
ConMem: Detecting Severe Concurrency Bugs
through an Effect-Oriented Approach

Wei Zhang Chong Sun Shan Lu
Computer Sciences Department, University of Wisconsin– Madison

{wzh,chong,shanlu}@cs.wisc.edu

Abstract
Multicore technology is making concurrent programs increasingly
pervasive. Unfortunately, it is difficult to deliver reliable concurrent
programs, because of the huge and non-deterministic interleaving
space. In reality, without the resources to thoroughly check the in-
terleaving space, critical concurrency bugs can slip into production
runs and cause failures in the field. Approaches to making the best
use of the limited resources and exposing severe concurrency bugs
before software release would be desirable.

Unlike previous work that focuses on bugs caused by specific
interleavings (e.g., races and atomicity-violations), this paper tar-
gets concurrency bugs that result in one type of severe effects: pro-
gram crashes. Our study of the error-propagation process of real-
world concurrency bugs reveals a common pattern (50% in our
non-deadlock concurrency bug set) that is highly correlated with
program crashes. We call this pattern concurrency-memory bugs:
buggy interleavings directly cause memory bugs (NULL-pointer-
dereference, dangling-pointer, buffer-overflow, uninitialized-read)
on shared memory objects.

Guided by this study, we built ConMem to monitor program ex-
ecution, analyze memory accesses and synchronizations, and pred-
icatively detect these common and severe concurrency-memory
bugs. We also built a validator ConMem-v to automatically prune
false positives by enforcing potential bug-triggering interleavings.

We evaluated ConMem using 7 open-source programs with 9
real-world severe concurrency bugs. ConMem detects more tested
bugs (8 out of 9 bugs) than a lock-set-based race detector and an
unserializable-interleaving detector that detect 4 and 5 bugs respec-
tively, with a false positive rate about one tenth of the compared
tools. ConMem-v further prunes out all the false positives. Con-
Mem has reasonable overhead suitable for development usage.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing Tools

General Terms Languages, Reliability

Keywords Software testing, concurrency bugs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

1. Introduction
1.1 Motivation
Multicore technology is making concurrent programs increasingly
pervasive. Unfortunately, concurrent programs are prone to bugs.
To exacerbate the problem, concurrency bugs are particularly diffi-
cult to detect and diagnose due to their unique non-determinism.
Concurrency bugs can cause severe software failures and real-
world disasters, such as the Northeastern Blackout of 2003 [41].
As concurrent programs grow increasingly popular, developing ef-
fective approaches to detecting concurrency bugs is vital.

A fundamental challenge in concurrency bug detection is the
enormous size of concurrent programs’ interleaving space (expo-
nential to the execution length for each input). Thoroughly check-
ing this large space is crucial because concurrency bugs only man-
ifest under certain interleavings. Unfortunately, in reality, software
development resources can only afford to check a small part of
this large space. Determining which part of the interleaving space
should be checked is a critical and open problem.

To address the above challenge, previous concurrency bug de-
tection and testing works [14, 31, 40, 50] intelligently focus on
certain interleaving patterns that are prone to concurrency bugs.
Widely used patterns include data races (un-synchronized conflict-
ing accesses to shared variables) and atomicity violations (an inter-
leaving that makes certain code regions unserializable).

Although great progress has been made, previous work still
leaves some key issues unsolved.

Firstly, large number of false positives could keep programmers
away from bug reports. Previous research [4, 29] observes that only
approximately 2–10% of real data races are harmful; a similar trend
is also seen among unserializable interleavings [34].

Secondly, not all bugs present equally harmful end effects, while
they are not differentiated by many previous work. Table 1 illus-
trates this trend by breaking down the relationship between faults
(i.e., buggy interleaving patterns) and failures in 70 real concur-
rency bugs that are reported and fixed in open-source software (Sec-
tion 3 will explain how we get this data).

Crash Hang Minor Func. Issues
Atomicity Violation 26 3 19
Order Flip 11 3 6
Other 0 1 1

Table 1: Types of failures vs. types of faults (Note: Since this
only includes fixed bugs, the real percentages of minor failures
for each row should be even larger.)

Figure 1 visualizes the limitations of previous works (and our
opportunities) by projecting a concurrent program’s interleavings
into a two-dimension space. The x-axis and y-axis represent differ-

ent effects and different patterns of interleavings (i.e., failures and
faults for buggy interleavings), respectively. Note that, this is only a
conceptual projection. The different categories along the y-axis can
actually overlap; some horizontal stripes may have larger portions
of benign effects than others.

Minor
IssuesBenign Hangs Crashes Others

Atomicity Bug Detectors

Race Detector
��

Causes

Effects

This paper

Atomicity

Others

Order Flips
Data Races

Violations

Figure 1: A conceptual two-dimension interleaving space

Previous concurrency bug detection work each takes a horizon-
tal stripe of the above 2-D interleaving space. These horizontal ap-
proaches inevitably suffer from the following limitations.

Firstly, lack of good coverage for certain type of failures. De-
velopers naturally want to know about all (or most) interleavings
that can cause certain negative effects, such as software crashes.
Unfortunately, interleavings that cause certain effects span verti-
cally in the space and are difficult to adequately capture through a
horizontal approach. This difficulty is reflected in every column in
Table 1: no single interleaving pattern can monopolize one type of
failures.

Secondly, an inevitably large number of false positives. This is
clearly shown by the horizontal stripes in Figure 1 and is observed
in the real world [4, 29, 34].

Thirdly, a lack of severity differentiation. Severity is a qualita-
tive metric for software failures. In practice [1, 3], bugs that lead to
“crashes and loss of data” are considered to have high severity, and
bugs that only lead to “minor loss of function or cosmetic problems”
are considered minor or trivial. This lack of severity differentiation
can be seen in each row from Table 1.

