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Abstract

We consider the problem of translating XML queries
into SQL when XML documents have been stored in
an RDBMS using a schema-based relational decompo-
sition. Surprisingly, there is no published XML-to-SQL
query translation algorithm for this scenario, that han-
dles recursive XML schemas. We present a generic algo-
rithm to translate path expression queries into SQL in the
presence of recursion in the schema and queries. This
algorithm handles a general class of XML-to-Relational
mappings, which includes all techniques proposed in lit-
erature. Some of the salient features of this algorithm
are: (i) It translates a path expression query into a single
SQL query, irrespective of how complex the XML schema
is, (ii) It uses the “with” clause in SQL99 to handle re-
cursive queries even over non-recursive schema, (iii) It
reconstructs recursive XML subtrees with a single SQL
query and (iv) It shows that the support for linear recur-
sion in SQL99 is sufficient for handling path expression
queries over arbitrarily complex recursive XML schema.

1 Introduction

This paper is the first to present a generic algorithm
that translates path expression queries to SQL in the
presence of recursion in the schema in the context of
schema-based XML Storage shredding of XML into re-
lations. Here, we refer to path expression queries hav-
ing the descendant axis (//) as recursive XML queries
and to techniques that store XML data into an RDBMS
based on an XML schema (or DTD) as schema-based
XML Storage techniques.

The reader may justifiably be skeptical of this claim.
After all, there have been many schema-based tech-
niques proposed for shredding XML data into rela-
tions [3, 18, 20, 28]. There has also been a lot of
work on schema-oblivious shredding of XML into re-
lations [9, 15, 24], where the target relational schema is
fixed oblivious to the XML schema. Moreover, there has
been a great deal of work on translating XML queries
into SQL [4, 12, 16, 21, 25, 27] in the context of pub-

lishing existing relational data as XML (the “XML Pub-
lishing” scenario). It seems plausible that somewhere
in all this work must lie the solution to the problem we
claim to solve in this paper. Unfortunately, that is not
the case — none of this previous work solves the query
translation problem for schema-based shredding in the
presence of recursion in the XML schema.

Firstly, while [20, 28] propose schema-based XML
shredding methods applicable over recursive XML
schemas, there has been no published work presenting
algorithms for translating XML queries into SQL in this
context. Secondly, while the schema-oblivious methods
(for example, the Edge approach [15]) can handle recur-
sive schemas and recursive queries with ease, the query
translation algorithms for these approaches are not appli-
cable in the context of schema-based shredding. Finally,
in the “Publishing” domain the class of XML schemas
that have been considered includes only (non-recursive)
tree schemas.

At this point the reader may be wondering if this
gap in the literature exists because the problem is not
well motivated. We think that is not the case. In a re-
cent study of real-world DTDs [6], out of the 60 DTDs
analyzed, more than half (35) of them were recursive,
which suggests that recursive XML schemas are com-
mon in practice. Furthermore, recursion is ubiquitous in
XML queries, as it appears in any path expression that
uses the descendant axis (/). Finally, there is a growing
body of work suggesting that for many query workloads,
schema-based shredding approaches yield far better per-
formance than schema-oblivious shredding [29, 30].

We present a generic algorithm that translates path ex-
pression queries to SQL in the presence of recursion in
the XML schema and queries in the context of schema-
based shredding of the XML into relations. This al-
gorithm always outputs an SQL query of size polyno-
mial in size of the input XML-to-Relational mapping
and the XML query. An interesting aspect of this is
that we need the SQL99 with construct to get this bound.
This is not merely an artifact of our algorithm, as we
show that if we restrict ourselves to only SPJU (select,
project, join, union) relational queries, then no algorithm
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Figure 1. Sample XML-to-Relational map-
ping schema

can give this polynomial size guarantee even for non-
recursive schemas. We also show how the support for
linear recursion in SQL99 is sufficient for translating a
path expression query into a single SQL query for an ar-
bitrary XML-to-Relational mapping. We also show how
we can reconstruct recursive XML subtrees in a single
SQL query.

The rest of the paper is organized as follows. We first
describe the class of XML-to-Relational mappings con-
sidered in this paper in Section 2. We then present the
algorithm to translate path expression queries into SQL
in Section 3 when both the XML schema and query may
be recursive. We then extend the algorithm to handle
branching path expression queries and reconstruct XML
subtrees in Section 4. We discuss related work in Sec-
tion 5 and present our conclusions.

2 Formal Model

In order to express our translation techniques, we
need a representation for XML to Relational mappings.
Any reasonable representation would serve our purpose;
for concreteness, in this section we present a formal way
to represent XML to Relational mappings that covers all
the mapping techniques proposed in existing literature.

21 XML Schema Graph

An XML schema can be viewed as a directed graph
§G = (V, E), where V is the set of vertices and E is the
set of edges. The vertices correspond to elements and
attributes and the edges represent containment (parent-
child) relationships. The vertices are labeled with the
name of the element or attribute. The edges have an
additional multiplicity label that can take a value from
{?,%,4+, e}. A sample schema graph is given in Figure 1.
With each schema node, we associate an integer to iden-
tify the node. If the schema graph is a tree, then we call

it a Tree schema graph. If it is acyclic, we call it a DAG
schema graph (directed acyclic graph). Otherwise, it is a
recursive schema graph.

2.2 XML toRelational Mappings

We represent the mapping between XML elements
and relational columns through annotations on the
schema graph. For example, consider the relational
schema given in Figure 2. This is one way of mapping
the XML schema in Figure 1 into relations. The anno-
tations on the schema graph in Figure 1 correspond to
this decomposition. Each non-leaf (internal) node in the
schema is associated with a relation name (shown next
to the node). Each leaf node is associated with a column
name as well. The relational schema into which we shred
the XML data is the set of relations that occur in the node
annotations. Each relation has an id field, which is the
primary key. In addition, parentid and parentcode fields
are included as required to preserve document structure.

