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ABSTRACT

Many systems have leveraged the broadcast nature of wireless ra-
dios to improve wireless capacity and performance. While con-
ventional approaches have focused on overhearing entire packets,
recent designs have argued that focusing on overheard content may
be more effective. Unfortunately, key design choices in these ap-
proaches limit them from fully leveraging the benefits of overhear-
ing content. We propose a cleaner refactoring of functionality where-
in overhearing is realized at the sub-packet payload level through
the use of IP-layer redundancy elimination. We show that this dra-
matically improves the effectiveness of prior overhearing based ap-
proaches and enables new designs, e.g., enhanced network coding,
where content overhearing can be more effectively integrated to
improve performance. Realizing the benefits of IP-layer content
overhearing requires us to overcome challenges arising from the
probabilistic nature of wireless reception (which could lead to in-
consistent state) and the limited resources on wireless devices. We
overcome these challenges through careful data structure and wire-
less redundancy elimination designs. We evaluate the effectiveness
of our system using experimentation on real traces. We find that our
design is highly effective: e.g., it can improve goodput by nearly
25% and air time utilization by nearly 20%.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

General Terms

Algorithms, Design, Performance

Keywords
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1. INTRODUCTION

A common issue in wireless networks is severely constrained
throughput performance, especially when link quality is poor or
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node density is high. An important class of techniques that aim
to improve wireless performance are those based on wireless over-
hearing. These techniques use the fact that wireless radios can op-
portunistically overhear packet transmissions, which can be lever-
aged in a variety of ways: e.g., nodes can suppress unnecessary
transmissions (e.g., RTS-id [3]), make better forwarding decisions
(e.g., ExOR [10]) or perform network coding (e.g., COPE [20]).

Conventional overhearing based approaches all rely on overhear-
ing packets (both headers and payloads) in full. In contrast, more
recent overhearing approaches argue that a content-centric design
can lead to even better capacity improvements. Focusing on the
content being overheard can facilitate, for example, suppression of
duplicate data across different transfers, which is not possible in the
packet-centric approaches. Ditto, the first such content overhear-
ing system [13], leverages overhearing at the granularity of data
chunks roughly 8 to 32KB long and offers nearly an order of mag-
nitude better throughput in multi-hop mesh networks compared to
traditional forwarding.

Unfortunately, existing approaches do not go far enough in lever-
aging the full benefits of content overhearing. The main reasons for
this are: (7) the granularity at which content overhearing operates
and (ii) how content overhearing is implemented. For instance, in
Ditto, content overhearing is implemented at the granularity of 8-
32KB chunks, using an unconventional pull-based transport. This
prevents Ditto from being applicable to short flows and flows with
dynamic content, which make up a significant fraction of Web and
enterprise flows [8, 15] and are typical of request-response appli-
cations. Additionally, Ditto caches content only at mesh nodes, not
wireless clients, providing no benefits over the last hop wireless
link. We discuss these and other drawbacks in greater detail in §2.

We argue that a re-factoring of content overhearing is necessary
to realize the full benefits. In this paper, we present a system called
REfactor that pushes content overhearing lower down the stack
to enable fine-grained overhearing, specifically through intelligent
use of recent IP-layer redundancy elimination (RE) [7] technology.
In traditional RE, a wired transmitter removes duplicate strings of
data (as small as 32-64B) from individual packets by comparing
them against prior packets; the receiver reconstructs full packets
from a local cache of prior packets. REfactor shows how this idea
can be generalized to a wide range of wireless settings, including
infrastructure-based, mesh, and ad-hoc networks.

IP-layer RE has recently been leveraged in the context of cellu-
lar wireless networks, providing up to 60% bandwidth savings on
last hop cellular links [22]. However, REfactor takes RE a step
further by adding the benefits of content overhearing, a feature not
currently available in commercial cellular networks. REfactor is
able to exploit the inherent fine-grained redundancy known to exist
at the sub-packet (or “packet chunk) level, not only within a single



client, but also across multiple clients [8]. Additionally, we address
many of the challenges introduced by the wireless domain, dis-
cussed below, in a manner that provides additional benefits, rather
than seeking solely to minimize overhead [22].

Enabling RE-based content overhearing in a range of wireless
settings introduces many key challenges. Whereas in conventional
wired RE approaches the sender and receiver caches are tightly
synchronized, the probabilistic nature of wireless overhearing and
the possibility of a receiver overhearing from multiple transmitters
mean that sender and receiver caches are almost guaranteed to be
out of sync, which significantly impacts the correctness and perfor-
mance of RE. Furthermore, wireless nodes are often memory and
CPU constrained; hence we need new light-weight RE designs.

We develop novel data structures to overcome these challenges.
We present the notion of self-addressing packet chunks, which al-
lows us to track cache residence in a consistent and low overhead
way across an entire wireless deployment and vastly simplifies re-
dundancy encoding and decoding. We also design simple approaches
for estimating reception probabilities, which we then employ in a
model-driven fashion to decide whether it is worth removing dupli-
cate bytes. We find that the model-driven approach, coupled with
the fact that our design leverages many possible opportunities for
overhearing content, make REfactor reasonably robust to errors in
reception probability estimation, which is a notoriously hard prob-
lem. This makes REfactor easy to use in practice.

We find that our refactoring has the obvious effect of signif-
icantly improving and broadening the effectiveness and applica-
bility of content overhearing and redundancy elimination in wire-
less settings. Emulation experiments using our prototype written
in Click [21], show that REfactor can improve goodput in infras-
tructure wireless networks by nearly 25% and utilization by 20%.
REfactor’s goodput improvements are not just the result of sim-
ply removing repeated chunks from packets: REfactor’s focus on
packet chunks provides more opportunities for overhearing, and
the smaller packets REfactor creates have much lower packet er-
ror probability—imposing 7-27% fewer packet losses. We find that
model-driven RE is quite beneficial, whereas blindly applying RE
on all packets can result in a drop in goodput. REfactor can tolerate
up to 20% error in overhearing probability estimation. Addition-
ally, our self-addressing chunks approach offers high speed oper-
ation (our prototype, e.g., offers up to 0.8Gbps in software) while
requiring modest sized caches (64-256MB) and ensuring effective
duplicate removal (75% of optimal). Detailed results are in §5.

REfactor has important architectural implications as well. In par-
ticular, it substantially enriches various existing overhearing-based
approaches and enables new ones. For instance, REfactor can be
easily combined with COPE [20] and mesh routing techniques [12]
to improve network capacity (see §2 for detailed examples). Com-
bining our REfactor prototype with COPE [20] improves utilization
by 3-14% compared to using just COPE.

2. BACKGROUND AND MOTIVATION

Traditional overhearing-based approaches to improving wireless
network capacity and throughput have relied on packets being over-
heard in full. For example, RTS-id [3] adds a special ID field
to an RTS packet to allow receivers to determine if they recently
overheard a packet, thereby avoiding transmission of the packet.
In contrast, some recent approaches have argued that shifting the
focus from packets to content can result in substantial throughput
and capacity improvements. Ditto [13] was the first system based
on this notion of content overhearing (as opposed to the conven-
tional packet overhearing ideas). Ditto functions on named data
chunks that are independent of packets. Wireless mesh routers
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in Ditto cache directly received chunks and chunks reconstructed
from overheard packets. When a client requests a particular chunk,
Ditto attempts to serve the request from a upstream wireless mesh
router, avoiding the need to transfer a chunk all the way from the
mesh gateway to the client.