Benign
Minor Issues

Hangs
Crashes

Others

correct intermediate states
intermediate errors

Propagation

pattern
interleaving

Certain
Causes Effects

Figure 2: The cause–effect chain

We can deepen our understanding of the false positive and sever-
ity issues by looking at the cause–effect chains in concurrent pro-
grams. As shown in Figure 2, interleaving patterns like data races
and atomicity violations are only the start of potential error propa-
gation chains. Some interleaving patterns do not propagate to any
incorrect states (e.g., not every piece of code is intended to be
atomic). For those that do cause wrong states, their intermediate
errors might be masked during further propagation (e.g., due to re-
dundant paths [29]), or end up as a minor issue hardly visible to
users, in many of which cases the data races or unserializable in-
terleavings are intentionally left there by developers for better per-
formance (e.g., conflicting accesses to performance counter [50]).
A pair of concrete examples are shown in Figure 3 and Figure 4.
These two real-world bugs start with similar bug-triggering inter-
leavings, both involving data races and unserializable interleavings.
However, one causes a server crash, while the other has an almost
invisible effect at the end.

The false positive issue has already caught the attention of many
researchers. Various innovative approaches, such as training [23],
automated testing [34, 42] and heuristics-based ranking, have been

S1: if (thd−>proc_info) S3: thd−>proc_info = NULL;

Thread 1 Thread 2

S2: printf ("%s\n", thd−>proc_info);

Figure 3: A severe real-world concurrency bug from MySQL
database server. (MySQL execution usually follows the dotted
line, but it crashes when its interleaving follows the solid line.)

S1: tmp = gOffset; S3: tmp = gOffset;

Thread 1 Thread 2

S2: gOffset = tmp + 1; S4: gOffset = tmp + 1;

Figure 4: A non-critical concurrency bug that existed in Mozilla
for years without any complaint. (gOffset holds brows-
ing statistics. Throughout Mozilla, it is read only once in a
statistics-printing function.)

proposed to mitigate this problem. However, without changing
the underlying horizontal mechanism, these proposals still require
significant manual efforts in specification writing and test-oracle
design, as well as large amount of computational resources in many
rounds of testing or training.

The severity issue has not received the attention it deserves in
concurrency bug detection research. Severity guidance is impor-
tant for concurrent programs due to several reasons: (1) In general,
developers use severity to prioritize their diagnosis and fixing ef-
forts [1, 3]. This is also observed by a recent study of Linux ker-
nel developers’ reactions to static bug detection reports [16]; (2)
The huge interleaving space makes the prioritization process ex-
tremely important; (3) The unique non-determinism makes minor-
impact concurrency bugs more trivial than their sequential coun-
terparts; and (4) Fixing concurrency bugs often results in perfor-
mance penalties, which make developers more reluctant to fix in-
consequential concurrency bugs. In reality, programmers are even
willing to introduce new non-severe concurrency bugs in order to
fix severe concurrency bugs [26].

In summary, this paper plans to explore a bug detection ap-
proach that focuses on certain vertical stripes of the interleaving
space — specifically, the crash stripe that spans across all kinds of
(horizontal) interleaving pattern categories. This vertical approach
will complement existing bug detection work and provide better
guidance to expose severe concurrency bugs.

1.2 Contributions
This paper proposes a concurrency bug detection tool, ConMem,
which is guided not by certain interleaving patterns, but by certain
general and severe bug effects, program crashes. As a dynamic
monitoring tool, ConMem accurately and predicatively detects
severe concurrency bugs that can lead to program crashes, no
matter which interleaving pattern (race, atomicity violation,
order violation, etc.) is the cause.

In order to capture the crash stripe in the interleaving space,
we need to look backward along the cause–effect chain and find a
pattern that can predict the crash effect. Fortunately, we find one.

Our characteristics study (Section 3) of the cause-effect chains
of 70 real-world concurrency bugs reveals an error-propagation
pattern that is both common (including almost half of the examined
bugs) and highly correlated with software crashes (> 85% observed
conditional probability on both directions). This pattern occurs

when interleavings cause an incorrect order among shared memory
operations and directly turn to memory errors, including NULL-
shared-pointer dereference, dangling pointers to shared memory,
un-initialized shared-memory read, and shared-buffer overflow. We
refer to this pattern as concurrency-memory errors.

One Run of
a Concurrent Program

memory−error−component
identification

synchronization analysis

controlled
interleaving

perturbation

(try to exercise ‘I’
and validate ‘B’)

(optional)
Off−line Validation

Bugs (B)
+

interleavings (I)
Triggering

(online/offline)
Report of Severe BugsRun−time Detection

a test
input

Figure 5: The flow and components of ConMem

Based on the above observation, ConMem (Figure 5) is de-
signed to predicatively catch concurrency-memory errors and to
report fatal interleavings before they occur. Under each test in-
put, ConMem monitors one run of the test concurrent program. It
uses run-time information to first identify ingredients of potential
concurrency-memory errors (e.g., a NULL-assignment and a deref-
erence of a shared pointer from different threads are ingredients of
a concurrency-NULL-dereference bug). It then analyzes synchro-
nizations around these suspect ingredients to decide whether fatal
interleavings exist to trigger the concurrency-memory error.

Furthermore, a noise-injection tool ConMem-v is built to auto-
matically validate whether the fatal interleavings reported by Con-
Mem can truly occur. Through ConMem-v, developers can easily
validate ConMem report and reliably repeat true bugs.

Overall, this paper has made the following contributions.
• The first characteristic study on the cause-effect chains of real-

world concurrency bugs. Our study is based on 70 fixed, real-
world concurrency bugs collected by a previous study [22]
from four widely-used C/C++ applications (Apache, Mozilla,
MySQL, and OpenOffice). The study reveals several interest-
ing findings, as follows: (1) Concurrency bugs that can cause
program crashes are common among fixed bugs, constituting
approximately 50% of non-deadlock bugs in the study; (2)
Interleaving patterns have little correlation with bug sever-
ity; (3) Most (about 85%) examined crash concurrency bugs
share one error propagation pattern: the buggy interleavings di-
rectly cause memory bugs on shared memory objects; and (4)
Above concurrency-memory errors can be further classified into
four types: NULL-shared-pointer dereference, shared-buffer-
overflow, uninitialized read to shared variables, and dangling
pointers to shared memory.