A node annotation for a leaf node n, Annot(n), is of
the form R.C', where R denotes a relation and C' denotes
a columnin R. A node annotation for a non-leaf node n,
Annot(n), is of the form R indicating a relation name R.
If a node n in the schema has multiple in-coming edges,
then each of these edges is annotated with a condition
of the form parentcode = val, indicating a code for the
parent of an element matching » in the document. For a
relational column R.C, we define LeafNodes(R.C) to be
the set of leaf schema nodes annotated with R.C.

We now discuss what properties we expect from an
XML-to-Relational mapping.

e The decomposition algorithm that actually shreds
the XML data into relations must respect the map-
ping.

e All the XML data must be completely shredded
into relations and no part of the XML data must be
stored multiple times.

e There must be no data in the relations other than
that which is present in the XML document.

e Enough information must be maintained in the re-
lational data to enable reconstruction of the original
XML data.

Every decomposition scheme we have encountered in
the literature satisfies the above properties. We formalize
these as follows.

With every path p =<ng,...,n;>, we associate an
SQL query, SQL(p) as given in Figure 3. Intuitively, the
SQL query retrieves from the relational shredding the in-
formation that appeared in portions of the original docu-
ment that match the path p.

With a leaf (schema) node I, we associate a root-
to-leaf SQL query, RtoL(l) as follows. Let the root-
to-leaf paths to I be p1,...,pm. Then, RtoL(l) =
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Figure 2. Sample relational decomposition

procedure SQL (path p)
begin
add Annot(n1) to the From clause
for (< from 2 to k) do
Let e bethe edge from n,;—; ton;
if (Annot(n;) isdifferent from Annot(n;—1)) then
add Annot(n;) to the From clause
add Annot(n;—1).id = Annot(n;).parentid
to the Where clause
eseif (Annot(e) isof the form parentcode = val) then
add Annot(n;) to the From clause
if (Annot(e) isof theform C = val) then
Let the last relation added to the From clause be R
add R.C = val to the Where clause
Add Annot(ni) = R.C to the Select clause
/* if there are multiple instances of therelation R,
use the last instance */
end

Figure 3. Query associated with a path p

U™, SQL(p;). The union operation here preserves du-
plicates. If the mapping schema is recursive, the num-
ber of root-to-leaf paths will be infinite for certain leaf
nodes and the RtoL query for such nodes is the union of
infinitely many queries.

For example, for the schema in Figure 1, RtoL(9) is
given below.

select S2.title

from Book B, Section Sl, Section S2
where B.id = Sl.parentid and Sl.parentcode = 1
and Sl.id = S2.parentid and S2. parentcode =

Again, intuitively, RtoL(l) retrieves from the rela-
tions the information that would be found in the original
XML document by starting at the route and traversing
all paths that match . If the XML-to-Relational map-
ping satisfies the properties mentioned above, then the
following properties also hold.

1. For each root-to-leaf path p, SQL(p) returns the
values of all elements that satisfy p. This is under
multiset semantics.

2. For each leaf node [ in the schema, RtoL(l) re-
turns the values of all elements (attributes) associ-
ated with [. This is under multiset semantics.

2

3. For every relational column R.C with LeafN-
odes(R.C) # ¢, let Q be the SQL query: “se-
lect R.C from R”. Then,

U

l€LeafNodes(R.C)

Q= RtoL(1)

4. Consider edge e =<n;, n;> where Annot(n;) =
R; and Annot(nj) = Rj or ch If R; 75 R,
then e must be annotated with the condition parent-
code = .

The final condition ensures that if a relation R; “points
to” more than one relation, then by examining the parent
code, we can find out which relation is being pointed to
by a given tuple. This information is needed to recon-
struct the original XML data. We note here that if R;
points to only one relation in the entire mapping, then
this annotation can be omitted.

We refer to the annotated schema graph illustrating
the XML-to-Relational mapping as the mapping schema
graph. Any mapping schema graph that satisfies the
above mentioned properties is a valid mapping schema.

In general, we allow two additional features in the
mapping: selection conditions as edge annotations and
presence of dummy nodes. Any edge e from n; to ns
may have an optional annotation of the form C = val,
where C'is a column in the relation Annot(ny). In XML
documents, certain elements may be introduced just to
group elements that appear beneath them. We refer to
such schema nodes as dummy nodes. For example, we
could have a dummy Sections node in-between nodes 1
and 4 to group together all the sections in a book. An
algorithm that shreds this document into relations need
not take any action on finding a dummy node. We can
detect that a shredding algorithm has considered a node
n to be a dummy node by the fact that (1) » is a non-leaf
node, (2) n is annotated with the same relation as its par-
ent, (3) each in-coming edge is labeled ¢ and, (4) each
in-coming edge has a null annotation. For ease of ex-
position, we assume that any non-leaf node that is not a
dummy node has an elemid attribute that uniquely iden-
tifies an element within an XML document.



Path Expression Queries

A simple path expression (SPE) can be denoted as “s; [y
sg lo ... s Ik, where each of the [; is a tag name and
each of the s; is either / (denoting a parent-child traver-
sal) or // (denoting an ancestor-descendant traversal).
Each s; [; pair is a navigation step of the path expression
and k& is the number of steps in the query.

A generalized simple path expression (GSPE) can be
denoted as “p; p2 ... pr” where each p; is of the form
pip?...p% (ki > 1). Here, each p/ is a simple path
expression. Each p; thus denotes a disjunction of simple
path expressions. Also, the special tag name “*” matches
any tag name in a GSPE query.

The result of a generalized path expression, as per
XPath semantics, is the set of all nodes that match the
path expression query. There are two possible ways to
return the set of matching nodes:

e Select mode: For leaf nodes, this corresponds to
returning the values of the elements. For non-leaf
nodes, we return the value of the corresponding el-
emid attributes.

e Reconstruct mode: For leaf nodes, this corre-
sponds to returning the values of the elements. For
non-leaf nodes, we reconstruct the subtree rooted at
the element.

