
Virtual Cache Line: A New Technique to
Improve Cache Exploitation for

Recursive Data Structures

Shai Rubin, David Bernstein, and Michael Rodeh

IBM Research Lab in Haifa and
Computer Science Department – Technion (Israel Institute of Technology)

{rubin,bernstein,rodeh}@haifa.vnet.ibm.com

Abstract. Recursive data structures (lists, trees, graphs, etc.) are used
throughout scientific and commercial software. The common approach is
to allocate storage to the individual nodes of such structures dynamically,
maintaining the logical connection between them via pointers. Once such
a data structure goes through a sequence of updates (inserts and deletes),
it may get scattered all over memory yielding poor spatial locality, which
in turn introduces many cache misses. In this paper we present the new
concept of Virtual Cache Lines (VCLs). Basically, the mechanism keeps
groups of consecutive nodes in close proximity–forming virtual cache
lines–while allowing the groups to be stored arbitrarily far away from
each other. Virtual cache lines increase the spatial locality of the given
data structure resulting in better locality of references. Furthermore,
since the spatial locality is improved, software prefetching becomes much
more attractive. Indeed, we also present a software prefetching algorithm
that can be used when dealing with VCLs, resulting in even higher data
cache performance. Our results show that the average performance of
linked list operations–like scan, insert, and delete–can be improved by
more than 200% even in architectures that do not support prefetching.
Moreover, when using prefetching, one can gain additional 100% im-
provement. We believe that given a program that manipulates certain
recursive data structures, compilers will be able to generate VCL-based
code. Until this vision becomes true, VCLs can be used to build more
efficient user libraries, operating-systems, and applications programs.

1 Introduction

When dealing with recursive data structures the problem of high latencies in
accessing memory is well recognized. Significant efforts have been directed in
the past on reducing its harmful effects. Advanced memory designs have been
developed [2] e.g., by way of cache memories and prefetch instructions, and offer
partial remedy to this problem. Actually, Mowry [11] showed that many scientific
programs spend more than half of their time waiting for data. In [7, 11] software
methods and tools to overcome this problem for scientific code are proposed.

Memory latency impacts both the instruction stream and the data stream.
The locality of the instruction stream may be improved by code reorganization [8,



2

13]. Also, code usually has natural locality by itself. Therefore, larger instruction
caches reduce the instruction cache miss ratios considerably.

Data locality is more difficult to cope with as data can grow in size to magni-
tudes which do not fit into cache (or even into memory) for any practical cache
size. Even worse, data may be scattered in memory in a rather random way un-
less measures are taken to cluster related pieces. A common approach, especially
for scientific programs, is to reorganize the computation while leaving the data
layout intact [9]. Unfortunately, this approach is only marginally applicable to
scattered data since the machine stalls while the next piece of data to be pro-
cessed is fetched. Prefetching offers only partial remedy – it is the data layout
itself which should be optimized for better spatial locality.

Spatial locality can be achieved by storing neighboring nodes in close proxim-
ity. When seeking a solution to this problem, three measures have to be balanced:
(a) The data structure operations have to be efficient. For example, if a linked
list is stored in consecutive locations in memory, search is fast but insert and
delete operations become inefficient. (b) Memory has to be utilized effectively.
For example, by allowing gaps between nodes, update operations may become
more efficient, at the expense of lower memory utilization. (c) The machine ar-
chitecture should be exploited. For instance, in machines that support memory
prefetch instructions, they should be used to reduce memory latency. Exam-
ples of such balance between these three measures are B-trees [1]: special data
structures designed to cope with long disk latencies when using virtual memory.
The technique presented in this paper takes the intuition from this basic data
structure, however it deals with memory latencies rather than disk latencies.

1.1 Recursive Data Structures (RDS)

Recursive Data Structures (RDSs) are usually defined in terms of nodes and links
connecting them. Only in rare cases do they specify the relative positioning of
the nodes. It is this degree of freedom which we try to exploit.

