
On the Integration of Structure Indexes and Inverted
Lists

Paper Id: 570

ABSTRACT
Several methods have been proposed to evaluate queries
over a native XML DBMS, where the queries specify
both path and keyword constraints. These broadly con-
sist of graph traversal approaches, optimized with aux-
iliary structures known as structure indexes; and ap-
proaches based on information-retrieval style inverted
lists. However, no published literature addresses meth-
ods of combining structure indexes and inverted lists.
We bridge this gap by proposing a strategy that com-
bines the two forms of auxiliary indexes and a query eval-
uation algorithm for branching path expressions based
on this strategy. Our technique is general and applica-
ble for a wide range of choices of structure indexes and
inverted list join algorithms. Our experiments over a
native XML DBMS show the benefit of integrating the
two forms of indexes. We also consider algorithmic is-
sues in evaluating path expression queries when the no-
tion of relevance ranking is incorporated. By integrat-
ing the above techniques with the Threshold Algorithm
proposed by Fagin et al., we obtain instance optimal al-
gorithms to push down top k computation.

1. INTRODUCTION
Recently, there has been a great deal of interest in the

development of techniques to evaluate path expressions
over collections of XML documents. In general, these
path expressions contain both structural and keyword
components. For example, consider the query //sec-
tion[/figure/title/“Graph”]. This query looks for the key-
word “Graph” (its keyword component) appearing at
the end of a sequence of structural containments //sec-
tion/figure/title (its structural component) and returns
the matching sections.

Several methods have been proposed for processing
path expressions over graph/tree-structured XML data.
These methods can be classified into two broad classes.
The first involves graph traversal where the input query
is evaluated by traversing the data graph [21, 31] or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

some compressed representation [4, 9, 39]. The other
class involves information-retrieval style processing us-
ing inverted lists [8, 11, 25, 28, 37, 41, 45]. Methods
have been proposed to optimize queries in the presence
of both these alternatives [21, 24, 31]. In this framework,
structure indexes [12, 18, 26, 27, 32] have been proposed
to be used as a substitute for graph traversal [31]. These
structure indexes are proven to be very effective when
applied to queries that examine the “coarse” structure of
documents. For example, for many documents, a query
//section/figure/title would be evaluated very efficiently
by a structure index. Unfortunately, the structure index-
ing approach is much less successful when we consider
queries on “values” or text words in the documents. This
is roughly because any summary that retains enough de-
tail to answer such queries has to be big (it has to encode
a lot of details about specific values), so running queries
over the summary will be no more efficient than running
them over the original data. On the other hand, while
inverted list processing has proven very effective for key-
word searches in the information retrieval (IR) commu-
nity, when applied to path expression queries over XML
documents they are less universally effective. The prob-
lem is that evaluating a path may require many joins
over large inverted lists, and these joins can be expen-
sive. To the best of our knowledge, no published litera-
ture addresses the problem of combining these two forms
of auxiliary indexes.

This paper bridges this gap by proposing a strategy
that combines structure indexes and inverted lists and
a query evaluation algorithm for branching path expres-
sions based on this strategy. Our algorithm does not
assume any specific property of these indexes and is ap-
plicable for a wide range of structure indexes and in-
verted list join algorithms. Our contributions in this
regard are:

• Evaluating path expressions using structure
indexes and inverted lists (Section 3) We aug-
ment the inverted list entries with information de-
rived from a structure index and propose a query
evaluation algorithm that uses these modified en-
tries to potentially eliminate most inverted list
joins.

• Evaluation of these techniques (Section 6) We
have implemented our approach in a native XML
data management system [43]. Our experiments
using this system demonstrate that we can derive
substantial benefits by integrating the two forms
of indexes.

While finding all documents or elements that satisfy
a given path expression is a common use of path ex-
pression querying, users who specify keyword-based IR
queries typically want just the k most relevant answers.
Several proposals have been made to incorporate the IR
notion of relevance to XML queries [2, 15, 19, 30, 35].
As described in [16], XML search tasks can be divided
into Content-Only (CO) tasks where XML documents
are searched only using keywords, and Content-and-
Structure (CAS) tasks where both structure and content
is queried. Techniques such as XRank [19] deal with the
CO space. In the CAS space, several approaches such
as in [2, 15, 30] have been considered. However, the fea-
tures of appropriate query languages are yet to be clearly
identified.

In this paper, we focus on a subclass of CAS queries
consisting of simple path expressions. We study algo-
rithmic issues in integrating structure indexes with in-
verted lists for the evaluation of these queries, where
we rank all documents that match the query and re-
turn the top k documents in order of relevance. We
allow a broad class of relevance functions (Section 4.1)
that covers the standard tf-idf notion of ranking and
propose instance-optimal [14] methods of pushing down
top k computation by combining the forms of indexes.
Our approach is based on Fagin et al.’s Threshold Al-
gorithm (TA) [14]. Our setting poses novel challenges
(Section 4.2), since the ranking function we allow is not
necessarily monotonic [14]. Also, unlike TA which is
a middleware algorithm, our focus is on the database
server where additional access paths are available. This
violates the assumptions under which TA is shown to be
instance optimal. Our contributions here are:

• Algorithm to Merge Ranked Inverted Lists
(Section 4.3): We adapt Fagin et al.’s Threshold
Algorithm [14] to join ranked inverted lists to eval-
uate a single path expression. The technical chal-
lenge is due to the fact that the ranking function
we use is not monotonic, as required by the algo-
rithms in [14].

• Using Structure Indexes for top-k Compu-
tation (Section 5): In our domain, the presence
of additional access paths leads to new algorithms
that are better on some instances of the problem.
The above algorithm thus fails to be instance op-
timal in the presence of these new access paths.
However, we show that a structure index can be
used in conjunction with the ranked inverted lists
to design a new algorithm that is instance optimal
even in the presence of these access paths. We ex-
tend this algorithm to the case when the query is
a bag of simple path expressions (Section 5.1), in
which case, it is instance optimal for a broad sub-
class of ranking functions allowed. We present the
results of our experiments in Section 6.

2. BACKGROUND

2.1 Data Model
Each XML document is a tree. An XML tree is a di-

rected graph G = (VG, VT , EG, root , ΣG, oid , label , ord).
VG is the set of element nodes while VT is the set of text
nodes, one per keyword in the XML document. ET is

the set of edges which are constrained to induce a span-
ning tree over VG∪VT . Each edge in ET is a parent-child
edge. There is a distinguished node in VG called the root
with no incoming edges. Nodes in VT have no outgoing
edges, that is, they occur at the leaves of the tree. Nodes
in VG ∪ VT are labeled through the label function. We
assume that the labels of nodes in VT are the respec-
tive keywords they represent and that they are distinct
from those of nodes in VG. The labels of nodes in VT

are placed in quotation marks to distinguish them. All
nodes in VG ∪ VT are assigned unique ids through the
oid function. Each node is assigned a unique ordinal
number, through the ord function, which corresponds to
its sibling position. We can define a total ordering on
all nodes in VG ∪VT by ordering parents before children
and using the ordinal number between siblings. We re-
fer to this as the document order. The document order
corresponds to the order in which the data appears in
the XML document.

Figure 1 is an example XML tree. This data represents
one of the XQuery use cases available at [10]. The data
represents an XML document that stores the contents
of a book, in this case “Data on the Web”. The book
has a root book element along with tags for sections,
figures, titles and paragraphs (p). These tags induce a
tree structure on the document. The actual contents of
the book appear at the leaf level of this tree. Some of
these contents are omitted for clarity.

