
CP-Miner: A Tool for Finding Copy-paste and Related Bugs
in Operating System Code

Zhenmin Li, Shan Lu, Suvda Myagmar and Yuanyuan Zhou

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801

ABSTRACT

Copy-pasted code is very common in large software be-
cause programmers prefer reusing code via copy-paste in
order to reduce programming effort. Recent studies show
that copy-paste is prone to introducing bugs and a sig-
nificant portion of operating system bugs concentrate in
copy-pasted code. Unfortunately, it is challenging to ef-
ficiently identify copy-pasted code in large software. Ex-
isting copy-paste detection tools are either not scalable to
large software, or cannot handle small modifications in
copy-pasted code. Furthermore, few tools are available to
detect copy-paste related bugs.

In this paper we propose a tool, CP-Miner, that uses
data mining techniques to efficiently identify copy-pasted
code in large software including operating systems, and
detects copy-paste related bugs. Specifically, it takes less
than 20 minutes for CP-Miner to identify 190,000 copy-
pasted segments in Linux and 150,000 in FreeBSD. More-
over, CP-Miner has detected 28 copy-paste related bugs in
the latest version of Linux and 23 in FreeBSD. In addition,
we analyze some interesting characteristics of copy-paste
in Linux and FreeBSD, including the distribution of copy-
pasted code across different length, granularity, modules,
degrees of modification, and various software versions.

1 Introduction
1.1 Motivation

Copying and pasting code is a common practice in soft-
ware development. In order to reduce programming ef-
fort and shorten programming time, programmers prefer
reusing a piece of code via copy-paste rather than rewrit-
ing similar code from scratch. Recent studies [6, 13, 25]
have shown that a large portion of code is duplicated in
software. For example, Kapser and Godfrey [25], using a
copy-paste detection tool called CCFinder [24], found that
12% of the Linux file system code (279K lines) was in-
volved in code cloning activity. Baker [6] found that in the
complete source of the X Window system (714K lines),
19% of the code was identified as duplicates.

Using abstractions such as functions and macros to re-
move this duplication might improve software mainte-
nance; however, much duplication will likely remain, for

two possible reasons. First, some changes are usually nec-
essary, and copy-paste is much easier and faster than ab-
straction. Another reason is that functions may impose
higher overhead. However, the psychological reasons for
large percentage of existing copy-pasted code are beyond
the scope of this paper.

Copy-pasted code is prone to introducing errors. For
example, Chou et al. [10] found that in a single source
file under the Linux drivers/i2o directory, 34 out of 35
errors were caused by copy-paste. One of the errors was
copied in 10 places and another in 24. They also showed
that many operating system errors are not independent be-
cause programmers are ignorant of system restrictions in
copy-pasted code. In our study, we have detected 28 copy-
paste related bugs in the latest version of Linux and 23 in
FreeBSD. Most of these bugs were previously unreported.

A major reason why copy-paste introduces bugs is that
programmers forget to modify identifiers (variables, func-
tions, types, etc.) consistently throughout the pasted code.
This mistake will be detected by a compiler if the identi-
fier is undefined or has the wrong type. However, these
errors often slip through compile-time checks and become
hidden bugs that are very hard to detect.

Figure 1 shows an example of a bug detected by
CP-Miner in the latest version of Linux (2.6.6). We
reported this bug to the Linux kernel community and
it has been confirmed by kernel developers [1]. In
this example, the loop in lines 111–118 was copied
from lines 92–99. In the new copy-pasted segment
(lines 111–118), the variable prom phys total is replaced
with prom prom taken in most of the cases except the
one in line 117 (shown in bold font). As a re-
sult, the pointer prom prom taken[iter].theres more incor-
rectly points to the element of prom phys total instead of
prom prom taken. This bug is a semantic error, and there-
fore it cannot be easily detected by memory-related bug
detection tools including static checkers [9, 14, 17, 32]
or dynamic tools such as Purify [19], Valgrind [36], and
CCured [12]. Besides this bug, CP-Miner has also de-
tected many other similar bugs caused by copy-paste in
Linux, FreeBSD, PostgreSQL and Web Apache.

While one can imagine augmenting the software devel-
opment tools and editors with copy-paste tracking, this
support does not currently exist. Therefore, we are fo-

(linux-2.6.6/arch/sparc64/prom/memory.c)

 68 void __init prom_meminit(void)

 69 {

 92 for(iter=0; iter<num_regs; iter++) {

 93 prom_phys_total[iter].start_adr =

 94 prom_reg_memlist[iter].phys_addr;

 95 prom_phys_total[iter].num_bytes =

 96 prom_reg_memlist[iter].reg_size;

 97 prom_phys_total[iter].theres_more =

 98 &prom_phys_total[iter+1];

 99 }

111 for(iter=0; iter<num_regs; iter++) {

1
12 prom_prom_taken[iter].start_adr =

113 prom_reg_memlist[iter].phys_addr;

114 prom_prom_taken[iter].num_bytes =

115 prom_reg_memlist[iter].reg_size;

116 prom_prom_taken[iter].theres_more =

117 &
prom_phys_total
[iter+1];
// bug

118 }

143 }

Figure 1: An example of a copy-paste related error detected by CP-
Miner. This bug appears in linux-2.6.6/arch/sparc64/prom/memory.c.
A similar bug is also detected in file /arch/sparc/prom/memory.c.

cusing on detecting likely copied and pasted code in an
existing code base. Not all code segments identified by
previous detection tools and our tool are really the re-
sults of copy-paste (even though we prune many of the
false copy-pasted segments as described in Section 3.1.4),
but for simplicity we refer likely-copy-pasted segments as
copy-pasted segments.

It is a challenging task to efficiently extract copy-pasted
code in large software such as an operating system. Even
though some previous studies [16, 20] have addressed the
related problem of plagiarism detection, they are not suit-
able for detecting copy-pasted code. Those tools, such
as the commonly used JPlag [33], were designed to mea-
sure the degree of similarity between a pair of programs in
order to detect cheating. If these tools were to be used
to detect copy-pasted code in a single program without
any modification, they would need to compare all possible
pairs of code fragments. For a program with n statements,
a total of O(n3) pairwise comparisons1 would need to be
performed. This complexity is certainly impractical for
software with millions of lines of code such as Linux and
FreeBSD. Of course, it is possible to modify these tools to
identify copy-pasted code in single software, but the mod-
ification is not trivial and straightforward.

So far, only a few tools have been proposed to identify
copy-pasted code in a single program. Examples of such
tools include Moss [4, 35], Dup [6], CCFinder [24] and

1Considering comparison between the pair of code fragments with
k statements, there are (n − k + 1) different fragments. So there
are

`

n−k+1

2

´

= O(n2) possible pair comparisons. Since k can be
1, 2, ..., n

2
, the total number of pairwise comparisons is O(n3).

others [5, 7]. Most of these tools suffer from some or all
of the following limitations:
(1) Efficiency: Most existing tools are not scalable to large
software such as operating system code because they con-
sume a large amount of memory and take a long time to
analyze millions of lines of code.
(2) Tolerance to modifications: Most tools cannot deal
with modifications in copy-pasted code. Some tools [13,
22] can only detect copy-pasted segments that are exactly
identical. Moreover, most of the existing tools do not al-
low statement insertions or modifications in a copy-pasted
segment. Such modifications are very common in stan-
dard practice. Our experiments with CP-Miner show that
about one third of copy-pasted segments contain insertion
or modification of 1-2 statements.
(3) Bug detection: The existing tools cannot detect copy-
paste related bugs. They only aim at detecting copy-pasted
code and do not consider bugs associated with copy-paste.

1.2 Our Contributions

In this paper we present CP-Miner, a tool that uses data
mining techniques to efficiently identify copy-pasted code
in large software including operating system code, and
also detects copy-paste related bugs. It requires no modi-
fication or annotation to the source code of software being
analyzed. Our paper makes three main contributions:

(1) A scalable copy-paste detection tool for large soft-
ware: CP-Miner can efficiently find copy-pasted code in
large software including operating system code. Our ex-
perimental results show that it takes less than 20 minutes
for CP-Miner to detect 150,000–190,000 different copy-
pasted segments that account for about 20–22% of the
source code in Linux and FreeBSD (each with more than
3 million lines of code). Additionally, it takes less than
one minute to detect copy-pasted segments in Apache web
server and PostgreSQL, accounting for about 17–22% of
total source code.

Compared to CCFinder [24], CP-Miner is able to find
17–52% more copy-pasted segments because CP-Miner
can tolerate statement insertions and modifications.

(2) Detection of bugs associated with copy-paste: CP-
Miner can detect copy-paste related bugs such as the one
shown in Figure 1, most of which are hard to detect
with existing static or dynamic bug detection tools. More
specifically, CP-Miner has detected 28 potential bugs in
the latest version of Linux, 23 in FreeBSD, 5 in Web
Apache, and 2 in PostgreSQL. Most of these bugs had
never been reported.