3 Query Translation Over Recursive XML
schemas

In this section, we present an XML-to-SQL query
translation algorithm over recursive mapping schemas
for the class of generalized simple path expres-
sion (GSPE) queries defined in Section 2.2. We will
assume the Select mode in this section and present our
solution for the Reconstruct mode in Section 4.2.

Evaluating a path expression query over an XML-to-
Relational mapping can be viewed as a two stage pro-
cess: (i) use the XML query to identify the paths in
the XML schema graph that satisfy the query, and (ii)
use the annotations from the XML-to-Relational map-
ping to construct an equivalent relational query. We re-
fer to these stages as the Pathld and SQLGen stages re-
spectively. We explain the two stages in the next two
subsections.

3.1 Pathld stage

In the Pathld stage, we execute the GSPE query Q =
p1 ... px 0N a schema graph and identify the satisfying
paths in the schema graph. Since the mapping schema
may be recursive, the number of paths may be infinite,
so we cannot enumerate all the possible matching paths.

Even when the mapping schema is non-recursive, for
DAG schema graphs, it is possible for the number of
matching paths to be exponential in the size of the map-
ping schema and the query. So, we should not attempt to
enumerate all complete paths. Instead, just like the DAG
schema graph represents shared information across mul-
tiple paths in a compact fashion, we represent the match-
ing paths as a graph. Notice how this will allow us to
handle recursive and non-recursive mapping schemas in
a unified fashion. As an added benefit, we shall see later
how preserving the relationship across multiple paths
that existed in the original mapping schema will help us
in the SQLGen stage.

Consider the evaluation of a query @) over a mapping
schema S. We treat the mapping schema as an automa-
ton Ag and the query as an automaton A. We construct
the cross-product automaton Agg from Ag and Ag. We
eliminate all the dead-states in A ¢ and the resulting au-
tomaton has all the matching paths in it. This approach
is similar to the one proposed in [14] for evaluating reg-
ular path queries over graph schemas. We illustrate the
main idea with an example and explain the parts where
our algorithm differs from the one in [14]. The reader is
referred to [14] for more details.

Consider the schema S given in Figure 4, which is a
part of the schema in Figure 1. The corresponding au-
tomaton Ag is shown next to it. Similarly, the query
@ = /book/sectionftitle is translated into the automaton
Ag, where state 3 corresponding to the title elementin @
is the accepting state. We construct the cross-product au-
tomaton Ags¢ and remove the dead states. The resulting
automaton Ag¢ is shown in the figure. A state with num-
ber (i,7) in Agg represents a combination of state ¢ in
Ag with state j in Ag. Since state 3 in A, is an accept-
ing state, all states with state number (¢, 3) are accepting
states in Agq (in this case just (5, 3)). Notice how Agq
has simulated the query over the mapping schema and
identified the single matching path. The state numbersin
Asq illustrate exactly how each path matched the query.
In general, Ag and Aq are non-deterministic, and as a
result Agg is also a non-deterministic automaton. This
cross-product automaton can then be viewed as a map-
ping schema Ssq. The node (edge) annotations for Sgq
are the same as the underlying annotations in .S.

The Pathld stage for the query
Q1 = /book/section//title is also shown in the fig-
ure. Notice how the // operation in the query translates
into a self-loop on node 2 in Ag;. Also, there are
two matching paths in the schema for this query. So,
there are two root-to-leaf paths in the cross-product
automaton Agq;.

For purposes of exposition, we assume that all accept-
ing states in Sg correspond to a leaf node in the original
schema. If an accepting state s € Sgq corresponds to a
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non-leaf node n € .S, we add the state corresponding
to the elemid child of » as a final state in Sgq (instead
of s). Informally, this corresponds to returning the el-
emid’s of non-leaf nodes as the result of the query. This
corresponds to the Select mode described in Section 2.2.
We will present our solution for the Reconstruct mode
in Section 4.2.

3.1.1 Handling Set semantics of XPath

According to XPath semantics, the result of a query is a
set of nodes. So, even if an element has multiple deriva-
tions with respect to the query, it should appear in the
query result only once. For example, consider the eval-
uation of query Q2 = //section//title. The cross-product
automaton Ag for this query is given in Figure 5. No-
tice how there are two matching paths in A g, for the title
node under the second-level section (node 9). This is due
to the fact that either of the section nodes in .S (4 or 7),
can match the //section part of (Q;. For both the cases,
the /Ititle part of the query is matched by the title node
(node 9) in S. As a result, the /section/section/title
path in the schema is replicated twice in Agg. So, if
we construct a SQL query based on this cross-product
automaton, we may get duplicate results. But, accord-

ing to XPath semantics, we should return each satisfying
element exactly once. In this section, we explain our ap-
proach to handling this issue.

We first examine what the primary reason for the pres-
ence of duplicate paths in A is and how we can avoid
it. Going back to the above example, we see that the
two paths for book/section/section/title have the follow-
ing property: the first component of the nodes occurring
in the two paths are identical, while the second compo-
nent differs in (at least) one place. In other words, a sin-
gle path in the schema gets duplicated, once with each
of the two different derivations for the query. So, if the
query automaton is a DFA, then the cross-product au-
tomaton will not have any schema path duplicated.