An XML database is a collection of XML
trees/documents. The oids are constrained to be
unique across the whole database. The id of the root
node of a document is the document id. The whole
database consists of an artificial root node with the spe-
cial label ROOT that has as its children the roots of each
individual document. An example would be a database
of books where each book is an XML document, like
the one in Figure 1.

2.2 Path Expression Queries
A simple path expression has the form “s1 l1 s2 l2 . . . sk

lk” where each li except lk is a tag name, lk is a tag name
or keyword, and each si is either / or // denoting respec-
tively parent-child and ancestor-descendant traversal. If
lk is a keyword, the simple path expression is called a
simple keyword path expression.

A branching path expression has the form
“s1 l1[Pred1] s2 l2[Pred2] . . . sk lk[Predk]” where
each Predi is an optional predicate, each li except lk is
a tag name, lk is a tag name or keyword, and each si

is either / or // denoting respectively parent-child and
ancestor-descendant traversal. If lk is a keyword, then
Predk must be absent. A predicate is a simple path
expression.

The result is the set of all nodes that match the path
expression query. This is standard notation for path
expressions, with the exception that we allow the trailing
label to be a keyword.

Some example queries on the data in Figure 1 are:

1. //section//title/“web”, which returns all occur-
rences of the keyword “web” under the path //sec-
tion//title.

2. //section[/title]//figure
3. //section[/title/“web”]//figure[//“graph”]

If a branching path expression has at least one keyword,

title

"Data on the Web"

"Peter Buneman""Serge Abiteboul"

author author

"Dan Suciu"

author

section

book

p

title

image

figure

title

p

section

title

section

title p
figure

title image

section

title p

title p

section

section

title p p

section

"Intro"

ptitle
title image

figure

p

"..."

"..."

"..."

"Audience"

"Web ..."

Figure 1: Sample data

we call it a text query. Otherwise, we call it a structure
query. Queries 1 and 3 are instances of text queries
while Query 2 is an instance of a structure query. The
structure component of a text query TQ is the structure
query SQ(TQ) obtained by dropping all keywords from
TQ. For instance, the structure component of Query 3
above is Query 2.

2.3 Structure Indexes

title image

figure

title image

figure

title

section

sectionauthor

book

title p

title p

2 3 4

6 7

9 10

1514

11

12 13

85

1

Figure 2: Example structure index

A structure index I(G) for the data graph G corre-
sponding to an XML database is another labeled, di-
rected graph. The idea is to preserve all the paths in the
data graph in the summary graph, while having far fewer
nodes and edges. A structure index is used for query an-
swering by associating an extent with each node in the
index. In general, any partition of the element nodes de-
fines a structure index where we (1) associate an index
node with every equivalence class, (2) define the extent
of each index node n, ext(n), to be the equivalence class
that formed it and (3) add an edge from index node A to
index node B if there is an edge from some data node in
ext(A) to some data node in ext(B). Henceforth, when-
ever we refer to a structure index, we mean an index
obtained from a partition of the data nodes through the
above construction. Thus, even a simple grouping of the
data nodes by label defines a structure index. Each node
A in the index has a unique identifier id(A). Notice that
a structure index indexes only the structural part of the
XML database — it ignores the text nodes.

Figure 2 shows an example structure index. The num-
bers shown beside each node indicate the id of that node
in the index. Each element node is associated with ex-
actly one index node inducing a partition on the data
nodes.

The index result of executing a path expression R on
I(G) is the union of the extents of the index nodes that

match R. The extent mapping has the property that the
result of any path expression R on G is contained in the
result of R on I(G). For a particular path expression
query Q, if the index result is equal to the result of Q
on the data graph, then I(G) is said to cover Q.

2.4 Inverted Lists
Several native XML database systems [24, 43] create

inverted lists on tag names and keywords. Algorithms
to effectively process queries using these lists have been
proposed [37, 45]. We assume the following representa-
tion for inverted lists.

• For each element node n with tag t, there is an
entry in the corresponding inverted list of the
form <docid, start, end, level, indexid>. We de-
note start as n.start and likewise for the other
fields.

• For each text node with label K, there is an en-
try in the corresponding inverted list of the form
<docid, start, level, indexid>.

Here, docid refers to a unique document identifier and
level is the depth of the node in the tree. The start and
end numbers need to satisfy the following properties:

1. For each element node n, n.start < n.end.
2. If (element) node n1 is an ancestor of element node

n2, then n1.start < n2.start < n2.end < n1.end.
3. If (element) node n1 is an ancestor of text node

n2, then n1.start < n2.start < n1.end.
4. If element nodes n1 and n2 are siblings and

ord(n1) < ord (n2), then n1.end < n2.start. A
similar property holds when one or both of n1 and
n2 are text nodes.

Path expressions can be evaluated by joining inverted
lists [37, 45]. In order to make these joins more efficient,
auxiliary indexes have been proposed [8, 11, 21]. For
example, in Niagara [21], B-Trees are used to skip parts
of the inverted lists during query processing. We denote
the algorithm that joins inverted lists to evaluate a path
expression p as IV L(p). We use IV L as a subroutine in
our algorithm. Any of the published techniques to join
inverted lists [8, 11, 25, 28, 37, 45] can be used for this
procedure.

3. EVALUATING PATH EXPRESSION
QUERIES

We first describe how we modify inverted lists to in-
tegrate them with structure indexes. Next, we present

an example scenario to illustrate our query evaluation
algorithm that uses this modification. We then present
the details of our algorithm first for simple path expres-
sions and next for branching path expressions. Finally,
we show that there are cases when inverted list joins can
out-perform a scan. We introduce the notion of extent
chaining to address this issue.

3.1 Integrating Structure Indexes with In-
verted Lists

In order to integrate structure indexes with inverted
lists, we add a new indexid field to the list entries. For
a specific structure index I, the indexid field is set as
follows.

• For an element node n, let the unique index node in
whose extent n appears be N . Then, n.indexid =
id(N).

• For a text node n, let the unique index node in
whose extent the parent of n appears be N . Then,
n.indexid = id(N).

For example, for the data shown in Figure 1, with first
level section elements (that is, children of the root), we
store an index id of 4. For the keyword “web” occurring
under book/title, we store an index id of 2 corresponding
to book/title in the index.

3.2 A Simple Example
Consider the following query over the data shown in

Figure 1: //section[//figure/title/”graph”] that asks for
all sections that have a figure whose title contains the
keyword “graph”.

Evaluating the above query over a native XML
database system like Niagara [34] or Timber [24] would
involve joining the inverted lists corresponding to the
tag names section, figure and title, and the key-word
“graph”. Now suppose that we have a structure index
on this data, for instance the 1-Index [32], which is
shown in Figure 2. This index covers all simple path
expressions.

A straight-forward method of using this index would
be to use it only for those parts of the path expression
that are directly covered by it. For instance, we could
select only that part of the figure list that is under sec-
tion, by using the index ids for //section//figure. This
would have some benefit since fewer figure elements par-
ticipate in the join. However, we can do even better as
illustrated by the following evaluation strategy.

1. Execute the structure component //sec-
tion[//figure /title] on the structure index to obtain
a set of pairs of index ids corresponding to match-
ing <section,title> pairs. In this case, this step
would return S = {<4, 12>,<4, 14>,<7, 14>}.

2. Evaluate the join section[//“graph”] using the re-
spective inverted lists, with the additional condi-
tion that a joining <section,“graph”> pair satis-
fies: the corresponding index id pair must be in
S.