We have reported these bugs to the corresponding de-
velopers. So far five bugs have recently been confirmed
and fixed by Linux developers, and one bug has been con-
firmed and fixed by Apache developers.

(3) Statistical study of copy-pasted code distribution in
operating system code: Few previous studies have been

conducted on the characteristics of copy-paste in large
software. Our work analyzed some interesting statistics
of copy-pasted code in Linux and FreeBSD. Our results
indicate that (1) copy-pasted segments are usually not too
large, most with 5–16 statements; (2) although more than
50% of copy-pasted segments have only two copies, a few
(6.3–6.7%) copy-pasted segments are copied more than 8
times; (3) there is a significant number (11.3–13.5%) of
copy-pasted segments at function granularity (copy-paste
of an entire function); (4) most (65–67%) copy-pasted seg-
ments require renaming at least one identifier, and 23–
27% of copy-pasted segments have inserted, modified, or
deleted one statement; (5) different OS modules have very
different copy-paste coverage: drivers, arch, and crypt
have higher percentage of copy-paste than other modules
in Linux; (6) as the operating system code evolves, the
amount of copy-paste also increases, but the coverage per-
centage of copy-pasted code remains relatively stable over
the recent versions of Linux and FreeBSD.

2 Background
2.1 Detection of Copy-pasted Code
Since copy-pasted code segments are usually similar to the
original ones, detection of copy-pasted code involves de-
tecting code segments that are identical or similar.

Previous techniques for copy-paste detection can be
roughly classified into three categories: (1) string-based,
in which the program is divided into strings (typically
lines), and these strings are compared against each other
to find sequences of duplicated strings [6]; (2) parse-tree-
based, in which pattern matching is performed on the
parse-tree of the code to search for similar subtrees [7, 27];
(3) token-based, in which the program is divided into a
stream of tokens and duplicate token sequences are identi-
fied [24, 33].

Our tool, CP-Miner, is token-based. This approach has
advantages over the other two. First, a string-based ap-
proach does not exploit any lexical information, so it can-
not deal with simple modifications such as identifier re-
naming. Second, using parse trees can introduce false pos-
itives because two segments with identical syntax trees are
not necessarily copy-pasted. This is because copy-paste is
code-based rather than syntax-based, i.e., it reuses a piece
of code rather than an abstract syntax structure.

Most previous copy-paste detection tools do not suf-
ficiently address the limitations described in Section 1.
Most of them consume too much time or memory to be
scalable to large software, or do not tolerate modifications
made in copy-pasted code. In contrast, CP-Miner can ad-
dress both challenges.

2.2 Frequent Subsequence Mining

CP-Miner is based on frequent subsequence mining (also
called frequent sequence mining), an association analysis

technique that discovers frequent subsequences in a se-
quence database [2]. Frequent subsequence mining is an
active research topic in data mining [38, 39]. It has broad
applications, including mining motifs in DNA sequences,
analysis of customer shopping behavior, etc.

A subsequence is considered frequent when it oc-
curs in at least a specified number of sequences (called
min support) in the sequence database. A subsequence is
not necessarily contiguous in an original sequence. We
denote the number of occurrences of a subsequence as its
support. A sequence that contains a given subsequence is
called a supporting sequence of this subsequence.

For example, a sequence database D has five sequences:
D = {abced, abecf, agbch, abijc, aklc}. The num-
ber of occurrences of subsequence abc is 4, and se-
quence agbch is one of abc’s supporting sequences. If
min support is specified as 4, the frequent subsequences
are {a : 5, b : 4, c : 5, ab : 4, ac : 5, bc : 4, abc : 4}, where
the numbers are the supports of the subsequences.

CP-Miner uses a recently proposed frequent sub-
sequence mining algorithm called CloSpan (Closed
Sequential Pattern Mining)[38], which outperforms most
previous algorithms. Instead of mining the complete
set of frequent subsequences, CloSpan mines only the
closed subsequences. A closed subsequence is the sub-
sequence whose support is different from that of its super-
sequences. CloSpan mainly consists of two stages: (1) us-
ing a depth-first search procedure to generate a candidate
set of frequent subsequences that includes all the closed
frequent subsequences; and (2) pruning the non-closed
subsequences from the candidate set. The computational
complexity of CloSpan is O(n2) if the maximum length
of frequent sequences is constrained by a constant.

Mining efficiency in CloSpan is improved by two main
ideas. The first is based on an observation that if a se-
quence is frequent, all of its subsequences are frequent.
For example, if abc is frequent, all of its subsequences
{a, b, c, ab, ac, bc} are also frequent. CloSpan recursively
produces a longer frequent subsequence by concatenating
every frequent item to a shorter frequent subsequence that
has already been obtained in the previous iterations.

Let us consider an example. Let Ln denote the set of
frequent subsequences with length n. In order to get Ln,
we can join the sets Ln−1 and L1. For example, suppose
we have already computed L1 and L2 as shown below. In
order to compute L3, we can first compute L′

3
by concate-

nating a subsequence from L2 and an item from L1:
L1 = {a, b, c};

L2 = {ab, ac, bc};

L′

3 = L2 × L1 = {abc, abb, abc, aca, acb, acc, bca, bcb, bcc}

For greater efficiency, CloSpan does not join the se-
quences in set L2 with all the items in L1. Instead,
each sequence in L2 is concatenated with only the fre-
quent items in its suffix database. A suffix database of
a subsequence s is the database of all the maximum suf-
fixes of the sequences that contain s. In our example,

for the frequent sequence ab in L2, its suffix database is
Dab = {ced, cef, ch, ijc}, and only c is a frequent item,
so ab is only concatenated with c and we get a longer se-
quence abc that belongs to L′

3
.

The second idea for improving mining performance is
to efficiently evaluate whether a concatenated subsequence
is frequent. Rather than searching the whole database,
CloSpan only checks certain suffixes. In our example, for
each sequence s in L′

3
, CloSpan checks whether it is fre-

quent or not by searching the suffix database Ds. If the
number of its occurrences is greater than min sup, s is
added into L3, which is the set of frequent subsequences
of length 3. CloSpan continues computing L4 from L3,
L5 from L4, and so on until no more subsequences can be
added into the set of frequent subsequences.

Due to space limitation, a detailed discussion of the
CloSpan algorithm can be found in [29, 38].

3 CP-Miner
CP-Miner has two major functionalities: detecting copy-
pasted code segments, and finding copy-paste related bugs.
It requires no modification to the source code of software
being analyzed. The following two subsections describe
the design for each functionality.

3.1 Identifying Copy-pasted Code

To detect copy-pasted code, CP-Miner first converts the
problem into a frequent subsequence mining problem. It
then uses an enhanced algorithm of CloSpan to find ba-
sic copy-pasted segments. Finally, it prunes false positives
and composes larger copy-pasted segments. For conve-
nience of description, we refer to a group of code segments
that are similar to each other as a copy-paste group.

CP-Miner can detect copy-pasted segments efficiently
because it uses frequent subsequence mining techniques
that can avoid many unnecessary or redundant compar-
isons. To map our problem to a frequent subsequence min-
ing problem, CP-Miner first maps a statement to a number,
with similar statements being mapped to the same number.
Then, a basic block (i.e., a straight-line piece of code with-
out any jumps or jump targets in the middle) becomes a se-
quence of numbers. As a result, a program is mapped into
a database of many sequences. By mining the database
using CloSpan, we can find frequent subsequences that
occur at least twice in the sequence database. These fre-
quent subsequences are exactly copy-pasted segments in
the original program. By applying some pruning tech-
niques such as identifier mapping, we can find basic copy-
pasted segments, which can then be combined with neigh-
boring ones to compose larger copy-pasted segments.

CP-Miner is capable of handling modifications in copy-
pasted segments for two reasons. First, similar statements
are mapped into the same value. This is achieved by map-
ping all identifiers (variables, functions and types) of the
same type into the same value, regardless of their actual

names. This relaxation tolerates identifier renaming in
copy-pasted segments. Even though false positives may
be introduced during this process, they are addressed later
through various pruning techniques such as identifier map-
ping (described in Section 3.1.4). Second, we have en-
hanced the basic frequent subsequence mining algorithm,
CloSpan, to support gap constraints in frequent subse-
quences. This enhancement allows CP-Miner to tolerate
1–2 statement insertions, deletions, or modifications in
copy-pasted code. Insertions and deletions are symmetric
because a statement deletion in one copy can also be seen
as an insertion in the other copy. Modification is a special
case of insertion. Basically, the modified statement can be
treated as if both segments have a statement inserted.

The main steps of the process to identify copy-pasted
segments include:
(1) Parsing source code: Parse the given source code and
build a sequence database (a collection of sequences). In
addition, information regarding basic blocks and block
nesting levels are also passed to the mining algorithm.
(2) Mining for basic copy-pasted segments: The enhanced
frequent subsequence mining algorithm is applied to the
sequence database to find basic copy-pasted segments.
(3) Pruning false positives: Various techniques including
identifier mapping are used to prune false positives.
(4) Composing larger copy-pasted segments: Larger copy-
pasted segments are identified by combining consecutive
smaller ones. The combined copy-pasted segments are fed
back to step (3) to prune false positives. This is necessary
because the combined one may not be copy-pasted, even
though each smaller one is.