Consider a program which manipulates an RDS. The nodes of the RDS are
typically dynamically allocated on the run-time heap and are, in general, scat-
tered in memory. Therefore, cache hit ratio is rather low, and frequent calls to
the memory manager are time consuming. To improve, Luk and Mowry [10] have
suggested to linearize the data, namely, to map heap-allocated nodes that are
likely to be accessed closely in time into contiguous memory locations.

We extend this notion of data linearization by dynamically grouping nodes
into Virtual Cache Lines (VCLs) – a software concept that is a generalization of
the hardware-oriented structure of cache lines. This grouping have four major
positive effects: (a) The number of cache misses decreases. (b) The number of
calls to the memory manager is reduced. (c) Memory fragmentation improves.
(d) Ability to use prefetching when dealing with RDS is much higher than before.
One negative effect is that managing the VCLs is somewhat more complicated.
The good news are that compared with the common implementation of the
linked list the VCLs overall performance can be improved by 300%.



3

In order to confirm the fact that VCLs might be useful regardless the ar-
chitecture one uses, we measured the performance for two common platforms.
The first is a non-prefetching architecture of Intel’s Pentium [6] and the second
architecture is the IBM PowerPC [15] that supports prefetching instructions.

1.2 Compilers techniques for handling RDSs.

While improving spatial locality is a clear objective, finding ways to achieve this
goal is quite a challenge:

1. The problem is global, namely, the entire program has to be taken into
account. A data layout, which is good for one segment of the code, may
be suboptimal for another portion of the program. This introduces heavy
dependency on interprocedural analysis.

2. Discovering the data structure that a program uses is a very hard problem.
Moreover, what we really need is to discover not only the nature of the data
structure, but also the code segments which implement the data structure
operations. For example, not only do we have to find that a program ma-
nipulates a binary tree, but we also have to identify the code sections that
implement the insert and delete operations.

In view of recent research results in the area of shape analysis [14, 16] we
do believe that the above mentioned difficulties may be circumvented for many
programs. We hope that this paper will encourage shape-analysis researchers to
focus not only on discovering the data structures layout the program manipu-
lates, but also to find the places (in the program) where certain operations are
performed. For example, in order to fully automate the process of replacing the
user-defined data structures with more sophisticated structures (like ours), we
need to know where in the program the user does an insert or a delete operation.

However, this paper takes a more pragmatic approach: the method is simply
to implement data structures in a cache-aware way. The paper presents this new
idea from two different aspects. First, it suggests a new software data layout
technique that exploits a given memory hierarchy regardless the processor one
uses. Second, it points to a more sophisticated design to highly optimize the
original basic technique, by using prefetching instructions that exist in some of
the more common architectures such as PowerPC [15]. Several compiler related
applications might gain from using the proposed technique:

1. User libraries. Recently user libraries become part of the official C++ lan-
guage [12]. Our technique for cache optimization can be easily integrated
into specific structures (e.g. singly-linked lists, doubly-linked lists) of these
libraries.

2. Memory allocators and garbage collectors. A lot of research work was con-
ducted investigating the way to improve the cache conscious data placement
of memory allocators. Additionally the importance of garbage collectors is
increasing in the recent years as Java becomes more popular. Since lists are
basic part of these mechanisms, it might be very useful to take into account



4

cache consideration when building these parts of the compiler. Actually first
signs of such research can be found in [4, 5].

The rest of this paper concentrates on presenting our novel data layout technique
and the exploitation of prefetching in the context of this data layout. It is our
plan to carry this research all the way to automatic generation of efficient data
layouts of recursive data structures by optimizing compilers.

