
ConAir: Featherweight Concurrency Bug Recovery
Via Single-Threaded Idempotent Execution

Wei Zhang1 Marc de Kruijf1,2 Ang Li1 Shan Lu1 Karthikeyan Sankaralingam1

1Computer Sciences Department, University of Wisconsin–Madison 2Google, Inc
{wzh,dekruijf,ali28,shanlu,karu}@cs.wisc.edu

Abstract
Many concurrency bugs are hidden in deployed software and cause
severe failures for end-users. When they finally manifest and become
known by developers, they are difficult to fix correctly. To support
end-users, we need techniques that help software survive hidden
concurrency bugs during production runs. To help developers, we
need techniques that fix exposed concurrency bugs.

The state-of-the-art techniques on concurrency-bug fixing and
survival only satisfy a subset of four important properties: compati-
bility, correctness, generality, and performance. We aim to develop a
system that satisfies all of these four properties. To achieve this goal,
we leverage two observations: (1) rolling back a single thread is suffi-
cient to recover from most concurrency-bug failures; (2) reexecuting
an idempotent region, which requires no memory-state checkpoint,
is sufficient to recover from many concurrency-bug failures. Our
system ConAir includes a static analysis component that automat-
ically identifies potential failure sites, a static analysis component
that automatically identifies the idempotent code regions around
every failure site, and a code-transformation component that inserts
rollback-recovery code around the identified idempotent regions.

We evaluated ConAir on 10 real-world concurrency bugs in
widely used C/C++ open-source applications. These bugs cover
different types of failure symptoms and root causes. Quantitatively,
ConAir helps software survive failures caused by all of these
bugs with negligible run-time overhead (<1%) and short recovery
time. Qualitatively, ConAir can help recover from failures caused
by unknown bugs. It guarantees that program semantics remain
unchanged and requires no change to operating systems or hardware.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.5 [Software Engineering]:
Testing and Debugging; D.4.1 [Operating Systems]: Process Man-
agement

Keywords idempotency, concurrency bugs, failure recovery, static
analysis, bug fixing
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1. Introduction
1.1 Motivation
Concurrency bugs are unsynchronized memory accesses in multi-
threaded programs. Many concurrency bugs are hidden in production-
run software, causing severe failures in the field with huge financial
losses [30, 42, 48]. When they finally get known by developers,
correctly fixing them takes substantial manual effort. Developers
often need weeks, or even months, to design a concurrency-bug
patch [20, 35] yet about 40% of released concurency-bug patches
are incorrect, which are the most error-prone among all types of
bug patches [56]. Therefore, it is critical to help end-users en-
able production-run software to survive failures caused by hidden
concurrency bugs and help developers fix known concurrency bugs.

An ideal bug fixing and survival technique should have several
key properties: compatibility, i.e. no OS/hardware modification;
performance, i.e. small run-time overhead and fast failure recov-
ery; generality, i.e. helping bugs with a wide variety of root-cause
interleaving patterns without reliance on accurate bug detection; cor-
rectness, i.e. not generating results infeasible for original software.

Table 1 summarizes three solutions to this problem and outlines
their differences for all these four properties. As shown in columns
2, 3, and 4, no existing technique can achieve all four properties at
the same time. We now elaborate on these techniques.

Auto. Prohibiting Rollback ConAir
Fixing Interleaving Recovery

Compatibility X * * X
Correctness X X X X
Generality - * X X
Performance X * * X

Table 1. A comparison among concurrency-bug fixing and survival
techniques (X: yes; -: no; *: cannot all be yes at the same time.)

The automatic fixing approach statically or dynamically adds syn-
chronization into programs to eliminate known bug-triggering inter-
leavings [23, 24, 39]. Although promising, a tool with this approach
only fixes bugs with a specific root cause (e.g., atomicity violations
[23]), because it requires different types of synchronization to elimi-
nate buggy interleavings of different root-causes. Furthermore, by
design, this approach does not help software survive hidden bugs. It
only fixes known bugs based on accurate bug root-cause detection.

Proactively prohibiting certain types of interleavings at run time
is a common approach to surviving hidden concurrency bugs [5, 29,
37, 43, 45, 46, 51, 55, 57, 58]. Techniques based on this approach
only survive failures caused by certain types of interleavings, and
tend to impose unnecessary serialization and performance loss on
existing hardware. In rare cases, some techniques belonging to this
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Figure 1. An overview of ConAir

approach may need programmer annotations to eliminate the effect
of certain interleavings to maintain correctness.

The rollback recovery approach leverages the non-determinism
of multi-threaded software to survive hidden concurrency bugs
[44, 50, 53]. Without prohibiting any interleaving, it uses system
checkpoint and rollback techniques to recover from failures, which
is not limited to particular types of root causes. Unfortunately,
existing techniques based on this approach require periodic whole-
program checkpoint at run time and whole-program rollback for
failure recovery. As a result, they require OS/hardware modifications
to achieve good performance.

1.2 Contributions
This paper presents ConAir, a static tool that automatically inserts
rollback-recovery code into multi-threaded software and allows
software to recover from a wide variety of known and hidden con-
currency bugs with little run-time overhead, as shown in Figure 1.

ConAir distinguishes itself from existing rollback-recovery sys-
tems by the following features:

1. No multi-threaded rollback. We observe that failures caused
by most concurrency bugs can be recovered through rolling back
just one thread, instead of all threads.

2. No memory-state checkpointing. We observe that failures
caused by many concurrency bugs can be recovered by re-
executing an idempotent region surrounding the failure site. A
code region is idempotent if it can be reexecuted for any number
of times without changing the program semantics. More formal
definition of idempotent regions is in Section 2.2.

The above observations help ConAir achieve the four properties
listed in Table 1. The reexecution of single-threaded idempotent
regions guarantees no change to program semantics (correctness)1.
The rollback-recovery approach, by design, allows ConAir to re-
cover from concurrency bugs caused by a wide variety of root
causes (generality). By avoiding the need for checkpointing mem-
ory state and by avoiding coordination across threads, ConAir limits
its run-time overhead (performance) and requires no modification
to OS/hardware (compatibility).

ConAir can be used in two modes. In survival mode, ConAir
can be applied to harden a multi-threaded program against hidden
concurrency bugs. In fix mode, it can generate safe temporary
patches for concurrency bugs whose root causes are unknown. This
is helpful to developers who often know the failure symptom of a
reported bug long before they understand the root cause of the bug.

We have evaluated ConAir by using 10 real-world concurrency
bugs in open-source server and client software. These 10 bugs rep-
resent bugs of common root causes, including atomicity violations,
order violations, and deadlocks, and bugs of common failure symp-
toms, including assertion violations, wrong outputs, segmentation
faults, and hangs. Without any knowledge of these bugs, ConAir

1 ConAir does not violate memory consistency model (see Section 2.2).

automatically hardens the software at 7 – 19185 statically identified
potential failure sites per program. The hardened software runs al-
most as fast as the original software, with only 0 – 0.2% run-time
overhead. Failures caused by 8 out of 10 bugs can always be suc-
cessfully recovered. The other 2 bugs lead to wrong-output failures.
If the output-correctness conditions are known to ConAir, failures
caused by these 2 bugs can also be successfully recovered. The time
taken for failure recovery varies and is between 8 microseconds
and 17 milliseconds. ConAir also has its limitations, which will be
discussed in Section 6.5.

2. ConAir overview
The design of a rollback-recovery system for multi-threaded soft-
ware includes three key components, as shown in Figure 1c: (1)
how many threads participate in the rollback recovery; (2) where
the failure site is in each participant thread; (3) what is the reexecu-
tion point in each participant thread. We take a novel approach to
these components by leveraging our key observations. To address
component (1), unlike previous work, only one thread participates
in ConAir rollback recovery. Components (2) and (3) are synergisti-
cally handled by forming idempotent code-regions whose end-point
is the failure site, and start-point serves as a natural reexecution
point for the participant thread. This section develops these key
observations of ConAir in detail, and uses these observations to
explain its generality, correctness, performance, and compatibility
properties.