Like other copy-paste detection tools, CP-Miner can
only detect copy-pasted segments, but cannot tell which
segment is original and which is copy-pasted from the
original. Fortunately, this limitation is not a big prob-
lem because in most cases it is enough for programmers to
know what segments are similar to each other. Moreover,
our bug detection method described in Section 3.2 does
not rely on such differentiation. Additionally, if program-
mers really need the differentiation, navigating through
RCS versions could help figuring out which segment is the
original copy.

3.1.1 Parsing Source Code
The main purpose of parsing source code is to build a se-
quence database (a collection of sequences) in order to
convert the copy-paste detection problem to a frequent
subsequence mining problem. Comments are not consid-
ered normal statements in CP-Miner, and are thereby fil-
tered by our parser. The current prototype of the CP-Miner
parser only works for programs written in C or C++, but it
is easy to modify it for other programming languages.

A statement is mapped to a number by first tokeniz-
ing its components such as variables, operators, constants,
functions, keywords, etc. To tolerate identifier renaming
in copy-pasted segments, identifiers of the same type are

mapped into the same token. Constants are handled in the
same way as identifiers: constants of the same type are
mapped into the same token. However, operators and key-
words are handled differently, with each one mapped to
a unique token. After all the components of a statement
are tokenized, a hash value digest is computed using the
“hashpjw” [3] hash function, chosen for its low collision
rate. Figure 2 shows the hash value for each statement in
the example shown in Figure 1 of Section 1. As shown in
this figure, the statement in lines 93–94 and the statement
in lines 112–113 have the same hash values.

After each statement is mapped, the program becomes a
long number sequence. Unfortunately, the frequent subse-
quence mining algorithms need a collection of sequences
(a sequence database) as described in 2.2, so we need a
way to cut this long sequence into many short ones. One
simple method is to use a fixed cutting window size (e.g.,
every 20 statements) to break the long sequence into many
short ones. This method has two disadvantages. First,
some frequent subsequences across two or more windows
may be lost. Second, it is not easy to decide the window
size: if it is too long, the mining algorithm would be very
slow; if too short, too much information may be lost on the
boundary of two consecutive windows.

Instead, CP-Miner uses a more elegant method to per-
form the cutting. It takes advantage of some simple syntax
information and uses a basic programming block as the
unit to break the long sequence into short ones. The idea
for this cutting method is that a copy-pasted segment is
usually either a part of a basic block or consists of multi-
ple basic blocks. In addition, basic blocks are usually not
too long to cause performance problems in CloSpan. By
using a basic block as the cutting unit, CP-Miner can first
find basic copy-pasted segments and then compose larger
ones from smaller ones. Since different basic blocks have
a different number of statements, their corresponding se-
quences also have different length. But this is not a prob-
lem for CloSpan because it can deal with sequences of dif-
ferent sizes. The example shown in Figures 1 and 2 is
converted into the following collection of sequences:
(35487793)
......
(67641265)
(133872016, 133872016, 82589171)
......
(67641265)
(133872016, 133872016, 82589171)
......

Besides a collection of sequences, the parser also passes
to the mining algorithm the source code information of
each sequence. Such information includes (1) the nesting
level of each basic block, which is later used to guide the
composition of larger copy-pasted segments from smaller
ones; (2) the file name and line number, which is used to
locate the copy-pasted code corresponding to a frequent
subsequence identified by the mining algorithm.

STATEMENT

 68 void __init prom_meminit(void)

 69 {

 92 for(iter=0; iter<num_regs; iter++) {

 93 prom_phys_total[iter].start_adr =

 94 prom_reg_memlist[iter].phys_addr;

 95 prom_phys_total[iter].num_bytes =

 96 prom_reg_memlist[iter].reg_size;

 97 prom_phys_total[iter].theres_more =

 98 &prom_phys_total[iter+1];

 99 }

111 for(iter=0; iter<num_regs; iter++) {

112 prom_prom_taken[iter].start_adr =

113 prom_reg_memlist[iter].phys_addr;

114 prom_prom_taken[iter].num_bytes =

115 prom_reg_memlist[iter].reg_size;

116 prom_prom_taken[iter].theres_more =

117 &prom_phys_total [iter+1];

118 }

143 }

35487793

.

67641265

133872016

133872016

82589171

.

67641265

133872016

133872016

82589171

.

HASH

Figure 2: An example of hashing statements

3.1.2 Mining for Basic Copy-pasted Segments

After CP-Miner parses the source code of a given program,
it generates a sequence database with each sequence rep-
resenting a basic block. At the next step, it applies the
frequent subsequence mining algorithm, CloSpan, on this
database to find frequent subsequences with support value
of at least 2, which corresponds to code segments that
have appeared in the program at least twice. In the exam-
ple shown in Figure 2, CP-Miner would find (133872016,
133872016, 82589171) as a frequent subsequence because
it occurs twice in the sequence database. Therefore, the
corresponding code segments in line 111–118 and line 92–
99 are basic copy-pasted segments.

Unfortunately, the mining process is not as straightfor-
ward as expected. The main reason is that the original
CloSpan algorithm was not designed exactly for our pur-
pose, and nor were other frequent subsequence mining
algorithms. Most existing algorithms including CloSpan
have the following two limitations that we had to enhance
CloSpan to make it applicable for copy-paste detection:

(1) Adding gap constraints in frequent subsequences:
In most existing frequent subsequence mining algorithms,
frequent subsequences are not necessarily contiguous in
their supporting sequences. For example, sequence abdec

provides 1 support for subsequence abc, even though abc

does not appear contiguously in abdec. It is possible to
have a large gap in the occurrence of a frequent subse-
quence in one of its supporting sequences. Hence, its cor-
responding code segment would have several statements
inserted. Such segment is unlikely to be copy-pasted.

To address this problem, we modified CloSpan to add a
gap constraint in frequent subsequences. CP-Miner only
mines for frequent subsequences with a maximum gap not
larger than a given threshold called max gap . If the max-

imum gap of a subsequence in a sequence is larger than
max gap , this sequence is not “supporting” this subse-
quence. For example, for the sequence database D =
{abced, abecf, agbch, abijc, aklc}, the support of subse-
quence abc is 1 if max gap equals 0, and the support is 3
if max gap equals 1.

The gap constraint with max gap = 0 means that
no statement insertion or deletions are allowed in copy-
paste, whereas the gap constraint with max gap = 1
or max gap = 2 means that 1 or 2 statement inser-
tions/deletions are tolerated in copy-paste.
(2) Matching frequent subsequences to copy-pasted
segments: The original CloSpan algorithm outputs only
frequent subsequences and their corresponding support
values, but not their corresponding supporting sequences.
To find copy-pasted code, we need to find the supporting
sequences for each frequent subsequence.

We enhance CloSpan to address this problem. When
CP-Miner generates a frequent subsequence, it maintains
a list of IDs of its supporting sequences. In the above
example, CP-Miner outputs two frequent subsequences:
(67641265) and (133872016, 133872016, 82589171),
each with their supporting sequence IDs, based on which
the locations of the corresponding basic copy-pasted seg-
ments (file name and line numbers) can be identified.

3.1.3 Composing Larger Copy-pasted Segments

Since every sequence fed to the mining algorithm repre-
sents a basic block, a basic copy-pasted segment may only
be a part of a larger copy-pasted segment. Therefore, it is
necessary to combine a basic copy-pasted segment with its
neighbors to construct a larger one, if possible.

The composition procedure is very straightforward. CP-
Miner maintains a candidate set of copy-paste groups,
which initially includes all of the basic copy-pasted seg-
ments that survive the pruning procedure described in Sec-
tion 3.1.4. For each copy-paste group, CP-Miner checks
their neighboring code segments to see if they also form a
copy-paste group. If so, the two groups are combined to-
gether to form a larger one. This larger copy-paste group is
checked against the pruning procedure. If it can survive the
pruning process, it is added to the candidate set and the two
smaller ones are removed. Otherwise, the two smaller ones
still remain in the set and are marked as “non-expandable”.
CP-Miner repeats this process until all groups in the can-
didate set are non-expandable.

3.1.4 Pruning False Positives

It is possible that copy-pasted segments discovered by the
mining algorithm or the composition process may contain
false positives. The main cause of false positives is the
tokenization of identifiers (variable/function/type) in order
to tolerate identifier-renaming in copy-paste. Since iden-
tifiers of the same type are mapped into the same token,
it is possible to identify false copy-pasted segments. For
example, all statements similar to x = y + z would have

the same hash value, which can introduce many false pos-
itives. To prune false positives, CP-Miner has applied sev-
eral techniques to both of basic and composed copy-pasted
segments. The pruning techniques include:

(1) Pruning unmappable segments: This technique is
used to prune false positives introduced by the tokeniza-
tion of identifiers. This is based on the observation that
if a programmer copy-pastes a code segment and then re-
names an identifier, he/she would most likely rename this
identifier in all its occurrences in the new copy-pasted seg-
ment. Therefore, we can build an identifier mapping that
maps old names in one segment to their corresponding new
ones in the other segment that belongs to the same copy-
paste group. In the example shown in Figure 2, variable
prom phys total is changed into prom prom taken (ex-
cept the bug on line 117).