This strategy is correct since for any joining node pair
<ns, nw> (here, ns is an element node with label section
and nw is a text node with label “graph”):

1. The fact that the parent of nw has index id 12 or 14
means that nw is under the path figure/title.

2. Since ns has some path to nw and since nw is under
figure/title, ns satisfies the query.

Notice that we replace three joins with one, in the pro-
cess incurring an index evaluation cost. The structure
index is typically much smaller than the data. Hence,
the evaluation using the structure index is likely to do
well.

3.3 Simple Path Expressions

procedure evaluateSPEWithIndex(q, I)
/* evaluate simple path expression q using index I */

begin
1. Let q = p sep t
2. if (t is a keyword) then q′ = p
3. else q′ = q
4. if (I does not cover q′) then
5. use IV L(q) to evaluate without structure index
6. Evaluate q′ on I
7. Let S be the set of indexids returned
8. if (t is a keyword and sep is //) then
9. foreach (i ∈ S) do
10. put all descendants of i in S
11. Scan the inverted list for t returning

only those entries e where e.indexid ∈ S
end

Figure 3: Using structure index for simple path
expression

The algorithm for evaluating a simple path expres-
sion q using a structure index I is given in Figure 3.
Steps 2-4 extract the structure component q′ of q and
check whether I covers q′. We assume that I comes
with an interface to check this property. The algorithm
uses I only if it covers q′. In this case, it evaluates q′ on
I to obtain a set S of index ids. If t is a tag name, then
since I covers q′ = q, Step 11 returns exactly the entries
matching q.

If t is a keyword and sep is /, then for each entry e
returned in Step 11, the following holds: e.indexid ∈
S which means that the parent of e matches q′ = p.
Hence e matches q. The algorithm handles the case when
sep is // by adding the (index) ids of descendants of all
(index) nodes matching p (Steps 8-10).

3.3.1 Branching Path Expressions
A branching path expression consists of multiple sim-

ple path expressions. We adapt the solution for simple
path expressions to address each individual branch and
then join appropriate lists.

We discuss the evaluation algorithm for branching
path expression queries with one predicate. These
ideas extend to generic branching path expressions in
a straightforward manner. Queries with one predicate
can be represented as p1[p2 sep t]p3 where p1,p2 and p3

are simple structure expressions, sep is / or // and t is
a keyword. Examples of queries of this kind are:

Q1 //section[/section/title/“web”]/figure/title
Q2 //section[/section//title/“web”]/figure/title
Q3 //section[/section/title/“web”]//figure/title
Q4 //section[/section/title//“web”]/figure/title

We assume that the structure index covers p1, //p2

and //p3. Depending on the presence of // in p2, p3 or
sep, we get the following cases.

Case 1: None of p2, p3 and sep contains //, as in Q1.
Case 2: p2 contains //, as in Q2.

Case 3: p3 contains //, as in Q3.
Case 4: sep is //, as in Q4.

Cases 2,3 and 4 are not disjoint.
In addition to the usual parent-child and ancestor-

descendant join, we make use of the level numbers in the
inverted list entries to perform level joins. For instance,
section/2title returns all title elements that are grand-
children of a section element. In general, we use the
notation e1/

de2 to denote a binary level join. This can
be trivially implemented by comparing level numbers
during an ancestor-descendant check.

In Section 3.3, we saw how we can augment the scan
of an inverted list to incorporate a set of indexids. Using
this idea, we were able to convert a simple path expres-
sion query into a scan of a single list. We generalize this
approach to inverted list joins as follows. For a 2-way
join, we use a set S of indexid pairs obtained using the
structure index to filter the result of the join so that
only those pairs of entries whose indexids match some
pair in S are returned. For n-way joins, we use a set
S of n-tuplets of indexids. We use the special entry >
for an indexid to denote that any value is a match. No-
tice that for any inverted list join algorithm IV L, the
modification described above is straight-forward.

We explain our algorithm by discussing how it handles
Cases 1 and 2 above. Cases 3 and 4 can be similarly
handled. The detailed algorithm is omitted for lack of
space.

Consider Q1. Let the structure index I be the one
shown in Figure 1. I is applicable since it covers the
three expressions //section, //section/title and //fig-
ure/title. By evaluating the structure component of the
query, //section[/section/title]/figure/title on I, we ob-
tain a set S of triplets of ids of index nodes match-
ing section, section/title and figure/title nodes. In this
case, S = {< 4, 9, 12 >}. We then evaluate the join
//section[/3“web”] /2title using IV L with S. This strat-
egy is correct since if <ns, nw, nt> is a node-triplet re-
turned finally (with corresponding labels section, “web”
and title):

1. ns matches //section, nw matches //section/title
/“web” and nt matches //figure/title.

2. ns is the great grand-parent of nw (due to a level
difference of 3), so <ns, nw> matches //section[
/section/title/“web”].

3. ns is the grand-parent of nt (level difference of 2),
so <ns, nw, nt> matches Q1.

We now move on to Case 2. Consider Q2. The main
difference from Case 1 is that there is a // as part of the
predicate which means that, for Q2, the distance be-
tween a section node and a “web” node is not known in
advance. Suppose evaluating the structure component of
Q2 on I returns a set of triplets S. Now, the idea is to
check if we can skip the section//title join in the pred-
icate. In order to replace e1 =//section[/section//title
/“web”] with e2 =//section[//“web”] using S, we need
to verify the following. If an entry s (corresponding to
node ns) in the inverted list for section and an entry
w (corresponding to node nw) in the inverted list for
“web” satisfy e2 and some triplet < i1, i2, i3 >∈ S, then
there must actually be a path from ns to nw matching
/section//title/“web”. We ensure this by checking that
there is exactly one path in the structure index from i1

to i2. Now, we know that there is some path p/“web”
from ns to nw because of the containment check. By the
property of structure indexes, there is a path matching
p from i1 to i2. Also, since < i1, i2, i3 >∈ S, there is a
path p′ matching section//title from i1 to i2. But since
there is exactly one path from i1 to i2, p = p′. Hence,
we can skip the joins. As for the /figure/title join, since
there is no // separator, it can be replaced with /2title
(as in Case 1). Putting this together, we evaluate the
join //section[//“web”]/2 title using IV L with S.

3.4 Extent Chaining
In our algorithm described in Section 3.3.1, we at-

tempt to skip joins whenever possible using the structure
index. As we will see next, it turns out that skipping
joins is not always beneficial. We introduce the notion
of extent chaining to address this deficiency.

Consider the query q =//figure/title. In [11], the au-
thors introduce algorithms to make use of B-tree indexes
on the inverted lists while performing containment joins.
The algorithm does not examine those parts of the in-
verted lists that do not participate in the join. Depend-
ing on the document structure, the join could return the
figure/title nodes by examining far fewer than the total
number of title entries. For example, suppose a docu-
ment has 100 titles of which only 10 occur directly under
a figure, the other 90 being section titles. In this case,
the scan would examine the 100 title entries, whereas
algorithms using B-Tree indexes could examine as few
as 10 title entries in the best case.

In the algorithm described in the previous section, we
attempt to skip joins whenever possible. As we just
saw, however, joins could actually restrict the computa-
tion and make it more efficient. Next, we discuss how
to adapt our algorithm to address this problem. The
algorithm in [11] uses the fact that title is constrained to
be under figure to ignore irrelevant parts of the title in-
verted list. Observe that we can achieve a similar effect
using the set of indexids corresponding to //figure/title.
This is done by chaining all title entries based on index-
ids. That is, each entry has a pointer to the next entry
in the same document with the same indexid. We refer
to this as extent chaining. Now the inverted list entry
for an element and keyword has an additional next field
for this pointer.