1.3 Outline of the paper

Section 2 reviews the VCL model in more details and presents a linked list im-
plementation that uses it. The section also presents an evaluation of the VCL
technique when it was tested on Intel’s Pentium. Section 3 discusses and presents
a prefetching algorithm that further improves the cache behavior of the linked
list data structure. This time the evaluation is done by using an existing prefetch-
ing architecture – the IBM PowerPC. This section also presents a comparison
between the known Greedy-Prefetching [10] and our new proposed technique.
Section 4 concludes the paper, presents future work, and introduces the new re-
search opportunities the VCL idea opened for the compiler and program analysis
researchers.

2 Virtual Cache Lines - A Cache-Aware Data Structure

This section presents the concepts behind the Virtual Cache Lines model. First,
it discusses the relation between the configuration of the physical cache lines
(currently only the L1 cache) on a given system and the virtual cache lines ar-
rangement. The last sub-section presents performance evaluation of the proposed
model implemented on the popular Intel’s Pentium architecture.

2.1 Aggregating nodes of a linked list

Consider a linked list with nodes which span 8 bytes1 and assume that the
machine has cache lines of size 64 bytes. Let us start with a VCL size which
is equal to that of a physical cache line. Therefore, each VCL can contain 8
or fewer nodes. If we break the linked list into sublists each of which contains
8 consecutive nodes (except possibly, for the last sublist), the cache miss ratio
is reduced by up to a factor of 8 (Fig. 1). Moreover, prefetching becomes very
attractive since in this data layout. It is rather easy to find the address of the
next VCL prior to processing the current one, thereby leaving as many as 8
nodes to be visited and processed before accessing the next VCL.
1 Throughout this paper we limit ourselves to relatively small nodes. The motivation

behind this assumption is that large nodes can, in many cases, be split into two
sections: (a) the key section which contains the node’s identifier. (b) The data section.
If we store the second part separately from the first, then the first becomes rather
small. It is the first section which is visited more often. This method is visited more
often.



5

List organization in memory List organization in the cache

Single list’s node

Virtual Cache Line 1 Virtual Cache Line 1

Virtual Cache Line 2

Virtual Cache Line 3

Virtual Cache Line 3

Virtual Cache Line 2

VCL 4

VCL 4
P

hysical cache lines

Linked list pointers

Fig. 1. Organization of nodes of a link list in the VCL mechanism. Each VCL contains
8 (or fewer) nodes. The figure presents the mapping of VCLs to physical cache lines.
Such mapping may reduce the list cache miss-rate by a factor of 8. (The links between
nodes inside the VCL are omitted for readability).

Relaxing Memory Density. While a dense layout such as the one shown in
Fig. 1 is indeed very effective for traversal operations, it performs rather poorly
when it comes to update operations such as insert and delete, since every such
operation will invoke massive re-organization of the entire list. A way out of this
trap is to trade memory density for performance, namely, allow gaps in the data
layout. In the case of linked lists, let us allow the number of nodes per VCL
to vary between min and max (Fig. 2), except maybe the last VCL. The next
section shows that the mechanism to keep the number of nodes between these
limits is fairly simple and efficient.

List organization in memory List organization in the cache

Single list’s node

Virtual Cache Line 1

Virtual Cache Line 2

Virtual Cache Line 3

P
hysical cache lines

Linked list pointers

Virtual Cache Line 4

Virtual Cache Line 2

Virtual Cache Line 3

Virtual Cache Line 1

Virtual Cache Line 4

Empty list nodes, reserved for nodes added in the future

Fig. 2. Practical implementation of the VCL model. The number of nodes in each VCL
varies between min and max (in this case min = 5, max = 8).



6

Supporting Insert/Delete Operations Efficiently. Two situations may
arise: Either an update operation can be done within the min/max imposed
limits, or multiple VCLs have to be involved to resolve either a VCL overflow
situation or VCL underflow situation. In case of a VCL overflow (max is ex-
ceeded), either some nodes of the current VCL are spilled into the next VCL(s),
or a new VCL (or maybe more) is allocated dynamically. Similarly, in cases of
underflow – either we re-balance or we delete a VCL by invoking the memory
manager (Fig. 3).