A mapping scheme is consistent if there are very few
conflicts that map one identifier name to two or more dif-
ferent new names. If no consistent identifier mapping can
be established between a pair of copy-pasted segments,
they are likely to be false positives.

To measure the amount of conflict, CP-Miner uses a
metric called ConflictRatio , which records the conflict
ratio for an identifier mapping between two candidate
copy-pasted segments. For example, if a variable A from
segment 1 is changed into a in 75% of its occurrences
in segment 2 but 25% of its occurrences is changed into
other variables, the ConflictRatio of mapping A → a is
25%. The ConflictRatio for the whole mapping scheme
between these two segments are the weighted sum of
ConflictRatio of the mapping for each unique identifier.
The weight for an identifier A in a given code segment is
the fraction of total identifier occurrences that are occur-
rences of A. If ConflictRatio for two candidate copy-
pasted segments is higher than a predefined threshold,
these two code segments are filtered as false positives. In
our experiments, we set the threshold to be 60%.

(2) Pruning tiny segments: Our mining algorithm may
find tiny copy-pasted segments that consist of only 1-2
simple statements. If such a tiny segment cannot be com-
bined with neighbors to compose a larger segment, it is
removed from the copy-paste list. This is based on the ob-
servation that copy-pasted segments are usually not very
small because programmers cannot save much effort in
copy-pasting a simple tiny code segment.

CP-Miner uses the number of tokens to measure the size
of a segment. This metric is more appropriate than the
number of statements, because the length of statements is
highly variable. If a single statement is very complicated
with many tokens, it is still possible for programmers to
copy-paste it.

To prune tiny segments, CP-Miner uses a tunable pa-
rameter called min size . If the number of tokens in a pair
of copy-pasted segments is fewer than min size , this pair
is removed.

(3) Pruning overlapped segments: If a pair of candidate
copy-pasted segments overlap with each other, they are
also considered false positives. CP-Miner stops extend-
ing the pair of copy-pasted segments once they overlap.
For some program structures such as the switch statement
that contain many pairs of self-similar segments, pruning
overlapped segments can avoid most of the false positives
in switch statements.
(4) Pruning segments with large gaps: Besides the
mining procedure for basic copy-pasted segments, the gap
constraint is also applied to composed ones. When two
neighboring segments are combined, the maximum gap
of the newly composed large segment may become larger
than a predefined threshold, max total gap . If this is true,
the composition is invalid. So the newly composed one is
not added into the candidate set and the two smaller ones
are marked as non-expandable in the set.

Of course, even after such rigorous pruning, false pos-
itives may still exist. However, we have manually ex-
amined 100 random copy-pasted segments reported by
CP-Miner for Linux, and only a few false positives (8)
are found. We can only manually examine each identi-
fied copy-pasted segment because there are no traces that
record programmers’ copy-paste operations during the de-
velopment of the software.

3.1.5 Computational Complexity of CP-Miner
CP-Miner can extract copy-pasted code directly from a
single software with total complexity of O(n2) in the
worst case (where n is the number of lines of code), and
the optimizations further improve its efficiency in practice.
For example, CP-Miner can identify more than 150,000
copy-pasted segments from 3–4 million lines of code in
less than 20 minutes as shown in our results in Section 5.3.
In CP-Miner, we break all of the large basic blocks into
small blocks with at most 30 statements before feeding to
the mining algorithm. Therefore, the search tree is at most
with depth 30. With this constraint of search tree, the min-
ing complexity of CP-Miner is O(n2) in the worst case.
Furthermore, the optimizations described in Section 2.2
make it more efficient in both time and space overheads
than the worst case.

3.2 Detecting Copy-paste Related Bugs

As we have mentioned in Section 1, the main cause of
copy-paste related bugs is that programmers forget to mod-
ify identifiers consistently after copy-pasting. Once we
get the mapping relationship between identifiers in a pair
of copy-pasted segments (see Section 3.1.4), we can find
the inconsistency and report these copy-paste related bugs.
Table 1 shows the identifier mapping for the example de-
scribed in Section 1.

For an identifier that appears more than once in a copy-
pasted segment, it is consistent when it always maps to the
same identifier in the other segment. Similarly, it is in-
consistent when it maps itself to multiple identifiers. In

Identifiers in segment I Identifiers in segment II
(line 92-99) (line 111-118)

iter (9) iter (9)
num reg (1) num reg (1)

prom phys total (4) prom prom taken (3);
prom phys total (1)

prom reg memlist (2) prom reg memlist (2)

Table 1: Identifier mapping in the example in Figure 1 (the number
after each identifier indicates the number of occurrences).

Table 1, we can see that prom phys total is mapped in-
consistently, because it maps to prom prom taken three
times and prom phys total once. All the other variable
mappings are consistent.

Unfortunately, inconsistency does not necessarily in-
dicate a bug. If the amount of inconsistency is high, it
may indicate that the code segments are not copy-pasted.
Section 3.1.4 describes how we prune unmappable copy-
pasted segments based on this observation.

Therefore, the challenge is to decide when an inconsis-
tency is likely to be a bug instead of a false positive of
copy-paste. To address this challenge, we need to consider
the programmers’ intention. Our bug detection method
is based on the following observation: if a programmer
makes a change in a copy-pasted segment, the changed
identifier is unlikely to be a bug. But if he/she changes
an identifier in most places but forgets to change it in a
few places, the unchanged identifier is likely to be a bug.
In other words, “forget-to-change” is more likely to be a
bug than an intentional “change”. For example, if in some
cases, an identifier A is mapped into a and in other cases
it is mapped into a′ (both a and a′ are different from A),
it is unlikely to be a bug because programmers intention-
ally change A to other names. On the other hand, if A is
changed into a in most cases but remains unchanged only
in a few cases, the unchanged places are likely to be bugs.

Based on the above observation, CP-Miner reexam-
ines each non-expandable copy-paste group after running
through the pruning and composing procedures. For each
pair of copy-pasted segments, it uses a metric called
UnchangedRatio to detect bugs in an identifier mapping.
We define

UnchangedRatio =
NumUnchanged

NumTotal

where NumUnchanged means the number of occurrences
that a given identifier is unchanged, and NumTotal means
the number of total occurrences of this identifier in a
given copy-pasted segment. Therefore, the lower the
UnchangedRatio , the more likely it is a bug, unless
UnchangedRatio = 0, which means that all of its occur-
rences have been changed. Note that UnchangedRatio is
different from ConflictRatio . The former only measures
the ratio of unchanged occurrences, whereas the latter
measures the ratio of conflicts. In the example shown on
Table 1, UnchangedRatio for prom phys total is 0.25,
whereas all other identifiers have UnchangedRatio = 1.

CP-Miner uses a threshold for UnchangedRatio to de-
tect bugs. If UnchangedRatio for an identifier is not zero

and not larger than the threshold, the unchanged places
are reported as bugs. When CP-Miner reports a bug, the
corresponding identifier mapping information is also pro-
vided to programmers to help in debugging. In the exam-
ple shown on Table 1, identifier prom phys total on line
117 is reported as a bug.

It is possible to further extend CP-Miner’s bug detection
engine. For example, it might be useful to exploit variable
correlations. Assume variable A always appears in close
range to another variable B, and a always appears very
close to b. So if in a pair of copy-pasted segments, A is
renamed to a, B then should be renamed to b with high
confidence. Any violation of this rule may indicate a bug.
But the current version of CP-Miner has not exploited this
possibility. It remains as our future work.

4 Methodology
We have evaluated the effectiveness of CP-Miner with
large software including Linux, FreeBSD, Apache web
server and PostgreSQL. The number of files (only C files)
and the number of lines of code (LOC) for the software are
shown in Table 2.

Software version #files #LOC
Linux 2.6.6 6,497 4,365,124
FreeBSD 5.2.1 7,114 3,299,622
Apache 2.0.49 479 223,886
PostgreSQL 7.4.2 553 458,058

Table 2: Software evaluated in our experiments.

We set the thresholds used in CP-Miner as follow-
ing. The minimum copy-pasted segment size min size

is 30 tokens. We also vary the gap constraints: (1) when
max gap = 0, CP-Miner only identifies copy-pasted code
with identifier-renaming; (2) when max gap = 1 and
max total gap = 2, it means that CP-Miner allows copy-
pasted segments with insertion and deletion of one state-
ment between any two consecutive statements, and a total
of two statement insertions and deletions in the whole seg-
ment. Without specifying, we use setting (2) by default.