The scan of an inverted list is modified to take ad-
vantage of extent chaining as follows. The algorithm is
shown in Figure 4. In step 3, we obtain the first entry in
a list corresponding to a given indexid. We maintain a
directory for this purpose. If the database contains only
one document, for instance, then the structure index it-
self can store this information. In Section 6, we discuss
the tradeoff between performing a linear scan and using
an extent chain.

Generalizing this approach to joins of inverted lists, we
pass the projection of the appropriate column of S (set of
indexid n-tuples for an n-way join) to the corresponding
scan.

4. RANKED IR-STYLE PATH QUERIES
We now consider the role of structure indexes in

supporting information retrieval style relevance-based
querying over a corpus of XML documents. We first
define the class of queries we consider and describe the

procedure scanWithChaining(L, S)
/* returns entries in list L with indexid∈ S */

begin
1. currEntries = φ
2. foreach (id ∈ S) do
3. add first entry in L with indexid id to currEntries
4. while (currEntries 6= φ) do
5. minEntry = entry with minimum

start number in currEntries
6. get entry e in L corresponding to minEntry
7. delete minEntry from currEntries
8. if (minEntry.next 6= NULL) then
9. add minEntry.next to currEntries
10. output e
end

Figure 4: Scan with extent chaining

associated relevance semantics we allow. We next dis-
cuss the challenges involved in pushing down top k com-
putation. Finally, we study the limitations of a straight-
forward extension of the Threshold Algorithm [14].

4.1 Query Language and Ranking Metric
Several proposals have been made to incorporate the

IR notion of relevance to XML queries [2, 15, 19, 30,
35]. As described in Section 1, several of these propos-
als consider Content-and-Structure (CAS) tasks where
both structure and content is queried. However, the
features of appropriate query languages are yet to be
clearly identified. The goal of this paper is not to define
the best relevance metric over XML data, instead it is
to study algorithmic issues in merging structure indexes
with inverted lists in relevance-based computation. For
this purpose, we consider a subclass of CAS queries.

We define a relevance query to be a bag of simple key-
word path expressions, analogous to the “bag of words”
query model in information retrieval. Thus, we allow
simple structural specification in addition to keywords.

We next examine our model for relevance computa-
tion. Let D be an XML document and p be a sim-
ple keyword path expression query. The relevance of D
to p is computed using a non-negative ranking function
R(p,D). For a bag of simple keyword path expressions,
Q = {p1, . . . , pl}, we can talk about the relevance of doc-
ument D for each pi. The relevance of D with respect to
Q is computed by combining all R(pi, D) through a non-
negative merging function MR(R(p1, D), . . . , R(pl, D))
(Merge-Relevance).

The ranking function R must be consistent with term
frequency (tf). The term frequency of p in D, tf(p,D),
is defined to be the number of (distinct) nodes in D
that match p. As a special case, if p is //t where t
is a tag name or keyword, we refer to tf(p,D) as the
term frequency of t. R(p,D) must satisfy the following
property: for path expressions p1 and p2, tf(p1, D) <
tf(p2, D) ⇔ R(p1, D) < R(p2, D). We also require that
if tf(p, D) is 0, then R(p,D) = 0. We refer to the above
as the tf-consistency property.

The merging function MR must be mono-
tonic [14], that is, for documents D1 and D2,
if R(pi, D1) ≥ R(pi, D2) for each i from 1
to l, then MR(R(p1, D1), . . . , R(pl, D1)) ≥
MR(R(p1, D2), . . . , R(pl, D2)). We also require
that for document D, if each R(pi, D) is 0, then
MR(R(p1, D), . . . , R(pl, D)) = 0. Any pair of ranking
and merging functions that satisfy the above properties
is permitted. Note that one particular example of a

merge-rank function is a weighted sum of the individual
ranks. Here, the weights could be inverse document
frequencies (idf). Hence, the above definition of rele-
vance permits the traditional IR notion of tf-idf based
ranking.

4.1.1 Extending Ranking to Include Proximity
We can extend the relevance metric to account for key-

word proximity when the input is a bag of simple key-
word path expressions. For this purpose, we modify the
relevance computation by multiplying the merge-rank
function by a proximity function ρ. Thus, for a bag of
path expressions {p1, . . . , pl}, the relevance of a docu-
ment D is measured as MR(R(p1, D1), . . . , R(pl, D1))×
ρ(D, p1, . . . , pl). We assume that the value of the prox-
imity function lies in the range [0, 1]. Note that we do
not assume anything about what the notion of proxim-
ity is: it could be measured by merely treating the doc-
ument as a text document and using any standard IR
notion of proximity, or could reflect the tree structure
of the document by assigning a higher weight if there
is a deeply nested element that contains all the key-
words. A relevance function is said to be (1) well-behaved
if R is tf-consistent, MR is monotonic and ρ ∈ [0, 1],
(2) proximity-sensitive if it is well-behaved and ρ is not
identically 1. Note that for a single simple keyword path
expression, MR and ρ are not applicable, instead rele-
vance is computed using the ranking function R.

4.2 Optimizing Top k Computation
The main problem in this domain is to try to find the

top k answers without evaluating the entire query. In
order to push down the top k computation, we need ac-
cess paths based on relevance. We assume that for each
tag name (keyword) t, there is an additional inverted
list rellist(t) where the entries within a document are
in document order and the inter-document order is in
descending order of relevance of t (R(t,D)).

Fagin et al. proposed the threshold algorithm (TA)
to merge ranked lists in middleware [14]. There are two
main differences in our setting.

• When we join two inverted lists, the relevance
of the result is not “monotonic” in the rele-
vance of the inputs. In other words, suppose
we are evaluating a//b. If we were to directly
apply the threshold algorithm, then we need the
following property: for documents d1 and d2,
if R(a,d1)>R(a,d2) and R(b,d1)>R(b,d2) then
R(a sep b,d1)>R(a sep b,d2). This is not true in
our scenario.

• TA is a middleware algorithm and is provably op-
timal under certain assumptions. Our focus is on
the XML database server where additional access
paths, like the original inverted lists, are available.
These access paths violate the assumptions under
which TA is proved to be optimal.

We next explore how each of these differences can be
handled.

4.3 Adapting TA to Inverted List Joins
We present the details for two-way join queries. The

adaptation for more joins is straight-forward. Consider
the path expression a sep b. The algorithm for this case,
compute top k, is given in Figure 5. For steps 10 and 15,

procedure compute top k(k,a,sep,b)
/* query is: a sep b; sep is / or // */

begin
1. ListA = rellist(a) /* relevance list for a */
2. ListB = rellist(b) /* relevance list for b */
3. topKresults = φ
4. mintopKrank = 0
5. while (more entries in both ListA and ListB) do
6. currDocB = next document in ListB
7. if ((R(b,currDocB) <= mintopKrank) and

(number of documents in topKresults is k)) then
8. break
9. if (currDocB /∈ topKresults) then
10. Evaluate a sep b on currDocB
11. Let the result be currDocResult
12. Add currDocResult to topKresults
13. currDocA = next document in ListA
14. if (currDocA /∈ topKresults) then
15. Evaluate a sep b on currDocA
16. Let the result be currDocResult
17. Add currDocResult to topKresults
18. Retain only top k documents in topKresults
19. Set mintopKrank appropriately
20. return topKresults
end

Figure 5: Top k algorithm for 2-way join

we can use any standard algorithm that merges two in-
verted lists [8, 11, 25, 28, 37, 45].