For an SPE query with k steps, we have an algorithm
to construct an equivalent DFA with & + 1 states. We
explain this algorithm using the query @-. The resulting
deterministic automaton A, is shown in Figure 5. We
partition the query into blocks such that each block has
a leading // and there is no occurrence of // in that block.
In this case, there are two blocks, one each for //section
and //title. Then, we process these blocks from left to
right. For the first block //section, we create a start state
(state 0) and add a transition to state 1 on the label sec-



procedure Pathld(Q,S)

begin

1. Let As bethe automaton corresponding to .S

2. If (Q isan SPE query) then

3. Let Ag,, bethe DFA corresponding to @

4 return the cross-product automaton Asq ,,

5. Else// Q isa GSPE query

6. Let Ag bethe NFA corresponding to Q

7 Let A2Q be the automaton that accepts al strings with
two or more accepting pathsin Ag

8. Compute the cross-product automaton A g2

9. If (Asq2 isempty) then

10. return the cross-product automaton Asq

11. Else

12. Convert Ag intoaDFA Ag,,

13. If (Aq,, does not have an exponential increase in size)
14. return the cross-product automaton Asq ,,

15. Else

16. return the cross-product automaton Asq

17. /I adistinct clause needs to be added in this case

18. // to the fi nal SQL query

end

Figure 6. Pathld stage

tion. For any other label, since there is a leading //, we
add a transition into state O itself (the start state of the
current block). In general, when there are multiple steps
in a block, there may be a partial match with the current
string and we may have to transition not to the start state
but to some intermediate state. This can be found by
identifying the longest suffix that matches the current set
of labels and is similar to the Knuth-Morris-Pratt string
matching algorithm [7]. State 1 is the final state for this
block and will act as the start state for the next block. We
repeat the process for //title and add state 2 and a transi-
tion from 1 to 2 on title. We also add transitions on other
labels for state 1. Since this is the last block, we also
compute the transitions from state 2 and set state 2 as the
final state for A¢,,. The general algorithm is omitted for
want of space.

LEMMA 1 For an SPE query @Q having k steps, the
equivalent DFA having k£ + 1 states can be computed
in O(k?) time.

On the other hand, for GSPE queries, there are sce-
narios when the smallest equivalent DFA is exponential
in the size of the query. In this case, we use the follow-
ing approach. Let A denote the NFA corresponding to
the query Q. We first compute an NFA AQQ that accepts
all input strings that have two or more accepting paths
in Ag. Then, we compute the cross-product automaton
Agqe between Ag and A2Q. If this automaton is empty,
then it means that the cross-product automaton Asg ob-
tained from the original query and schema automata (A ¢
and Ag respectively) will not have any duplicate schema
paths and we use Agq as the output of the Pathld stage.

On the other hand, if Agq2 is not empty, then we have
two options: (1) convert Ag into a DFA Ag,, and com-
pute cross-product between Ag and Ag,, or (2) apply
a distinct clause for the query obtained from Agg. We
choose one of these options based on whether there is a
size explosion when we convert A into a DFAL.

The Pathld algorithm along with the above modifi-
cations to handle the set semantics of XPath is given in
Figure 6.

3.1.2 Analysisof Pathld stage

In this section, we present an analysis of the number of
states in the resulting cross-product automaton and the
running time of the above algorithm. We omit the proofs
due to lack of space.

Let s and e be the number of nodes in the schema and
k be the number of steps in the query. Then the number
of states in Ag is n, = s + 1 and the number of states
in Ag isng = k + 1. For an SPE query, the number of
states in Ag, =k + 1.

LEMMA 2 The number of states in the cross-product au-
tomaton Agc is no greater than n * ng.

LEMMA 3 If S is a Tree schema and @ is an SPE query,
then the number of states in Ag¢,, is no greater than n,.

For an SPE query @, for every label =z, let
ChildOccur(x,Q) denote the number of occur-
rences of the pattern /z in Q. For example, for
the query @ = /section//section/ftitle, ChildOc-
cur(section,Q) = 1 and ChildOccur(title,Q) = 0. Let
MaxChildOccur(Q)) denote the maximum across all
values for ChildOccur(x, @) over all labels. In this case,
MaxChildOccur(Q) = 1.

Let DescendantSteps(Q)) denote the num-
ber of /I steps in Q. For the above exam-
ple, DescendantSteps(Q) = 2. Notice how

DescendantSteps(Q) + MaxChildOccur(Q) < ng

LEMMA 4 For an SPE query @, the number of states in
the cross-product automaton Agq,, is no greater than
ng+ (DescendantSteps(Q) + MaxChildOccur(Q)).

Let us now consider the running time of the various
steps in the Pathld stage.

From Lemma 1, we see that the DFA corresponding
to a query @ can be computed in time O(n?).

LEMMA 5 The cross-product automaton of two state
machines with n; and n, states respectively can be com-
puted in O(n? * n3).

1This can be achieved by placing a bound on the number of states
explored in the NFA-to-DFA conversion



procedure SQLGen(Ssq)
begin
1. ldentify strongly connected components (SCCs) in Sso
2. Let C bethe set of SCCs
3. Merge adjacent componentsin C that are acyclic
if one of them dominates the other
4. foreach (¢ € C intop-down topological order) do
5 if (cisnot recursive) then
6. generate the query for ¢ using SQLForDAG(c)
7 ese
8 generate the query for ¢ using SQL ForRecursive(c)
/I arelational query T'(n) is associated with
/Il each |eaf node n now
endFor
9. LetfinadQbeU, isalesf node “Seiect * from T'(n)”
10.If (duplicate elimination is required) then
11. Output the query “select distinct(*) from fi nalQ”
12. else output the query “select * from fi nalQ”
end

Figure 7. SQLGen Algorithm for recursive
mapping schemas

LEMMA 6 For a query @, the automaton AQQ can be
computed in O(nj).

THEOREM 1 The running time of the Pathld stage for an
SPE query is O(n? * n2), while for a GSPE query, the
running time is O(n? * ny).

3.2 SQLGen stage

Once we have identified all matching paths in the
schema S corresponding to query ¢, we have a cross-
product schema Sgq with all the matching paths en-
coded in it. Informally, the union of all root-to-leaf paths
in Sgq corresponds to the query result. A simple algo-
rithm to generate an SQL query corresponding to @ is
to return RQ) = J RtoL(l) over all leaf nodes in Ssg.
While this is a good algorithm when Ss is a tree, it does
not suffice when Sgs is a DAG or is recursive. If Sgq is
a DAG, then the number of matching paths may be ex-
ponential. Moreover, by unfolding a DAG we may also
be missing shared computation in the form of common
subexpressions in the final SQL query. So, we need to
somehow reflect the DAG structure of Sg¢ in the SQL
query. Similarly, if Sso is recursive, then RQ is the
union of infinite queries. In this section, we show how
using the support for linear recursion in SQL99 (with op-
erator) along with the outer union approach, we can con-
struct the equivalent (finite!) SQL query for a recursive
cross-product schema.