Terminology The program location where software fails is called
a failure site. The location where software could fail is called a
potential failure site. Since we may never know whether a failure
would occur at a particular location, sometimes the paper does not
differentiate failure sites and potential failure sites. A previous study
shows that 97% of non-deadlock concurrency bugs first encounter
their failures in a single thread, which may then terminate the whole
program [61]. We refer to the thread that first encounters the failure
as the failing thread.

2.1 Single-threaded rollback to recover concurrency bugs
We first discuss the generality of single-threaded recovery and
compare it with traditional multi-threaded recovery. This discussion
does not consider the correctness issue, which is discussed in
Section 2.2. Our discussion and conclusions are based on root-cause
and error-propagation characteristics of real-world concurrency
bugs.

Recovering atomicity-violation bugs Atomicity violations con-
tribute to about 70% of real-world non-deadlock bugs [35]. They
occur when two code regions R1 and R2 from two threads interleave
unserializably, which violates the expected atomicity of one or both
regions. Clearly, if we can rollback and reexecute any one involved
thread, the execution of R1 and R2 will be serialized and the failure
will be recovered. Therefore, to understand whether single-threaded



/∗Thread 1∗/
log=CLOSE;
log=OPEN;

/∗Thread 2∗/
if(log!=OPEN)
{//output failure}

(a) Violating WAW atomicity
(Rollback Thread 2 to recover)

/∗Thread 1∗/
ptr=aptr;
tmp=∗ptr;

/∗Thread 2∗/

ptr=NULL;

(b) Violating RAW atomicity
(Rollback Thread 1 to recover)

/∗Thread 1∗/
if(ptr)

fputs(ptr);

/∗Thread 2∗/

ptr=NULL;

(c) Violating RAR atomicity
(Rollback Thd 1 to recover)

/∗Thread 1∗/
cnt+=deposit1;
printf(”Balance=%d”,cnt);

/∗Thread 2∗/

cnt+=deposit2;

(d) Violating WAR atomicity
(Rollback Thread 1 to recover)

Figure 2. Most failures caused by atomicity violations can be recovered by rolling back one thread, the failing thread (Different
checkpoint/sandbox techniques may be needed to guarantee correctness.).

recovery works, we need to know whether the failing thread is
involved in the unserializable interleaving.

We checked 51 real-world atomicity-violation bugs collected
by a previous work [35]. About 92% of them cause failures in a
thread that is involved in the unserializable interleaving and hence
can potentially be recovered by single-threaded recovery.

The above observation can be better understood through bug
examples shown in Figure 2. This figure depicts the most common
types of real-world atomicity violations [33, 35, 52]. As we can see,
an atomicity violation usually causes an involved thread to read an
unexpected value from a shared variable, such as log in Figure 2a,
ptr in Figure 2b and Figure 2c, and cnt in Figure 2d. This incorrect
value quickly leads to a failure in that thread. Clearly, the failure can
be recovered by rolling back and reexecuting that thread.

Recovering order-violation bugs Order violations contribute to
nearly 30% of real-world non-deadlock concurrency bugs [35]. They
occur when an operation A is expected to execute before an operation
B, but instead executes after B due to lack of synchronization.
Clearly, if we can rollback and reexecute the thread of B, the
occurrence of B will be effectively delayed and the failure will
be recovered. Since single-threaded recovery always rolls back the
failing thread, we need to understand whether the thread of B is the
failing thread.

We checked all 21 real-world order-violation bugs collected by
a previous work [35]. We found that about 50%of order-violation
bugs lead to failures in the thread of B, and hence can be recovered
by the single-threaded recovery. Failures of the other bugs manifest
in the thread of A and occasionally some other threads.

To better understand this observation, one can consider a com-
mon type of order-violation bugs: thread tB reads a shared-variable
V before V is initialized by thread tA. In this case, the uninitialized
value in V usually leads to a failure in tB. By rolling back tB, we can
postpone the read of V until V is initialized.

Recovering deadlock bugs Deadlock contributes to about 40% of
all concurrency bugs [31]. When a deadlock occurs, every thread
involved is holding some resource that is blocking another thread. In
a typical deadlock, making any thread release a resource will break
the circular resource dependence. Clearly, rolling back any single
failing thread can recover from a deadlock.

Summary Overall, rolling back a single thread (i.e., the failing
thread) is effective to recover from most concurrency bugs: all
deadlocks, almost all atomicity violations (47 among the 51 studied),
and about half of the order violations (11 among the 21 studied).

2.2 Idempotent reexecution to recover concurrency bugs
In general, an idempotent region is a code region that can be reexe-
cuted for any number of times without changing the program seman-
tics. Figure 3 shows a code-snippet that is idempotent contrasted
with one that is not. In general, such regions can have arbitrary start
and end-points in the program, so long as the code in that region
adheres to idempotency semantics.

We narrow the definition to make the regions amenable for
bug recovery. In this work, an idempotent region always ends at
a potential failure site. It does not contain any writes to shared

y=x+1;
z=x+y;

(a) An idempotent region

x=x+1;
z=x+y;

(b) Not an idempotent region

Figure 3. Idempotency
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Figure 4. The tradeoff of reexecution-region design

variables, so that its single-threaded reexecution does not violate
the memory-consistency model of hardware and system. It does not
contain any I/O operations. It also does not contain any writes to
local variables that could cause incorrect reexecution.

Using idempotent regions as reexecution regions can easily
achieve correctness and good performance, because they can be
correctly reexecuted without any checkpointing or logging. The only
concern is that they may be too short to recover concurrency bugs.
On the other hand, longer reexecution regions can recover more bugs,
but also hurt performance and/or compatibility more, because they
require more complicated rollback-reexecution techniques, such as
sandboxing I/O events, buffering shared-variable modifications, and
checkpointing local-variable values. Figure 4 sketches this trade-off
and design space.

Fortunately, several empirical observations indicate that con-
straining reexecution regions to be free of idempotency-destroying
operations does not eliminate the chance of recovering from
concurrency-bug failures.

• I/O operations. Idempotent regions cannot contain any I/O
operations. A study of real-world concurrency bugs shows that
only about 15% of concurrency bugs’ recovery involves I/O
operations [54].
• Shared-variable writes. Idempotent regions cannot contain any

write to shared variables. Fortunately, among all types of com-
mon concurrency bugs discussed earlier, only RAW and WAR
atomicity violations (Figure 2b and Figure 2d) require reexecut-
ing shared-variable writes to recover.



//assert(e)

if(e){
}else{

Failure:

assert fail(...);

}

(a) Assertion Failures

//printf(”..”,e,..);

if(Assert(e)){
}else{

Failure:
//developers specify
//Assert(...)
}
printf(”..”,e,..);

(b) Wrong Outputs

//tmp=∗G ptr;
l ptr=G ptr;
if(l ptr>LowerBound){
}else{

Failure:

}
tmp=∗l ptr;

(c) Segmentation Faults

//pthread mutex lock(..);
int ret = pthread mutex timedlock(..);
if (ret!=ETIMEOUT ){
}else{

Failure:

}

(d) Deadlock Failures

Figure 5. Failure sites for different types of failures (Some of them involve ConAir code transformation; LowerBound is 10,000 by default.)

• Local-variable writes that are not idempotent, such as the write to
x in Figure 3b. No previous study has looked at this. Fortunately,
one study of real-world concurrency bugs shows that most non-
deadlock bugs have short error-propagation distances, often a
handful of data/control dependence edges within one thread [61].
It is likely that many bugs’ error-propagation does not involve
such idempotency-destroying writes. As for deadlock bugs, they
can be recovered by rolling back any single involved thread. It
is likely that at least one thread can release a deadlock-inducing
resource when rolling back its idempotent reexecution region2.

To know the exact percentage of real-world failures that require
each type of reexecution regions is difficult — most of the real-world
concurrency bugs examined in previous work [35] have never been
reproduced in a research environment. Therefore, we studied all the
26 bugs repeated and presented by 6 recently published works on
concurrency-bug detection and prevention [23, 24, 49, 54, 60, 61].
Among these 26 bugs, 20 can be survived through single-threaded
reexecution3. Among the reexecution regions of these 20 bugs,
16 are idempotent, 2 contain I/O operations, and 2 contain non-
idempotent memory writes but no I/Os. Section 6 will present
real-world failure examples that can be recovered by reexecuting
idempotent regions in the failing thread.