2.1 Limitations of the State-of-the-art

In what follows, we argue that Ditto’s approach does not lever-
age all redundancy opportunities, and its narrow focus limits its
applicability to a variety of practical scenarios.

Limitations due to large chunks. Ditto names data chunks of
size 8KB or larger. This leads to two problems: First, Ditto fails
to identify finer-granularity content overlap across network flows.
In fact, recent studies have shown that a major portion of redun-
dancy in Internet traffic arises from overlapping chunks as small
as 64B in size [8]. Second, many nodes may not overhear a large
chunk in full and may fail to reconstruct it. Indeed, experiments
using Ditto show that, on average, 75% of the potential locations
for overhearing in a campus testbed could not completely overhear,
and failed to reconstruct, almost 50% of chunks [13]. A recent
RE framework for cellular networks operates on chunks as small
as 8B, enabling redundancy removal within a client’s traffic at fine
granularities [22]. However, applying this system to other wire-
less scenarios (such as those in §2.2.2) misses out on overhearing
opportunities to remove redundancy between clients.

Limitations due to pull-based transport. Ditto’s reliance on
named data chunks, each of which spans several packets, forces it
to use an alternate transport protocol instead of using TCP end-
to-end. Specifically, Ditto uses a pull-based transport protocol,
DOT [27], where remote servers send chunk IDs to clients, who
then request them one after the other; requests may be opportunisti-
cally served by a local cache. This leads to several problems: First,
it requires chunk identifiers to be known beforehand. This works
for static content but not for dynamically generated content; clients
are forced to use default transport designs for dynamic content, re-
moving the opportunity for performance improvements. Second,
applications with with short messages—e.g., gaming flows, twit-
ter feeds, several request-response applications, short HTTP flows,
etc.—may actually observe a degradation in performance in the av-
erage case (because the pull-based approach invariably adds addi-
tional RTTs). Lastly, no performance benefits are offered on last
hop wireless links. Chunks must be transferred in full across the
last link from mesh router to client.

Another set of popular approaches for improving wireless ca-
pacity are those based on network coding [11, 20]. As the authors
of Ditto mention, it may be possible to use opportunistic content-
overhearing to augment coding and improve its overall effective-
ness. However, given the mismatch in the granularities and trans-
port models used in Ditto and prior coding approaches, it is unclear
if the synergy between overhearing and coding can be exploited.

2.2 REfactor

Our paper shows that a careful re-factoring of content overhear-
ing can address the problems above optimally and dramatically im-
prove wireless capacity and performance. We argue for pushing
content-awareness “lower down the stack” through the use of IP-
layer packet caches that perform redundancy elimination (RE) [7].
Packet caches can be used to suppress byte strings that have ap-
peared in earlier overheard packets both within and between clients.
We refer to our approach as REfactor. The cleaner re-factoring in
REfactor offers many benefits:

e [P layer RE can remove duplicates as small as 64B in an app-
lication-agnostic fashion, even from dynamically generated



content. REfactor benefits applications with short flows—
even those lasting a single packet—which are common in
enterprise settings [15]. Thus REfactor leads to more effec-
tive overhearing-based designs.

REfactor requires small IP-layer modifications and retains
the conventional push based model of content dissemination
that is prevalent today.

Because REfactor leverages all possible opportunities for over-
hearing, it’s performance is reasonably robust to errors in
some aspects of the design (in particular, reception probabil-
ity estimation, which is a notoriously hard problem). Thus,
it is easy to use in practice.

REfactor leads to smaller packets which consume less band-
width and suffer lower loss rates. Operating on packets also
allows REfactor to run at very high speeds: As we show in
§5, our prototype offers 0.6-0.9Gbps.

REfactor can be applied transparently in a variety of sce-
narios, including wireless infrastructure-based and peer-to-
peer communications, and opportunistic routing in multi-hop

mesh networks. In particular, REfactor is more directly aligned

with packet-based coding approaches. Hence it provides prac-
tically viable opportunities to enhance network coding to fur-
ther improve network capacity.

2.2.1 REfactor Overview

We start with a common scenario where REfactor can be used:
an AP operating in infrastructure mode with some number of asso-
ciated clients. The AP and clients can overhear and cache packets.
When the AP receives a packet from the wired network, it scans
the content for duplicate strings of bytes that appeared in earlier
packets. The AP then calculates the expected benefit for the receiv-
ing client from performing RE on the packet, which depends on
the AP’s estimate of whether the receiving client is likely to have
cached the relevant earlier packets, either from transmissions to the
client or from overheard transmissions to some other client. If the
likely benefit is high, the AP “encodes” this packet, i.e., removes
the duplicate bytes and inserts a shim instead. The shim contains
a pointer to a memory location in the client and allows the client
to reconstruct the original packet using its local cache. Thus, if
the receiving client has the content pointed to by the shim, then it
can decode the packet. However, if the content is not cached in
the client, the client needs to request the missing content, incurring
additional transmissions. This penalty is imposed when the AP’s
estimate of whether the client has the content is incorrect.

In Figure 1a, we illustrate the benefit REfactor offers in this sce-
nario. The transmission of the packet payload abc to CI is over-
heard by C2, and the chunk ab is added to all caches. The data
abd is sent to C2 via a packet with a shim header “1” plus the non-
redundant data d. Because C2 overheard and cached the chunk ab,
it as able to reconstruct the full packet using the cache entry spe-
cific in the shim header. The reduction in the size of the second
packet transmission improves overall network throughput.

2.2.2  REfactor in Other Scenarios
REfactor also helps in other diverse scenarios.

Multiple AP infrastructure. We start with multiple APs operating
in infrastructure mode. As shown in Figure 1b, a client may be able
to overhear transmissions from both it’s associated AP and other
nearby APs. An AP can remove redundancy based on any chunks
a client may have overheard, regardless of which AP they were
overheard from. C2, which is associated with AP2, overhears API’s
transmission of abc to CI. AP2 can therefore remove redundancy
from its transmission of abd to C2.
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Figure 1: REfactor applied to diverse scenarios

Ad hoc meshes. REfactor can also be applied to transmissions be-
tween clients via a mesh or ad hoc network. Figure 1c shows the
use of REfactor to achieve transmission reduction and, correspond-
ingly, capacity improvement, in a small mesh network; this can
be easily extrapolated to a larger mesh. Using normal forwarding,
based on metrics such as ETX [12], 4 transmissions are required
for two clients to send a packet to each other via a relay. By apply-
ing REfactor to the situation, we can reduce the size of the fourth
transmission, resulting in 4 — ¢ transmissions, where § is propor-
tional to the amount of redundancy removed: C1’s transmission of
abc to R1 is overheard by R2, which caches ab. C2 transmits abd
to R2, followed by R1 transmitting abc to C2. Lastly, R2 removes
the redundancy from abd, sending 1d to C/, since it knows CI’s
cache contains ab.

Opportunistic routing in multi-hop meshes. In a similar fash-
ion, REfactor can also be applied to opportunistic routing schemes
in mesh networks (not shown in Figure). In approaches such as
ExOR [10], the transmitter orders relays on the basis of their packet
overhearing probability, before sending a batch of packets. Using
REfactor, ExOR can be modified in two ways: First, the effective
batch size can be reduced by removing strings that are duplicated
either within the batch, or across prior batches sent by the transmit-
ter. Second, the ordering of relays could take into account whether
or not a relay has portions of content in the batch already cached; a
relay with high overhearing probability could be given a high pri-
ority for forwarding if it has a significant fraction of bytes in the
batch cached as it could prove invaluable in speeding completion
time of the batch.