• A new perspective to check the huge interleaving space. Tradi-
tional bug detectors focus on the cause of concurrency bugs and
work horizontally in the interleaving space shown in Figure 1.
ConMem complements them by focusing on certain effects and
working vertically. Specifically, traditional tools identify all in-
stances of certain interleaving patterns and rely on testing, train-
ing, or manual inspection to determine which can truly cause
(severe) failures. ConMem benefits from its effect-oriented ver-
tical approach and effectively prioritizes its bug detection effort
towards severe software bugs, instead of benign or trivial inter-
leaving problems.

• A bridge between the well-studied memory bug problem and
the challenging concurrency bug issue. Memory bug detection
techniques are already mature for sequential programs [8, 17,
30]. However, they are not as effective in concurrent programs
for several reasons. First of all, dynamic memory bug detectors

are sensitive to interleaving. They can only catch bugs when
they occur, unable to predict what might happen under future
interleavings. Furthermore, even for those bugs that do occur
during the monitored run, memory bug detectors cannot iden-
tify the root causes (i.e., buggy interleaving) and cannot help de-
velopers fully understand and fix the bug. Static analysis is not
sensitive to interleaving. However, even with recent inspiring
progress [7], its scalability and effectiveness in concurrent pro-
grams are still limited by the fundamental pointer alias and con-
currency analysis problems. ConMem combines classic mem-
ory bug detection techniques with predictive interleaving anal-
ysis and interleaving testing, thus solving the above problems
(more discussion is in Section 8).

• A tool, ConMem, that effectively detects severe concurrency
bugs and validates the results through controlled testing. By de-
sign, ConMem has several advantages: (1) predictive bug de-
tection, and thus, insensitive to interleaving; (2) no training re-
quirement; (3) easy-to-validate bug detection results (i.e., mem-
ory errors), with no need for manually written oracles to judge
execution correctness; (4) high accuracy and coverage on se-
vere concurrency bugs; and (5) simplified diagnosis process
supported by ConMem-v. In fact, the co-design of ConMem
and ConMem-v also helped to simplify some detection algo-
rithms in ConMem without introducing more false positives to
developers.
ConMem is implemented using binary instrumentation. It is
evaluated on 7 open-source programs with 9 severe, real-world
concurrency bugs that can cause programs to crash. These pro-
grams include three server applications (Apache HTTP server,
MySQL database server, and Cherokee HTTP server), three
client/utility applications (Mozilla, Transmission, and PBZIP2),
and one scientific application from SPLASH2 [47].
Our results show that ConMem can effectively detect 8 out
of 9 tested severe concurrency bugs, better than a race-based
detector (4 out of 9) and an atomicity-violation based detec-
tor (5 out of 9) in comparison. Furthermore, ConMem detec-
tor’s false positive rate is about one tenth of the race-based and
atomicity-violation based detectors in comparison. ConMem-v
further prunes all false positives without introducing false neg-
atives. ConMem detection’s run-time overhead is comparable
to previous software bug detection tools and is suitable for in-
house bug detection. Each ConMem detector introduces 2–16
times slow down for client software and SPLASH2 benchmark,
and 3–29% overhead for server applications.
In the following, background and our cause-effect characteris-

tics study are presented in Section 2 and 3. Section 4 discusses Con-
Mem bug detection, followed by ConMem validator in Section 5.
Section 6 and Section 7 present evaluation methodology and exper-
imental results. Finally, related works are presented in Section 8.

2. Background
Memory bugs are very common and also severe [44, 51]. Many
of them can cause program crashes, data loss and even security
problems. This section provides a brief review of memory bugs.

2.1 Typical Memory Bugs
NULL pointer dereference happens when the program derefer-
ences a NULL-valued pointer. It causes the program to immedi-
ately crash. Much work has been done on static detection of NULL-
pointer dereference. However, their accuracy and scalability is lim-
ited by pointer alias problems.
Un-initialized read occurs when a valid memory location is read
before well initialized. It could cause wrong output or crash. Dy-
namically detecting un-initialized reads is straightforward. In prac-

tice, sophisticated memory detectors, like Valgrind [30], also con-
sider the context of the un-initialized read, and only report bugs
when the un-initialized value is used in critical scenarios.
Accessing invalid memory locations includes dangling pointer
bugs (accessing memory locations that are already freed), buffer
overflow bugs (accessing memory locations that are beyond the
buffer-boundary), and stack smashing (overwriting critical data
stored on stack). These bugs can cause not only wrong outputs,
but also crashes and security vulnerabilities.
Other memory bugs include double-free bugs (a memory loca-
tion is freed twice), memory leak bugs, and complicated bugs, such
as accessing legitimate but wrong memory locations. Various algo-
rithms have been proposed to detect these bugs [18, 38].

2.2 Memory Bugs in Concurrent Programs
Memory bugs in concurrent programs can be classified into two
types. The first type only involves one thread and can be determin-
istically triggered by special inputs. In terms of dynamic detection,
testing and diagnosis, this type of bugs is of no difference with
those in sequential programs.

The second type such as the one shown in Figure 3 is more
complicated. They involve more than one thread and require not
only special inputs but also special interleavings to trigger. These
bugs are actually side-effects of more fundamental concurrency
bugs. As discussed in Section 1, these bugs cannot be addressed
by existing dynamic memory bug detectors because their existence
under future interleavings cannot be predicted by existing dynamic
detectors. Even when they do occur under the current interleaving,
their root causes still cannot be correctly identified.

3. Cause-Effect Characteristics
Before designing the concurrency bug detection tools, we first
study the error propagation process of 70 real-world concurrency
bugs. This study will help us understand how buggy interleavings
gradually deteriorate program states and ultimately cause various
software failures, especially those that are severe (e.g., crashes).