Summary Traditional techniques mainly trend toward the right
end of the reexecution-region design spectrum in Figure 4. Their
focus of the failure-recovery universality inevitably leads to large
run-time overhead and complicated/non-existing platform support.

This paper will explore the leftmost end of the design spectrum.
We use idempotent regions as reexecution regions, and identify a
reexecution point as the starting point of the idempotent region sur-
rounding each failure site. Our design does not aim the universality
of failure recovery. Instead, it aims to survive a significant portion
of concurrency-bug failures with a wide variety of root causes at
negligible overhead on existing platforms, which will allow easy
adoption in production systems.

In the following, Section 3 presents a basic design and imple-
mentation of ConAir. Section 4 discusses further extensions and
optimizations of ConAir, such as how to avoid useless recovery
attempts and how to conduct inter-procedural recovery. Section 5
and Section 6 present the evaluation of ConAir.

3. ConAir design and implementation
ConAir framework includes three components:

1. A static analysis component that identifies failure sites in soft-
ware (Section 3.1).

2 Strictly speaking, idempotent code regions cannot contain lock functions.
ConAir’s techniques to solve this problem are discussed in Section 4.1.
3 The 20/26 single-threaded recovery rate is lower than that among a larger
set of real-world bugs presented in Section 2.1, because some papers [49, 60]
use disproportionally large numbers of order-violation benchmarks.

2. A static analysis component that identifies reexecution points
for every failure site (Section 3.2).

3. A static code-transformation component that enables a multi-
threaded program to survive concurrency bugs at the failure sites
identified above through single-threaded rollback (Section 3.3).

ConAir does not aim to handle all possible software failures.
Instead, it aims to handle common failures with a variety of failure
symptoms and root causes with good run-time performance and no
modification to the OS or hardware. ConAir also provides guarantee
to never deviate from the original software semantics.

3.1 Failure site identification
Failure sites are where failures occur. Some failures may occur due
to hidden bugs and some failures may have already manifested with
their symptoms known to users/developers. To handle these two
types of failures, ConAir operates in two modes: survival mode and
fix mode. These two modes only differ in how the failure sites are
identified.

3.1.1 Identifying failure sites in survival mode
Without any knowledge of hidden concurrency bugs, ConAir uses
static analysis to identify program locations where common failures
could occur. The following four types of failures are the most
common among the real-world concurrency bugs [61].

Assertion failures. The assert macro is widely used by devel-
opers to specify critical program properties. In Linux systems, an
assertion failure will cause the execution of assert fail(...). ConAir
identifies the invocation of assert fail(...) as a (potential) failure
site, as shown in Figure 5a.

Wrong outputs. Wrong output failures occur when software pro-
duces an incorrect output or fails to produce any output when an
output is desired. Judging a wrong-output failure requires oracles
specified by developers or users. The current prototype of ConAir
can help recover from wrong-output failures, if developers can pro-
vide output oracles in the format of assert as shown in Figure 5b.

Segmentation-fault failures. A previous study [60] shows that
most segmentation faults caused by concurrency bugs occur during
the dereference of a heap/global pointer variable. Therefore, ConAir
identifies every dereference of a heap/global pointer variable as a
potential segmentation fault failure site, as shown in Figure 5c.

Deadlock failures. There are different ways to detect a deadlock
failure. Some previous work [24] instruments Pthread library func-
tions and reports deadlocks by catching cycles in the run-time
resource-acquisition graph. Many real-world multi-threaded sys-
tems, such as MySQL [40], simply maintain a timer for each lock
acquisition function and report a deadlock once the lock-acquisition
times out. ConAir can work with any deadlock-detection mecha-
nism: the detection code that reports a deadlock is treated as a (poten-
tial) failure site. Our current prototype assumes the time-out based



deadlock detection. ConAir transforms every pthread mutex lock
function into pthread mutex timedlock, and identifies failure sites
accordingly as shown in Figure 5d. ConAir can handle customized
lock functions, as long as the developers specify the prototypes of
their lock, unlock, and timeout-lock functions.

ConAir does not require its failure-site identification to be
sound or complete. Inevitably, many sites identified above never
manifest as failures. Treating them as potential failure sites only
causes negligible run-time overhead, as we will see in Section 6.2,
benefiting from ConAir’s low-overhead design. The above analysis
can be easily customized to cover more types of failures or to focus
on a smaller set of severe failures.

3.1.2 Identifying failure sites in fix mode
Fix mode can be used when users or developers encounter a non-
deterministic failure with an unknown root cause. In this case, users
or developers inform ConAir of the failure location. For example,
when the bug shown in Figure 2b manifests, users or developers
will observe a segmentation fault at the statement tmp=∗ptr, which
ConAir treats as the failure site.

3.2 Reexecution point identification
As discussed in Section 2.2, the placement of reexecution points
and reexecution regions largely determines the system performance.
ConAir uses idempotent regions as its reexecution regions during
failure recovery. Each reexecution point is the starting point of an
idempotent region, which ends at a potential failure site. This design
makes ConAir lightweight and able to recover from many, although
not all, concurrency-bug failures.

3.2.1 Principle of identifying idempotent regions
Identifying idempotent code regions is not trivial. A code region
that is not idempotent in source code, such as x=x+1, could become
idempotent in bitcode, such as x1=x0+1, due to variable renaming
conducted by a compiler. A code region that is idempotent in
bitcode could later become not idempotent in binary code due
to physical-register allocation. Due to these challenges, there are
usually two approaches to identifying idempotent code regions
in the binary code. One is to rely on binary code analysis alone.
Unfortunately, this could be very complicated for x86 code. The
second approach, which is used by recent work [12], is to use a
combination of bitcode/binary-code analysis and bitcode/binary-
code transformation.

ConAir takes the second approach using the LLVM static analy-
sis and code generation framework [27]. As discussed in Section 2.2,
an idempotent region does not contain shared-variable writes, non-
idempotent local-variable writes, or I/O operations. Following this,
ConAir identifies an idempotent region as an LLVM bitcode re-
gion that contains none of the following idempotency-destroying
instructions: (1) writes to global or heap variables; (2) writes to local
variables that are not allocated in virtual registers4; (3) function-call
instructions. This code region is guaranteed to be idempotent at
bitcode level.

To guarantee the region is also idempotent in the binary code,
ConAir performs two transformations. First, ConAir uses the
−no−stack−slot−sharing flag for LLVM to generate the binary
code. This flag guarantees that different virtual registers, when not
allocated in physical registers, are allocated in different stack slots.
Under this configuration, the code regions identified above will
always conduct idempotent operations on memory states. The only
concern is that these regions may modify the value of a physical
register and cause the reexecution to read a different register value

4 In LLVM, a virtual register is a variable in static single assignment form
(SSA) [8]. It is statically assigned only once.

from the original execution. Therefore, ConAir saves the register
image at the beginning of the code region and restores the register
image right before a rollback. The register save and restore are
conducted by setjmp and longjmp. They are both very lightweight,
taking only a few nanoseconds.

Alternative methods to identify idempotent code regions Some
code regions that contain idempotent-destroying operations are still
idempotent in binary code. For example, writing a stack variable
v that is not allocated in virtual registers does not necessarily hurt
the idempotency of a code region R, unless this write is preceded
by a read of v that is not preceded by another write to v. As another
example, some function calls do not hurt the idempotency. With
more complicated analysis, we could identify more and longer
idempotent regions in the future.

An alternative implementation decision is to modify the register
allocator. A recent work [12] first identifies the boundaries of
idempotent regions in LLVM bitcode, it then modifies the compiler
back-end code generator to guarantee that idempotent bitcode is
translated to idempotent binary code [12]. For our work, we took the
setjmp/longjmp approach because it is easier to implement and is
ISA independent. A production use of ConAir could employ either
approach. The previous work [12] also splits the whole program into
idempotent code regions, covering every instruction by idempotent
regions. In contrast, our work only identifies idempotent regions that
end at potential failure sites. This allows us to achieve negligible
overhead (< 1%) in our experiment (Section 6). On the contrary,
previous work [12] could have more than 10% run-time overhead.