Networking coding. Network coding systems, such as COPE [20]
have traditionally relied on coding full packets without paying at-
tention to packet contents. REfactor can be combined with network
coding to leverage duplication in packet payloads to help coding
improve network capacity even further. We present the combina-
tion REfactor + COPE in Figure 1d. In this scenario, CI has a
packet destined for C4 and C2 has a packet destined for C3, both
of which must be sent via the relay. COPE imposes only 3 packet
transmissions compared to 4 in the regular case, as C3 can over-
hear CI’s transmission and C4 can overhear C2’s transmission,
providing a coding opportunity. REfactor + COPE leverages this
overhearing even further by removing chunks known to exist in
the destination client’s caches: Assuming C3 overheard an earlier
transmission abc and C4 overheard xy z, the relay can remove the
redundancy (ab and xy) from the current packets and code the re-



mainder of the current packets, d @& w. The coded packet, plus
small shims to “encode” the removed redundancy, is broadcast to
C3 and C4 simultaneously. COPE, in contrast would broadcast the
much larger abd @ xyw. C3 and C4 are able to obtain their pack-
ets by reversing the network coding and filling in removed chunks
from their caches. Thus, REfactor + COPE reduces the number
of transmissions to 3 — &, where ¢ is the relative difference in the
size of a full un-encoded packet (e.g., abd) and the above coded
packet along with the shims. Assuming chunks are all the same
size, 6 < % in the example above, resulting in nearly % better ca-
pacity than COPE.

2.3 Design Challenges

Although REfactor can offer substantial advantages as the above
examples show, a careful design is needed to realize the benefits
in practice. First, since overhearing is probabilistic in nature and
caches are fixed size (hence, old content is evicted over time), a
sender may not have an accurate view of whether the intended re-
ceiver has a certain content chunk already cached. In turn, this
could lead to incorrect encodings and the resulting retransmissions
negate the overall benefit of duplicate suppression in REfactor. En-
forcing explicit synchronization of caches—which is a candidate
solution for this problem—can add excessive overhead. Second,
wireless nodes may be processing and memory constrained (for
example, the clients in the above scenario could be smartphones),
so REfactor mechanisms should require minimal resources from
them. Designing REfactor to maximally leverage IP-Layer content
overhearing while accounting for the above issues is challenging.

3. REfactor DESIGN

In this section, we describe the design of REfactor. For simplic-
ity, we focus on the setting outlined in §2.2.1, namely, optimizing
the downlink traffic performance of a wireless AP with a collec-
tion of clients. However, our basic building blocks, along with a
few extensions described at the end of this section, apply to other
scenarios as well.

REfactor applied to the single AP scenario involves the following
steps: (i) When the AP receives a packet from the wired backend,
we “chunk” it and compute a “fingerprint” per chunk. (ii) For each
chunk, the corresponding fingerprint is used to refer to a content
cache data structure that helps determine the probability of the in-
tended receiver having cached the chunk. (iii) The AP computes the
expected throughput benefit from removing chunks in the packet.
If this exceeds a certain threshold, the AP removes the chunks and
replaces them with the fingerprints instead. (iv) If the AP observes
a hash collision for a chunk, it does not encode the packet, and it
invalidates the chunk stored in its content cache for the collided
hash. (v) If a client is unable to decode a packet using a fingerprint
supplied by the AP, it requests a chunk retransmission from the AP.
(vi) The AP updates the cache-residence probabilities associated
with each chunk of the packet. We describe each of these steps and
the underlying design issues next.

3.1 Chunking

Prior works have considered several different approaches for re-
moving packet-level redundancy, which trade-off memory usage,
processing time, and redundancy opportunities.The earliest, by San-
tos and Wetherall [25], supports redundancy elimination (RE) at
the full packet level. While simple, this approach severely lim-
its RE opportunities. Support for partially redundant payloads is
provided by two different classes of approaches: Max-Match and
Chunk-Match [5].

In Max-Match, the encoder computes a rolling Rabin-Karp hash
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[23] for each 32B region of a packet and selects a subset of these,
based on hash values, to serve as packet fingerprints. The finger-
prints are stored in a hash table, with each fingerprint pointing to
the corresponding packet, which is stored in a packet cache in FIFO
fashion. Fingerprints computed for an incoming packet are checked
against the fingerprint table; a matching packet, if found, is re-
trieved and compared byte-by-byte around the 32B match region
to identify the region of maximum overlap. The overlap region is
removed and replaced with a shim, which carries the memory off-
set of the packet in the downstream decoder’s FIFO-ordered packet
cache from which the missing bytes can be constructed. The down-
stream cache is maintained in a similar fashion.

Chunk-Match computes and selects Rabin hashes in a similar
fashion, but the chosen 32B regions form the boundaries of the
chunks into which the packet is divided. A SHA-1 hash, which
forms a fingerprint, is computed for each chunk and inserted into
a chunk hash table. Each unique chunk is cached in FIFO order.
When an incoming packet has a chunk matching against the chunk
hash table, the matched region is replaced with the chunk hash. In
both cases, the MAXP algorithm' has been found to be effective
at selecting hashes offering a uniform distribution across a wide
variety of packet payloads [7, 8]. We employ this in our design.

Chunk-Match’s focus on chunks means it is less effective at iden-
tifying redundancy than Max-Match. As a result, packet-level RE
systems have traditionally preferred Max-Match [5, 7, 26]. But we
choose Chunk-Match in designing REfactor due to the following
benefits:

1. Effective memory usage: A specific chunk only needs to be
stored once, while Max-Match’s packet-based approach re-
quires storing full packet payloads, even if part of the pay-
load already exists in another payload.’

2. Better at accommodating overhearing: As we argue below,
Chunk-Match can be used to design simple techniques to
handle wireless overhearing, without requiring complex op-
erations at clients or APs or imposing too much overhead.
In contrast, Max-Match requires clients to employ additional
data structures and meta data to track overheard content, which
imposes additional memory and computing overhead.

3. More overhearing opportunities Overheard packets that have
duplicate bytes suppressed can be more effectively leveraged
in Chunk-Match, because Chunk-Match can cache whatever
chunks remain in those packets. In contrast, Max-Match
would discard such packets because it needs full payloads.

4. Ability to leverage partial packets: Although not discussed
in this paper, Chunk-Match can be effectively combined with
partial packet recovery schemes [17] to further leverage par-
tially overheard payloads. It is difficult to do so with Max-
Match.

Chunk-Match still has key limitations due to which it cannot be
applied directly in REfactor. First, the large size of the SHA-1 hash
means the effectiveness of redundancy removal is limited. Also, the
decoder (i.e., the client) has to compute and store SHA-1 hashes for
cached chunks, which is expensive from both an energy and mem-
ory view-point. As an improvement, the encoder can only maintain
the chunk hashes in a hash table, while the decoder maintains only
the chunks in a FIFO cache: the encoder looks up chunk hashes
for a match and replaces each match with a memory address in the

'MAXP selects hashes that are the maximum over all hashes com-
puted over a p-byte region.