Cause Error Propagation

Buggy Interleavings Visible Software Failures

Effect

Intermediate Errors

Figure 6: Cause-effect chain

3.1 Methodology and Caveat
Bug Source This study uses a set of 70 real-world non-deadlock
concurrency bugs collected in [22]1. All of these 70 bugs are re-
ported by users and fixed by developers from four widely-used
C/C++ open-source applications: Apache HTTP server, MySQL
database server, Mozilla web browser, and OpenOffice office tool-
kits. These bugs are collected by previous researchers through
random sampling among all fixed bugs in the bug databases. We
choose to focus on non-deadlock concurrency bugs, because dead-
locks have much more regular effects and are better understood and
addressed than non-deadlock bugs.

Characteristics in study Previous characteristics studies [12,
22] focus primarily on the interleaving patterns that cause the con-
currency bugs. This work will study the error propagation process
from its cause (buggy interleavings), through intermediate errors,
to the final effects (demonstrated by Figure 6).

1 The original list in [22] includes 74 bugs. 4 of them do not have enough
error propagation information and are discarded in this study.

In terms of causes, we refer to previous work [22] to consider
two causes: atomicity violation and order violation. Data races are
orthogonal to these two and are not separately considered here.

In terms of effects, we follow previous general bug characteris-
tics studies [44, 51] and consider three main effects: crashes, hangs,
and minor wrong functionality issues (including wrong outputs).
Strictly speaking, there could also be severe bugs like loss of data,
but the bug set we use does not contain such examples.

The most difficult part of our categorization is the intermediate
errors. Since there has been no previous study regarding this, based
on our own observations and inspiration from studies of general
software bugs, we generalize two major categories: intermediate
memory errors and intermediate semantic errors.

An intermediate memory error occurs when the buggy inter-
leaving changes the execution order of a set of shared memory op-
erations so that these operations themselves directly instantiate a
memory bug. Afterward, the program fails similarly to those caused
by memory bugs in sequential programs. This paper refers to this
as concurrency-memory errors. They are further classified based on
which types of memory bugs are instantiated, as shown in Table 2.

An intermediate semantic error occurs when the buggy inter-
leaving causes new and unexpected program states that are not han-
dled by the program. Once that unexpected state happens, the pro-
gram fails, as happens with semantic bugs in sequential programs.

These two categories are usually easy to classify, except for a
few complicated cases, such as the Mozilla bug shown in Figure 7.
This bug and the MySQL bug in Figure 3 both result in NULL-
pointer dereference and crashes. However, they have different error
propagation processes. In the MySQL example, the NULL pointer
is a shared variable, and the NULL pointer dereference is a direct
result of the buggy interleaving. However, in the Mozilla bug, the
NULL-assignment (S2) and NULL-dereference (S3) both occur in
one thread as a result of an unexpected {id,key1} pair caused by
the buggy interleaving. Our principle is to categorize based on the
direct impact of interleavings. Therefore, Figure 7 is considered a
concurrency-semantic error.

Thread 1 Thread 2

S4: hash_delete (key2);S1:id = hash_lookup (key1);

 if (id != INVALID_ID) {

}
S3: printf ("%s\n", *p);
S2: p = hash_get_property(id, key1);

hash−table retrievalhash_lookup returns an ‘id’ for future

hash_get_property returns NULL with invalid id−key pair.

key1 = key2 when the bug manifest

id, key1, key2, p are all local; the hash table is shared

Figure 7: A complicated concurrency bug with intermediate
semantic error (simplified from a real Mozilla bug). The buggy
interleaving causes an (unexpectedly) invalid {id,key1} pair,
which causes hash get property to return NULL.

Caveats We attempted to the best of our ability to use represen-
tative bugs and correctly classify them. We do not intend to draw
general conclusion for all bugs and all applications. We only plan to
use those trends that are consistent throughout our bug set to guide
effect-oriented concurrency bug detection. We warn readers to in-
terpret the following characteristics with the methodology in mind.
Since this study focuses on C/C++ programs, the cause-effect char-
acteristics may not apply to other types of programs, e.g., Java pro-
grams. Of course, since many multi-threaded programs, especially
client/server programs, are still written in C/C++, we believe our
study is representative of a large class of important applications.

3.2 Results and Implications
Many interesting results are revealed in this study. Due to the space
limit, we only emphasize several findings that are closely related to
the design of effect-oriented concurrency bug detection.

Categories Description
Con-Memory Errors* Wrong execution order among shared memory operations directly transit to memory bugs
Buffer Overflow Conflicting accesses to shared buffer and shared buffer index/boundary variables cause buffer overflow.
Dangling Pointer Interleaving causes one thread to deallocate a shared buffer before another thread accesses it (Figure 9).
NULL Pointer Interleaving causes one thread to dereference a shared pointer assigned NULL by another thread (Figure 3).
Uninitialized Read Interleaving pushes a shared memory read to occur before the intended initialization from a remote thread (Figure 8).
Con-Semantic Errors Interleaving causes unexpected variable values and program states.

Table 2: Categorization of intermediate errors directly caused by buggy interleavings (*:memory bugs such as double-free and
memory-leak are unlikely to happen as direct effects of buggy interleavings)

Crash Hang Wrong Func. Total
Mozilla 24 4 12 40
MySQL 5 0 10 15
Apache 7 2 1 10
OpenOffice 1 1 3 5
ALL 37 7 26 70

Table 3: Effects (failure types) of concurrency bugs

Finding 1 Approximately 50% of the studied non-deadlock bugs
can cause program crashes, as shown in Table 3. This indicates
that crash concurrency bugs are not only severe, but also common
among those reported-and-fixed bugs. Detecting them is crucial.

Finding 2 There is no correlation between the cause and the
effect of a concurrency bug in our study. A breakdown between
the types of interleaving patterns (causes) and the types of failures
(effects) is presented in Table 1. As discussed in Section 1, it is
difficult to predict the final effect or severity of a concurrency bug
based on its root cause interleaving pattern.