Before:

After:

A. Insert operation that causes a line overflow 
but does not create a new VCL.

Insert a new node here.
Before:

After:

Insert a new node here.

B. Insert operation that causes a line overflow 
and creates a new VCL.

Before:

After:

Delete this node.

D. Delete operation with line underflow but 
without deletion of a VCL.

Delete this node.
Before:

After:

C. Delete operation with line underflow that 
requires deletion of a VCL.

Fig. 3. Cases of insert/delete operations (in all cases min = 5, max = 8).

The insert2 algorithm of a new node to the list is shown in Fig. 4. This
procedure is being invoked each time a node should be inserted to a line and the
line is full: the VCL already contains max nodes. We will save from the reader
the formal details proving inductively that after performing the code derived
from Fig. 4 each VCL (except, maybe, the last one) contains between min and
max nodes. However, intuitively it is easy to see that in all cases this inductive
invariant holds. In Case 1 we found a VCL with at least one empty place so,
shifting the nodes towards this empty place will enable us to insert the new node.

2 The algorithm for the delete operation is completely analog. In order to increase
readability we will save the details from the reader.



7

Since we did not add any new line it is obvious that each line contains between
min and max nodes. In Case 2 we scan min lines, each contains max nodes.
This means we have seen min×max nodes. Since we created (max−min) new
lines, it is clear that dividing the min×max original nodes to max lines yields
min nodes in each line. Clearly in the first line we will have an extra node – the
one we intended to insert. Case 3 is an end case. Since we allowed the last line
to contain less then min nodes, it is possible to divide the original nodes in the
desired fashion.

Scan the list from the overflowed line till one of the following is true:

Case 1: You reached a line that contains less then max nodes.
Case 2: You scanned min lines and all of them contain max nodes.
Case 3: You reached the end of the list.

In Case 1: Reorganize the nodes in the lines you have just scanned (including the one
that has less than max nodes) such that each line will have at least min nodes

In Case 2: Create (max−min) new VCLs. Reorganize the nodes in the lines you have
just scanned and the new lines such that each line will have at least min nodes.

In Case 3: Reorganize the nodes in the lines you have just scan such that each line will
have at least min nodes except the last one – if necessary create a new VCL.

Fig. 4. The insert algorithm in case of line overflow.

2.2 Performance Evaluation of the VCL Model in Non-Prefetching
Architecture

To assess the performance of the VCL scheme, the efficiency of a simple scan on
the list was evaluated. It is easy to realize the importance of a highly efficient
scan operation on the list. Since the linked list is a very basic data structure, most
of its common operations—like insert (after a specific item), delete (a specific
item), and find—require at least partial scanning of the list. We have measured
the performance of three implementations of linked lists:

1. Scattered lists – the standard implementation of linked lists, where each
node is individually allocated by the memory manager. We were careful and
constructed these lists by doing a large number of random insert and delete
operations. In this way we promised that the nodes are truly scattered in
memory – a typical situation to programs that manipulate large number of
heap objects. This model is widely used in programs and user libraries [12].

2. Smart lists – a linked list that uses the VCL mechanism.



8

3. Compressed lists – a linked list that is mapped to an array. This can serve
as a reference model since it offers optimal spatial locality. While this model
is of no interest when it comes to update operations, it may be used as a
lower bound when assessing performance of scan operations.

For convenience, we assumed that the linked lists to be studied are sorted
by a specific field called key. The Scattered and Smart implementations present
the same interface to the invoking applications. As a representative of non-
prefetching architectures we chose the Intel Pentium. Moreover, testing the pro-
posed model on such a popular processor is tempting. Intel’s Pentium processor
has an on-chip 8Kb data cache and a 256Kb L2 cache (instruction and data).
Both caches have line size of 32 bytes. The operating system that we used was
Windows 95. The Pentium architecture does not support prefetch instructions.