In order to illustrate our algorithm for handling com-
plex cross-product schema, we use the schema graph S
in Figure 8. Notice how this schema has a DAG part
and a recursive part. The edge annotations are omit-
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Figure 8. Sample recursive schema

ted for clarity. We use the shorthand 7 to denote the
schema node corresponding to element E4 and refer to
the elemid node as node 11. We explain the algo-
rithm by running through the evaluation of the query
@ = /EO0//E10 on the schema graph S in Figure 8.
The Pathld stage will result in a cross-product schema
Ssq identical to S. Notice how since £10 is a leaf node,
we add the elemid attribute node to S and make that
the accepting state.

The outline of the algorithm is given in Figure 7. We
first identify the components in Sg¢ that are recursive.
The rest of the nodes are grouped into a set of non-
recursive components. We perform this computation by
first identifying the strongly connected components in
Ssq (step 1) and then merging adjacent non-recursive
components wherever possible (step 3). Recall that a
component ¢; dominates component ¢, if every path
from the root to a node in ¢ passes through some node
in c;. After the first 3 steps in Figure 7, there are three
components in C. They are ¢; = {0,1,2,3,4,5,6},
c2 = {7,8,9} and c3 = {10,11} 2. We then process
these components in top-down topological order, namely
c; followed by ¢, followed by c3. For each component,
we generate the appropriate relational queries. In the
process, we associate a temporary relation T'(n) with ev-
ery schema node n that is either a leaf node or has a child
node in a different component. Once we have processed
all components, we generate the final relational query in
steps 10-12 using the temporary relations defined earlier.

The algorithm for generating SQL queries corre-
sponding to a non-recursive and a recursive component
are given in Figures 9 and 10 respectively. We discuss
these in the next two subsections.

3.2.1 Handling a non-recursive component

For non-recursive components, a straightforward ap-
proach is to translate each path in the DAG component
into a SQL query and take the union of all these queries.
However, the number of paths can be exponential in the

2Here node 11 refers to the elemid node



size of the component. The question arises whether there
is any way in which we can at least guarantee a query
that is polynomial in the size of the DAG component. We
show that this is impossible if we only consider relational
queries involving the select, project, join and union op-
erations (SPJU queries). We formalize this claim as fol-
lows. Let C denote the class of relational queries whose
relational algebra expression has the select, project, join
and union operators. Let the size of a query SQ € C1,
Rellnst(SQ), be the number of relation instances in the
relational algebra expression. Then we have the follow-
ing result.

THEOREM 2 There is a family of mapping schemas SG
such that, for each schema S; € SG, there is a simple
path expression query p; that has the following property.
No relational query S@Q € C1, whose size is polynomial
in the size of S; and p;, is a correct translation for p;.

The proof for the above theorem is based on the fact
that there are instances of acyclic Deterministic Finite
Automata (DFA) whose minimum equivalent regular ex-
pression is of length O(n'8 ™) [11].

It turns out that we can use the with clause to solve
this problem. Even though the with clause was primar-
ily introduced for supporting recursive queries, it also
provides us with a mechanism for creating temporary re-
lations in a SQL query. So, whenever there is some com-
putation that can be shared by multiple paths, we create
a temporary relation corresponding to this shared com-
putation, which can be used repeatedly in the rest of the
query. Notice how creating temporary relations in the
query allows us to reduce the size of the generated SQL
query from (potentially) exponential in the size of the
component to a guaranteed polynomial bound.

Component ¢; is non-recursive and an example of
a DAG component. We use the algorithm for generat-
ing the relational query corresponding to a DAG com-
ponent given in Figure 9. We associate temporary re-
lations with any node that is either a leaf node (part of
the final query result), has a parent or child in a different
component, or represents shared computation (multiple
incoming/outgoing edges). For component ¢, the set NV
is N = {2,3,6}. So, we generate SQL with clauses for
three temporary relations corresponding to 7(2),7'(3)
and 7(6) in that order. The query corresponding to 7'(3)
is given below.

with T3 as (
sel ect R3.*
fromRO, Rl, R3
where RO.id = Rl.parentid and
R1.id=R3. parentid and R3. parent Code=1

uni on all
select R3.*
fromT2, R3

where T2.id=R3. parentid and R3. par ent Code=2
)

procedure SQLFromDAG(c)
begin
1.Let N bethe set of nodesin ¢ with either
aparent or achild in a different component
2.Add any nodein cto IV if it corresponds
toaleaf nodein S.
3.Add al nodesin c with > one in-coming edge to N
4.Add all nodes in ¢ with > one out-going edge to N
5.With each node n € N, associate a unique temporary
relation T'(n)
6.foreach (n € N in top-down topological order) do
7. llgenerate SQL fragment to populate T'(n)
8. foreach (in-coming edge e into n) do
9. Backtrack along e till either anodem € N
or anodem ¢ cisobtained.
10. Let the unique m to n path be p
11. Generate SQL (p) using 7' (m) astherelation
corresponding to m
12. //Other node and edge annotationsin Ssq are
//same as underlying onesin the mapping S
13. Call thisquery SQL (e)
14. T'(n) isdefi ned as the union of al the SQL(e)
15.endFor
end

Figure 9. SQLGen Algorithm for DAG compo-
nent

Notice how the query is the union of two subqueries,
one corresponding to each in-coming edge into node 3.
Also note how we use T2 in the definition of T3, as
node 2 € N and has a temporary relation associated with
it. In a similar fashion, the query for 76 will have T'3 in
it. This illustrates how shared computation can be effi-
ciently reflected in the relational query. We would like
to point out that the use of the with clause has two bene-
fits. Firstly, it avoids the potential size blowup for com-
plex DAG schema. Secondly, it represents the shared
computation across different root-to-leaf paths explicitly.
The relational optimizer can choose from the two options
of either sharing computation across different fragments
in the final execution plan or unfolding the with clause
into the union of several conjunctive queries. In fact, we
know of one commercial RDBMS whose optimizer does
this exploration. On the other hand, if we did not use the
with clause in the SQL query, then the relational opti-
mizer has the additional task of finding common subex-
pressions, which is known to be a difficult task.