We define CP Coverage to measure the percentage of
copy-paste in given software (or a given module):

CP Coverage =
#LOC in copy-pasted segments

#LOC in the software or the module
× 100%

In our experiments, we also compare CP-Miner with a
recently proposed tool called CCFinder [24]. Similar to
our tool, CCFinder also tokenizes identifiers, keywords,
constant, operators, etc. But different from our tool, it uses
a suffix tree algorithm instead of a data mining algorithm.
Therefore, it cannot tolerate statement insertions and dele-
tions in copy-pasted code. Our results show that CP-Miner
detects 17–52% more copy-pasted code than CCFinder. In
addition, CCFinder does not filter incomplete, tiny copy-
pasted segments which are very likely to be false positives.
CCFinder does not detect copy-paste related bugs, so we
cannot compare this functionality between them.

In our experiments, we run CP-Miner and CCFinder on
an Intel Xeon 2.4GHz machine with 2GB memory.

5 Evaluation Results of CP-Miner
We first present the evaluation results of CP-Miner in
this section, including the number of copy-pasted seg-
ments, the number of detected copy-paste related bugs,
CP-Miner overhead, comparison with CCFinder, and ef-
fects of threshold setting. The statistical results of copy-
paste characteristics in Linux and FreeBSD will be pre-
sented in Section 6.

5.1 Overall Results

Detecting Copy-pasted Code CP-Miner has found a
significant number of copy-pasted segments in the evalu-
ated software. In this software, copy-pasted code makes up
17.7–22.3% of the code base. Table 3 shows the numbers
of copy-pasted segments and CP Coverage . As shown
in this table, in Linux and FreeBSD, there are more than
100,000 and 120,000 copy-pasted segments without any
statement insertion (max gap = 0), which accounts for
about 15% of the source code. We have manually exam-
ined 100 random pairs of copy-pasted segments from all
potential copy-pasted segments in Linux (with max gap

= 1), and found a few (only 8) false positives. The large
number of copy-pasted segments motivates a support in
software development environments such as Microsoft Vi-
sual Studio to maintain copy-pasted code.

Software max gap = 0 max gap = 1
#Segments CP Coverage #Segments CP Coverage

Linux 122,282 15.3% 198,605 22.3%
FreeBSD 101,699 14.9% 153,230 20.4%
Apache 4,155 13.1% 6,196 17.7%
PostgreSQL 12,105 16.5% 16,662 22.2%

Table 3: The number of copy-pasted segments and CP Coverage

Our results also show that a large percentage (30–50%)
of copy-pasted segments have statement insertions and
modifications. For example, when max gap is 1, CP-
Miner finds 62.4% more copy-pasted segments in Linux.
In FreeBSD, the CP Coverage increases from 14.9% to
20.4% when max gap is relaxed from 0 to 1. These results
show that previous tools including CCFinder that cannot
tolerate statement insertions and modifications would miss
a lot of copy-paste.

By increasing max gap from 1 to 2 or higher, we can
further relax the gap constraint. Due to space limitation,
we do not show those results here. Also the number of
false positives will increase with max gap . Our manual
examination results with the Linux file system module in-
dicate that false positives are low with max gap = 1, and
relatively low with max gap = 2.

Detecting Copy-paste Related Bugs CP-Miner has also
reported many copy-paste related errors in the evaluated
software. Since the errors reported by CP-Miner may not
be bugs, we verify each reported error manually and then
report to the corresponding developer community those er-
rors that we suspect to be bugs with high confidence. The

Software errors bugs careless false alarms
reported verified programming (1) (2) (3)

Linux 421 28 21 151 41 57
FreeBSD 443 23 8 307 41 30
Apache 17 5 0 3 1 6
PostgreSQL 74 2 0 13 10 43

Table 4: Errors reported by CP-Miner (UnchangedRatio threshold
= 0.4) and bugs verified by us with high confidence, some of which are
confirmed and fixed by corresponding developers after we reported. The
false alarms include three categories: (1) incorrectly matched segments,
(2) exchangeable orders, and (3) others. The first two categories can be
pruned, which remains as our immediate future work.

numbers of errors found by CP-Miner and verified bugs
are shown on Table 4. The results are achieved by setting
the UnchangedRatio threshold to be 0.4.

Both Linux and FreeBSD have many copy-paste related
bugs. So far, we have verified 28 and 23 bugs in the latest
versions of Linux and FreeBSD. Most of these bugs had
never been reported before. We have reported these bugs
to the kernel developer communities. Recently, five Linux
bugs have been confirmed and fixed by kernel developers,
and the others are still in the process of being confirmed.

Since Apache and PostgreSQL are much smaller com-
pared to Linux and FreeBSD, CP-Miner found much fewer
copy-paste related bugs. We have verified 5 bugs for
Apache and 2 bugs for PostgreSQL with high confidence.
One bug in Apache was immediately fixed by the Apache
developers after we reported it to them.

In addition to those bugs verified, we also find many
“potential bugs” (21 in Linux and 8 in FreeBSD) that are
not bugs by coincidence but might become bugs in the fu-
ture. We call this type of errors “careless programming”.
Similar to the bugs verified, these errors also forget to
change some identifiers consistently at a few places. For-
tunately, by coincidence, the new identifiers and the old
ones happen to have the same values. However, if such
implicit assumptions are violated in future versions of the
software, it would lead to bugs that are hard to detect.

5.2 False Alarms

Table 4 also shows the number of false alarms reported by
CP-Miner. These false alarms are mostly caused by the
following two major reasons and can be further pruned in
our immediate future work:
(1) Incorrectly matched copy-pasted segments: In some
copy-pasted segments that contain multiple “case” or “if ”
blocks, there are many possible combinations for these
contiguous copy-pasted blocks to compose larger ones.
Since CP-Miner simply follows the program order to com-
pose larger copy-pastes, it is likely that a wrong composi-
tion might be chosen. As a result, identifiers are compared
between two incorrectly matched copy-pasted segments,
which results in false alarms.

These false alarms can be pruned if we use more seman-
tic information of the identifiers in these segments. The
segments with a number of “case/if ” blocks usually con-
tain a lot of constant identifiers, but our current CP-Miner
treats them as normal variable names. If we use the infor-

mation of these constants to match “case/if ” blocks when
composing larger copy-pasted segments, it can reduce the
number of incorrectly matched segments and most of such
false alarms can be pruned.
(2) Exchangeable orders: In a copy-paste pair, the orders
of some statements or expressions can be switched. For
example, a segment with several similar statements such
as “a1=b1; a2=b2;” is the same as “a2=b2; a1=b1;”. The
current version of CP-Miner simply compares the identi-
fiers in a pair of copy-pasted segments in strict order and
therefore a false alarm might be reported. In Linux, 41
false alarms are caused by such exchangeable orders.

These false alarms can be pruned if we relax the strict
order comparison by further checking whether the cor-
responding “changed” identifiers are in the neighboring
statements/expressions.

5.3 Time and Space Overheads
CP-Miner can identify copy-pasted code in large soft-
ware very efficiently. The execution time of CP-Miner is
shown in Table 5. CP-Miner takes 11–20 minutes to iden-
tify 101,699–198,605 copy-pasted segments in Linux and
FreeBSD, each with 3–4 million lines of code. It takes less
than 1 minute to detect copy-pasted segments in Apache
and PostgreSQL with more than 200,000 lines of code.

CP-Miner is also space-efficient. For example, it takes
less than 530MB to find copy-pasted code in Linux and
FreeBSD. For Apache and PostgreSQL, CP-Miner con-
sumes 27–57 MB of memory.

Software max gap = 0 max gap = 1
Time(s) Space(MB) Time(s) Space(MB)

Linux 770 438 1164 527
FreeBSD 615 334 1155 459
Apache 14 27 15 30
PostgreSQL 32 44 38 57

Table 5: Execution time and memory space of CP-Miner

5.4 Comparison with CCFinder

We have compared CP-Miner with CCFinder [24].
CCFinder has execution time similar to that of CP-Miner,
but CP-Miner discovers much more copy-pasted segments.
In addition, CCFinder does not detect copy-paste related
bugs. As we explained in Section 4, CCFinder allows
identifier-renaming but not statement insertions. In addi-
tion, pruning in CCFinder is not so rigorous as CP-Miner.
For example, CCFinder reports incomplete statements in
copy-pasted segments, which is unlikely in practice. Af-
ter pruning the incomplete statements, many small copy-

Software CCFinder CP-Miner
Linux 14.7%(19.8%) 22.3%
FreeBSD 14.5%(19.6%) 20.4%
Apache 11.8%(15.3%) 17.7%
PostgreSQL 18.5%(23.8%) 22.2%

Table 6: CP Coverage comparison between CP-Miner and
CCFinder. For CCFinder, the first number is the result after pruning
those incomplete, small segments, and the second number in parenthe-
ses is the result before pruning.

pasted segments consist of less than 30 tokens, which are
too simple to be worth copying.