The procedure compute top k executes a sep b on a
per-document basis in the process maintaining the top k
documents (based on relevance) among the documents
processed so far in the set topKresults. When it realizes
that none of the future documents can be part of the
top k, it stops processing and returns the results. This
termination condition is shown in Step 7. The maximum
relevance any future document can have is the relevance
of the current document in ListB. If the latter value is
smaller than the relevance of the kth document in top-
Kresults, then no more documents need to be processed
since the list is ordered by relevance. In addition, if we
have seen all entries in either list, then the join termi-
nates. This is so since we have executed the join for all
documents containing both a and b.

The main difference from the original threshold algo-
rithm is the use of R(b,currDoc) in Step 7 above. Also,
unlike the original threshold algorithm, we do not as-
sume that each document appears in every list. We
handle this through the condition for the while loop in
Step 5.

For a generic simple keyword path expression query Q,
we modify compute top k by using the list correspond-
ing to the result node of Q to define the terminating
condition like in Step 7 above, and evaluating Q for each
document accessed, using any standard query evaluation
algorithm [8, 11, 25, 28, 37, 45]. The details are omitted
for lack of space.

4.4 Instance Optimality
In [14], the notion of instance optimality is introduced

and it is shown that the threshold algorithm is instance
optimal among a certain class of algorithms. Similar
results apply in our context. We use the following ter-
minology from [14] to formalize this claim.

We consider the following modes of access to the rel-
evance lists. For a particular list L, we can obtain the
entries for the next document in relevance order — this
corresponds to a sorted access to that document. Al-
ternatively, we can specify a document id and ask for

all entries pertaining to it. This is a random access to
that document. Either access to a document returns
all entries in that document. An algorithm to compute
the top k documents is said to make a wild guess [14]
if it makes a random access on list L for a document id
without having seen it under sorted access under some
(possibly other) list.

We now recall the notion of instance optimality [14].
Let A be a class of algorithms, and let D be a class
of legal inputs to the algorithms. We assume that we
are considering a particular non-negative cost measure
cost(A, D) of running algorithm A over input D. We
say that an algorithm B ∈ A is instance optimal over
A and D if for every A ∈ A and D ∈ D, we have:
cost(B, D) = O(cost(A, D)). In other words, there are
constants c, c′ such that cost(B, D) ≤ c×cost(A, D)+c′

for every choice of A and D. We note that instance
optimality is a stronger notion of optimality than worst-
case, or even average-case optimality.

In our context, we define cost(A, D) of running algo-
rithm A over input D to be the number of document
accesses, both sorted and random, by A across all lists.
Computing the relevance of a document is counted as
one document access. If a document is accessed on mul-
tiple lists, it is counted once per list. Similarly, if a
document is accessed multiple times in the same list, it
is counted once per access.

4.5 Issues With Additional Access Paths
Recall that we have inverted lists sorted on document

id in addition to lists in relevance order. Just as in Sec-
tion 3.4, where we skip parts of an inverted list within a
document using secondary indexes, it is possible to skip
documents during a containment join over all documents.
We illustrate this next with an example. Consider the
simple keyword path expression query q = a/b. Suppose
the XML database has 201 documents with ids from 1
to 201. Let documents 1 to 100 have only a elements
and documents 101 to 200 have only b elements. Let
document 201 have an a element with child b. Consider
the following algorithm for evaluating q.

1. Look at the first document in the two lists — 1
and 101.

2. Since the document ids are different, use the larger
id (in this case, 101) to seek to the first document
in the list for a with document id greater than or
equal to 101.

3. The list for a is now positioned at document 201.
4. Since the document ids are still different, seek on

the list for b to the first document with id ≥ 201.
5. Now both lists are positioned at 201.
6. Perform the join over document 201.
7. Since there are no more documents on both lists,

return.

This evaluation accesses only three documents. On the
other hand, compute top k accesses all documents. The
above algorithm performs efficiently on this instance due
to the presence of a secondary index. Notice that in
Step 3, the list for a is positioned at document 201 as a
result of the random access in Step 2. But document 201
is not accessed through sorted access before this. This
classifies as a wild guess and is not permitted in the
class of algorithms considered in the instance optimality
discussion.

procedure compute top k with sindex(k,q,sep,b)
/* query is: q sep b; sep is / or //,

q is a simple path expression, b is a keyword */
begin
1. ListB = rellist(b) /* relevance list for b */
2. if (sep is /) then
3. indexidList = list of ids of index nodes matching q
4. else /* sep is // */
5. indexidList = list of ids of index nodes matching q

and their descendants in the structure index
6. topKresults = φ
7. mintopKrank = 0
8. while (more entries in ListB) do
9. currDoc = next document in ListB with at least

one entry e such that e.indexid ∈ indexidList
(use extent chaining)

10. if ((R(b,currDoc) < mintopKrank) and
(number of documents in topKresults is k)) then

11. break
12. currDocResult = {e : e ∈ ListB corresponding to

currDoc and e.indexid ∈ indexidList}
(use extent chaining)

13. Add currDocResult to topKresults
14. if (topKresults has k + 1 documents) then
15. remove document with least relevance
16. Set mintopKrank appropriately
17. return topKresults
end

Figure 6: Top k algorithm using structure index

We next show how we obtain an instance optimal al-
gorithm even in the presence of these access paths. We
use a structure index along with extent chaining for this
purpose.

5. INSTANCE OPTIMALITY WITH A
STRUCTURE INDEX

We show how structure indexes can be used to obtain
an instance optimal algorithm even in the presence of
these access paths. We first consider the case when the
relevance query has a single path expression. We then
extend our algorithm in Section 5.1 to the case when the
relevance query is a bag of path expressions.

The evaluation of a simple keyword path expression
Q = q sep b using a structure index I that covers it re-
sults in a scan on the inverted list of b with a set S of
indexids. The algorithm for computing the top k doc-
uments in this case is shown in Figure 6. We modify
the idea of extent chaining introduced in Section 3.4 to
chain all entries in the relevance inverted lists with the
same indexid even across documents. Thus, each entry
has a pointer to the next entry with the same indexid
even if it is not in the same document. We observe the
following about this algorithm.

• Steps 2-5 initialize the indexidList appropriately
depending on whether sep is / or //.

• The terminating condition in Step 8 is similar to
the one in the procedure compute top k.

• The evaluation of currDocResults in Step 12 (for
a single document) can be performed using intra-
document extent chaining described in Section 3.4.

• In Step 9, we use inter-document extent chaining
to advance to the next document in ListB having
at least one match for q sep b.

Implementation Note
When performing a scan using extent chaining, to get
the next entry in the list (like in Step 5 in Figure 4),

we might need to compare the next pointers of more
than one entry and find which of them appears first in
the relevance list. The relative position of two docu-
ments in a relevance list cannot be obtained by com-
paring their document ids. Hence, we introduce rel-
evance document ids (reldocids). All documents ap-
pearing in a relevance list are assigned reldocids based
on their order in the list. The next pointer of an en-
try contains the reldocid and start number of the next
entry with the same indexid. Using the reldocids, we
can compare the next pointers of more than one en-
try. An entry in the relevance list for a tag name is
of the form: <reldocid, start, end, level, indexid, docid,
next reldocid, next start>. An entry for a keyword is
the same except for the absence of end. We emphasize
that the reldocid is used only for extent chaining. In par-
ticular, when we talk about document ids, we refer to
the unique document id that is common to a document
across all lists.