3.2.2 Algorithm of identifying idempotent regions
When a program does not contain any branch instruction, identifying
reexecution points is straightforward. For every failure site f, we
simply need to analyze statements one by one backwardly until
we find the first statement s that is an idempotency-destroying
instruction. The reexecution point is right after s.

Unfortunately, real programs always contain branch instructions
and there could be multiple execution paths leading to a failure site
f. Therefore, we have to identify an appropriate reexecution point
along every path leading to f.

ConAir conducts a backward depth-first search from f. This static
analysis starts with pushing the predecessors of f in the control-
flow graph (CFG) into a work-list stack, and keeps processing
the top statement in this stack as follows. (1) When the analysis
encounters an idempotency-destroying operation, ConAir identifies
a reexecution point right after this operation. ConAir then removes
this statement from its work list. (2) When encountering the entrance
of function containing f, ConAir identifies it as a reexecution point
and removes it from its work list. This decision means that ConAir
reexecution does not touch the caller of f. We will revisit this
decision and discuss inter-procedural recovery in Section 4. (3)
When encountering other statements, ConAir checks how many
predecessors of this statement have not been visited. If there is
none, ConAir removes this statement from the work list. Otherwise,
ConAir pushes an unvisited predecessor of this statement to the
top of its work list. ConAir stops its analysis when its work list is
empty. At that point, all reexecution points for f are identified. The
complexity of this analysis is linear to the static function size.

ConAir repeats the above algorithm for every failure site. Note
that the reexecution points of different failure sites do not conflict
with each other. That is, the reexecution region of a failure site f1
will never get shortened by the reexecution points of another failure
site f2. The reason is that a reexecution point is always right after an
idempotency-destroying operation or at the entrance of a function,
which is the same for all failure sites.



1

2

3

4

5

6

7

8 if(e){
9 }else{

10

11

12

13

14 assert fail(..);
15 }

(a) Original code

1 thread jmp buf c;
2 thread int RetryCnt=0;
3 ...
4 Reexecution:
5 setjmp(c);
6 ...
7 //reexecution region
8 if(e){
9 }else

10 Failure:
11 while(RetryCnt++<maxRetryNum){
12 longjmp(c,0);
13 }
14 assert fail(..);
15 }

(b) Transformed code

Figure 6. ConAir code transformation for assert(e)

3.3 Transformation at failure sites and reexecution points
After identifying failure sites and reexecution points, ConAir per-
forms the following code-transformations that enable the multi-
threaded software to recover from concurrency-bug failures.

At every reexecution point, ConAir inserts a setjmp (line 5
in Figure 6) to make sure our reexecution region is idempotent.
Sometimes, multiple failure sites may share a common reexecution
point. In these cases, ConAir makes sure to insert just one, instead
of multiple, setjmp at the common reexecution point.

At every failure site, ConAir inserts a longjmp to rollback the
execution to the reexecution point (line 12 in Figure 6). While
restoring the register image c, longjmp automatically changes the
program counter to the reexecution point where c was taken. This
naturally accomplishes the control-flow rollback. ConAir supports
multiple reexecutions through the loop on Line 11, because some
failures may require several rounds of reexecution to recover. The
loop-condition variable is a configurable threshold that prevents
endless recovery attempts. Its default value is one million.

ConAir uses a thread-local variable to save the register image
at every reexecution point (line 1 in Figure 6). At run time, this
variable always keeps the register image taken at the most recent
reexecution point in a thread. This guarantees that the program will
roll back to the right reexecution point.

Deadlock recovery can potentially lead to a livelock problem.
This occurs when multiple threads involved in the deadlock try to
rollback at exactly the same time. This issue can be solved by putting
a small random sleep at the failure site.

3.4 Discussion
Future work can extend ConAir by extending its failure-site iden-
tification. Some potential failure sites could be pruned, if we can
statically prove that failures can never occur there. For example,
analysis could know that NULL-pointer dereference may never oc-
cur at some places [6]. We can also use dynamic technique like
ConSeq [61] to prune well tested potential failure sites. We can
also enlarge the set of potential failure sites based on developers’
annotations or automatically inferred specifications. For example,
ConAir currently inserts an assertion before every fputs function
call to check whether the parameter of fputs is NULL or not.

Future work can also explore other designs of the reexecution
regions. For example, some regions that write shared variables
can be correctly reexecuted with more sophisticated rollback or
checkpoint techniques.

4. Optimizations and Extensions
This section discusses how we extend the basic design of ConAir to
recover from more concurrency bugs and optimize the basic design
to achieve better performance.

4.1 Extending reexecution regions for library functions
The basic design of ConAir reexecution regions is very stringent: it
cannot contain any function calls. In the following, we extend the
basic reexecution regions to include some library-function calls.

Why do we need to reexecute library functions? Some failures
cannot be recovered unless some library-function calls are reex-
ecuted. For example, if we do not allow a reexecution region to
call pthread mutex timedlock, ConAir can never recover a dead-
lock failure shown in Figure 5d. In fact, a reexecution region has to
include a call of pthread mutex lock to recover deadlock failures,
which we will discuss later.

Which library functions can be correctly reexecuted? Some li-
brary functions can be correctly reexecuted by executing compensa-
tion functions at the failure site. For example, if a code region
executes a malloc, we need to call a free at the failure site; if
a code region executes a pthread mutex lock, we need to call a
pthread mutex unlock at the failure site.

Some library functions cannot be easily reexecuted. For example,
output functions in general are difficult to reexecute without system
support. Reexecuting free or pthread mutex unlock could also
be dangerous. Imagine a code region that frees an object that
is allocated before this region starts or releases a lock that is
acquired before this region starts. It is almost impossible to correctly
reexecute this type of code regions.

Implementing library-function extension in ConAir Following
the above observations, we allow ConAir reexecution regions to
contain memory-allocation functions and lock functions. Other
functions, such as free, unlock, and output functions, are still
considered idempotency-destroying and cannot be included in any
reexecution region.

To support this extension, three changes are made. First, ConAir
instruments every call site of memory-allocation and lock functions
to record which region is allocated and which lock is acquired.
ConAir checks the return value of pthread mutex timedlock to
know whether a lock is acquired. Second, ConAir needs to know
which memory-regions/locks are acquired in the current reexecution
region at a failure site. To support this, ConAir maintains an integer
counter for each thread, which is increased by one at every reexecu-
tion point. At the return of every memory-allocation/lock function,
ConAir stores the starting address of the newly allocated region or
the address of the newly acquired lock, as well as the current counter
value of this thread, into a per-thread vector maintained by ConAir.
Before storing the new record, ConAir cleans the vector, if the cur-
rent counter value is different from what is stored in the vector.
Third, at each failure site, before the longjmp, ConAir inserts code
to iterate through the vector, identify every region/lock that is allo-
cated/acquired under the current counter value, and deallocate/free
it.

The above extension guarantees the recovery correctness. Note
that deallocating a memory region R or releasing a lock L at the
failure site in thread t1 does not affect the correctness of other
threads. Since a reexecution region cannot contain writes to shared
variables, other threads could not have obtained any pointer pointing
to R. Furthermore, no other thread could have acquired L before t1
releases it. Also note that reexecution regions do not contain any
free or pthread mutex unlock functions. Therefore, we do not need
to worry about an object/lock that is allocated/acquired and then
freed/released during one reexecution region.



Reexecution:

lock(&L);//blocked

(a) Cannot be recovered

Reexecution:
lock(&L0);
lock(&L); //blocked

(b) Could be recovered

Reexecution:
tmp=tmp+1;
assert(tmp);//violated

(c) Cannot be recovered

Reexecution:
tmp=global x;
assert(tmp);//violated

(d) Could be recovered

Figure 7. Some failure sites cannot be recovered by ConAir (The last line in each figure is a potential failure site)

4.2 Optimizations to remove unnecessary rollbacks
Some failures cannot be recovered by ConAir, such as those shown
in Figure 7a and Figure 7c. We identify failure sites that are statically
proven to be unrecoverable and remove any unnecessary rollback-
reexecution code inserted by the basic ConAir algorithm described
in Section 3.