Crash Hang Minor Func. Issues
Con-Memory err. 31 0 3
Con-Semantic err. 6 7 23

Table 4: Types of failures vs. types of intermediate errors
Finding 3 Approximately 84% (31 out of 37) of the studied

concurrency bugs that cause crashes have concurrency-memory
error patterns, as shown in Table 4. The few exceptions are similar
with the Mozilla bug shown in Figure 7. This finding provides a
promising implication: by focusing on the concurrency-memory
error pattern, we can handle most severe concurrency bugs that can
cause program crashes (at least in C/C++ programs).

Finding 4 Approximately 90% (31 out of 34) of the interme-
diate memory errors in our bug set cause program crashes at the
end, as shown in Table 4. This finding is consistent with the trend
in sequential programs [51]. It further demonstrates that by target-
ing concurrency-memory errors, we can effectively focus the bug
detection and testing effort upon severe concurrency bugs, without
wasting resources on benign or non-critical interleaving problems.

Memory Errors Semantic
NULL UnInit Dangling Overflow Errors

Mozilla 9 0 8 4 19
MySQL 3 1 1 0 10
Apache 2 0 3 1 4
OpenOffi 1 1 0 0 3
ALL 15 2 12 5 36

Table 5: Breakdown of intermediate errors
Finding 5 Concurrency-memory errors include four common

patterns. As we can see in Table 5, all the concurrency- mem-
ory errors in our study fall into four well-defined categories:
NULL-pointer dereference, dangling-pointer, buffer-overflow and

uninitialized-read. For simplicity, we will refer to these four
sub-types of concurrency-memory errors as follows: Con-NULL
(NULL pointer dereference directly caused by buggy interleav-
ings), Con-UnInit (uninitialized read directly caused by buggy
interleavings), Con-Dangling (dangling pointer directly caused by
buggy interleavings), and Con-Overflow (buffer overflow directly
caused by buggy interleavings).

These regular bug patterns provide clear guidance to our con-
currency bug detection; by focusing on these four types of bugs,
the bug detection will have small false positives and small false
negatives regarding concurrency bugs with crash-effects. This is
precisely the guidance utilized for ConMem.

4. Detecting Severe Concurrency Bugs
The ConMem design is guided by the above characteristics study. It
includes four dynamic bug detection modules that are responsible
for detecting Con-NULL, Con-UnInit, Con-Dangling, and Con-
Overflow bugs, respectively.

4.1 Overview
The design of ConMem follows three principles:

(1) Effect-oriented, instead of interleaving-oriented. ConMem
tries not to analyze an interleaving pattern unless it is related to
concurrency-memory errors. In the mean-time, ConMem does not
limit itself to any specific interleaving pattern.

(2) Predictive bug detection. ConMem bug detection is not
limited to the monitored interleaving. Instead, it targets reporting
concurrency bugs that could occur under future interleavings. This
property is critical due to concurrent programs’ non-determinism.

(3) Balanced analysis accuracy and complexity. Since validator
ConMem-v can help prune out false positives, ConMem has some
luxury of trading accuracy for simplicity, when necessary.

Following these principles, ConMem dynamically detects concurrency-
memory errors in two steps.

First, detecting the basic ingredients of concurrency-memory er-
rors, which are mostly insensitive to interleavings. A concurrency-
memory error’s basic ingredients are its memory operations, such
as a pointer dereference, a NULL assignment, a buffer deallocation,
etc. Their existence is necessary to a concurrency-memory error
and is (fortunately) usually insensitive to interleavings. They will
be detected by the memory checking part of ConMem.

Second, checking the timing condition among the basic ingredi-
ents. The appropriate timing, such as de-allocating a memory object
before another thread accesses it, turns a set of memory operations
into a true bug. Whether a timing condition can be satisfied in fu-
ture interleavings depends on the synchronizations in the program.
The synchronization analysis part of ConMem is responsible for
making this decision and reporting bugs.

A summary of the ingredient-and-timing conditions for each
sub-type of concurrency-memory errors is shown in Table 6. The
following sub-sections will elaborate on how to detect each sub-
type of concurrency-memory errors, one by one.

Error Conditions Can synchronization avoid the error?
Basic Ingredients Timing Condition Order Synch.* Mutual Exclusion

Con- (1) rp: from t1, reads pointer ptr (1) wp executes before rp Yes Yes
NULL (2) wp: from t2, writes NULL to ptr (2) No write to ptr between rp, wp

(1) r: from t1, reads variable v r executes before w
Con- (2) �w: from t1, writes v before r Yes Not by itself
UnInit (3) w: from t2, initializes v, usually before r
Con- (1) a: from t1, accesses memory m a executes after Free(M) Yes Not by itself
Dangling (2) Free(M): from t2, m ∈ M

(1) v: a buffer-index/boundary var. Data race between a1 and a2
Con- (1) a1: from t1, accesses v (this is an approximated condition) Yes Yes
Overflow (2) a2: from t2, accesses v

Table 6: The conditions for Concurrency-Memory errors. (*: order synchronization represents barrier-style synchronizations).

4.2 Con-NULL Detection
4.2.1 What is a Con-NULL bug?
Con-NULLs are NULL-pointer dereference errors directly caused
by buggy interleavings. An example of Con-NULL is shown in
Figure 3. As we can see there, S2 from thread 1 dereferences a
shared pointer variable thd→ proc info, and S3 from thread 1
assigns NULL to the same variable. Under a buggy interleaving, S3
executes right between S1 and S2, immediately causing a NULL-
pointer dereference and a MySQL crash. Of course, the above
buggy interleaving occurs only rarely, and MySQL mostly behaves
correctly.

In general, the basic ingredients of Con-NULL bugs include two
pointer-accesses, denoted as wp and rp. wp writes NULL to a
shared pointer-variable ptr, and rp reads ptr from a different
thread that later conducts pointer dereference. We consider each
{wp,rp} pair to be a bug suspect.

The timing condition of Con-NULL is to execute wp before rp
with no other write to ptr in between. A suspect is reported as a
Con-NULL bug only if the timing condition can be satisfied.