The optimizations to Max-Match suggested by EndRE [5] to ad-
dress high resource costs are not feasible for REfactor.
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Figure 2: REfactor in practice. Solid lines indicate normal packet
delivery and dashed lines indicate overheard packets. Transmis-
sions are numbered in order from 1 to 6. AP and client cache con-
tents after all transmissions are shown.

decoder’s FIFO cache [5]. However, this approach is only suitable
for point-to-point deterministic RE, e.g., across a wired link. In
wireless, probabilistic overhearing causes the encoder to lose track
of the decoder’s chunk cache. One alternative, of having the AP
compute chunk hashes and transmit them along with packets and
maintaining a chunk hash table at the client impose high compute,
network and memory overhead, as we show in §5.1.

3.1.1 Our Modifications

We modify and extend prior Chunk-Match designs in important
ways to to address these drawbacks and to better tailor Chunk-
Match to wireless overhearing.

Self-addressing chunks. In REfactor, we need to carefully man-
age the location of chunks within AP and client caches. Chunks
must be cached such that the AP can provide a fingerprint in place
of a redundant chunk that allows a client to locate a chunk within
its cache, or identify a cache miss. As shown in Figure 2, C2
only overhears the second packet transmitted to C/. A FIFO cache
would be insufficient because the AP and C/ would store the re-
dundant chunk in the second cache slot, while C2 would store the
chunk in the first slot because it is the first chunk C2 overheard.
A proposed RE system for cellular networks suffers from a similar
issue in the presence of packet loss [22].

The key innovation in our approach is that we select a slot in the
cache (encoding or decoding) based on the content of a particular
chunk (Figure 2). Thus, a chunk is self-addressing, i.e., the chunk
itself identifies its location in the cache, and a removed chunk can
be identified by the cache location. In particular, we use a compact
n-bit hash (we use n 20) of a chunk as the memory address
where it is stored. The encoder simply sends the n-bit hash instead
of the chunk to the downstream decoder.

This approach avoids the pitfalls of employing FIFO-based caches
without relying on tightly synchronized caches; namely, an offset
into the cache refers to the same chunk regardless of what other
chunks a client may have overheard. It avoids the high computa-
tional cost of SHA-1 hashes and the overhead of maintaining the
corresponding metadata. Furthermore, it is easy to identify cache
misses: a lookup at a fixed-offset given by a chunk-hash can be
used to determine whether or not a chunk is located in the cache.

The size of the chunk-hash represents a trade-off between the
amount of memory required and the potential for redundancy. An
n-bit hash allows a cache to store 2" chunks but requires 2" * m
bytes of memory, where m is the maximum chunk size (based on
parameters of the MAXP algorithm). A larger hash allows more
unique chunks to be stored but requires more memory in clients
which may already be resource poor, e.g., smartphones. The size
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of the chunk-hash and the method used to compute it also impacts
the likelihood of collisions. We evaluate the trade-offs in hash-size
in §5 and discuss how to deal with collisions in §3.3.

Overhearing estimation. Our second modification accounts for
the facts that different clients overhear packets with different prob-
abilities and that overhearing probabilities change over time. In
our example (Figure 2), it is possible that C3 (not shown) may not
overhear either transmission to C/ because C3 is farther away and
can only receive transmissions at a lower rate. However, C2 is able
to hear half of the transmissions to C/. To maximize the removal
opportunities we want to be able to estimate how likely it is a par-
ticular client has a particular chunk. We add a reception proba-
bility vector to each chunk entry at the AP to aid the decision of
whether or not to remove redundancy. §3.2 discusses how this vec-
tor is computed/updated and how it is used to guide the decision of
whether or not to remove redundancy.

Handling cache misses. Lastly, we need to account for the fact
that the AP’s estimation of the contents of a client’s cache may not
be completely correct. In our example, we remove the redundancy
from the transmission to C2, but it is possible C2’s cache may not
have contained the removed chunk. We address this cache miss
by providing a content chunk request mechanism. Since the shim
header contains all the necessary information to identify a specific
block of redundant content, the client uses the shim header from
the original packet in its request for missing data. The AP replies
to the missing content request with the shim header and the content
of the chunk, allowing the client to properly reconstruct the packet
and pass the packet to the network stack for normal processing. As
a result of this recovery mechanism, our Chunk-Match approach
requires the AP to store the contents of chunks in its cache, contrary
to what recent optimizations suggest [5].

3.2 Removing Redundancy

In prior RE systems, a redundant chunk is either always removed
[26] or a removal decision is based on network-wide optimiza-
tion [9]. Furthermore, these systems assume packet caches at the
sender and receiver are tightly synchronized, so a chunk present in
the sender’s cache is guaranteed to be in the receiver’s cache. This
synchrony assumption does not hold in REfactor because of oppor-
tunistic overhearing. Potential differences in the contents of sender
and receiver caches requires REfactor to make a removal decision
based on estimates of the receiver’s cache contents.

A naive approach that always removes redundancy imposes high
cost: Every chunk missing from a client’s cache requires two ad-
ditional packet transmissions to receive the missing data from the
AP. Figure 3 shows the expected transmission time savings from
removing a single 64B chunk from a packet (details in §3.2.2).
There is no expected benefit when the probability of the receiver’s
cache containing the chunk is < 90%, due to the high cost of cache
misses. Therefore, we want to minimize cache misses by making a
wise decision on whether or not to remove a redundant chunk.

3.2.1 Reception Probability Vectors

Our insight is to include a reception probability vector with each
chunk stored in the AP’s cache. A vector, V, contains an entry for
each client currently connected to the AP, indicating the likelihood
of a client having the chunk in its cache.

We know a client’s cache will be guaranteed to contain a chunk if
it existed within packets successfully sent to that client in the past.
Hence, for the destination client d, we set V; = 1 after the packet
containing the chunk has been ACKed. If the chunk was removed
from a packet sent to the client, we set V; = 1 either: (a) after
a request for the chunk has been received (§3.1.1) and the reply to



Rate | Fraction of nodes who overhear

6-24Mbps 0.15
36Mbps 0.12
48Mbps 0.08
54Mbps 0.06

Table 1: Median fraction of nodes in the Jigsaw testbed who over-
hear transmissions at various 802.11g rates [4]

the client has been ACKed, indicating the client has now cached the
chunk it was missing; or (b) a few seconds after the original packet
was ACKed, indicating the client already had the chunk because no
request for a missing chunk was received.

All other clients could only have received a chunk via overhear-
ing. We show in §5.3 that a highly accurate reception probability
estimate is not necessary to realize the benefits of REfactor, so we
take a low-overhead approach to estimating overhearing likelihood:
reception probability is based on the rate r4 used to communicate
with the destination client d and the rate r; the AP uses to commu-
nicate with the overhearing client ;. Measurements by Afanasyev et
al. on an indoor 802.11g testbed [4] show that the chance of over-
hearing is relatively consistent for all 802.11b rates (1-11Mbps) and
the five lowest 802.11g rates (6-24Mbps); noticeable differences
in overhearing probability only exist for the three highest 802.11g
rates (36, 48, and 54Mbps). The median fraction of nodes expected
to overhear a transmission at a given rate is shown in Table 1.

Based on these findings, reception probabilities for a given wire-
less deployment can be calculated using a simple heuristic formula:
Ifr; > rq, Vi = 0.99. A client which normally receives transmis-
sions at a higher rate is very likely to receive transmissions at a
lower rate, but we still want to be able to discern between clients
which are guaranteed to have the chunk (V; = 1) and clients which
are highly likely to overhear the chunk (V; = 0.99). If r; < rq,
Vi = Z—‘?, where e; is the recipient fraction when sending at rate r,
such as those shown above in Table 1.