Deadlock failure optimizations To recover from a deadlock fail-
ure, ConAir should at least release a lock originally held by the
thread at the failure site, as shown in Figure 7b. Otherwise, other
threads involved in this deadlock cannot possibly make progress
during the recovery attempt, and hence ConAir has no chance to
recover the deadlock. ConAir optimization follows this intuition.
Each deadlock failure site f could correspond to different reexecu-
tion regions along different execution paths. ConAir checks whether
there is a lock-acquisition operation inside at least one reexecution
region of f . If there is none, no lock will be released at f and there
is no chance for deadlock recovery. Therefore, ConAir removes
the failure-recovery code at f . The current prototype of ConAir
turns pthread mutex lock functions into pthread mutex timedlock
functions when it identifies potential deadlock sites, as discussed in
Section 3.1.1. Once ConAir identifies a failure site to be unrecover-
able, the corresponding pthread mutex timedlock is turned back to
pthread mutex lock.

Non-deadlock failure optimizations To recover from a non-
deadlock failure, the reexecution conducted by ConAir should
include at least one shared-variable read that can affect the evalua-
tion outcome at the failure site, as shown in Figure 7d. Otherwise,
the reexecution is guaranteed to fail again. Following this intuition,
ConAir checks every non-deadlock failure site f . ConAir first uses
intra-procedural static backward slicing to identify global/heap
memory-read instructions that can affect f through data dependence
and/or control dependence. ConAir then checks whether there is at
least one such read instruction that is inside a reexecution region
of f . If not, f is not recoverable and no failure-recovery code is
inserted for it.

Our intra-procedural backward-slicing analysis is implemented
in LLVM to analyze LLVM bitcode. Interestingly, our analysis is
much simpler than general backward-slicing algorithms.

A major source of complexity in general slicing analysis is
tracking data dependence through memory accesses, which requires
pointers-alias analysis, as shown by the dotted line in Figure 8a.

ConAir does not have this concern. Recall that write instruc-
tions in a ConAir reexecution region only write to virtual registers
(Section 3.2), such as the write to %0, %1, and %2 in Figure 8b.
Therefore, when ConAir backward slicing encounters a read instruc-
tion r that does not read from a virtual register, such as line 2 in
Figure 8b, ConAir simply stops tracking its data dependence. The
reason is that the instruction that provides value for r must write to
non-virtual-register locations (e.g., line 1 in Figure 8b) and do not
belong to ConAir idempotent regions. Slicing outside an idempotent
region, and hence a reexecution region, is useless for ConAir.

After removing all unrecoverable failure sites, ConAir also
removes reexecution points that do not correspond to any failure site
and finishes the optimization.

1  global_z = 1; 
 
 
 
2  stack_x = * global_p; 
 
 
 
3  assert ( stack_x ); 

Need alias analysis. 

1  store i32 1, i32* @global_z, align 4 
   
 
 
2  %0 = load i32** @global_p, align 4 

 

3  %1 = load i32* %0, align 4 
 
4  %2 = tail call i32 (...)* @assert(i32 %1) 

No need to know. 

(a) general slicing (b) ConAir slicing 

Figure 8. The difference between general slicing analysis and
the slicing in ConAir (the stack prefix denotes stack variables; the
global prefix denotes global variables; a solid arrow shows an easy-to-
get dependence; a dotted arrow shows a difficult-to-get dependence; the
thick line in (b) shows the reexecution-region boundary.)

4.3 Inter-procedural reexecution
The basic ConAir algorithm presented in Section 3 only attempts
intra-procedural recovery. That is, the reexecution point for a failure
site f is always in the function that contains f , referred to as foo. In
this section, we discuss pushing reexecution points into the callers
of f . We refer to this as inter-procedural recovery. Inter-procedural
recovery can help recover from more failures, but can also hurt
performance.

When is inter-procedural recovery correct? We should not at-
tempt an inter-procedural recovery, if doing so would generate re-
sults infeasible for the original program. Following the discussion
in Section 3.2, when there is no idempotency-destroying operation
on a path between f and the entrance of foo, it is safe to extend the
reexecution region into the caller of foo.

When can inter-procedural recovery help? Since a ConAir reex-
ecution region cannot contain any modification to shared variables,
parameters are the only ways for a caller to affect the execution out-
come at f . Therefore, inter-procedural reexecution can potentially
help the recovery of a non-deadlock failure, only when a parameter
of foo is on the backward slice of f .

When do we need inter-procedural recovery the most? It is
difficult to accurately predict when inter-procedural recovery will be
needed without knowing the hidden bugs. Intuitively, imagine a path
p between the entrance of foo and f . As discussed in Section 4.2,
reexecuting p cannot help recover a non-deadlock failure at f , if
p contains no shared-variable read that can affect the outcome of
f . Similarly, reexecuting p cannot help recover a deadlock failure
at f , if p contains no lock-acquisition functions. Therefore, we
hypothesize that an inter-procedural recovery is most needed when
such an unrecoverable path p exists.

Conditions of ConAir inter-procedural recovery Inter-procedural
recovery could help recover more failures. However, it significantly
slows down ConAir static analysis, which we will see in Section 6;
it will also identify more reexecution points with more setjmp
executed at run time, which incurs more overhead.

Based on these considerations, ConAir selects a failure site f for
inter-procedural recovery when f satisfies all the following three



conditions: (1) There is no idempotent-destroying operation on any
path between the entrance of foo and f . This way, once selected
for inter-procedural recovery, the recovery attempt of f is always
conducted interprocedurally, no matter which path is followed in
foo during the failure run. (2) At least one argument of foo is on the
backward slice of f , when f is a non-deadlock failure site. This way,
the inter-procedural reexecution can potentially help recover the
failure. This parameter is referred to as a critical parameter. (3) At
least one path between the entrance of foo and f is unrecoverable.

How to identify inter-procedural reexecution point? When a
failure site f is identified for inter-procedural recovery, ConAir
uses static analysis to find every function foo1 that calls foo. Inside
foo1, we use the analysis described in Section 3.2.2 to look for
reexecution points. This analysis starts from the instruction that
pushes the critical parameter onto the stack of foo, when f is a
non-deadlock site; it starts from the invocation of foo, when f is a
deadlock site.

We then identify reexecution points just as during intra-procedural
recovery (Section 3.2). Note that the setjmp and longjmp inserted
at reexecution points and failure sites handle the program-counter
register and the stack-frame registers. Therefore, no extra effort is
needed for inter-procedural rollback.

While analyzing the caller of foo, we could decide to try inter-
procedural recovery again. In our current prototype, we set a
threshold of how many levels of inter-procedural recovery we would
attempt for one initial failure site f . The default setting is 3. That
is, to recover f inside a function foo, ConAir could at most rollback
the execution to the callers’ callers’ caller of foo, referred to as foo3.
This threshold is configurable. It balances the recovery capability
and run-time performance.

Theoretically, there could be a path between the entrance of foo3
and f that does not contain any idempotent-destroying operations.
Since we decide not to go further into the caller of foo3, we could
choose to set the reexecution point at the entrance of foo3. However,
this scheme could prevent failure sites inside foo3 to attempt inter-
procedural recovery. Therefore, in our current prototype, ConAir
simply gives up the inter-procedural recovery attempt of f in that
case and puts the reexecution point back to the entrance of foo. Note
that, this case is extremely rare and has never occurred in any of the
applications evaluated by us.

Other issues Our inter-procedural recovery analysis needs to work
together with the intra-procedural recovery analysis discussed in
Section 3 and the optimization analysis discussed in Section 4.2.
ConAir first conducts intra-procedural analysis. This analysis could
identify the entrance of foo as a reexecution point for a failure site
f , referred to as REintra. ConAir then conducts inter-procedural
recovery analysis. Once f is identified for inter-procedural recovery,
ConAir safely removes the reexecution point REintra

5. Finally,
ConAir conducts its optimization analysis discussed in Section 4.2.
This optimization is only applied to failure sites that conduct
intra-procedural recovery. Failure sites that are selected for inter-
procedural recovery usually have long reexecution regions. It is
much harder to statically prove them to be unrecoverable.