3.2.2 Handling arecursive component

Let us now look at how to generate the relational query
for a recursive component. This algorithm is given in
Figure 10. For each recursive component ¢, we associate
atemporary relation Tz whose schema is the outer-union
of the schemas of relations annotating some node in Tr
and generate a recursive query for T as follows. A re-



procedure SQLFromRecursive(c)

begin

1. Let Tr be atemporary relation whose schemais the
outer union of al relationsin ¢
/IConstruct the initialization query for Tr

2. foreach (in-coming edge e into ¢ from node n ¢ c) do
3. Letn' € cbethetarget of e
4. Let Q. bethequery:
select R2.*, id(n)
from T'(n) R1, Annot(n’) R2
where Annot(e) and R2.parentid = R1.id"
5. Null pad Q. appropriately to reflect outer-union schema
6. Let Qinit beUQ. over dl in-coming edges e
/IConstruct the recursive part for Tr
7. foreach (edge e with both end-pointsin ¢) do
8. Letebefromn tong
9. if (e corresponds to ajoin edge) then

10. Let Q. bethe query:
select R2.*, id(n2)
from Tr R1, Annot(nz2) R2
where R1.schemanode = id(n) and
R2.parentid = R1.id and Annot(e)
11. dse
/e corresponds to a selection or ng isadummy node
12. Let Q. bethe query:
select R1.*, id(n2)
fromTr R1
where R1.schemanode = id(n1) and Annot(e)
13. Null pad Q. appropriately
14.Let Qe be UQ. where the union is taken over
edges e with both end-pointsin ¢
15.T'r isarecursive query defi ned with Q;,;+ asthe
initialization condition and Q... asthe
recursive component
16. With each node n € c we associate the query T'(n):
select * from T'r where schemanode = id(n)
end

Figure 10. SQLGen Algorithm for recursive
component

cursive query has two parts, an initialization part and a
recursive part. The initialization part for the query defin-
ing Tr (steps 2-6) captures all incoming edges into ¢
from a different component. For the component co, there
are two such edges (2, 8) and (3, 7) and the initialization
part will be the union of two conjunctive queries, one
for each incoming edge. The recursion in the compo-
nent ¢ is captured by the recursive part of the definition
of Tr. Each edge in ¢ is translated into a query as shown
in steps 8-13 and the recursive part of the query defining
T is the union across all edges within the component.
For the component ¢, there are four edges and so the re-
cursive query Q.. is the union of four recursive queries.
In this case, all four edges are join edges. For example,
the edge (8, 7) will translate to the following query:

select R7.*, id(7)

from
wher e

TR, R7

and R7.parenti d=8

Notice how the condition TR.schemanode ensures
that the parent tuple corresponds to schema node 8 and
the other conditions capture the annotations on the edge.
By projecting the id of the child node, we ensure that the
queries for outgoing edges from node 7 can be correctly
constructed.

Returning to the example query, finally, component
cs is non-recursive and we generate the equivalent rela-
tional query using the algorithm in Figure 9. The com-
plete relational query is given in Appendix A.

If S5 has two root-to-leaf paths matching the same
path in S, then duplicate elimination is required and we
add the distinct clause (recall discussion in previous sec-
tion, step 16 in Figure 6). In such a scenario, for each
leaf node n € Sg(, the id of » and the key column of R,
where Annot(n) = R.C also have to be projected along
with Annot(n) while creating the temporary relations
T(n).

For a recursive component C, let N denote the num-
ber of columns in the outer union schema for C. This is
the sum of the number of columns over all relations an-
notating some node in C. For a mapping schema S, let
NgZe*(S) denote the maximum across all values for N¢
over all recursive components in S.

THEOREM 3 For a mapping schema .S and query @, let
the output of the Pathld stage, Asg have V nodes and £
edges. The equivalent SQL query can be obtained using
the SQLGen algorithm in O((V + E) = NZ**(Agq))
time.

The proof is omitted due to lack of space.
3.3 Preliminary Evaluation of Running Time

We implemented the above algorithm for evaluating
SPE queries over a generic XML-to-Relational map-
ping. The source code of our implementation is available
at [33]. Using the XMark benchmark schema [31] and
SPE query fragments that appear in the associated query
test suite, we evaluated the equivalent SQL queries using
the above query translation algorithm. The XML-SQL
query translation process took less than 6ms for each
SPE query. The XML-to-Relational mapping schema
has 101 nodes. We also observed that in all cases, the
size of the cross-product schema was less than 100 nodes
(the size of the schema).

In order to test the running time of the algorithm un-
der extreme scenarios, when the cross-product schema
may have n; * n, states, we used a more complex XML
schema. This mapping schema was a complete graph of
n nodes and all transitions were on a single label x. We

R7. parenti d=TR id and TR schenanode=i d(8)



then measured the running time of the query translation
for the query //x/x/x/x/x, which has 5 steps. The cross-
product automaton has approximately 4n states and 4n?
transitions. The running time for different values of » are
given in Table 1.  Notice how while the running time

Table 1. Execution time of translation algo-
rithm

Clique size (n) | Time Taken (ms)
5 6
10 19
20 80

shows a quadratic growth due to the quadratic increase
in the number of transitions in the schema, it is still small
for reasonable clique sizes. The size of every recursive
component that we have seen in real-world DTDs has
been less than 10. So we believe that the running time of
our translation algorithm will be small in practice.