More complex mechanisms, e.g., CHARM [18], may be able to
provide better estimates of reception probability. In general, ac-
curate estimation is hard, in part because overhearing probabilities
can change at fine timescales [6]. However, as shown in §5, highly
accurate predictions are unnecessary. In particular, we find that
directly using the measurements in Table 1 may be good enough
and estimating reception fractions for each deployment may not be
needed. This is a highly desirable property of REfactor.

Reception probability vectors for chunks are updated every time
the chunk is transmitted. For each client we store the maximum of
an existing probability and the probability for the current transmis-
sion. When new clients join the network, reception probabilities are
recorded for the clients for any chunks transmitted after they con-
nect. When clients leave the network, reception probabilities for
the clients are not stored for any newly transmitted packet chunks,
and probabilities for the clients are invalidated in existing vectors.

3.2.2 Deciding to Remove: Model-Driven RE

REfactor decides whether or not to remove a redundant chunk
based on the reception probability and a simple model of expected
benefits. Benefit is measured as the reduction in transmission time
resulting from the removal of a redundant chunk. We refer to this
approach as model-driven RE.

The transmission time for a packet is a combination of wire-
less header transmission time ¢;, and per-byte payload transmission
time t,, which depends on the data rate to the client in question.
Our experiments show a typical value of ¢;, = 2904 for an indoor

222

100
50

-50 ki
-100
150 1
-200
-250 o
-300

K=64B
K=128B
K=256B ::a
K=512B

0.6 0.7 0.8 0.9 1
Reception Probability

Expected Benefit (us)

0.4 0.5

Figure 3: Expected benefit from removing a single 64B chunk from
a packet with K total redundancy

setting with a client and AP separated by 2m, and ¢, = 0.885us
for a transmission rate of 11Mbps. For simplicity, we assume all
packets are MTU (1500B) in size, making the total transmission
time for a normal packet ¢, + 1500¢;. Removing a k byte chunk
of redundant content from a packet and replacing it with a h byte
header makes the transmission time ¢, + (1500 — k + h)ts, a sav-
ings in air time of (k — h)t. If the load due to other nearby APs
is p, then only (1 — p)(k — h)t, of the savings can be used toward
improving the throughput of the current AP’s own transmissions.

A removed chunk which does not exist in a client’s cache re-
quires two extra packet transmissions to obtain the missing chunk.
The additional transmission time is 2t;, + (2h + k)tp, reducing
the savings by this amount. Recall that V is the probability client
d’s cache contains the chunk. The expected benefit of removing
a chunk in terms of free airtime (in ws) that could be used toward
additional transmissions of the AP is:

E:Cp[B] = Vd(l — p)(k — h)tb — (1 — Vd)(2th + (2h + k)tb)

This equation is a worst case estimate of expected benefit. In prac-
tice, the fixed header transmission time 2¢5, associated with ob-
taining missing chunks only needs to be incurred once for each
packet with > 1 missing chunks. Applying the equation to multiple
chunks in a packet will take into account the fixed header transmis-
sion time for missing chunks multiple times. We adjust Exp[B] by
taking into account the total number of redundant bytes, K = Y k,
in a packet, setting the fixed header transmission time for obtaining
missing chunks to %th for each k byte chunk. This change allows
REfactor to be more optimistic in removing redundancy.

Figure 3 shows the expected benefit from removing a single 64B
chunk from a packet with K total redundancy for varying reception
probabilities, assuming p = 0. As the graph shows, expected ben-
efits increase with reception probability. Furthermore, for a given
reception probability, higher amounts of total redundancy K in-
crease the expected benefit from removing a single k-byte (in this
case 64B) chunk. Similar graphs can be plotted for other rates.

The AP uses the expected benefit model to encode redundant
chunks if Fxp[B] exceeds some threshold.

3.3 Collisions

We say that a hash collision happens when an n-bit hash of a
chunk for a new packet indexes to an already occupied cache slot.
Collisions should be handled carefully as they impact transmission
correctness. In REfactor, the AP checks the new and already cached
chunks for collisions by performing a byte-by-byte comparison of
their contents. If they do not match exactly, the cache entry is
marked as a collision. No chunks which hash to a collided entry
are ever removed from a packet by the AP. All clients will also be



able to detect the collision because they will never receive a packet
with a collided chunk removed, so they will recognize the collision
in their byte-by-byte comparison. This approach reduces the po-
tential redundancy removal opportunities, but it ensures no client
application will receive an incorrectly reconstructed packet.

To avoid the entire cache filling with collision entries, the wire-
less AP will periodically initiate a cache flush. A cache flush clears
all entries from the AP’s and client’s caches using a three phase
process: (1) the AP broadcasts a cache flush request to all clients,
(2) the clients clear all the entries in their cache and send an ACK,
(3) when the AP has received ACKs from most of the clients, it
clears its cache. The AP does not cache chunks from new packets
while a cache flush is in progress. In the event a client does not
acknowledge the flush request, due to lost packets or client discon-
nect, the AP will not encode any packets sent to the client until a
retransmitted flush request has been acknowledge.

Whenever a client associates with the network, the client empties
its local cache. An AP uses the association as a signal to clear old
reception probability entries for the client.

3.4 Other Scenarios and Issues

REfactor uses the same caching and model-driven RE mecha-
nisms to improve throughput in the scenarios presented in §2.2.2
but requires a few design extensions to fully function in these sce-
narios. Namely, the ability to estimate reception probabilities and
communicate cache contents for unassociated clients, i.e. clients
not directly communicating with an AP or via a specific relay.

Unassociated client reception. Clients may be able to overhear
transmissions from other APs (as in Figure 1b) or nearby mesh
nodes, or relays (as in Figure 1c). However, the relay has no way
of knowing the client can overhear without explicit knowledge of
the client’s presence. Furthermore, the relay cannot estimate the
reception probabilities for the client without knowing the rate the
relay would use to communicate with the client.

We extend clients to notify a relay when they can overhear traffic
from that relay. In infrastructure mode, a client can determine the
AP it can overhear from (API) based on its beacons and send a
message via its associated AP (AP2) to notify AP its transmissions
can be overheard by the client. AP2 includes the rate it uses to
communicate with the client, which provides an upper bound on the
rate API would be able to use to communicate with the client. In a
mesh network, a client can send a list of all relays it can overhear
from to each of the relays in the list.

Overhearing notifications only need to be sent periodically. A
relay will maintain reception probability vector entries for unasso-
ciated clients for all chunks sent after an overhearing notification is
received.

Unassociated client caches. Knowing a client can overhear trans-
missions from another AP (AP1) is insufficient for the client’s as-
sociated AP (AP2) to be able to leverage overhearing opportuni-
ties. Periodically, AP2 must request cache information for the client
from AP1. AP sends a bit vector to indicate which cache slots the
client likely overheard. AP2 can update its reception probability
vectors for these slots to account for chunks it may not have known
the client overheard. As shown in Figure 1b, C2 overheard the
chunk ab, allowing AP2 to potentially remove the chunk from a
future transmission to C2. AP2 uses the bit vector from AP/ to
update its cache to reflect this.

In a mesh network, cache contents can be updated using the same
mechanism, or a relay can update its cache based on its knowledge
of the path taken by a packet. Consider the example scenario shown
in Figure 1c: if abc was received by R2 from RI and R2 knows C1
can overhear R, R2 can add the chunk ab to its cache and indicate
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Min chunk size | REfactor | SHA hash based scheme

32 640 Mbps 64 Mbps
64 910 Mbps 118 Mbps
128 1203 Mbps 152 Mbps

Table 2: Comparison of encoding throughput for REfactor and a
SHA hash scheme for different minimum chunk sizes.

with high likelihood that CI overheard the chunk. In this manner,
cache contents are communicated implicitly. A similar idea applies
to the network coding approach shown in Figure 1d.