CP-Miner can identify 17–52% more copy-pasted code
than CCFinder because CP-Miner can tolerate statement
insertions and modifications. Table 6 compares the
CP Coverage identified by CP-Miner and CCFinder. The
results with CP-Miner are achieved using the default
threshold setting (min size = 30 and max gap = 1). For
fair comparison, we also filter those incomplete, small seg-
ments from CCFinder’s output.

5.5 Effects of Threshold Settings
Segment Size Threshold Figure 3 shows the effect of
segment size threshold min size on CP Coverage . As
expected, CP Coverage decreases when min size in-
creases because more copy-pasted segments are pruned.
The results also show that the decrement slowdowns when
min size is in the range of 30–100 tokens, which indicates
that not too many copy-segments’ sizes fall in this range.
This implies that segments with fewer than 30 tokens are
very likely to be false positives, whereas those with more
than 40 tokens are very likely to be copy-paste.

 0

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60 70 80 90 100

C
P

_C
ov

er
ag

e(
%

)

min_size

Linux
FreeBSD

Apache
PostgreSQL

Figure 3: Effects of min size on CP Coverage

Unchanged Ratio Threshold Figure 4 shows the effect
of unchanged ratio threshold on the number of bugs re-
ported. Since UnchangedRatio ≥ 0.5 means that most
of the identifiers are not changed after copy-pasting, these
unchanged identifiers are unlikely “forget-to-change” and
so it cannot indicate a copy-paste related error. Therefore,
we only show the errors with UnchangedRatio threshold
less than 0.5.

As expected, more errors are reported by CP-Miner
when the UnchangedRatio threshold increases. Specif-
ically, the number of errors reported increases gradually

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

N
um

be
r o

f E
rr

or
s

UnchangedRatio Threshold

Linux
FreeBSD
Apache
PostgreSQL

Figure 4: Effects of UnchangedRatio threshold on errors reported

25000

20000

15000

10000

5000

0

 Size of Segment (#Statements)

 #
C

op
y−

pa
st

ed
 G

ro
up

s

Linux

1−
2

3−
4

5−
8

9−
16

17
−3

2

33
−6

4

65
−1

28

>1
28

15000

12000

9000

6000

3000

0

 Size of Segment (#Statements)

 #
C

op
y−

pa
st

ed
 G

ro
up

s

FreeBSD

1−
2

3−
4

5−
8

9−
16

17
−3

2

33
−6

4

65
−1

28

>1
28

(a) # of copy-paste groups with various segment sizes (# of statements)

10

8

6

4

2

0

 Size of Segment (#Statements)

 C
P_

C
ov

er
ag

e
(%

) Linux

1−
2

3−
4

5−
8

9−
16

17
−3

2

33
−6

4

65
−1

28

>1
28

10

8

6

4

2

0

 Size of Segment (#Statements)

 C
P_

C
ov

er
ag

e
(%

) FreeBSD

1−
2

3−
4

5−
8

9−
16

17
−3

2

33
−6

4

65
−1

28

>1
28

(b) The CP Coverage with various segment sizes (# of statements)
Figure 5: Size distribution of copy-pasted segments. Due to the over-
lap of copy-pasted segments that have different segment sizes and also
belong to different copy-paste groups, the sum of all CP Coverage
does not equal to the overall CP Coverage .

when the threshold is less than 0.25, and then increases
sharply when the threshold ∈ (0.25, 0.35). We found that
most of the errors with high UnchangedRatio turn out to
be false alarms during our verification. For example, CP-
Miner reports many errors where only 1 out of 3 identifiers
is unchanged (UnchangedRatio = 0.33). However, it
cannot strongly support that it is a copy-paste related bug.
In order to prune such false alarms, we can further analyze
the identifiers in the context of the copy-pasted segments
(e.g., the whole function). We leave this improvement as
our future work.

6 Statistics of Copy-paste in OS code

This section presents the statistical results on copy-paste
characteristics in large software. Our results include
the distribution of copy-pasted segments across differ-
ent group sizes, segment sizes, granularity, amount of
changes, modules, and versions.

6.1 Copy-paste Size and Granularity
Figure 5 illustrates the distribution of copy-pasted seg-
ments with different sizes (in terms of the number of state-
ments). The results show that most (60–64%) copy-pasted
segments are not very large, with only 5–16 statements.
Only a few (0.2–5.0%) copy-pasted segments have more
than 64 statements. In particular, Figure 5(a) shows that
most (35–40%) copy-paste groups contain 5–8 statements
in each segment. Figure 5 (b) shows similar character-
istics: copy-pasted segments with 5–8 statements cover
about 7–10% of the source code.

Figure 6 shows the distribution of copy-paste group
size. About 60% of copy-paste groups contain only two
segments, which indicates that there are only two copies
(original and replicated) for most copy-pasted code. But
still, a lot of code is replicated more than once.

75

60

45

30

15

0

 Size of Group (#Segments)

 G
ro

up
 (%

)

Linux

2 3 4 5 6

7−
8

9−
16 >1

6

75

60

45

30

15

0

 Size of Group (#Segments)

 G
ro

up
 (%

)

FreeBSD

2 3 4 5 6

7−
8

9−
16 >1

6

Figure 6: Copy-paste group size distribution in terms of the number
of segments in each group. Each bar represents the percentage of copy-
paste groups that contain the corresponding number of segments.

Software basic block function
Linux 17,818 (9.0%) 26,744 (13.5%)
FreeBSD 13,999 (9.1%) 17,254 (11.3%)

Table 7: Distribution of copy-paste granularity: numbers and per-
centages of copy-pasted segments at different granularity. Note here
the percentage is not CP Coverage . It is calculated by comparing to
the total number of copy-pasted segments.

Total 6.3–6.7% of copy-pasted segments are copy-
pasted more than 8 times. If a bug is detected in one of
the copies, it is difficult for programmers to remember fix-
ing the bug in the other 8 or more copies. This motivates a
tool that can automatically fix other copy-pasted segments
once a programmer fixes one segment.

Table 7 shows the number of copy-pasted segments at
basic-block and function granularity. Our results show that
9% of copy-pasted segments are basic blocks, which in-
dicates that programmers seldom copy-paste basic blocks
because most of them are too simple to worth it.

More interestingly, there are 13.5% of copy-pasted
segments with whole functions in Linux and 11.3% in
FreeBSD. The reason is that many functions provide sim-
ilar functionalities, such as reading data from different
types of devices. Those functions can be copy-pasted with
modifications such as replacing data types of parameters.
This motivates some refactoring tools [23] to better main-
tain these copy-pasted functions.

6.2 Modifications in Copy-pasted Segments
Figure 7 shows how many identifiers are changed in copy-
pasted segments. Since in some cases there are more than
two segments in each copy-paste group, we only present
the distribution in the best case: comparing the most simi-
lar pair of segments from each copy-paste group. Each bar
includes two parts: one with no statement insertion and the
other with one statement insertion.

The results indicate that 65–67% of copy-pasted seg-
ments require identifier renaming. For example, in Linux,
27% copy-pasted segments are identical, and 8% segments
are almost identical with only one statement inserted. The
rest 65% of the copy-pasted segments in Linux rename at
least one identifier. Such results motivate a tool to support
consistently renaming identifiers in copy-pasted code.

The results in Figure 7 also show that about 23–27%
of copy-pasted segments contain at least one statement in-
sertion, deletion, and modification (Gap=1). It indicates
that it is important for copy-paste detection tools to toler-
ate such statement modifications.

Linux FreeBSD

������
������

������
������

������������ ���������� ������ 	�	�	
�
 ����������

�

�

�

�

������
������

�������
�

50

40

30

20

10

0

 # of Identifiers Renamed

 S
eg

m
en

ts
 (%

)

0 1 2 3 4 5 >5

Gap=1 Gap=0

������
���
������
���

������ �������� �������� ���������� ��������

������
������

������
������

������ � �

50

40

30

20

10

0

 # of Identifiers Renamed

 S
eg

m
en

ts
 (%

)

0 1 2 3 4 5 >5

Gap=1 Gap=0

Figure 7: Distribution of identifiers changed in copy-pasted seg-
ments. Each bar represents the percentage of segments that have the
corresponding number of renamed identifiers. Each bar has two parts:
“Gap = 0” and “Gap = 1” represent the copy-pasted segments with
no and one statement modifications, respectively.

600
500
400
300
200
100

0

 Module

 L
O

C
 (k

ilo
 li

ne
s)

Linux

ar
ch fs

ke
rn

el
m

m ne
t

so
un

d
dr

iv
er

s
cr

yp
to

ot
he

rs

500

400

300

200

100

0

 Module

 L
O

C
 (k

ilo
 li

ne
s)

FreeBSD

sy
s

lib
cr

yp
to

us
r.s

bi
n

us
r.b

in
sb

in bi
n

gn
u

ot
he

rs

(a) The number of copy-pasted lines in different modules

30
25
20
15
10
5
0

 Module

 C
P_

C
ov

er
ag

e
(%

) Linux

ar
ch fs

ke
rn

el
m

m ne
t

so
un

d
dr

iv
er

s
cr

yp
to

ot
he

rs

30
25
20
15
10
5
0

 Module

 C
P_

C
ov

er
ag

e
(%

) FreeBSD

sy
s

lib
cr

yp
to

us
r.s

bi
n

us
r.b

in
sb

in bi
n

gn
u

ot
he

rs

(b) CP Coverage in different modules

Figure 8: Copy-pasted code in different modules.