Instance Optimality
In addition to the sorted and random access modes on
the relevance lists, we allow sorted and random access
on the inverted lists sorted on document id. We modify
the wild guess definition to obtain what we call a strict
wild guess, by excluding the following: (1) random access
on any list to first document with id ≥ a given id, and
(2) random access on any list L to a document with
reldocid obtained from the next field of an entry (in L).
Cost is measured in the same way as in Section 4.4. In
particular, the index evaluation cost is not counted for
the purpose of this discussion.

Theorem 1.: Let q be a simple keyword path expres-
sion query. Let D be the class of all databases such that
q is covered by structure index I. Let A be the class of
all algorithms that correctly find the top k documents
(and corresponding nodes) for q over every database
and that do not make strict wild guesses. Then, com-
pute top k with sindex is instance optimal over A and
D.

5.1 Extension to Bag of Simple Keyword
Path Expressions

We now extend the above algorithm to the case when
the query is a bag of simple keyword path expressions;
intuitively, this corresponds to the class of IR queries
with multiple keywords. Consider the evaluation of
query Q = {p1, p2}. Using the structure index, we can
convert each pi to a scan on the appropriate relevance
list. What remains now is to merge these relevance lists
and apply the relevance function for Q (which merges the
relevances of the pi and takes a product with the prox-
imity function ρ). This merge is similar to the merge
algorithm in Figure 5. The algorithm is omitted for lack
of space. Since the merging function is monotonic and
ρ lies in the range [0, 1], this algorithm can easily be
shown to be correct for all well-behaved relevance func-
tions. This algorithm naturally extends when Q has
more than two simple path expressions.

We show that for the special case when the relevance
function is not proximity-sensitive, this algorithm is in-
stance optimal for an interesting class of bag queries,
over the class of algorithms that do not make strict wild
guesses, as defined above. A bag B of simple path ex-
pressions is defined to be disjoint if the trailing terms of

site

regions open_auctionspeople closed_auctions

open_auction

bidder

date

closed_auctionperson{...,namerica,...}

annotation

happiness

profile

education

keyword

description

item

Figure 7: XMark Schema

no two simple path expressions in B are the same. For
example, the bag {book//“XML”,author/“Abiteboul”} is
disjoint while the bag {book//“XML”,article//“XML”}
is not. The optimality of the algorithm is open for
proximity-sensitive relevance functions.

Theorem 2.: Let Q = {q1, q2, . . . , ql} be a bag of
simple keyword path expression queries. Let D be the
class of all databases such that each qi is covered by
structure index I. We have the following.

1. For any database D ∈ D, compute top k bag cor-
rectly returns the top k documents over any given
well-behaved relevance function.

2. Suppose that Q is a disjoint bag and that the rele-
vance of a document is computed using a function
that is well-behaved but not proximity-sensitive.
Let A be the class of all algorithms that cor-
rectly find the top k documents (and corresponding
nodes) for Q over every database and that do not
make strict wild guesses. Then, compute top k bag
is instance optimal over A and D.

6. EXPERIMENTAL RESULTS
We have implemented the above algorithms as part

of a native XML database system [43]. We present the
results of an experimental study that yields a sense for
the efficacy of our techniques. We first present our re-
sults for evaluating branching path expression queries
using structure indexes and inverted lists. We then
move on to relevance queries. Our experiments are run
on a Linux Workstation with 256MB of RAM. We use
a 16MB buffer pool.

6.1 Evaluation of Branching Path Queries
We use the XMark XML-benchmark data [42] for this

set of experiments. This data models an auction site.
The element relationships relevant to this paper are
shown in Figure 7. The tag names are self-explanatory.
The data size is 100MB. The structure index we use is
the 1-Index [32]. A study of how the choice of structure
index impacts performance is future work. We report
the performance results for four queries involving struc-
ture and value constraints based on warm buffer pool
times. We measure the speedup, defined to be the ratio
of the execution time taken in the absence of a struc-
ture index, to the time taken by our algorithm. In the
presence of alternative query plans, we use the execution
time corresponding to the best plan. Table 1 shows the
queries and the respective speedups (we discuss the last
column in this table later).

The main observations to be made from the above
numbers are:

• The benefit of using a structure index in con-
junction with inverted lists is considerable with

speedups of as high as about 43 for simple path
expressions, and about 7 times for branching path
expressions.

• The speedup obtained is dependent on the num-
ber of joins saved. At the extreme, if we remove all
joins replacing them with a scan, then the speedup
obtained is highest. Thus, for the first query above
which is a simple path expression, the speedup ob-
tained is highest.

In the literature, several techniques for inverted list
joins have been proposed [8, 11, 25, 28, 37, 45]. While
our technique reduces the number of joins irrespective
of which of these algorithms is used to join inverted lists
(i.e., as IV L), the actual speedup obtained as a result
depends on the specific algorithm. The inverted list join
algorithms can be broadly classified as follows: merge-
based algorithms [28, 45], stack-based algorithms [8, 37]
and extensions to these using secondary indexes [8, 11,
21, 25]. In the native XML database system we use, the
inverted list join algorithm is a merge-based algorithm
that uses auxiliary B-Tree indexes to skip parts of the
inverted lists.

In order to study the impact of our technique on an
alternative inverted list join algorithm, we consider the
holistic twig join algorithm [8]. This algorithm uses a
stack-based approach to join all inverted lists in one op-
erator and also uses a data structure known as the XB-
Tree to skip parts of the inverted lists. We study the
speedup obtained through our technique by modifying
the source code to incorporate index ids (without extent
chaining). The speedups obtained on the XMark queries
are shown in the final column of Table 1. The results
obtained are consistent with what we get from our na-
tive XML database system. The fact that we obtain
such speedups with two completely different implemen-
tations of inverted list joins shows that our techniques
are widely applicable.

6.1.1 Effect of Extent Chaining
The above discussion shows the benefits obtained

through our technique. This benefit is obtained by sav-
ing joins and using extent chaining to skip parts of an
inverted list. Using an extent chain to access a list can
be expensive compared to a linear scan, especially if the
number of list entries matching an extent is high. In
a separate set of experiments, we compare the perfor-
mance of extent chaining and linear scan by varying the
query selectivity.

Our methodology is the following. We create a docu-
ment with the schema shown in Figure 9. That is, this
document has a root element with a list of A children,
each of which has a list of a fixed number, fanout , of A
children. We use the schema in Figure 9 also as a path
index to define indexids. The id of each index node is
shown beside the node Figure 9.

The query we are interested in is finding all children
of the root by scanning the inverted list for A. We vary
fanout keeping the total number of entries in the in-
verted list for A with indexid 3 fixed at 250000. In the
process, we compare the execution times for the follow-
ing algorithms:

1. Scan the whole A list checking for each entry
whether its indexid is 2.

2. Follow the extent chain for indexid 2.

Query in English Path expression Speedup with Speedup with
Native XML DBMS Holistic Twig Join

Find occurrences of “attires” //item/description//keyword/“attires” 43.3 40.45
under item descriptions
Find open auctions that //open auction[/bidder/date/“1999”] 6.85 2.89
had a bid in 1999
Find the persons who attended //person[/profile/education/“Graduate”] 5.06 1.82
Graduate school
Find closed auctions where //closed auction[/annotation/happiness/“10”] 3.12 4.08
the happiness levelwas 10

Table 1: Speedups Using Structure Index

(No. of A entries with Time in sec. for Time in sec. for Time in sec.
indexid 2,fanout) seq. scan extent chain hybrid scan

(25000,2) 1.32 4.36 1.69
(1000,50) 0.19 0.27 0.24
(500,100) 0.16 0.19 0.22
(250,200) 0.15 0.15 0.23
(100,500) 0.14 0.09 0.16
(50,1000) 0.14 0.05 0.1

Figure 8: Studying the overhead of extent chaining

root

A

A

1

2

3
Figure 9: Schema for extent
chaining experiments

The result is reported in Figure 8 (we explain the hybrid
scan column later).