5. Experimental Methodology
Our work aims to allow programs to recover from a significant
portion of real-world concurrency-bug failures with a wide variety
of root causes at low overhead on existing platforms. To empirically
evaluate whether ConAir has achieved this goal, our experiments
look at 10 real-world concurrency-bug failures in 10 open-source
applications that have been widely used in previous bug detection

5 This could cause some other failure sites in foo to conduct interprocedural
recovery too, which is fine.

App. App. Type LOC Failures Causes

FFT Scientific computing 1.2K w. output A/O Vio.#
HawkNL Network library 10K hang deadlock
HTTrack Web crawler 55K seg. fault O Vio.
MozillaXP XPCOM: cross platform 112K seg. fault O Vio.

component object model
MozillaJS JavaScript engine 120K hang deadlock
MySQL1 Database server 681K w. output A Vio.
MySQL2 Database server 693K assertion A Vio.
Transmission BitTorrent client 95K assertion O Vio.
SQLite Database engine 67K hang deadlock
ZSNES Game simulator 37K assertion O vio.

Table 2. Applications and Bugs (w. output: wrong output failures; A
Vio.: atomicity violations; O Vio.: order violations; #: There are both order
violations and atomicity violations in FFT.)

and avoidance research [23, 24, 49, 54, 60, 61]. They represent
a wide variety of failure symptoms and root causes, as shown in
Table 2. We will quantitatively evaluate whether ConAir can indeed
recover failures with different root causes; what is the run-time
overhead introduced by ConAir; how long it takes to recover a
failure under ConAir; and the static-analysis complexity of ConAir.

We apply ConAir to analyze and transform each application
twice, representing fix mode and survival mode respectively.

While applying ConAir in survival mode, ConAir needs no
knowledge of failures or bugs. It automatically identifies potential
failure sites as discussed in Section 3.1 and transforms software.

While applying ConAir in fix mode, ConAir assumes the knowl-
edge of failure sites provided by developers or users who want
to fix a particular failure they observed. This could be a specific
assert that is violated; a particular pthread mutex lock that blocks
the program; a particular memory-access instruction that causes a
segmentation fault; or an output function that generates incorrect
results. Note that ConAir needs no information about bug-triggering
inputs, bug root-causes, or bug-detection results.

To evaluate whether the software can survive the manifestation
of a bug, we insert sleeps into each program’s buggy code regions to
force the occurrence of the failure-inducing interleaving. Executed
under this setting and failure-inducing inputs, the software in our
benchmark set fails with almost 100% probability, if ConAir is not
applied. After ConAir is applied, we execute the software under the
same setting for 1000 times. We claim ConAir to have successfully
recovered the failure if the hardened software executes correctly
in all 1000 runs. To evaluate the run-time overhead, we execute
the original program and the transformed programs under the same
input (i.e., the bug-triggering input) for 20 times each, and calculate
the average overhead. No sleep is inserted and software never fails
during the run-time overhead measurement.

Among all types of failures, wrong-output failures cannot be
recovered unless the users or developers annotate the correctness
condition of an output. This condition is easily available in fix
mode, but is not necessarily available in survival mode. To better
understand the worst-case overhead of ConAir in the survival mode,
ConAir treats every output function as a potential failure site, even
though the correctness condition may be unavailable.

All the experiments are conducted on an 8-core Intel Xeon
machine running Linux version 2.6.18 and using the LLVM 2.8
compiler.

6. Experimental Results
As shown in Table 3, ConAir recovers all the evaluated bugs. ConAir
incurs no overhead in fix mode, and negligible overhead (< 1%)
in survival mode. In this section, we will explain the following
experimental results in detail: (1) how ConAir effectively fixes bugs
with known failure symptoms; (2) how ConAir transparently hardens



App. Failure Recovered? Overhead

fix survival fix survival

FFT X Xc 0% 0.0%
HawkNL X X 0% 0.0%
HTTrack X X 0% 0.0%
MozillaXP X X 0% 0.0%
MozillaJS X X 0% 0.0%
MYSQL1 X Xc 0% 0.1%
MYSQL2 X X 0% 0.0%
SQLite X X 0% 0.0%
Transmission X X 0% 0.2%
ZSNES X X 0% 0.0%

Table 3. Overall bug recover results (X: recovered; Xc: conditionally
recovered; recovering these wrong-output failures requires annotations.)

1 //Thread 1
2 fprintf(”Start %d”,Init);
3 tmp=End;
4 assert(tmp>0);
5 fprintf(”Stop %d, Total %d”, tmp, tmp−Init);

1 //Thread 2
2 //End is 0 until below
3

4 End=time(NULL);

Figure 9. An atomicity/order violation in FFT that causes a wrong-
output failure. If developers specify the output-correctness condition
(e.g., the assert above), ConAir can help recover the failure.

multi-threaded software to survive hidden bugs; (3) how ConAir
achieves negligible run-time overhead; (4) the fast failure recovery
under ConAir; (5) the static analysis time of ConAir.

6.1 Failure recovery
6.1.1 Fix-mode failure recovery
In fix mode, ConAir is aware of the failure sites and failure symp-
toms. It inserts rollback-recovery code accordingly.

Among the non-deadlock bugs that are evaluated, five of them
(FFT, HTTrack, MozillaXP, Transmission, and ZSNES) cause fail-
ures in a thread that reads a shared variable too early; FFT6 and
MySQL2 cause failures due to RAR atomicity violations; MySQL1
causes failures due to a WAW atomicity violation. ConAir can suc-
cessfully recover failures caused by all of them.

Some failure recoveries only roll back a few instructions. For
example, Figure 9 shows a bug in FFT. In this program, thread 1
could unexpectedly read End (line 3in Figure 9) before thread 2
updates it, causing either an order violation or an atomicity violation
and a wrong-output failure. ConAir inserts a setjmp right before the
assert, which helps FFT to recover this failure.

Two of these 10 bugs (Transmission and MozillaXP) require
inter-procedural reexecution to recover. For example, Figure 10 de-
picts the MozillaXP bug. In MozillaXP, thread 1 could unexpectedly
read mThd−>state in function GetState before the global pointer
mThd is initialized by thread 2. This could cause a segmentation-
fault failure. ConAir inserts a pointer sanity check right before line 9
in GetState; it also identifies a reexecution point inside function
Get and inserts setjmp there. Once ConAir sees an invalid pointer
at line 9 in thread 1, the program will automatically jump back to
before the invocation of GetState in Get. Eventually, thread 2 will
initialize mThd and the program will succeed.

Deadlock recovery is slightly different from the recovery of
non-deadlock bugs. Figure 11 shows a real-world deadlock bug in
HawkNL. As we can see, thread 1 and thread 2 could acquire nlock
and slock in reversed orders and lead to a deadlock. ConAir analyzes
both threads. When ConAir considers Lock(&slock) (line 8) in

6 FFT contains both order violations and atomicity violations.

1 //Thread 1
2 Get(){
3 ...
4 tmp=GetState(mThd);
5 }
6

7 GetState(THD ∗thd)
8 {
9 return(thd−>state &

10 THREAD DETACHED);
11 }

1 //Thread 2
2 //mThd is shared
3 //between two threads;
4 //it is 0 before
5 //initialized below.
6

7 InitThd(){
8

9 mThd =
10 CreateThd(..);
11 }

Figure 10. An order violation in Mozilla XPCOM.

1 //Thread 1
2 Close(){
3 ...
4 Lock(&nlock);
5

6 driver−>Close();
7

8 Lock(&slock);
9 ...

10 }

1 //Thread 2
2 Shutdown(){
3 ...
4 Lock(&slock);
5 if(nSockets!=NULL){
6 int i=0;
7 if(nSockets[i]){
8 Lock(&nlock);
9 ...