4.2.2 Con-NULL detection algorithm
Detecting the basic ingredients Detecting the {wp, rp} pair
for Con-NULL is straightforward using binary instrumentation.
Specifically, for every heap/global access 2, ConMem collects its
thread-id, program counter, memory location, and store-value in-
formation at run time. Analyzing this information can easily reveal
Con-NULL suspects. The only issue remaining is to differentiate
memory locations that hold pointers from those that hold normal
integer or Boolean variables. This matter will be discussed later.

Checking the timing condition After a Con-NULL error sus-
pect (i.e., a {wp,rp} pair) is discovered, the next step is to check
whether the synchronization operations in the program allow wp to
execute before rp without other interfering definition in between.

Without losing generality, ConMem separately considers mu-
tual exclusion synchronization and order synchronization. If the
above timing condition is not prohibited by either of them, the cor-
responding suspect will be reported as a Con-NULL bug.

Order synchronization operations [31, 34], such as barriers, set
up a happens-before partial order among all accesses in the concur-
rent execution. Under this happens-before order, two accesses are
either strictly ordered or concurrent with one another.

Order synchronization could make a Con-NULL timing condi-
tion infeasible if and only if one of these two conditions are satis-
fied: (1) The NULL-assignment is strictly ordered after the pointer-
read; or (2) Another write to the pointer is strictly ordered between

2 Data stored on stack is usually not shared across threads and is therefore
ignored in our current prototype.

the NULL-assignment and the read. The ‘order’ here is determined
by the happens-before relationship.

Mutual exclusion, such as locks and transactions, prevents cer-
tain code regions, e.g., those protected by the same lock or covered
in transactions, from interfering with one another.

Mutual exclusion could protect the {wp,rp} pair and prevent
a Con-NULL error in two ways: (1) rp and an earlier write to
ptr from the same thread are atomic from wp; or (2) wp and a
later write to ptr from the same thread are atomic from rp. In the
former case, rp always uses definition from its own thread, instead
of wp. In the latter case, wp’s assignments are always overwritten
before reaching rp.

ConMem monitors mutual exclusion and order synchroniza-
tions at run time. By checking against the above conditions, Con-
Mem can identify Con-NULL suspects that are well protected and
report the remaining suspects as Con-NULL bugs.

Of course, our synchronization analysis is neither sound nor
complete, mainly because it does not consider potential control
flow changes under future interleavings. We believe it provides a
good balance between analysis complexity and the analysis accu-
racy, as shown by our experimental results in Section 7.

4.2.3 Implementation
ConMem implements the above algorithm using run-time record-
ing (with PIN [25] binary instrumentation) and off-line trace anal-
ysis. We choose trace analysis over pure run-time detection due to
the algorithm complexity.

The run-time logs three types of information. The first is
the information of a global or heap memory access, which is
used to identify basic ingredients (i.e., {wp, rp}). The sec-
ond part is the synchronization operations, including barrier,
pthread mutex (un)lock, pthread create/join, etc.
This part is used to check suspects’ timing conditions. The last part
is the information of all malloc/free operations. Since virtual ad-
dresses could be recycled through malloc/free, this part of informa-
tion helps us to identify which memory locations are truly holding
the same memory object. This recycling issue is similarly handled
in the three remaining detection modules.

Con-NULL only needs to record and analyze memory accesses
to pointer variables. Our current implementation differentiates
pointer accesses from non-pointer accesses based on the read/write
values. That is, we ignore memory accesses when the involved val-
ues are clearly out of the range of stack, heap, global data region, or
0. This scheme works well in practice. It can be further improved
by static analysis.

The trace-analysis includes three major steps: (1) Identify all
{wp,rp} pairs; (2) Analyze mutual exclusion synchronization; and
(3) Analyze order synchronization.

The first step is straightforward. By checking the memory-
address, thread-id and store-value information in the trace, we can
easily find all Con-NULL suspects.

The second step is to analyze mutual exclusion synchronization.
Following our earlier discussion, for every suspect {wp, rp} pair,
ConMem identifies the preceding write of rp (refer to as rp-p)
and the follow-up write of wp (refer to as wp- f) from the trace. It
then calculates the lock-sets that protect rp, {rp-p,rp}, wp, and
{wp,wp- f}. Any lock-set overlap between {rp-p,rp} and wp or
overlap between {wp,wp- f} and rp indicates that this suspect is
well protected and should not be reported as a bug.

The last step is to determine whether order synchronization
can protect a {wp, rp} pair from NULL-pointer dereference. The
straightforward solution here is to calculate the vector timestamps
for all memory accesses involved in the NULL-Con suspects and
to compare their timestamps, according to the condition discussed
above. The timestamp calculation is not difficult, because the trace
includes information for every order synchronization executed at
run-time, including pthread mutex create/join and bar-
rier. Using this information, we can easily calculate vector times-
tamps based on the Lamport logical-timestamp algorithm [20].

The time-consuming part of the above analysis is that for a {wp,
rp} pair that accesses memory location ptr, we must find every
memory access to ptr and check whether it is strictly ordered be-
tween wp and rp. The complexity is linear to the number of dy-
namic write instances to ptr. Our implementation uses a heuristic
to simplify the complexity to constant time: If there exists such a
ptr-definition that is strictly ordered between wp and rp, it usu-
ally comes from either the same thread as wp or the same thread as
rp. Under this heuristic, we only need to check two candidates that
might sit between rp and wp: the write to ptr on rp’s thread right
before rp and the write to ptr on wp’s thread right after wp. This
heuristic works well in our experiments, never introducing false
positives.

Discussions The false positives of Con-NULL detection mainly
come from two sources. The first is un-identified custom synchro-
nization, an issue shared with many previous concurrency bug de-
tection tools [40]. Without the knowledge of some customized syn-
chronization, ConMem will mistakenly consider some timing con-
ditions as feasible and report false positives. The second are those
simplifications made by our implementation. One simplification
that has not yet been mentioned is that we do not check whether
a pointer read is used for dereference. Sometimes, a pointer read is
used for condition-checking, where reading a NULL-valued pointer
does not cause any problem. We prune out this type of false positive
by checking whether a pointer read has a NULL value during the
monitored run. If it does, we do not report the bug. This pruning
has been very effective, as we will see in Section 7.