4. IMPLEMENTATION

Our REfactor prototype is implemented as a pair of Click [21]
modules. The encoder module is used at the AP to cache chunks,
identify and remove redundancy and respond to requests for miss-
ing chunks. The decoder module is used at clients to cache chunks,
reconstruct packets and request missing chunks. Each module is
about 400 lines of code. Both use kernel-level Click to enable
REfactor to work at the max 802.11g transmission rate of 54Mbps.

We chose to implement REfactor in Click because of the ease of
deployment and flexibility this approach provides. Clients can eas-
ily run our Click decoder module to obtain the benefits of REfac-
tor without operating system or application modifications. Further-
more, the encoder module can easily be deployed on an upstream
network middlebox to serve multiple wireless APs. This avoids the
need to modify AP firmware, which is often proprietary, and does
not constrain REfactor due to the limited memory and processing
power in many APs [1, 2]

S. EVALUATION

We conduct an evaluation of the various benefits of REfactor.
Our default settings is an AP operating in infrastructure mode with
two associated clients. We also show the benefit of using REfactor
in some of the other scenarios discussed in §2.2.2. Our evaluation
utilizes traffic from real-world traces containing realistic packet
chunk redundancy patterns. We focus on the following sets of is-
sues: (i) How does our scheme, which uses self-addressing chunks,
compare against SHA hash based alternatives (§3.1) in terms of
speed and effective RE? (ii) What is the trade-off between cache-
size and collision likelihood imposed by the self addressing chunks
approach? (iii) What is the overall benefit of REfactor under var-
ious realistic redundancy patterns and varying levels of overhear-
ing? What aspects of REfactor’s design contribute most to its ben-
efits? Can and should REfactor’s operation be adapted to observed
traffic patterns? (iv) How does REfactor perform in an actual infra-
structure-based wireless setup? (v) How does REfactor help in the
other scenarios in §2.2.2?

5.1 Speed and Redundancy Removal

We evaluate the effectiveness of self-addressing chunks com-
pared to a scheme where the encoder (AP) transmits SHA hashes
to the client in encoded packet shims (§3.1).

Speed. We benchmark the encoding speed on a desktop with a 2.4
GHz CPU and 8GB DRAM, mimicking a middlebox (co-located
with the AP) which can perform encoding on behalf of the AP. Ta-
ble 2 compares the encoding speeds for REfactor and a SHA hash
based scheme. With a 1GB chunk cache and a minimum chunk
length of 64B, our unoptimized Click module can encode at the rate
of 910Mbps. This rate is sufficient for an AP to serve 30 clients



Min REfactor SHA hash based scheme
chunk | Redundancy | Effective | Redundancy | Effective | Effect. RE w/
size detected RE detected RE hash shipping
32 0.31 0.27 0.41 0.22 0.03
64 0.28 0.26 0.38 0.29 0.19
128 0.23 0.22 0.31 0.27 0.22

Table 3: Comparison of effective redundancy removal for REfactor
and a SHA hash scheme

each at the rate of 18Mbps. In contrast, SHA hash based encod-
ing is 8 slower (118Mbps); SHA1 hash computation is a major
performance bottleneck in this scheme. Our lightweight decoding
operations impose low overheads on clients, as well. We used a
low-end laptop with 1.66 GHz CPU and 2GB DRAM to measure
the decoding throughput. The measured decoding throughput is
160 Mbps (for chunk size >32B). In contrast, the decoder through-
put for a SHA hash based scheme is only 50 Mbps, even with 128B
chunks, because clients have to compute SHA1 hashes for each
cached chunk.

Redundancy removal. We compare the effectiveness of redun-
dancy removal for REfactor and the SHA hash scheme in Table 3.
We use a real trace with high overall redundancy (45%) and a
1GB chunk cache for both schemes. With small chunks (32-64B),
REfactor (0.31) detects 75% of the redundancy detected by the
SHA hashing scheme (0.41), the gap being due to collisions. How-
ever, the shim overhead of the SHA hashing scheme is quite high
as a shim must carry a 20B hash. As a result, REfactor’s redun-
dancy removal (0.27) is 25% better than the SHA hash scheme
(0.22). Using larger chunks (64-128B), the effectiveness of the
SHA hash scheme improves, despite a decrease in detected redun-
dancy, since the relative shim cost drops. However, decoding over-
head on clients is still high.

One way to overcome SHA hash computation overhead at the
decoder is for the encoder to ship SHA hashes for every chunk
contained in a packet, as opposed to just sending SHA hashes for
encoded regions. Unfortunately, the additional overhead of ship-
ping SHA hashes reduces the effectiveness of RE by 25% (Table 3,
last column). Using larger chunks (256B), the shipping cost and
encoding overhead would go down, but the detected redundancy
itself significantly drops to 0.2 (not shown).

To summarize, REfactor’s design, in particular, the use of self-
addressing chunks, gives the right trade-off in terms of speed, over-
head and effectiveness of RE.

5.2 Caching

We now study the effectiveness of our self-addressing chunk
storage and provide guidelines on how to configure caches. In par-
ticular, we vary the hash-size n from 14-bits to 22-bits in size, re-
sulting in IMB to 256MB sized caches, and we compute how much
redundancy we are able to remove from network traffic relative to
an ideal infinite cache, which identifies 50% of bytes as redundant
for the specific trace we study. In all cases the average chunk size
is 64B. We show our results in Figure 4.

As expected, larger caches identify greater amounts of redun-
dancy overall: e.g., a 512MB cache can identify nearly 60% of the
overall ideal redundancy, whereas a 64MB cache can only identify
up to 25%. In practice, caches can be provisioned on the basis of
the average client’s constraints: in an environment with laptops,
using 256-512MB for caches is reasonable. When handhelds are
employed, 128MB caches may be used.

We find there appears to be a “sweet spot” for flushing rates for
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Figure 4: Impact of cache flush rate and cache size

most large cache sizes. For example, flushing a 512MB cache after
every S00MB of traffic allows 10% more redundancy to be removed
than flushing every 100 MB, and 16% more compared to flushing
every 1.5GB. This is because a rapid rate of flushing (e.g., every
100MB) controls collisions better but reduces opportunities for re-
moving redundancy; on the other hand, too slow a rate of flushing
(e.g., every 1.5GB) does not eliminate collided entries fast enough.
In general, flushing after every 200-300MB of traffic works well.

5.3 Goodput

We now evaluate the improvements REfactor provides. We use
a simple emulated two-client setup with a single AP operating in
infrastructure mode, as described in §2.2.1. In our setup, CI is
located close to the AP, with perfect overhearing and a fixed high
transmission rate (54Mbps), while we vary C2’s location relative
to the AP. Depending on C2’s location, its ability to overhear trans-
missions to C/ varies.

We experiment with five different overhearing scenarios, using
overhearing probabilities at C2 of 90%, 70%, 50%, 30% and 10%.
An overhearing probability of 90%, for example, means the bit er-
ror rate is such that a full length packet (1400B) is overheard with
90% chance; a smaller packet that REfactor creates could, obvi-
ously, be overheard at a higher probability. We assume that C1
overhears all transmissions to C2.