One last remark should be noted. Our main purpose is to show the potential
improvement when using VCLs. We performed our experiments on lists that
are constructed from nodes that span 8 bytes. It should be cleared that the
improvement percentage (relatively to the Scattered list) one might gain when
dealing with larger nodes is smaller. However, this improvement percentage is not
the right way to light out results. The correct view is measuring the performance
difference between the Smart list and the best performance one might achieve -
the Compressed list. This difference is small regardless the nodes size.

Performance of List Scanning Operation. To assess the performance of
scanning the list we ran 15,000 experiments. In each such experiment we ran-
domly selected a value to be searched for, and then performed the search on
the three list implementations. Since the search is a linear process, searching is
actually scanning of the list. The code that we ran in all three cases is shown in
Fig. 5. In all cases lists with the same number of nodes are identical, meaning
the contents of the nodes and the order between them is the same. The only
difference between lists with the same length is their memory layout.

1. current = list→head address();
2. while (current) {
3. if (current→key == key to find)
4. return current; // End of the current search
5. current = current→next;
6. }

Fig. 5. The code for a single search operation. This code was performed for each of
the lists’ models.

We measured the time it took to complete the 15,000 searches in each of the
implementation of the linked list. The test was repeated for several list sizes. We



9

used a VCL with min = 8 and max = 10. The size of a single node (including
the next pointer) was 8 bytes. Therefore, each VCL consumed 80 bytes out of
which at least 64 were used. On the Pentium processor these numbers mean that
the ”busy” part of each VCL consumes 2-3 physical cache lines.

0
2
4
6
8

10
12
14
16
18

512 1536 2560 3584 4608 5632 6656

List size (nodes)

T
im

e
 (

s
e

c
)

scattered smart compressed

(a) Time measured when perform-
ing 15,000 continuous searches on
various sizes of lists using the three
implementations of the linked list
(Scattered, Compressed, and VCLs).

0

20000

40000

60000

80000

100000

120000

341 682 1365 2046 2728 3410 4092 4774

List size (nodes)

C
a

c
h

e
 M

is
s

e
s

scattered smart compressed

(b) Number of cache misses which
occurred during a search operation
using the three implementations of
the linked list.

Fig. 6. List Scan Benchmark Performance.

Fig. 6(a) shows the performance results that we obtained. On average, Smart
lists perform 2.48 times better than Scattered lists. For comparison reasons,
observe that Scattered lists perform 3.4 times worse than Compressed lists. It
is clear that when the list is smaller than the cache size, say 512 nodes which
require 4Kb, the performance of the repeated searches through the list in the
three implementations is similar.

Fig. 6(b) presents the total number of cache misses which occurred during
the run. The cache misses where measured by using Vtune – commercial tool
shipped by Intel [17]. Two main observations are worth mentioning:

Observation 1: There is a high correlation between run-time performance
and cache misses in the three implementations of the linked list.

Observation 2: The performance (time and cache misses) of Smart lists is
close to that of Compressed lists.

The last observation is somewhat surprising. We see that the Smart list
achieves a very close performance to the compressed list. However, the smart
list is still scattered around in memory. In this case the nodes of the Smart
list are allocated in groups of tens, which means we have a large number of



10

independent groups (between 50 and 710 in the case of Fig 6(a)). It seems that
in order to get an ‘array’ performance small groups are enough.

Performance Evaluation of Insert/Delete Operations Next, let us see
how does insert and delete perform. The following experiment shows that main-
taining linked lists is more efficient in the VCL model. In this experiment we
compared the performance of Scattered and Smart lists (min = 8, max = 10).
The two lists were built by performing the same sequence of insert and delete
operations. Obviously, the number of inserts was bigger than the number of
deletes. Fig. 7 presents the time it takes to build these lists with various sizes.
The most important observation from this experiment is:

Observation 3: It is more efficient to maintain linked list in the VCL model
than in the scattered implementation due to reduced number of memory manager
invocations as well as lower number of cache misses (because of the implicit
search operation).