4 Extensions to more complex path expres-
sions

In this section, we briefly describe our approach to
handle branching path expression queries and recon-
struct XML subtrees.

4.1 Branching path expression queries

Let us first consider the class of branching path ex-
pression (BPE) queries that have a single predicate at
the end of the path expression. These queries are of
the form pq[p2] or p1[p2 op value], where p; and p, are
GSPE queries.

The Pathld stage works as follows. First, we compute
the set of all satisfying paths for the GSPE query p;. Let
Agq be the resulting cross-product automaton and let £’
be the set of final states. For each f € F', we compute
an auxiliary automaton, Apred( f), that corresponds to
evaluating the path expression query po with f as the
start state.

In the SQLGen stage, we first compute the SQL query
corresponding to Ag¢q without the predicates. Now, for
each final state f € F', we add the SQL fragment cor-
responding to the predicate as follows. Let T'(f) be the
temporary relation corresponding to the state f. Then
we add a with clause of the form

with T_Pred as (
sel ect *
from T
where exists (PQ
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where PQ is the query corresponding to the predicate
automaton Apred(f)- The final query is the union of all
the T_Pred relations.

Let us now consider a more general BPE query
with one or more predicates occurring in any step
of the path expression. This query is of the
form py{Pred,}...pp{Pred;}, where each p; is a
GSPE query and each Pred; is of the form p; or
p;0p value. An example query is ¢ =//section[//caption
= ‘v1’]//title. Our algorithm proceeds as follows:

In the Pathld stage, we first apply the above procedure
to evaluate p;{ Pred;}. Let F be the set of final states
in the resulting automaton. Then with F' as the set of
start states, we compute pa{ Preds}. We continue this
process k times to obtain the automaton for the entire
query. The SQLGen stage is also extended in a similar
manner to process the resulting automaton.

Let PrimaryPath(Q) be the query PP(Q)
p1pe. . .px- If the cross-product automaton obtained
from Ag and App(q) is not empty, then the above algo-
rithm may generate duplicate results and we add a dis-
tinct clause to the final SQL query. We illustrate why
this is needed with an example. Consider the evalua-
tion of @ over the mapping schema in Figure 1. The
section nodes 4 and 7 match the path expression //sec-
tion. In other words, any instance element e in an XML
document corresponding to either of these schema nodes
will match this path expression. On the other hand,
whether e will match //section[caption = ‘v1’] is going
to depend on whether e satisfies the predicate. Notice
how while (incoming) structural conditions can be ver-
ified during query translation time (without looking at
the data), predicate conditions depend on the data. So,
given a pair of parent-child section elements, el and e,
matching nodes 4 and 7, while we can be sure that both
match //section, we cannot be sure of whether one or
both of them will match the predicate at query transla-
tion time. So, the SQL query has to handle all possible
cases and as a result, it may produce duplicate results
(when both of them satisfy the predicate, then the child
of eo will appear twice in the result).

4.2 Reconstructing XML subtrees

In [12, 26], algorithms were presented for recon-
structing XML subtrees when the mapping schema is a
tree. In this section, we describe how to handle the re-
construction of a recursive component and a DAG com-
ponent.

Notice that the SQLGen algorithm for handling a re-
cursive component in Figure 10 actually reconstructs the
XML data corresponding to the entire recursive compo-
nent. But, what is missing in order to reconstruct the
XML subtree is structural information about the differ-



ent elements. Recall that in [12, 26], this could be deter-
mined statically as for a tree XML schema, the number
of distinct root-to-leaf paths is fixed. On the other hand,
for recursive components, we need to construct the root-
to-leaf path dynamically. Notice that the schemanode
column in relation Tz keeps track of the schema node
corresponding to the tuple. We maintain an additional
rtol column that keeps track of the path from the root of
the subtree being constructed. This is similar to the ap-
proach proposed in [29] for constructing dewey numbers
dynamically.

In order to handle a DAG component, we have two
options. We could either unroll the DAG into a tree and
apply prior techniques. If this may lead to a size explo-
sion, we could reconstruct a DAG directly by keeping
track of the root-to-leaf path as mentioned above.

4.3 Handling order in XPath semantics

According to XPath semantics, the results of a path
expression query have to be returned in document order.
In order to support this, the schema-based shredding of
XML into relations will need to maintain the relative po-
sition among sibling XML elements in some form. This
was the primary focus of [29], where solutions were pro-
posed to handle order in XML for an arbitrary query
translation algorithm. Hence, in particular, their tech-
niques can be integrated with our algorithm in a straight-
forward fashion.

5 Related Work

The prior literature on XML-to-SQL query transla-
tion can be broadly classified into three areas : (1)
schema-based XML storage, (2) schema-oblivious XML
storage and (3) XML Publishing.

A number of approaches have been proposed for
using an RDBMS to store and query XML data in a
schema-based fashion [3, 18, 20, 28, 29]. The main fo-
cus of [3, 18, 20, 28] was defining a “good” relational
schema for the given XML schema. In [28] the gen-
eral approach to translating XML queries into SQL is il-
lustrated with examples without any algorithmic details.
In [29], the focus is on supporting order-based queries.
The authors give an algorithm for the schema-oblivious
scenario and briefly mention how the ideas for adding
support to order-based queries can be applied with any
existing schema-based approach. We are not aware of
any published XML-to-SQL query translation algorithm
in this scenario.