We use a simple Click [21] configuration to emulate overhear-
ing, where we super-impose packet reception probabilities at var-
ious packet sizes and transmission rates. These are derived from
real-world measurements we collected in a relatively noise-free en-
vironment. For the five overhearing scenarios above, we fix the
transmission rate to C2 at 54Mbps, 36Mbps, 24Mbps, 11Mbps and
1Mbps, respectively. In all five cases, we assume the bit error rate
in transmissions between the AP and C2 is 8.8 x 1079, resulting
in an 8.5% packet loss rate for full length packets.

The traffic transmitted to each client in our experiments is based
on a real-world trace we gathered on an outbound link from a uni-
versity web server. We use traffic to destinations in the real trace
to construct a traffic mix for the two clients in our simulation. We
pick three sets of traces that offer high (49%), medium (23%), and
low (4%) inter-client redundancy, i.e., bytes shared across clients,
where redundancy is measured using the Max-Match approach with
a large cache; the intra-client redundancy is 1%, 24% and 46%,
respectively. Note that the overall redundancy is roughly similar
(=50%) across the three traces.

We do not claim the traces we study reflect the actual redundancy
we expect to see in traffic sent to, and shared between, wireless
clients; quantifying the redundancy is not a goal of our work and
this issue has been explored in prior studies [5, 8, 14]. Rather, our
goal is to use the traces to recreate a variety of realistic redundancy
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Figure 7: Total air time across both clients (a; left) and C2’s goodput (b; right) for a trace with medium overlap.

patterns, i.e., granularities of redundancy, and spacing of redundant
bytes in time and across hosts, to study how they impact the benefits
of REfactor given its design choices, and also to understand the
conditions in which REfactor offers the most benefits.

We use three metrics: (1) Total air time defined as the total
amount of time spent in transmission to either client (including
missing chunk requests and responses). This is an indication of the
medium’s utilization. (2) Goodput of a client defined as the total
number of bytes transferred to the client divided by the total time
spent by the client in receiving them, which includes time spent
in retransmissions due to packet losses or missing chunk transmis-
sions due to cache misses. (3) Packet loss rate at the client.

5.3.1 High Inter-client Redundancy

We first study the performance where a lot of content is shared
across clients and little overlap exists within a client’s traffic. The
results in Figure 5 show the overall air time (a) and C2’s goodput
(b).

The bar “perfect RE” corresponds to the case where we assume
no collisions occur and all clients can overhear all traffic. In “per-
fect overhearing with collisions”, we assume cache sizes are limited
to 512MB, resulting in collisions, but nodes can overhear all traffic.
The bar “greedy RE” reflects a RE approach which always encodes
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packets as opposed to REfactor’s use of model-driven RE. Finally,
“no RE” represents a situation where no content overhearing or re-
dundancy elimination is applied.

The overall airtime is plotted relative to the total airtime un-
der “no RE”, showing the lowering in utilization due to various
schemes. The goodput is plotted relative to C2’s goodput under
“perfect RE” showing how close to ideal the improvement in good-
put gets. We make these observations:

1. REfactor offers substantial improvements relative to “no RE”,
with airtime (Figure 5a) being 20% lower in the highest qual-
ity link case (90% overhearing) and 7% lower in the lowest
quality link case (10% overhearing). REfactor’s airtime is
between 6% and 30% worse than “perfect RE,” the differ-
ence arising due to the need to account for collisions, and
the need to account for and recover from cache misses. C2’s
goodput (Figure 5b) is 24% and 4% better than “no RE” in
the highest quality and lowest quality link cases, respectively.

2. In the poor quality link case, e.g., 10% overhearing, REfac-
tor may overhear as few as 10% of the packets compared to
“perfect overhearing with collisions”; thus, one may expect
that it should only be roughly 10% as effective in improv-
ing goodput (Figure 5b) as “perfect overhearing with colli-
sion”. Instead, we see that REfactor is 4% more effective



Overhearing %age | Loss % (% better than “no RE”)

90 6.2 (27)
70 6.7 (21)
50 7.1(16)
30 7.6 (11)
10 7.9 ()

Table 4: Loss % with REfactor. The loss rates due to “no RE”
and “perfect RE” are 8.5% and 5.3%, respectively. We show %
lowering of loss rate relative to “no RE” in brackets.

than “no RE”, whereas “perfect overhearing with collision”
is 34% more effective. Thus, REfactor does not seem to
lose as much performance as we might expect under low
quality links. The reason for this is that encoded REfactor
packets are smaller, and hence they experience lower packet
loss rates compared to “no RE”; see Table 4 which shows
that REfactor imposes 7-27% fewer drops than “no RE”.
Fewer losses helps improve goodput. More importantly, the
packets that are not lost also carry valuable unique bytes
that contribute to removing redundancy from future packets.
This effect is likely to be much more pronounced in situa-
tions where there is a much greater amount of content shared
across clients, e.g., in flash crowds.

3. Comparing REfactor against “greedy RE”, the gap is small
at high quality links, but increases significantly when link
quality falls below 50%. At 50% overhearing, our approach
improves goodput by over 13%, whereas “greedy RE” results
in a 6% drop (Figure 5b). Thus, model-driven RE in REfac-
tor plays a crucial role in ensuring robust performance, es-
pecially under poor overhearing and high inter-client redun-
dancy.

. Consider the performance for the link with 70% overhearing
probability, where “greedy RE” still offers non-trivial good-
put benefits (5%; Figure 5b) compared to “no RE”. Compar-
ing this with the results for the 90% link, we can conclude
that if REfactor used 90% as the reception probability esti-
mate for the link in its model driven RE, but the actual prob-
ability was 70%, then REfactor’s overall performance would
still be better than “no RE”. This shows REfactor’s over-
hearing probability estimation is robust to a certain degree
of error especially when link quality is reasonable. However,
at poorer link qualities (50% or below) mistakes can prove
costly. Thus, it helps to be conservative with encoding, i.e.,
use a high threshold for expected benefit in model driven RE,
when link quality is poor and when inter-client redundancy
is high.

5.3.2 Low Inter-client Redundancy

Next, we look at the traffic mix with very high redundancy within
client traffic (i.e. high intra-client redundancy) and low redundancy
between clients (i.e. low inter-client redundancy). We plot total
airtime and relative goodput achieved by C2, both in relative terms
as before, in Figure 6. We note the following:

1. Compared to the high inter-client redundancy case above (Fig-
ure 5a), REfactor offers better airtime goodput improvements
relative to “no RE”: e.g., at 30% overhearing, REfactor is
22% better than “no RE” in the low inter-client redundancy
case (Figure 6a), whereas in the high inter-client redundancy
case (Figure 5a), it is 8% better than “no RE”. Because REfac-
tor does not have to deal with overhearing, it is able to derive
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C2’s Distance | No RE | REfactor | Percentage
from AP Goodput | Goodput | Improvement
3m 4.0Mbps | 3.4Mbps 20%
6m 3.0Mbps | 2.6Mbps 14%
10m 1.3Mbps | 1.2Mbps 6%

Table 5: Performance improvement provided by REfactor in a real
infrastructure-based wireless setup.

substantial benefits most of which are due to IP-layer RE it-
self.

. The variation in overhearing rate has a slight effect on the
benefits of REfactor, with benefit dropping as overhearing
becomes poor. While most of REfactor’s benefits with this
trace are from intra-user redundancy, the trace does have a
small amount of inter-client redundancy (4%); at low over-
hearing probability, model-driven RE in REfactor would con-
servatively decide against encoding most, if not all, inter-
client redundant packets, resulting in a drop in goodput.