10 }
11 }
12 }

Figure 11. A deadlock in HawkNL.

thread 1 as a potential failure site, the reexecution region is very short
due to the idempotency-destroying operation, driver−>Close().
Since this region does not contain another lock acquisition function,
ConAir considers it as unrecoverable and does not attempt any
failure recovery in thread 1 (Section 4.2). When ConAir considers
Lock(&nlock) (line 8) in thread 2 as a potential failure site, its
reexecution region can go all the way back to before the invocation of
Lock(&slock) (line 4) in thread 2. Since this region contains another
lock-acquisition function, ConAir considers Lock(&nlock) in thread
2 as a recoverable failure site. ConAir turns it into a lock with
timeout and inserts setjmp to the beginning of Shutdown function.
At run time, once thread 2 times out at its attempt to acquire nlock,
thread 2 will release slock and reexecute a large chunk of Shutdown.
This effectively resolves the deadlock problem in HawkNL.

Summary ConAir can effectively fix concurrency bugs with a
variety of root causes once the failure sites and symptoms are known.

6.1.2 Survival mode
In survival mode, ConAir is not aware of any bug. It automatically
and systematically identifies potential failure sites and transforms
the program accordingly.

As shown in Table 4, ConAir has identified and hardened 7 –
19185 static failure sites in each benchmark program. Naturally,
ConAir identifies the fewest failure sites in the smallest programs
(FFT and HawkNL) and the most failure sites in the largest pro-
grams (MySQL1 and MySQL2). In general, potential segmentation-
fault sites dominate all types of potential failure sites, because
ConAir identifies every heap/global pointer dereference as a poten-
tial segmentation-fault site. Potential deadlock sites are the fewest
among all four types of failure sites, because only a lock opera-
tion that is enclosed by another lock operation with no write to
shared variables in between is identified as a potential deadlock
site that is recoverable by ConAir. HTTrack developers left many
assertions in the program, leading to a large number of potential
assertion-violation sites.



App. Assertion Wrong Seg. Dead- Total
Violation Output Fault lock

FFT 5 34 14 0 53
HawkNL 0 0 5 2 7
HTTrack 657 504 3146 0 4307
MozillaXP 1 117 6791 0 6909
MozillaJS 0 5 134 6 146
MYSQL1 119 3256 15791 19 19185
MYSQL2 518 2853 15498 21 18890
SQLite 0 25 47 1 73
Transmission 430 190 2151 0 2771
ZSNES 1 50 331 0 382

Table 4. Static failure sites hardened by ConAir

App. Survival Mode Fix Mode

Static Dynamic Static Dynamic

FFT 56 24 5 5
HawkNL 7 7 1 1
HTTrack 3570 12995 3 4
MozillaXP 3647 2170 1 23
MozillaJS 144 6 1 1
MYSQL1 12494 215218 1 20
MYSQL2 13031 82394 1 30
SQLite 142 7 1 1
Transmission 2568 4425 3 8
ZSNES 321 32 1 2

Table 5. The number of reexecution points inserted by ConAir

These automatically identified potential failure sites include the
failure sites of all the 10 bugs that are evaluated. Therefore, ConAir
can help software successfully recover from these hidden bugs.

Note that survival-mode ConAir identifies every output func-
tions, including fprintf, printf, application-specific functions, such
as my printf in MySQL and js printf in Mozilla, and others as a
potential site of wrong output. The current prototype of ConAir
needs developers’ specification to recover a wrong-output failure, as
shown in Figure 9. We believe this effort is worthwhile for hardening
critical outputs. Future work can also use likely-invariant inference
tools [15] to infer such specifications for an output function, and
automate the wrong-output failure recovery process.

Summary The above evaluation shows that ConAir is effective to
help software survive failures caused by hidden bugs.

6.2 Runtime overhead
The run-time overhead of ConAir comes from four sources: (1)
code inserted at every reexecution point; (2) extra condition-
checking at the failure sites, such as sanity checking for point-
ers at potential segmentation-fault sites; (3) code inserted at
call site of memory-allocation and lock functions. (4) using the
−no−stack−slot−sharing LLVM linking flag. Among these four,
the first one is the dominant source.

To understand the runtime overhead of ConAir, we have counted
the number of reexecution points in the hardened programs.

As shown in Table 5, ConAir introduces 6 – 215218 dynamic
reexecution points in survival mode. Considering that each reexecu-
tion point only takes a few nanoseconds to execute (a setjmp and a
local counter increment), the low overhead of survival-mode ConAir
is understandable. Naturally, the fix-mode ConAir introduces only
a few reexecution points, as shown in Table 5. Its overhead is not
perceivable.

There are mainly two reasons that ConAir only requires a
relatively small numbers of reexecution points. First, the reexecution

App. Non-Deadlock Deadlock
Static Dynamic Static Dynamic

FFT 2.0% 5.0% N/A N/A
HawkNL 50% 50% 33% 83%
HTTrack 42% 5.4% N/A N/A
MozillaXP 2.4% 1.7% N/A N/A
MozillaJS 0.0% 0.0% 50% 50%
MYSQL1 1.1% 8.2% 88% 99%
MYSQL2 0.46% 14.6% 91% 100%
SQLite 3.4% 0.0% 30% 71%
Transmission 4.5% 1.76% N/A N/A
ZSNES 6.8% 36.4% N/A N/A

Table 6. The percentage of reexecution points that are optimized
(N/A: the non-optimized version has 0 reexecution point).

Application ConAir Recovery Restart

Time (µs) # Retries Time (µs)

FFT 907 97 3189072
HawkNL 59 1 943
HTTrack 4237 474 10776
MozillaXP 17388 8432 207041
MozillaJS 44 1 472
MYSQL1 6014 575 26308
MYSQL2 8 1 836177
SQLite 86 1 1443
Transmission 6476 761 553109
ZSNES 1022 123 8643

Table 7. Failure recovery time (The experiments are conducted with
small amount of noises inserted to help trigger the concurrency-bug failures).

points are identified according to potential failure sites. Different
from previous work [12], ConAir does not aim to find a reexecution
point for every instruction in the program. Instead, it targets on
common failures of concurrency bugs. Second, ConAir optimization
discussed in Section 4.2 has helped to remove failure sites that are
not recoverable under ConAir and corresponding reexecution points.

To quantitatively demonstrates the optimization effect, we have
tried to harden each program by survival-mode ConAir with and
without ConAir optimization. As we can see in Table 6, the optimiza-
tion effect is significant for deadlock reexecution points: 30–91% of
static reexecution points can be optimized away. Many lock opera-
tions are not enclosed by another lock operation in its reexecution
region, and hence are considered as not recoverable. In comparison,
the optimization effect for non-deadlock reexecution points is not as
significant. Fewer than 10% of static or dynamic reexecution points
are optimized away for most benchmarks. The reason is that the
optimization cannot eliminate any segmentation-fault reexecution
points. In the current prototype of ConAir, the potential site of a seg-
mentation fault is the dereference of a global/heap pointer variable.
Since the reexecution regions of this type of failure sites always
contain a read of global/heap variable (i.e., the pointer) that can
affect the failure outcome, ConAir considers them un-optimizable.
HTTrack has a large number of reexecution points that are not re-
lated to segmentation faults. Therefore, a significant number of its
reexecution points are optimized away.

Summary Benefiting from its single-threaded idempotent reexe-
cution design, its failure-oriented idempotent region identification,
and its optimization analysis, ConAir can effectively improve the
reliability of production-run software almost for free.



6.3 Recovery time
Recovery time affects the availability of production-run software.
We quantitatively measure the failure-recovery time under ConAir,
and compare it with the time of restarting the whole program.

Note that software restart almost always changes the program
semantics perceived by users, unless it can log all the inputs
and external signals, and sandbox I/O operations. In addition, the
recovery time of software restart becomes worse with the workload
getting larger. Instead, the recovery time of ConAir is largely
oblivious of the workload. Therefore, the advantage of ConAir
recovery in practice would be much more significant than the
quantitative results presented below.

As shown in Table 7, the failure recovery in ConAir ranges
between 8 microseconds and 17 milliseconds. In contrast, program
restart could take as long as several seconds when the failure occurs
at the end of a scientific computation (FFT). The recovery-time
speedup of ConAir ranges from 8 times to over 100,000 times.