Several techniques have been proposed for the
schema-oblivious XML storage scenario [9, 15, 24, 32]
approaches. Each of these approaches (except [9]) pro-
posed a fixed relational schema for storing the XML data
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and algorithms were presented for translating path ex-
pression queries into SQL. In [9], the relational schema
is decided based on the XML data. Since the techniques
are schema-oblivious, they are applicable irrespective
of whether the XML schema is recursive or not. The
techniques also consider the presence of the // axis in
path expression queries. In [8], an algorithm for trans-
lating more general XQuery queries into SQL is pre-
sented. Our work is complementary to these techniques
because we consider the query translation problem in the
schema-based XML storage scenario. In [29, 30], it was
shown that for many query workloads over non-recursive
XML schema, schema-based shredding approaches yield
far better performance than schema-oblivious shredding.
So, it is conceivable that the same result holds in a num-
ber of scenarios even when the XML schema and/or
query is recursive.

In the XML Publishing scenario, there has been a
lot of work on translating complex XML queries into
SQL [4, 10, 12, 13, 16, 19, 21, 25, 26]. While the class
of XML queries considered are fairly complex in these
approaches (a significant subset of XQuery/XSLT), the
focus is on (non-recursive) tree XML schemas. In con-
trast, our focus is on XML-to-SQL query translation over
recursive XML schema. While some of the above tech-
niques handle // in the XML query by enumerating all
satisfying paths, we present a different solution that rep-
resents all satisfying paths in a more compact manner.

In [2], an algorithm for reconstructing a recursive
XML view was presented. Their solution does not use
the support for recursion in SQL and simulates the recur-
sion in middleware instead. In contrast, we show how we
can use the support for linear recursion in SQL99 and by
combining it with the “outer union” approach construct
a single SQL query to reconstruct a recursive XML sub-
tree.

A more detailed description of the existing published
work on XML-to-SQL query translation in the above
three scenarios is given in [17].

There has been some work on optimizing queries
in a semi-structured framework [5, 14, 22] using
graph schemas. These techniques are similar to the
Pathld stage of query translation, and we adapted the
cross-product automaton technique proposed in [14], for
the Pathld algorithm in Section 3.1.

In [1, 23], algorithms for minimizing tree pattern
queries, both in the presence and absence of XML
schema information, are presented. These algorithms re-
move redundant parts of the XML query that are implied
by either other parts of the query or by the XML schema
or a combination of both. These algorithms are com-
plementary to our algorithm and can be used as the first
stage to minimize the input XML queries.



6 Conclusions

We presented a generic algorithm to translate path ex-
pression queries to SQL in the presence of recursion in
the XML schema and queries. This algorithm is ap-
plicable over a wide class of techniques for schema-
based shredding of XML into relations. We also showed
how the with clause in SQL99 is useful in XML-to-SQL
query translation over DAG XML schema and how the
support for linear recursion in SQL99 is sufficient for
translating path expression queries into a single SQL
query over an arbitrary (recursive) XML-to-Relational
mapping.

The algorithm presented in this paper for translat-
ing path expression queries into SQL can be adapted to
the “Publishing” domain as well. The details of the al-
gorithm will change based on the view definition lan-
guage, but the main ideas about how to handle recursive
schemas, DAG schemas and recursive queries remain the
same.

There are a number of avenues for future research.
Extending the work in this paper to perform XML-
to-SQL query translation for more complex FLWOR
XQuery queries, when the XML schema is recursive,
is open. Comparing the schema-based and schema-
oblivious solutions for XML storage in the presence of
recursive XML schema is another important area for fu-
ture research. Similarly, combining the interval-based
techniques used in XML-to-SQL query translation in
the schema-oblivious scenario along with the techniques
proposed in this paper is another interesting avenue for
future work.
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A Sample final SQL query

Consider the evaluation of the path expression
query /EO//E10 over the mapping in Figure 8. In this
section, we present the relational query output by the
XML-to-SQL translation algorithm described in this pa-
per. For clarity, we omit the details of the outer-union
schema while presenting the query.

/1 query for conponent cl
with T2 as (

select R2.*

fromRO, R2

where RO.id = R2.parentid

)

with T3 as (
select R3.*
fromRO, R1, R3
where RO.id = Rl.parentid and
R1.i d=R3. parenti d and R3. parent Code=1

union all
select R3.*
fromT2, R3

where T2.id=R3. parentid and R3. parent Code=2
)

with T6 as (
select R6.*
fromT3, R4, R6
where T3.id = R4.parentid and
R4.1d=R6. parentid and R6. parent Code=4
uni on all
select R6.*
fromT3, R5, R6
where T3.id = R5.parentid and
R5.i d=R6. parenti d and R6. parent Code=5

)

/1 query for conmponent c2
with TC2 as (
(
select R7.*, id(7)
fromT3, R7
where T3.id=R7.parentid and R7.parent Code=3
uni on all
select R8.*, id(8)
fromT2, R8
where T2.id=R8. parentid and R8. par ent Code=2

uni on all
(
select R7.*, id(7)
from TC2, R7
wher e
and R7.parenti d=8
union all
select R8.*, id(8)
from TC2, R8
wher e
and R8. parenti d=9
uni on all
select R9.*, id(9)
from TC2, RO
wher e
and R9. parenti d=7

uni on all

select R9.*, id(9)
from TC2, RO
wher e

)
)

with T7 as (
sel ect *
fromTC2
wher e schemanode=i d(7)

)

with T8 as (
sel ect *
fromTC2
wher e schenmanode=i d(8)

)

with T9 as (
sel ect *
fromTC2
wher e schemanode=i d(9)

)

/1 query for component c3
with T10 as (

sel ect R10.*

fromT6, R10

where T6.id = R10. parentid and R10. par ent Code=6

union all
sel ect R10.*
fromT9, R10

where T9.id = R10. parentid and R10. par ent Code=9

)

with T11 as (
select elemd
from T10

)

/1 the final query
select elemd
fromT11

R7. parenti d=TC2.id and TC2. schenmanode=i d( 8)

R8. parenti d=TC2.id and TC2. schenanode=i d(9)

R9. parenti d=TC2.id and TC2. schenmanode=i d(7)

R9. parenti d=TC2.id and TC2. schenanode=i d(8)
and R9. parenti d=8