We observe the following from these numbers:

1. Even though sequential scan performs the same
amount of I/O in each experiment, the time taken
reduces as the number of entries copied over to the
output decreases, showing the effect of this copy
overhead.

2. In the worst-case, using the extent chain is 3.3
times worse than a sequential scan. The fanout
value at which extent chaining begins to be ben-
eficial is 200, which is roughly half a page of list
entries. We note here that the distribution we have
picked is the worst-case distribution for measuring
the overhead of extent chaining. This is so since for
a given selectivity, the maximum number of I/Os
performed by extent chaining is when the results
are uniformly spread out.

3. The previous observation regarding extent chain-
ing is also applicable when parts of a list are
skipped using a secondary index when performing
an inverted list join.

In this context, in addition to the linear scan and ex-
tent chain scan approaches, we also consider a third hy-
brid scan approach: perform a linear scan, but if we
find half a page of contiguous inverted list entries not
matching the selected extents, follow the extent chain.
The benefit of this approach is greatest when all en-
tries matching the selected extents in an inverted list
are clustered together. This approach then performs a
scan over the matching portion and once it overshoots
the matching portion by half a page, it uses the extent
chain to skip the rest of the list. We implement the
hybrid scan algorithm in our native XML database sys-
tem and verify this behavior using an experiment on the
XMark dataset. We run the query //africa/item. All
item elements under africa are clustered together. Using
the hybrid scan is 15.9 times faster than a linear scan.

On the other hand, the worst case for the hybrid scan
is when the entries in an inverted list matching the se-
lected extents are spread uniformly apart. Here, the
number of unmatched entries examined per matched en-
try is highest. We test the performance of the hybrid
scan algorithm over the data sets used for comparing ex-
tent chaining and linear scan. The results are reported

in the final column of Figure 8. We observe that the per-
formance of the hybrid scan algorithm is always close to
that of the sequential scan, the worst-case overhead be-
ing 20%. Again, for a given selectivity, the overhead
of the hybrid algorithm is worst when the results are
uniformly spread out.

Based on the above observations, we conclude that
the best strategy for an optimizer is the following: if
the selectivity of the result indexids is below a certain
threshold, then it must use the extent chain, otherwise
it must use the hybrid scan algorithm. The worst case
overhead of this algorithm is 20% more than the cost of
a linear scan, while the best case benefits can be signif-
icant.

6.2 Relevance Queries
We have implemented the compute top k with sindex

algorithm shown in Figure 6. Recall that this is an in-
stance optimal algorithm for relevance queries consist-
ing of a single (simple) path expression. We wish to
study the benefit obtained through two aspects of this
algorithm — the early termination condition and extent
chaining. Consider a query q = p//t. In the scenario
where t occurs in many documents but very few of these
match q, extent chaining is likely to yield significant per-
formance benefit. On the other hand, if t occurs in many
documents and most of these occurrences match q, the
early termination condition is likely to contribute.

To study this, we use NASA’s public astronomy XML
archive [5]. We pick a different data set for this study
since we want a data set with multiple files to make
ranked queries meaningful. The data has 2443 XML
documents with a total size of about 33MB. We con-
sider two queries — Q1 and Q2 — that search for occur-
rences of a particular word “photographic” under two
different paths p1=keyword and p2=dataset respectively.
There are very few occurrences of “photographic” under
keyword, while all occurrences are under dataset.

Table 2 shows the results of our experiment. For each
value of k, we report the speedup obtained through our
algorithm, measured as the ratio of the time taken to
fully execute the query on the database to the time taken
by our algorithm. We also report the number of docu-
ments accessed by our algorithm.

We observe first of all that there is a significant benefit
to be obtained by pushing down the top k computation,

Value of k Speedup for Q1 # Documents Accessed Speedup for Q2 # Documents Accessed
by our algorithm by our algorithm

1 16.04 20 18.07 2
5 14.92 25 10.38 6
10 14.53 25 8.13 10
50 12.42 27 3.67 51
100 12.42 27 2.15 101
300 12.42 27 1.7 301

Table 2: Results for top k queries

instead of evaluating the query completely and then ex-
tracting the top k results. For Q1, notice that the num-
ber of documents accessed by our algorithm varies very
little with k. This indicates that the benefit is chiefly
through extent chaining. On the other hand, for Q2, the
number of documents accessed increases linearly with k,
showing the role played by the early termination condi-
tion.

7. RELATED WORK
Several methods have been proposed for processing

queries over graph-structured XML data. These meth-
ods can be classified into two broad classes. The first in-
volves graph traversal where the input query is evaluated
by traversing the data graph [21, 31] or some compressed
representation [4, 9, 39]. The other involves information-
retrieval style processing using inverted lists [8, 11, 25,
28, 37, 41, 45]. Methods have been proposed to optimize
queries in the presence of both these alternatives [21,
24, 31]. In this framework, structure indexes such as the
ones proposed in [18, 27, 32] have primarily been used as
a substitute for graph traversal [31]. This paper proposes
and evaluates an approach that merges structure indexes
and inverted lists to evaluate arbitrary branching path
expressions. We note that our techniques apply irre-
spective of which specific structure index and inverted
list join algorithm is used. The technique we propose is
similar to the algorithm proposed in [44] using path ids
in the context of evaluating branching path expression
queries over XML data stored in an RDBMS. That algo-
rithm is correct for nonrecursive data sets — it turns out
that it does not give the correct result when the input
XML data has an ancestor and descendant element with
the same tag name. Since path ids are a special form of
structure indexes [32], and their technique is based on
containment joins, the solution presented in this paper
can be easily applied to their context.

In recent independent work in [40], the ViST index
structure is proposed where structure and value are com-
bined into a single index to evaluate path expression
queries with structure and keyword components. The
idea is to encode XML documents and queries as se-
quences and evaluate queries by finding subsequence
matches, thus eliminating joins. First of all, the eval-
uation strategy using ViST involves a top-down traver-
sal of a suffix tree which is unlikely to scale to sin-
gle large documents. Hence, the ViST data structure
works best for databases where there is a large num-
ber of small XML files. As anecdotal evidence, the au-
thors show their results over the XMark database [42]
by splitting a single document into smaller documents,
each containing about 30 elements. However, a limita-
tion of this approach is that queries that span the vari-
ous fragments cannot be answered. In particular, decid-
ing upon a method of partitioning a single document is
not trivial. Our approach, on the other hand, handles
large single documents. Secondly, as discussed in [40], in

the presence of siblings with the same tag in the DTD,
a branching path expression may need to be rewritten
into multiple sequences (exponential in the worst case)
for subsequence matching. This problem is more gen-
eral in the absence of a DTD [20], where a query such as
A[//B1][//B2]. . .[//Bk] where each Bi is different would
be rewritten into k! sequences. On the other hand, our
algorithm performs atmost one join per tag and keyword
occurrence in the query.