In terms of false negatives, in general, the bug detection of Con-
Mem is sensitive to code/path coverage and insensitive to the tim-
ing (i.e., interleavings) among a set of code statements. Specifically,
with a given test input, if an instruction is executed only under cer-
tain rare interleavings, or if two instructions access the same mem-
ory location only under certain rare interleavings, ConMem may
not be able to catch all basic ingredients of potential Con-NULL
bugs, thus resulting in false negatives. This type of false negative
is general to all ConMem detection. Fortunately, it rarely occurs
based on our experience. In addition, this problem can be mitigated
by making ConMem observe more than one runs of the program
under the same input. It can also benefit from work that focuses on
code coverage in concurrent programs [43].

Finally, trace size is a potential concern for all trace-based
analysis tools. Since Con-NULL only records heap/global memory
accesses that touch (likely) pointer variables, its traces will be
significantly smaller than those generated by deterministic replay

tools [35]. Based on our experience, it is rarely a problem for Con-
NULL, as shown in Section 7. Future work can also split the trace
of a long-running program into several sub-traces and extend Con-
NULL algorithm to process sub-traces.

4.3 Con-UnInit Detection
4.3.1 What is a Con-UnInit bug?

Thread 1

S2

h = malloc();

S1 h−>band = tr_bandNew(h);

assert(is_band(h−>band));

Thread 2

initialize h−>band *//* h is shared; S1 is expected to

Figure 8: A concurrency bug that leads to undefined read and
finally causes crash (from Transmission-1.42)

Con-UnInit bugs are un-initialized memory reads directly
caused by buggy interleavings. An example of Con-UnInit bugs
is shown in Figure 8. In this example, a shared variable h→
bandwidth is initialized on S1 in thread 1. Read accesses to
this variable are supposed to occur after S1. Unfortunately, with-
out proper synchronization, S2 in thread 2 can execute before S1
and read an uninitialized variable, which causes an assertion failure
later.

Con-UnInits’ basic ingredients typically include a read access,
denoted as r (e.g., the S2 in Figure 8), to a memory location that
depends on other threads to initialize. The timing condition for
a Con-UnInit is to execute r before the initializations from other
threads.

Note that, when we observe an r reading a value defined by
its own thread, un-initialized read is unlikely to happen under
a different interleaving. However, there could be exceptions. For
example, future interleavings could change the execution path and
make the local definition disappear. This goes beyond our definition
of concurrency-memory errors and is not considered here.

4.3.2 Detection algorithm & implementation
Con-UnInit’s detection algorithm is simpler than Con-NULL’s and
is implemented as run-time detection without trace analysis.

Detecting the basic ingredients This task identifies shared-
memory read, the target memory location of which is not defined
earlier in its own thread, but in other threads. These reads will be
considered as Con-UnInit suspects.

This task is quite straight-forward to implement in dynamic
monitoring. Relying on the PIN instrumentation framework, we
use a hash-table Initializer to maintain the per-thread information
about which memory locations are already initialized in this thread.
Specifically, Initializer is indexed by memory locations. Whenever
a write to memory location v occurs, Initializer is checked to
determine whether this is the first write to v from that thread. If
it is, the information of this write is inserted into the table. Looking
up Initializer at every read accesses to heap variables will reveal all
Con-UnInit suspects.

Checking the timing condition At run-time, whenever a read
suspect r is discovered, ConMem must conduct a synchronization
analysis and decide whether there exists a remote initialization that
is strictly ordered before r. Mutual exclusion cannot help avoid this
type of bugs and is not considered here.

Conducting this task at run-time requires several pieces of in-
formation. Suppose the suspect r accesses memory location v.
The first piece of information we need is the vector timestamp
of r. ConMem maintains the vector timestamp for each thread at

run-time, by intercepting order synchronizations (i.e., barrier and
pthread create/join) and analyzing them based on the clas-
sic Lamport algorithm [20]. The timestamp of r can be easily re-
trieved from the current timestamp of its own thread.

The second piece of information is the vector timestamp of all
the initializations to v from other threads. This information is kept
in the Initializer table we mentioned above. Specifically, when a
write access is found to be the first write to v from thread t, t’s
current timestamp is inserted into Initializer.

Finally, after obtaining the above information, ConMem com-
pares the timestamp of r with the timestamps of remote initializers.
A Con-UnInit bug is reported when r is concurrent with all the
recorded initialization timestamps.

As an optimization, we only conduct the above check for the
first read from each thread to a memory location v. This is sufficient
to detect Con-UnInit bugs on v, if they exist.

Discussions The sources of false negatives and false positives
for Con-UnInit detection are similar to those of Con-NULL, ex-
cept for one unique source of false positives. That is, some un-
initialized reads may not cause negative effects, a property differ-
ent from NULL-pointer dereference, dangling pointer and buffer-
overflow. Previous sequential bug detectors, such as Valgrind [30],
have considered this and choose to report bugs only when the un-
initialized value is used for critical operations, including system
calls, condition checking, and memory address calculation. Con-
Mem can borrow this idea to prune this set of false positives.

Different from Con-NULL, Con-UnInit does not dump traces
and does not have the trace size issue. However, since Con-UnInit
conducts all the analysis on-line, its run-time analysis will consume
more memory than Con-NULL. The memory consumption of Con-
UnInit is mainly for storing the initialization timestamp for each
active heap/global memory location. It is linear to the heap/global
memory footprint of a program, like many previous dynamic bug
detectors [23]. It will not increase with longer execution, as long as
the program’s active memory consumption does not change.

4.4 Con-Dangling Detection
4.4.1 What is a Con-Dangling bug?

Thread 2Thread 1
(decompression thread)(main thread)

S1 delete q;
 q is a pointer local to thread 1;

while (!fifo−>empty) {S2
 ...

 that contains fifo−>empty It points to the memory region

Figure 9: A concurrency bug that leads to dangling pointer and
finally causes crash (from PBZIP2-0.9.4)

Con-Dangling occurs when buggy interleavings directly cause
dangling pointer accesses. Figure 9 demonstrates a bug from
PBZIP2. In this example, pointer q (a local variable in thread 1)
points to a heap object shared by thread 1 and thread 2 (fifo in
thread 2 points to the same object). Due to lack of synchroniza-
tion, thread 2 can access the shared object at S2 when it is already
deleted by thread 1 at S1, which can cause PBZIP2 to crash.