0

1

2

3

4

5

6

7

8

1024 2048 3072 4096 5120 6144 7168

List size (nodes)

T
im

e 
(s

ec
)

Scattered

Smart

Fig. 7. Comparison of time it takes to maintain (i.e., insert & delete operations) Scat-
tered and Smart lists.

One point should be cleared. The relation between min and max values will
influence the results of this experiment. If the difference between min and max
will be large, then the number of node reorganizations (as described in Fig. 3)
will decrease and the performance gap between the smart and the scattered
list will widen. We choose these specific values for min and max for two main
reasons:

1. These values were discovered as the appropriate values when trying to opti-
mize the scan operation.

2. We want to demonstrate that even when the gap between min and max
is small, the improvement in the performance of the insert and the delete
operation is still measurable.



11

3 Prefetching Techniques for the VCL Model

This section presents an algorithm that improves the performance of the VCL
scheme by using various aspects of the software prefetch mechanism. As a repre-
sentative for architectures that support prefetching we choose the IBM PowerPC
processor (model 604e) that implements the ‘dcbt’ (Data Cache Byte Touch)
non-interrupted prefetch instruction. An advantage of the PowerPC 604e pro-
cessor is the fact that it has a prefetch queue that can tolerate up to four con-
secutive prefetch operations. The processor has an on-chip 32Kb data cache and
a 512Kb L2 cache (instruction and data). Both caches have line size of 32 bytes.
The operation system is AIX version 4.1.

3.1 The Prefetch Algorithm

The most popular prefetch technique in the case of recursive data structures is
the Greedy-Prefetching [10] . The basic idea is very simple: when traversing the
data structure, prefetch the nodes that are directly pointed by the current node.
Fig. 8 illustrates Greedy-Prefetching when traversing a linked list.

1. current = list→head address();
2. while (current != null) {
3. PREFETCH(current→next);
4. WORK(current)
5. current=current→next
6. }

Fig. 8. Greedy-Prefetching on a linked list.

Our prefetch approach takes a similar direction. However, instead of per-
forming inter-prefetching between the nodes of the data structure, we perform
inter prefetching between the VCLs. The prefetch method uses the fact that
the VCLs themselves can be arranged in a linked list data structure. Therefore,
when traversing the current VCL, the algorithm performs a prefetch to the next
VCL. VCL prefetching means not only bringing a specific physical cache line
into the cache, but using an arbitrary number of bytes starting from a specific
address. This can be achieved by the new prefetch queue implemented on the
PowerPC processor model 604e. This model supports a prefetch queue of up
to four prefetch instructions, where each instruction refers to a single physical
cache line. Therefore, prefetching the next VCL can be achieved by several se-
quential prefetches that refer to a small linear part of memory (our VCL). Fig. 9
shows how to achieve a prefetch of a single VCL that is 128 bytes long using
four ‘regular’ prefetch instructions.



12

1. address = start of VCL;
2. prefetch(address+0);
3. prefetch(address+32);
4. prefetch(address+64);
5. prefetch(address+96);

Fig. 9. Prefetching a VCL with length of 128 bytes by applying 4 regular prefetch
instructions.

By prefetching VCLs instead of the original nodes of the data structure, the
proposed approach should overcome the main disadvantage of Greedy-Prefetching.
As mentioned above, the Greedy-Prefetching performs prefetch to the ‘closest’
nodes. In some cases this prefetch will be done too late, so it fails to hide the
memory latency caused by a cache miss. Actually, our results (in the next sec-
tion), show that the Greedy-Prefetching can degrade performance in cases where
a small amount of work is done on each node. By prefetching VCLs instead of
nodes, the algorithm increases the gap between the prefetch instruction and the
data usage. For example, assume that a single VCL consists of 12 original nodes,
we can prefetch 12 nodes ahead instead of one. Fig. 10 presents the code that
traverses the list of VCLs and performs prefetch one VCL ahead.