7.1 Ranked Search
Several proposals have been made for ranked search

over a corpus of document databases combining keyword
and structure components [22, 35]. Recently, in [2, 3,
15, 36, 38], query languages that integrate information
retrieval related features such as ranking and relevance-
oriented search into XML queries have been proposed.
Techniques to evaluate these ranked queries are also pro-
posed in [2, 3, 36, 38]. A survey of commercial XML
search engines is available in [29]. In [33], the problem of
ranking SGML documents using term occurrences is con-
sidered. As mentioned in Section 1, this paper considers
a subclass of CAS queries and focuses on algorithmic is-
sues in combining structure indexes with inverted lists
to efficiently push down top k computation. To the best
of our knowledge, none of these previous techniques uses
structure indexes of the kind we describe in our paper
to save joins and push down top k computation. Several
previous projects have dealt with supporting ranked key-
word search, like [1, 23] over structured databases, [6, 13,
17] over graph-structured data, [7, 14] over web sources
and [19] over XML data. Our technique can be used to
support a query language that extends keyword queries
with a powerful additional search criterion, namely a
path expression.

8. CONCLUSIONS
We presented methods of integrating structure indexes

and inverted lists. By appropriately augmenting in-
verted list entries, we showed how inverted list joins
could be replaced with an index navigation when eval-
uating branching path queries. Our experiments on a
native XML database system showed the efficacy of this
approach.

Throughout our discussion, we assumed that an XML
document has two parts — one that is summarized by
the structure index and one that is not. We used element
nodes and text nodes to identify these parts. There can
be several ways of defining these parts. For instance,
the values of some text nodes can be captured in the
structure index by treating them as tag names. The
techniques presented in this paper are applicable irre-
spective of how we arrive at these two parts. However,
this paper is not about how we define these parts. This
is an interesting area for future work. Other such ar-
eas include looking at the tradeoffs involved in picking

a structure index and integrating multiple structure in-
dexes with inverted lists.

We also considered the evaluation of top k queries over
XML documents. We showed how the augmented “rel-
evance” inverted lists combined with adaptations of the
Threshold algorithm proposed by Fagin et al. yields in-
stance optimal algorithms for pushing down top k com-
putation. In our context, the ranking function is non-
monotonic and there are additional access paths avail-
able. Using a structure index, we were able to suc-
cessfully adapt the Threshold algorithm to proximity-
sensitive ranking functions. When the ranking function
is well-behaved and proximity-insensitive, our algorithm
is instance-optimal. While we presented algorithms for
tree structured data, they can be extended to work for
graph-structured data. Several avenues remain for fu-
ture work. For instance, the problem of running struc-
tured queries over hyper-linked XML documents remains
open.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das.

DBXplorer: A system for keyword-based search
over relational databases. In ICDE, 2002.

[2] S. Al-Khalifa, C. Yu, and H. V. Jagadish.
Querying structured text in an XML database. In
SIGMOD, 2003.

[3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree
pattern relaxation. In EDBT, 2002.

[4] A. Arion et al. XQueC: Pushing queries to
compressed XML data. In VLDB, 2003.

[5] X. A. A. at NASA. XML astronomy archive at
NASA. http://xml.gsfc.nasa.gov/archive.

[6] G. Bhalotia et al. Keyword searching and browsing
in databases using BANKS. In Proceedings of
ICDE, 2002.

[7] N. Bruno, L. Gravano, and A. Marian. Evaluating
top-k queries over web-accessible databases. In
ICDE, 2002.

[8] N. Bruno, N. Koudas, and D. Srivastava. Holistic
twig joins: Optimal XML pattern matching. In
SIGMOD, 2002.

[9] P. Buneman, M. Grohe, and C. Koch. Path
queries on compressed XML. In VLDB, 2003.

[10] D. Chamberlin, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. XQuery: A query language for
XML. World Wide Web Consortium,
http://www.w3.org/TR/xquery, Feb 2000.

[11] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and
C. Zaniolo. Efficient structural joins on indexed
XML documents. In VLDB, 2002.

[12] B. Cooper, N. Sample, M. J. Franklin, G. R.
Hjaltason, and M. Shadmon. A fast index for
semistructured data. In VLDB, 2001.

[13] S. Dar et al. DTL’s Dataspot: database
exploration using plain language. In VLDB, 1998.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

[15] N. Fuhr and K. Grobjohann. XIRQL: A language
for information retrieval in XML documents. In
SIGIR, 2001.

[16] N. Fuhr, M. Lalmas, and S. Malik. INEX:
initiative for evaluation of XML retrieval.
http://inex.is.informatik.uni-duisburg.de:2003.

[17] R. Goldman et al. Proximity search in databases.
In VLDB, 1998.

[18] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in
semistructured databases. In VLDB, 1997.

[19] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD, 2003.

[20] Personal communication with Haixun Wang.
[21] A. Halverson et al. Mixed mode XML query

processing. In VLDB, 2003.
[22] M. Hearst and C. Plaunt. Subtopic structuring for

full-length document access. In SIGIR, 1993.
[23] V. Hristidis, L. Gravano, and

Y. Papakonstantinou. Efficient IR-style keyword
search over relational databases. In VLDB, 2003.

[24] H. Jagadish et al. TIMBER: A native XML
database. VLDB Journal, 2003.

[25] H. Jiang, H. Lu, W. Wang, and B. C. Ooi.
XR-Tree: Indexing XML Data for Efficient
Structural Joins. In ICDE, 2003.

[26] J.Min, C.Chung, and K.Shim. APEX: An adaptive
path index for xml data. In SIGMOD, 2002.

[27] R. Kaushik, P. Bohannon, J. Naughton, and
H. Korth. Covering indexes for branching path
queries. In SIGMOD, 2002.

[28] Q. Li and B. Moon. Indexing and querying XML
data for regular path expressions. In VLDB, 2001.

[29] R. Luk et al. A survery of search engines for XML
documents. In SIGIR Workshop on XML and IR,
2000.

[30] Y. Mass, M. Mandelbrod, E. Amitay, Y. Maarek,
and A. Soffer. JuruXML: An XML retrieval
system. In INEX Workshop, 2002.

[31] J. McHugh and J. Widom. Query optimization for
XML. In VLDB, 1999.

[32] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT, 1999.

[33] S. Myaeng et al. A flexible model for retrieval of
SGML documents. In SIGIR, 1998.

[34] J. Naughton et al. The Niagara internet query
system. In IEEE Data Engineering Bulletin, 2000.

[35] G. Navarro and R. Baeza-Yates. Proximal nodes:
A model to query document databases by content
and structure. ACM TOIS, 1997.

[36] T. Schlieder and H. Meuss. Result ranking for
structured queries against XML documents. In
DELOS Workshop on Information Seeking,
Searching and Querying in Digital Libraries, 2000.

[37] D. Srivastava, S. Al-Khalifa, H. Jagadish,
N. Koudas, J. Patel, and Y. Wu. Structural joins:
A primitive for efficient XML query pattern
matching. In ICDE, 2002.

[38] A. Theobald and G. Weikum. The index-based
XXL search engine for querying XML data with
relevance ranking. In EDBT, 2002.

[39] P. Tolani and J. Haritsa. XGRIND: A
query-friendly XML compressor. In ICDE, 2002.

[40] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: a
dynamic index method for querying XML data by
tree structures. In SIGMOD, 2003.

[41] W. Wang, H. Jiang, H. Lu, and J. X. Yu. PBiTree
Coding and Efficient Processing of Containment
Joins. In ICDE, 2003.

[42] XMark: The XML benchmark project.
http://monetdb.cwi.nl/xml/index.html.

[43] XXX. Native XML database system.
[44] M. Yoshikawa et al. XRel: a path-based approach

to storage and retrieval of XML documents using
relational databases. ACM TOIT, 2001.

[45] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G.Lohman. On supporting containment queries in
relational database management systems. In
SIGMOD, 2001.