6.3 Copy-pasted Code across Modules
Different modules have different copy-paste characteris-
tics. In this subsection, we analyze copy-pasted code
across different modules in operating system code. We
split Linux into 9 categories: arch (platform specific), fs
(file system), kernel (main kernel), mm (memory man-
agement), net (networking), sound (sound device drivers),
drivers (device drivers other than networking and sound
device), crypto (cryptography), and others (all other code).
For FreeBSD, modules are also split into 9 categories:
sys (kernel sources), lib (system libraries), crypto (cryp-
tography), usr.sbin (system administration commands),
usr.bin (user commands), sbin (system commands), bin
(system/user commands), gnu, and others.

Figure 8 shows the number and CP Coverage of copy-
pasted segments in different modules. The CP Coverage

is computed based on the size of each corresponding mod-
ule, instead of the entire software.

Figure 8 (a) shows that most copy-pasted code in Linux
and FreeBSD is located in one or two main modules. For
example, modules “drivers” and “arch” account for 71%
of all copy-pasted code in Linux, and module “sys” ac-
counts for 60% in FreeBSD. This is because many drivers
are similar, and it is much easier to modify a copy-paste of
another driver than writing one from scratch.

Figure 8 (b) shows that a large percentage (20–28%) of

the code in Linux is copy-pasted in the “arch” module,
the “crypto” module, and the device driver modules in-
cluding “net”, “sound”, and “drivers”. The “arch” module
has a lot of copy-pasted code because it has many simi-
lar sub-modules for different platforms. The device driver
modules contain a significant portion of copy-pasted code
because many devices share similar functionalities. Addi-
tionally, “crypto” is a very small module (less than 10,000
LOC), but the main cryptography algorithms consist of a
number of similar computing steps, so it contains a lot of
copy-pasted code. Our results indicate that more attention
should be paid to these modules because they are more
likely to contain copy-paste related bugs.

In contrast, the modules “mm” and “kernel” contain
much less copy-pasted code than others, which indicates
that it is rare to reuse code in kernels and memory man-
agement modules.

6.4 Evolution of Copy-paste

Figure 9 shows that the copy-pasted code increases as the
operating system code evolves. For example, Figure 9(a)
shows that as Linux’s code size increases from 141,000 to
4.4 million lines, copy-pasted code also keeps increasing
from 23,000 to 975,000 lines through version 1.0 to 2.6.6.

In terms of CP Coverage , the percentage of copy-
pasted code also steadily increases along software evolu-
tion. For example, Figure 9(a) shows that CP Coverage

in Linux increases from 16.2% to 22.3% from version
1.0 to 2.6.6, and Figure 9(b) shows that CP Coverage in
FreeBSD increases from 17.5% to 21.7% from version 2.0
to 4.10. However, the CP Coverage remains relatively
stable over the recent several versions for both Linux and
FreeBSD. For example, the CP Coverage for FreeBSD
has been staying around 21–22% since version 4.0.

7 Related Work
In this section, we briefly discuss closely related work that
has not been described in earlier sections.

7.1 Detecting Copy-Pasted Code
Several studies have been conducted on detection of copy-
pasted code. The techniques used include: line-by-line [6],
token-by-token [24, 33], fingerprinting [21], visualization
[11, 13], abstract syntax tree [7, 27], and dependence graph
[26, 28].

Dup [6] finds all pairs of matching parameterized code
fragments. A code fragment matches another if both frag-
ments are contiguous sequences of source lines with some
consistent identifier mapping scheme. Because this ap-
proach is line-based, it is sensitive to lexical aspects like
the presence or absence of new lines. In addition, it does
not find non-contiguous copy-pastes. CP-Miner does not
have these shortcomings.

Johnson [21] proposed using a fingerprinting algorithm
on a substring of the source code. In this algorithm, cal-
culated signatures per line are compared in order to iden-

 0

 1

 2

 3

 4

 5

01/94 01/96 01/98 01/00 01/02 01/04
 0

 5

 10

 15

 20

 25

 30

1.
0

1.
2.

0
1.

3.
0

2.
1.

0

2.
1.

40

2.
1.

80

2.
2.

0
2.

3.
0

2.
3.

50

2.
4.

0

2.
5.

0

2.
5.

30
2.

5.
60

2.
6.

0
2.

6.
6

M
ill

io
n

LO
C

C
P

_C
ov

er
ag

e
(%

)

Time

Version

total LOC
total copy-pasted LOC
CP_Coverage

(a) Linux 1.0 – 2.6.6

 0

 1

 2

 3

 4

 5

01/94 01/96 01/98 01/00 01/02 01/04
 0

 5

 10

 15

 20

 25

 30

2.
0

2.
1

2.
2

3.
0

4.
0

4.
2

4.
5

4.
7

4.
8

4.
9

4.
10

M
ill

io
n

LO
C

C
P

_C
ov

er
ag

e
(%

)

Time

Version

total LOC
total copy-pasted LOC
CP_Coverage

(b) FreeBSD 2.0 – 4.10

Figure 9: Copy-pasted code in Linux and FreeBSD through vari-
ous versions. The x-axis (version number) is drawn in time scale with
the corresponding release time. The versions of Linux we analyze are
through 1.0 to the current version 2.6.6. The versions of FreeBSD in-
clude the main branch through 2.0 to 4.10.

tify matched substrings. As with line-based techniques,
this approach is sensitive to minor modifications made in
copy-pasted code.

Some graphical tools were proposed to understand code
similarities in different programs (or in the same program)
visually. Dotplots [11] of source code can be constructed
by tokenizing the code into lines and placing a dot in coor-
dinates (i, j) on a 2-D graph, if the ith input token matches
jth input token. Similarly, Duploc [13] provides a scat-
ter plot visualization of copy-pastes (detected by string
matching of lines) and also textual reports that summa-
rize all discovered sequences. Both Dotplots and Duploc
only support line granularity. In addition, they can only
detect identical duplicates and do not tolerate renaming,
insertions, and deletions.

Baxter et al. [7] proposed a tool that transforms source
code into abstract-syntax trees (AST), and detects copy-
paste by finding identical subtrees. Similar to other tools,
it is not tolerant to modifications in copy-pasted segments.
In addition, it may introduce many false positives because
two code segments with the same syntax subtrees are not
necessarily copy-pastes.

Komondoor et al. [26] proposed using program depen-
dence graph (PDG) and program slicing to find isomorphic
subgraphs and code duplication. Although this approach is
successful at identifying copies with reordered statements,
its running time is very long. For example, it takes 1.5
hours to analyze only 11,540 lines of source code from

bison, much slower than CP-Miner. Another slow PDG-
based approach is found in [28].

Mayrand et al. [31] used an Intermediate Representa-
tion Language to characterize each function in the source
code and detect copy-pasted function bodies that have sim-
ilar metric values. This tool does not detect copy-paste at
other granularity such as segment-based copy-paste, which
occurs more frequently than function-based copy-paste as
shown in our results.

Some copy-paste detection techniques are too coarse-
grained to be useful for our purpose. JPlag [33],
Moss [35], and sif [30] are tools to find similar programs
among a given set. They have been commonly used to de-
tect plagiarism. Most of them are not suitable for detecting
copy-pasted code in a single large program.

Kontogiannis et al. [27] built an abstract pattern match-
ing tool to identify probable matches using Markov mod-
els. This approach does not find copy-pasted code. In-
stead, it only measures similarity between two programs.

7.2 Detecting Software Bugs
Many tools have been proposed for detecting software
bugs. One approach is dynamic checking that detects bugs
during execution. Examples of dynamic tools include Pu-
rify [19], Valgrind [36], DIDUCE [18], Eraser [34], and
CCured [12]. Dynamic tools have more accurate informa-
tion but may introduce overheads during execution. More-
over, they can only find bugs on the execution paths. Most
dynamic tools cannot detect bugs in operating systems.

Another approach is to perform checks statically. Ex-
amples of this approach include explicit model check-
ing [15, 32, 37] and program analysis [8, 14, 17]. Most
static tools require significant involvement of program-
mers to write specifications or annotate programs. But the
advantage of static tools is that they add no overhead dur-
ing execution, and it can find bugs that may not occur in
the common execution paths. A few tools do not require
annotations, but they focus on detecting different types of
bugs, instead of copy-paste related bugs.

Our tool, CP-Miner, is a static tool that can detect copy-
paste related bugs, without any annotation requirement
from programmers. CP-Miner complements other bug de-
tection tools because it is based on a different observation:
finding bugs caused by copy-paste. Some copy-paste re-
lated bugs can be found by previous tools if they lead to
buffer overflow or some obvious memory corruption, but
many of them, especially those semantic ones, cannot be
found by previous tools.