. The performance of “greedy RE”, which encodes all packets,
is slightly better than REfactor. Whatever bytes are saved in
this fashion contribute to high goodput and the small number
of cache misses that result (for the inter-client traffic) can be
easily recovered through retransmissions. Thus, when intra-
client redundancy is predominant—the redundancy pattern
can be determined by profiling traffic on the fly—it is best to
turn off model-driven RE and encode all data.

5.3.3 Medium Inter-client Redundancy

In Figure 7 we show a situation where redundancy is roughly
equally inter- and intra-client. Comparing with Figures 5 and 6, the
performance offered by REfactor is intermediate compared to the
prior two cases, as expected. We also note that the performance
of “greedy RE” is almost comparable to that of “no RE” at 30%
and 10% overhearing. Thus, with less redundancy, the impact of
incorrect estimation of link overhearing is even less pronounced:
more specifically, if REfactor used 90% or 70% as the overhear-
ing probability estimate for a link that current has 50% overhearing
(or even lower), the performance of REfactor may still be notice-
ably better than not using RE or overhearing. This also means that
model-driven RE can be somewhat more aggressive, i.e., use a lax
threshold for expected benefit, under this kind of traffic pattern.

5.4 Overall Benefits: Testbed Results

While the results we have discussed so far are derived from an
emulated infrastructure-based scenario, we also measure REfac-
tor’s performance using an actual wireless AP and two clients. We
use the high inter-client redundancy trace, and we vary C2’s dis-
tance from the AP from 3 to 10 meters to explore a range of over-
hearing probabilities. Table 5 compares the goodput without RE
and using REfactor.

Similar to the results in Figure 5b (where REfactor’s goodput
improvement over “no RE” ranges from 24% to 4%), the benefits
from REfactor in a real wireless setup range from 20% to 6%. This
confirms that our emulated setup provides a reasonable representa-
tion of REfactor’s performance improvements in practice.

5.5 Extensions

5.5.1 Multi-AP Improvements

We extend our setup to two APs operating in infrastructure mode
and three clients: CI and C2 associated with AP/ and C3 with
AP2. Additionally, C2 is able to overhear transmissions from both
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Figure 8: Goodput improvements in a multi-AP scenario

Overhearing | Overall Improvement | Relay to C3/C4 Improvement
% age (% better than COPE) (% better than COPE)
90 14 38
70 11 26
50 10 21
30 6 13
10 3 7

Table 6: Air time savings %age with REfactor + COPE.

APs. Figure 8 compares the relative goodput for C2 without RE,
when overhearing only from its associated AP, and when overhear-
ing from multiple APs. We observe that C2 realizes up to 10%
more benefit from REfactor when taking advantage of traffic over-
heard from other APs. As expected, returns diminish as overhear-
ing probabilities decrease.

Our multi-AP simulation assumes both APs can overhear each
other’s transmissions, avoiding collisions. However, collisions may
occur in the case of hidden terminals. For example, if AP/ trans-
mits to C/ at the same time AP2 transmits to C3, the two destina-
tions will receive their respective packets, but the packets will col-
lide at C2, who will be unable to overhear either packet. Such colli-
sions prohibit C2 from receiving maximum benefits from REfactor.
However, REfactor may be able to reduce the likelihood of colli-
sions due to decreases in the size of C/ and C3’s packets.

5.5.2 REfactor + Network Coding

We implemented a simplified version of COPE [20] within our
Click prototype and experimented with the scenario in Figure 1d.
Our simplified version of COPE XORs packets, but we ignore con-
founding factors like pseudo-broadcast, retransmissions, and recep-
tion reports. When the relay is scheduled to send packets, it deter-
mines if it has packets for C3 and C4 that can be coded, removes
redundancy from them and sends a coded packet along with a shim.
For simplicity, we assume the relay has perfect knowledge of what
C3 and C4 overheard for both COPE and our approach; in practice,
the relay has to rely on feedback from clients [20].

The air time savings of REfactor + COPE, compared to just
COPE, are shown in Table 6 for different overhearing percentages
between C/-C3 and C2-C4 (assuming both links have the same
overhearing probabilities). With 90% overhearing, REfactor pro-
vides 14% air time savings. This savings is purely from reduced
transmission sizes from the relay to C3/C4: the savings for relay—
C3/C4 transmissions is 38% with 90% overhearing. Compared to
air time savings with “perfect overhearing with collisions” in the
single AP case, this is almost twice as much, a result of the trans-
mission reductions realized via network coding. At lower over-

227

hearing (e.g., 10%), the overall relative benefit of using REfactor
reduces (to 3%) because there is less content overheard.

6. RELATED WORK

A wide range of techniques have been suggested to improve
wireless network throughput, including rate adaptation, partial data
recovery, overhearing, and duplicate suppression. We discussed the
latter two sets of approaches earlier in the paper. We discuss the re-
maining two next.

Rate Adaptation. Rate adaptation focuses on improving wire-
less throughput by reducing the number of unsuccessful transmis-
sions [16, 24, 28]. The techniques proposed use estimates of chan-
nel quality to seek a packet transmission rate that reduces the num-
ber of required retransmissions. Currently rate adaptation schemes
don’t exploit overhearing and require sending all packets in full.
But REfactor provides interesting opportunities for enhancement.
REfactor reduces the size of some packets, lowering the chance
of errors and the volume of retransmissions. This allows wireless
communication to use higher rates.

Partial Data Recovery. Partial data recovery provides network
throughput improvements by enabling nodes to extract portions of
data which have been correctly received. PPR [17] uses SoftPHY
hints to determine which bits of a packet are likely correct; only
corrupted portions are retransmitted. MORE [11] forwards linear
combinations of packets in wireless mesh networks, with the goal
that a receiver has heard some of the packets in the combination and
can deduce the rest. MIXIT [19] combines PPR and MORE. These
approaches require low-level information from the PHY layer re-
garding which portions of the data is faulty. Our system only uti-
lizes packets correctly received in full. However, we take partial
data recovery to a higher level by removing portions of a payload
a receiver already has and only sending data the receiver is miss-
ing. Thus, we reduce the number of low-level symbols that need to
be forwarded and improve throughput without PHY or link-layer
modifications. However, our technique can be combined with low-
layer partial data recovery for even more throughput improvement.

7. CONCLUSION

In this paper, we described an IP-layer content overhearing tech-
nique called REfactor. In REfactor, wireless nodes maintain packet
caches which they use to remove strings of bytes that appeared
in packets they received or overheard earlier. We described novel
data structures and mechanisms that allow REfactor to effectively
support IP-layer overhearing based designs even on resource con-
strained hosts.

REfactor represents a refactorization of content overhearing ideas,
moving overhearing below the transport layer. Through qualita-
tive arguments and quantitative analysis based on extensive exper-
iments, we showed that the refactoring provides significant perfor-
mance (goodput) benefits, higher speed operation, and lower loss
rates under a variety of situations for infrastructure wireless net-
works. It is also easy to adopt, requiring a simple software upgrade
at the IP layer, and various aspects of it (e.g., cache sizes and over-
hearing mechanisms) are easy to configure. Finally, we showed
examples of how REfactor can augment other overhearing based
proposals in interesting ways to significantly enhance their effec-
tiveness.

We believe that REfactor presents a promising start for a variety
of follow-on studies on applying content overhearing to improve
wireless performance. Some avenues for future work include com-
bining REfactor with partial packet recovery schemes and applying
REfactor to sensor networks.
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