1. current VCL = list→first VCL();
2. current = list→head address();
3. while (current VCL) {
4. prefetch next VCL(current VCL→next)
5. num = current VCL→num of items();
6. for (i=0 ; i < num ; i++){
7. WORK(current);
8. current = current→next;
9. }
10. current VCL = current VCL→next;
11. }

Fig. 10. Prefetch of VCL instead of original nodes.

Determining the length of the VCL is done by taking into account several ar-
chitectural features. The number of nodes in each VCL is determined as follows:
the time it takes to perform lines 6-9 in Fig. 10 should be (approximately the
same as) the time it takes to bring the following VCL into the cache. Hence, the
optimal number of nodes in the VCL is directly influenced by an architectural
feature: the time it takes to bring data into the cache. The second architectural
component that we should consider when building the VCLs is the depth of the



13

prefetch queue. As mentioned, prefetch of a single VCL is performed by several
sequential physical cache line prefetches (Fig. 9). Hence, the length of a VCL
(in bytes) should be smaller than the maximal number of bytes that can be
simultaneously prefetched by the prefetch queue.

3.2 Performance Evaluation of the VCL Model in Prefetching
Architecture

To evaluate the suggested prefetching mechanism, we repeated the scan test on
the three types of lists. We also compared our prefetch algorithm with the known
Greedy-Prefetching (Fig. 8). We repeated the comparison in several cases where
the program performed a different amount of work in each node when traversing
the list. The amount of work is measured in clock cycles and determined in the
function call WORK (See Fig. 8 and Fig. 10). Again, each node is 8 bytes long
and since the 604e processor supports up to four sequential prefetches, we built
the VCLs with a maximum length of 128 bytes. This way we could simulate a
VCL prefetch using up to four prefetch instructions.

Fig. 11 presents the results we got. Some major points should be noted:

1. The Smart list with prefetching behaves better (approximately 25% improve-
ment) than the Smart list without prefetching.

2. When the amount of work is small (less than 16 cycles per node) Greedy-
Prefetching degrades performance.

3. The proposed prefetch method is better than Greedy-Prefetching in most
cases and performs equally to it when we perform considerable amount of
work on each node. This means that one can use the proposed method and
achieve performance at least as good as the Greedy-Prefetching.

From these last points we can conclude the following main observation:
Observation 4: The combination of the VCL data layout and the prefetch-

ing technique improves the cache behavior of the Scattered linked list between
100% to 300%.

4 Future work and conclusions

Based on the lessons we learned from these preliminary results, we intend to
continue our research in the following directions. First, we intend to find the
precise connections between the length of the physical cache line and the virtual
cache line. This connection is related to correctly choosing the values for the
min and max parameters. Second, this research might be extended higher in
the memory hierarchy and to more sophisticated data structures such as trees.
However, we believe that the promising research direction is found in the shape
analysis area. The opportunity to automatically transform a naive data structure
and its implementation programmed by the user to more sophisticated structures
and methods would enable us to insert the cache-aware data structures by the
compiler without any assistance from the programmer.



14

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32 36 40 44

Cycles per node

T
im

e

Scattered List - no
prefetch

Scattered List - greedy
prefetch

Smart List - no
prefetch

Compressed List

Smart List - With
Prefetch

Compressed List -
With Prefetch

Fig. 11. Evaluation of the prefetching algorithm.

Programs that use Recursive Data Structures (RDSs) usually suffer from
poor cache behavior due to the lack of locality in their data layout. One of the
most common ways to deal with memory latency is to use prefetching. While
this approach wins a success in numeric applications [3, 11]. in a pointer intensive
environment the prefetch solution is more complex and not widely applicable
[10]. This paper presents a new method to deal with this challenging problem.
The Virtual Cache Line mechanism groups together sequential nodes of a linked
list. This grouping concept results in a notably higher spatial locality of the
linked list and therefore improves its cache performance. Our results show that
not only it is possible to handle the linked list in the VCL manner, it is even
more efficient to do so. The insert/delete operation becomes more efficient, but
the main result is that even without prefetching scanning the list improves by
200%. Combining the VCL method with our new prefetching algorithm further
improves the performance gain by an average factor of 300%. We believe that
these preliminary results provide motivation to keep and develop prefetching
methods and mainly to make compilers to use them automatically.