Our work is motivated by and related to Engler et al.’s
empirical analysis of operating systems errors [10]. Their
study gave an overall error distribution and evolution anal-
ysis in operating systems, and found that copy-paste is one
of the major causes for bugs. Our work presents a tool to
detect copy-pasted code and related bugs in large software
including operating system code. Many of these bugs such
as the one in Figure 1 cannot be detected by their tools.

8 Conclusions

This paper presents a tool called CP-Miner 2 that uses
data mining techniques to efficiently identify copy-pasted
code in large software including operating systems, and
also detects copy-paste related bugs. Specifically, it takes
less than 20 minutes for CP-Miner to identify 190,000
and 150,000 copy-pasted segments that account for 20–
22% of the source code in Linux and FreeBSD. More-
over, CP-Miner has detected 28 and 23 copy-paste related
bugs in the latest versions of Linux and FreeBSD, respec-
tively. Compared to CCFinder [24], CP-Miner finds 17–
52% more copy-pasted segments because it can tolerate
statement insertions and modifications in copy-paste. In
addition, we have shown some interesting characteristics
of copy-pasted codes in Linux and FreeBSD, including
distribution of copy-paste across different segment sizes,
group sizes, granularity, modules, amount of modifica-
tions, and software evolution.

Our results indicate that maintaining copy-pasted code
would be very useful for programmers because it is com-
monly used in large software such as operating system
code, and it can easily introduce hard-to-detect bugs. We
hope our study motivates software development environ-
ments such as Microsoft Visual Studio to provide func-
tionality to maintain copy-pasted code and automatically
detect copy-paste related bugs.

Even though CP-Miner focuses only on “forget-to-
change” bugs caused by copy-paste, copy-paste can intro-
duce many other types of bugs. For example, after copy-
paste operation, the programmer forgets to add some state-
ments that are specific to the new copy-pasted segment.
However, such bugs are hard to detect because it relies on
semantic information. It is impossible to guess what the
programmer would want to insert or modify. Another type
of copy-paste related bugs is caused by programmers for-
getting to fix a known bug in all copy-pasted segments.
They only fix one or two segments but forget to change it
in the others. Our tool CP-Miner can detect simple cases
of this type of errors. But if the fix is too complicated,
CP-Miner would miss the bug because the modified code
segment becomes too different from the others to be identi-
fied as copy-paste. To solve this problem more thoroughly,
it would require support from software development envi-
ronments such as Microsoft Visual Studio.

9 Acknowledgements

The authors would like to thank the shepherd, Andrew
Myers, the anonymous reviewers, and James Larus (Mi-
crosoft Research Lab) for their invaluable feedback. We
appreciate Professor Jiawei Han and his group for their
CloSpan mining algorithm. We would also like to thank
Cigdem Sengul for her help with the initial investigation
of our project. This research is supported by IBM Faculty

2CP-Miner will be released to the research community.

Award, NSF CNS-0347854 (career award), NSF CCR-
0305854 grant and NSF CCR-0325603 grant. Our experi-
ments were conducted on equipment provided through the
IBM SUR grant.

REFERENCES
[1] Linux kernel mailing list. http://lkml.org.
[2] R. Agrawal and R. Srikant. Mining sequential patterns. In

Eleventh International Conference on Data Engineering, 1995.
[3] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-

niques and Tools. Addison-Wesley, 1986.

[4] A. Aiken. Moss: A system for detecting software plagiarism.
http://www.cs.berkeley.edu/˜aiken/moss.html.

[5] B. S. Baker. A program for identifying duplicated code. Comput-
ing Science and Statistics, 24:49–57, 1992.

[6] B. S. Baker. On finding duplication and near-duplication in large
software systems. In Proceedings of the Second Working Confer-
ence on Reverse Engineering, page 86. IEEE Computer Society,
1995.

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proceedings of
the International Conference on Software Maintenance, page 368.
IEEE Computer Society, 1998.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for mul-
tithreaded object-oriented programs. In Proceeding of the ACM
SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 258–269. ACM Press, 2002.

[9] A. Chou, B. Chelf, D. R. Engler, and M. Heinrich. Using meta-
level compilation to check FLASH protocol code. In Proceed-
ings of the 9th International Conference on Architectural Support
for Programming Languages and Operating System, pages 59–70.
ACM Press, 2000.

[10] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An
empirical study of operating system errors. In Symposium on Op-
erating Systems Principles, pages 73–88, 2001.

[11] K. W. Church and J. I. Helfman. Dotplot: A program for exploring
self-similarity in millions of lines of text and code. Journal of
Computational and Graphical Statistics, 1993.

[12] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer.
CCured in the real world. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Imple-
mentation, pages 232–244. ACM Press, 2003.

[13] S. Ducasse, M. Rieger, and S. Demeyer. A language independent
approach for detecting duplicated code. In Proceedings of Inter-
national Conference on Software Maintenance, pages 109–118.
IEEE, 1999.

[14] D. Engler and K. Ashcraft. RacerX: effective, static detection
of race conditions and deadlocks. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pages 237–
252. ACM Press, 2003.

[15] D. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behav-
ior: A general approach to inferring errors in systems code. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles, pages 57–72. ACM Press, 2001.

[16] S. Grier. A tool that detects plagiarism in Pascal programs. In Pro-
ceedings of the 12th SIGCSE Technical Symposium on Computer
Science Education, pages 15–20. ACM Press, 1981.

[17] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, pages 69–82. ACM Press, 2002.

[18] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. In Proceedings of the International
Conference on Software Engineering, May 2002.

[19] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter USENIX Confer-
ence, pages 158 – 185, Dec 1992.

[20] H. T. Jankowitz. Detecting plagiarism in student Pascal programs.
Computer Journal, 31(1):1–8, 1988.

[21] J. H. Johnson. Identifying redundancy in source code using fin-
gerprints. In Proceedings of the conference of the Centre for
Advanced Studies on Collaborative research, Toronto, Ontario,
Canada, October 1993.

[22] J. H. Johnson. Substring matching for clone detection and change
tracking. In Proceedings of the International Conference on
Software Maintenance, pages 120–126. IEEE Computer Society,
1994.

[23] R. E. Johnson and W. F. Opdyke. Refactoring and aggregation. In
Object Technologies for Advanced Software, First JSSST Interna-
tional Symposium, volume 742, pages 264–278. Springer-Verlag,
1993.

[24] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguis-
tic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering, 28(7):654–
670, 2002.

[25] C. Kapser and M. W. Godfrey. Toward a taxonomy of clones in
source code: A case study. Evolution of Large-scale Industrial
Software Applications (ELISA), Sept 2003.

[26] R. Komondoor and S. Horwitz. Using slicing to identify dupli-
cation in source code. In 8th International Symposium on Static
Analysis (SAS), 2001.

[27] K. Kontogiannis, M. Galler, and R. DeMori. Detecting code sim-
ilarity using patterns. Working Notes of the Third Workshop on AI
and Software Engineering: Breaking the Toy Mold (AISE), 1995.

[28] J. Krinke. Identifying similar code with program dependence
graphs. In Eighth Working Conference on Reverse Engineering
(WCRE), 2001.

[29] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou. C-Miner: Mining
Block Correlations in Storage Systems. In Proceedings of the 3rd
USENIX Conference on File and Storage Technology, 2004.

[30] U. Manber. Finding similar files in a large file system. In Pro-
ceedings of the USENIX Winter 1994 Technical Conference, pages
1–10, San Fransisco, CA, USA, 17–21 1994.

[31] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the au-
tomatic detection of function clones in a software system using
metrics. In Proceedings of the 1996 International Conference on
Software Maintenance, page 244. IEEE Computer Society, 1996.

[32] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill.
CMC: A pragmatic approach to model checking real code. In
Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation, Dec. 2002.

[33] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms
among a set of programs with JPlag. Journal of Universal Com-
puter Science, 8(11):1016–1038, Nov 2002.

[34] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A dynamic data race detector for multithreaded pro-
grams. ACM Transactions on Computer Systems, 15(4):391–411,
1997.

[35] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the
2003 ACM SIGMOD International Conference on Management
of Data, pages 76–85. ACM Press, 2003.

[36] J. Seward. Valgrind, an open-source memory debugger for x86-
GNU/Linux. available at URL http://developer.kde.org/ sewardj/.

[37] U. Stern and D. L. Dill. Automatic verification of the SCI cache
coherence protocol. In Conference on Correct Hardware Design
and Verification Methods, pages 21–34, 1995.

[38] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential
patterns in large datasets. In Proceedings of 2003 SIAM Interna-
tional Conference on Data Mining (SDM’03), San Fransisco, CA,
May 2003.

[39] M. Zaki. SPADE: An efficient algorithm for mining frequent se-
quences. Machine Learning, 40:31–60, 2001.