The ConAir recovery speed is mainly determined by the root
cause of the failure. Failures caused by RAR atomicity violations
(Figure 2c) are always fast to recover. The failing thread does not
need to wait for any other thread. Once it reexecutes the read-after-
read, the atomicity violation is immediately eliminated and the
failure immediately recovers. That is why MySQL2 takes only 8
microseconds to recover. Deadlock bugs (HawkNL, SQLite and
MozillaJS) also require relatively short recovery time. After one
thread t1 involved in the deadlock releases a lock at the failure
site, another thread t2 can almost immediately jumps out of the
deadlock situation. The recovery time for t1 will be determined by
the critical region length of t2. Failures caused by order violations
usually require a relatively long time to recover. Take the MozillaXP
bug shown in Figure 10 as an example. At run time, thread 1 reads
mThd too early and has to rollback due to an invalid value in mThd.
Rolling back thread 1 once may not recover the failure, because
thread 1 has to wait for thread 2’s progress. In our experiment, this
rollback is conducted more than 8000 times until thread 2 initializes
mThd. This is the main reason of the relatively long recovery time
of HTTrack, MozillaXP, Transmission, and ZSNES.

Summary Our evaluation shows that ConAir supports fast failure
recovery. It can help software survive failures with little impact to
latency and availability.

6.4 Static analysis time
The static analysis and code transformation time of ConAir ranges
from less than a second (FFT) to around 4 hours (MySQL). The
majority of the time is spent in attempting inter-procedural failure
recovery. In fact, the basic intra-procedural static analysis discussed
in Section 3 and the optimization analysis discussed in Section 4.2
together take only 50 seconds for MySQL and fewer than 10 seconds
for other benchmarks.

Summary The static analysis of ConAir is fast enough to process
large real-world multi-threaded software. If the time budget is tight,
ConAir users can disable the inter-procedural recovery analysis.

6.5 Limitations of ConAir
ConAir does not aim to recover all concurrency-bug failures, which
inevitably requires much higher run-time overhead and/or compli-
cated platform support. Specifically, ConAir cannot recover failures
that require multi-threaded reexecution or very long reexecution
regions, as discussed in Section 2.1. Fortunately, as also discussed
in Section 2.1, many real-world concurrency bugs do not require
multi-threaded reexecution or long reexecution to recover, and hence
can benefit from ConAir. Finally, ConAir cannot recover software
from a wrong-output failure, if developers do not provide output-
correctness conditions.

7. Related Work
Many closely related works have been discussed in the earlier
sections. This section presents other related works.
Concurrency bug detection Many techniques have been proposed
to detect data races [14, 18, 47, 59], atomicity violations [5, 17,
33, 34], order violations [19, 36, 49, 57, 60], and others. Bug-
detection tools help developers discover and understand the defects
in software. ConAir has a different goal from bug-detection tools.
It aims to recover concurrency-bug failures at run time without
understanding the bug root causes.
Software checkpoint and replay Checkpoint and replay are useful
techniques for failure diagnosis and recovery. Many techniques have
been proposed to checkpoint and replay multi-threaded software
deterministically or non-deterministically [1, 22, 26, 28]. To achieve
good performance, these techniques often require sophisticated
operating-system support or hardware support. ConAir only rolls
back an idempotent region in one thread and does not require these
sophisticated techniques.
Deterministic execution Deterministic systems [2, 3, 7, 32, 41]
force a multi-threaded program to execute a deterministic interleav-
ing under a given input. This promising approach still faces chal-
lenges, such as overhead, integration with system non-determinism,
language design, etc. In general, these tools address different prob-
lems from ConAir. Even inside a deterministic run time, concurrency
bugs can still occur and require recovery.
Rollback recovery As discussed in Section 1, several rollback-
recovery systems have been built before, such as Rx [44], ASSURE
[50], and Frost [53]. They all change operating systems to support
whole program checkpoint and rollback. Rx changes the program
environment during reexecution to handle deterministic bugs. AS-
SURE rolls back a failed software to an existing error-handling
path. It is designed to mitigate the impact of deterministic bugs, and
cannot help software generate correct results after the manifestation
of a non-deterministic concurrency bug. Frost [53] proposes a novel
solution to survive data races. With OS support, it executes multiple
replicas of the program with complementary thread schedules at the
same time. Periodically, it compares the states of different replicas
and tries to survive state divergence caused by data races. In general,
these systems all require checkpointing the whole program states
and rolling back all threads during a failure. Consequently, they all
require sophisticated changes to operating systems.

Microreboot [4] is a recovery technique that reboots only applica-
tion components, instead of the whole program, when failures occur.
To benefit from microreboot, the programmers have to manually sep-
arate their systems into components (groups of objects) that can be
individually restarted, such as Enterprise Java Beans components in
J2EE applications. ConAir shares a common high-level philosophy
with microreboot of not rolling back the whole program. However,
the similarity ends there. ConAir focuses on concurrency-bug failure
recovery. It works on any C/C++ multi-threaded software without
manual changes. It automatically identifies reexecution points and
conducts automated code transformation.

Apart from rollback recovery, a recent work studies the phe-
nomenon that some software is able to automatically recover from
state corruption, because they overwrite the corrupted states with
new input data. This type of software is called self-stabilizing pro-
grams [13]. To some extent, ConAir can transform a multi-threaded
program to become self-stabilizing.
Idempotency While the idea of leveraging idempotency for recov-
ery is not new [9–12, 16, 21, 25, 38], our work is the first to apply
it towards the problem of recovery from concurrency bugs. Addi-
tionally, most previous work on idempotency has assumed hardware
support for recovery with a focus on hardware exceptions [9, 21, 38],
hardware faults [11, 16], and hardware mis-speculation [25]. Our



technique requires no hardware support. While the general paradigm
of idempotent processing [12], which allows programs to be exe-
cuted entirely as sequences of idempotent regions, does not strictly
require hardware support to enable various features, the authors’
technique does not work for general multi-threaded programs. This
technique allows an idempotent region to store to shared variables.
Such a region cannot be considered idempotent in the presence of
data races and hence their algorithm cannot be used. In addition, in-
stead of splitting the entire program into idempotent regions, ConAir
only identifies idempotent regions that end at potential concurrency-
bug failure sites. This focused approach allows ConAir to achieve
negligible overhead (<1%), while previous work could incur more
than 10% overhead [12]. We furthermore do not limit ourselves to
intra-procedural analysis and allow our static analysis to be applied
inter-procedurally to maximize its effectiveness.

8. Conclusions
This paper presents ConAir, a static analysis and code transforma-
tion tool that helps fix and survive concurrency-bug failures through
single-threaded recovery and idempotent processing. The evaluation
using 10 real-world concurrency bugs shows that ConAir success-
fully helps software quickly recover from failures that cover a variety
of symptoms and root causes. ConAir works well even when it has
no knowledge about a bug.

ConAir is not designed to recover all failures, but is effective
for a large number of common concurrency-bug failures. It only
introduces negligible run-time overhead, less than 1% in our ex-
periments. This good performance is achieved without any change
to hardware or operating systems and is suitable for production-
run deployment. ConAir’s effectiveness is a result of a seemingly
serendipitous property: short recovery regions are naturally idem-
potent. In future work, we hope to investigate whether automatic or
programmer-aided transformations can help increase its coverage.

ConAir provides a novel use of existing assertions and error
checking in programs. With ConAir, assertions and error-checking
code no longer just passively observe system failures and errors.
Instead, they actively help ConAir to recover software from failures
and correct software internal errors. ConAir’s creative use of asser-
tions opens up the possibility of sanity checks in multi-threaded
programs being useful in deployment and as a recovery tool beyond
just a debugging tool. For the future work, we would like to investi-
gate how well this works in the field on widely deployed and used
code-bases. Also, we would like to understand developer issues in
using such a paradigm.

ConAir introduces a perspective that many points in the design
space of rollback/recovery are meaningful, with reexecution regions
spanning from tens of instructions to the whole program. Future
work can extend ConAir to explore other design points in this large
design space.
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