References

1. Rudolf Bayer and Edward M. McCreight, Organization and maintenance of large
ordered indices, Acta Informatica 1 (1972), 173–189.

2. James E. Bennett and Michael J. Flynn, Reducing cache miss rates using prediction
caches, Tech. Report CSL-TR-96-707, Stanford University, 1996.

3. David Bernstein, Doren Cohen, Ari Freund, and Dror E. Maydan, Compiler tech-
niques for data fetching on the PowerPC, Proceedings of PACT’95, Conference
on Parallel Architectures and Compilation Techniques (Limassol, Cyprus), ACM
Press, June 27–29, 1995, pp. 19–26.

4. B. Calder, K. Chandra, S. John, and T. Austin, Cache-conscious data placement,
Proceedings of the Eighth International Conference on Architectural Support for



15

Programming Languages and Operating Systems (ASPLOS’VIII) (San Jose, CA),
October 1998, pp. 139–149.

5. Trishul M. Chilimbi and James R. Larus, Using generational garbage collection
to implement cache-conscious data placement, Proceedings of the International
Symposium on Memory Management (ISMM-98), ACM SIGPLAN Notices, vol.
34, 3, 1999, pp. 37–48.

6. Intel Corp., Pentium processor family developer manual, 1995 ed., vol. 3, Intel,
1995.

7. Anoop Gupta, John L. Hennessy, Kourosh Gharachorloo, Todd C. Mowry, and
Wolf-Dietrich Weber, Comparative evaluation of latency reducing and tolerating
techniques, Proceedings of the 18th Annual International Symposium on Com-
puter Architecture (Toronto, Canada), IEEE Computer Society Press, May 1991,
pp. 254–263.

8. W. W. Hwu and P. P. Chang, Achieving high instruction cache performance with an
optimizing compiler, Proceedings of the 16th Annual International Symposium on
Computer Architecture (Jerusalem, Israel) (Michael Yoeli and Gabriel Silberman,
eds.), IEEE Computer Society Press, June 1989, pp. 242–251.

9. Monica Lam, Edward E. Rothberg, and Michael E. Wolf, The cache performance
and optimizations of blocked algorithms, Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’IV) (Santa Clara, California), April 1991, Stanford University.

10. Chi-Keung Luk and Todd C. Mowry, Compiler-based prefetching for recursive
data structures, Proceedings of the Seventh International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’VII)
(Cambridge, MA), 1996, pp. 222–233.

11. Todd C. Mowry, Tolerating latency through software-controlled data prefetching,
Ph.D. thesis, Stanford University, Computer Systems Laboratory, 1996.

12. David R. Musser and Atul Saini, STL tutorial and reference guide, Addison-Wesley,
Reading, 1996.

13. Karl Pettis and Robert C. Hansen, Profile guided code positioning, Proceedings
of PLDI’90 Conference on Programming Languages Design and Implementation,
1990, pp. 16–27.

14. Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm, Parametric shape analysis via
3-valued logic, Proceedings of POPL’99 Conference on Principles of Programming
Languages (San Antonio, TX), January 1999, pp. 105–118.

15. Tom Shanley, PowerPC system architecture, PC system architecture series, Addi-
son-Wesley, Reading, MA, USA, 1995.

16. Marc Shapiro and Susan Horwitz, Fast and accurate flow-insensitive points-to anal-
ysis, Conference Record of POPL.97 Conference on Principles of Programming
Languages (Paris, France), January 1997, pp. 1–14.

17. Ron van der Wal, Programmer’s toolchest: Source-code profilers for Win32, Dr.
Dobb’s Journal of Software Tools 23 (1998), no. 3, 78, 80, 82–88.


