be explored further.

In [35], as we mentioned in Section 3.2, the focus is on supporting order-based
queries. The authors give an algorithm for the schema-oblivious scenario, and
briefly mention how the ideas can be applied with any existing schema-based
approach.

In Oracle XML DB [42], Microsoft SQL Server 2000 SQLXML [43] and
IBM DB2 XML Extender [40], the XML Publishing and Schema-Based XML
Storage scenarios are handled in an identical manner. So, the description of
their approaches for the XML Publishing scenario presented in Section 2.3 holds
for the Schema-Based XML Storage scenario. To summarize, XML DB sup-
ports branching path expression queries with the child and attribute axes, while
SQLXML supports the parent and self axes as well. XML Extender does not
support any XML query language. Instead, it provides user-defined functions to
manipulate XML data.

In [20], the problem of finding optimal relational decompositions for XML
workloads is considered in a formal perspective. Using three XML-to-SQL query
translation algorithms for path expression queries over a particular family of
XML schemas, the interaction between the choice of a good relational decom-
position and a good query translation algorithm is studied. The authors showed
that the query translation algorithm and the cost model used play a vital role
not just in the choice of a good decomposition, but also in the complexity of
finding the optimal choice.

4.3 Discussion and Open Problems

There is no published query translation algorithm for the schema-based XML
storage scenario. One alternative is to reduce this problem to XML publishing
(using reconstruction views). Hence, from a functionality perspective, whatever
is open in the XML publishing case is open here also. In particular, the entire
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problem is open when the input XML schema is recursive. Even for a non-
recursive XML schema, a lot of interesting questions arise when the XML schema
is not a tree. For example, if there is recursion in an XPath query through //, the
straightforward approach of enumerating all satisfying paths using the schema
and handling them one at a time is no longer an efficient approach. If we wish to
reduce the problem to XML publishing, the only way to use an existing solution
is to unfold the DAG schema into an equivalent tree schema.

We now examine the translation problem from a performance perspective.

Goals of XML-to-SQL Query Translation When an XML document is
shredded into relations, there is inherent semantic information associated with
the relation instances given that the source is XML. For example, consider the
XML schema shown in Figure 3. One candidate relational decomposition is also
shown in the figure. The mapping is illustrated through annotations on the XML
schema. Each node is annotated with the corresponding relation name. Leaf
nodes are annotated with the corresponding relational column as well. Parent-
child relationships are represented using id and parentid columns. The figure
element has two potential parents in the schema. In order to distinguish between
them, a parentcode field is present in the Figure relation. In this case, notice that
there is inherent semantics associated with the columns parentid and parentcode
given that they represent the manner in which the tree structure of the XML
document is preserved.

Given this semantics, when an XML query is posed, there are several equiva-
lent SQL queries, which are not necessarily equivalent without the extra seman-
tics that come from knowing that the relations came from shredding XML. Con-
sider the following query: find captions for all figures in top level sections. This
can be posed as an XPath query XQ = /book/section/figure/caption. There are
two equivalent ways in which we could translate XQ into SQL. They are shown
below.

SQ1: SQ2:

select caption select caption

from figure from figure f, top-section ts, book b

where parentcode=1 where f.parentcode=1 and f.parentid=ts.id

and ts.parentid=b.id



While SQ1 merely performs a scan on the figure table, SQ2 roughly performs a
join for each step of the path expression. SQ2 is what we would obtain by adapt-
ing techniques from XML publishing. Queries SQ1 and SQ2 are equivalent only
because of the semantics associated with the parentcode and parentid columns
and would not be equivalent otherwise.

Now, since the XML-to-SQL translation algorithm is aware of the semantics
of the XML-relational mapping, it is better placed than the relational optimizer
to find the best SQL translation. Hence, from a performance perspective, the
problem of effectively exploiting the XML schema and the XML-relational map-
ping during query translation remains open.

Enhancing Schema-Based solutions with Intervals/Path-ids All the
schema-based solutions proposed in published literature have been id-based.
In the schema-oblivious scenario, it has been shown that using intervals and
path-ids can be helpful in XML-to-SQL query translation. The problem of aug-
menting the schema-based solutions with some sort of intervals and/or path-ids
is an interesting open problem. Note that while any id-based storage scheme
can be easily augmented by adding either a path-id column or an interval for
each element, developing query translation algorithms that use both the schema
information and the interval/path information is non-trivial.

5 Summary and Conclusions

To conclude, we refer again to the summary in Table 1. From that table, we see
that the community has made varying degrees of progress for different subprob-
lems in the XML to SQL query translation domain. We next summarize this
progress, in terms of functionality.

– In the XML-Publishing scenario, techniques have been proposed for handling
complex query languages like XQuery and XSLT over tree XML view schema.
However, handling recursive XML view schema is an open problem. Even for
tree XML view schema, the subset of XQuery handled by current solutions
is not clear.

– In the schema-oblivious XML storage scenario, excepting [7], the focus has
been on path expression queries.

– In the schema-based XML storage scenario, there is no published query trans-
lation algorithm. The only approach known to us is through a reduction to
the XML publishing scenario.

Our purpose in submitting this paper to this symposium is to begin to clarify
what is known and what is not known in the large, growing, and increasingly di-
verse literature dealing with using relational database systems for storing and/or
querying XML. Other classifications of existing work are possible, and certainly
our classification can be refined and improved. Furthermore, while we have tried
to be complete and have surveyed close to 40 publications, there may be gaps in
our coverage. It is our hope that publishing this paper in the symposium pro-
ceedings will begin a discussion that will improve the quality of this summary,



and, more importantly, will spur further work to fill the gaps in the state of the
art in the XML to SQL translation literature.
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