As we can see, the basic ingredients of a Con-Dangling bug
is a memory access whose target memory location is de-allocated
by a different thread. The timing condition of Con-Dangling is to
conduct the memory access after the de-allocation.

4.4.2 Detection algorithm & implementation
Similar to Con-UnInit detection, Con-Dangling is implemented
upon PIN as a pure run-time bug detector with no trace analysis.

The algorithms of detecting basic ingredients and checking
timing conditions are straightforward here. For the first task, we
must identify all memory accesses whose target memory locations
are de-allocated by a different thread. For the second task, we must
analyze order synchronizations to determine whether the accesses
are concurrent with the de-allocation operation. Just like that in
Con-UnInit, mutual exclusion itself cannot avoid Con-Dangling
bugs and is not considered in the following.

In our PIN-based implementation, every malloc and free in-
vocation is intercepted, in addition to every order synchronization
and heap accesses. A map Malloc Map is used to maintain a list
of currently active heap memory regions, ordered by their start-
ing addresses. A new entry is inserted to Malloc Map at every
malloc. At every heap access, ConMem looks up Malloc Map
with the accessed heap address to find the corresponding entry, and
then updates the entry to record the latest access from each thread
to each memory region. Whenever a free is invoked, the times-
tamp of this free will be compared with the timestamps of the
latest accesses to this to-be de-allocated memory region from each
thread. A Con-Dangling bug is reported when we find a concurrent
(based on timestamps) access from a different thread.

4.5 Con-Overflow Detection
4.5.1 What is a Con-Overflow bug?
Buffer overflow occurs when a buffer-access goes beyond the
buffer-boundary. In concurrent programs, interleavings can cause
additional buffer-overflow problems when buffer-index or buffer-
boundary variables are shared among different threads.

 ...

 memcpy (&buf[buf−−>cnt], str, len);
 ...

S1

}else {

if (buf−−>cnt + len > LOG_SIZE) {
buf−>cnt += len;S2

Thread 2Thread 1

represnts the current index of a buffer
buf−>cnt is a shared variable that }

Figure 10: A concurrency bug that can lead to buffer overflow
and crash (from Apache-2.0.45)

Figure 10 shows an example of typical Con-Overflow bugs.
Thread 1 conducts sanity check at S1 on buffer index variable
buf→cnt to ensure that the later memcpy will not overflow the
buffer buf. Unfortunately, the index variable is shared with thread
2. Due to lack of synchronization, thread 2 can change the buffer
index between the sanity check and the real buffer access, thus
causing a buffer overflow.

Accurately reporting Con-Overflow bugs is difficult because
exposing buffer-overflow bugs requires not only certain order of
memory operations but also certain variable values. Even when
an index variable is unexpectedly corrupted by a different thread,
buffer overflow may not occur, depending on the new value stored
into the index. In the future, symbolic execution and constraint
solver techniques [5] can potentially address this value issue.

In our current prototype, we only consider a common sub-set
of Con-Overflow bugs: conflicting accesses to shared buffer index
variables cause buffer overflows. Specifically, we report all data
races among instructions that access shared buffer index variables
as potential Overflow-Con bugs, and we rely on our ConMem-
validator (Section 5) to prune out false positives. We leave the more
general Con-overflow detection problem to future work.

4.5.2 Detection algorithm & implementation
Con-Overflow detection includes two steps. The first step detects
data races in the execution. The second step attempts to identify
accesses to buffer-index-variables among those data races.

The first step is conducted through an existing lock-set algo-
rithm [40]. The second step can be conducted in different ways. Our
solution is based on the heuristic that an index variable should be
used to generate buffer-access addresses sooner or later. Currently,
we implement this step as an additional run of dynamic data de-
pendence analysis. That is, after we receive the information of data
races, the program is executed a second time. Whenever a memory
location involved in races is read, the dependence analysis starts,
tracking the data flow to determine whether the read value would
be used to generate a global/heap address within a threshold num-
ber of steps. In addition, we also make sure the read value itself
is not already a global/heap address. Full dependence-analysis has
large overhead. Fortunately, we only need to track those accesses
and memory locations related to races. Therefore, the overhead is
acceptable. We expect that this second step is not always neces-
sary. After one variable or one instruction is marked as accessing
(or not accessing) a buffer index, this information can be kept for
future usage. Static analysis can also help us and enable ConMem
to report Con-Overflow bug candidates at run-time.

In summary, ConMem bug detection includes four sub-tools.
Con-UnInit and Con-Dangling bugs are detected and reported at
run-time. Con-NULLs and Con-Overflow bugs are reported at post-
mortem analysis. It is also conceivable to combine all these four
modules into one big run-time bug detection tool in the future.

5. Bug Exposing and Validation
The design of ConMem-v is inspired by previous tools that validate
data race [33] and atomicity violation bug reports [34]. ConMem-v
takes every bug reports from ConMem as inputs. It tries to enforce
those buggy interleavings predicted in ConMem’s bug reports by
carefully perturbing the concurrent execution. The whole process
is automated.

ConMem-v will serve two purposes. The first is to prune Con-
Mem’s false positives that are caused by customized synchroniza-
tion and some approximation made by ConMem detection algo-
rithm. The second is to provide developers with a reliable way to
repeat the true bugs reported by ConMem.

In the following, we will discuss the design and implementation
of ConMem-v, explaining what is the interleaving enforcement
target and how to enforce a specific timing condition. ConMem-
v is implemented using PIN [25] binary instrumentation. Due to
the space limit, some implementation details are omitted.
Validating Con-NULL bug reports Provided with a {wp,rp}
pair of Con-NULL bug report, ConMem-v’s target is to execute wp
before rp, with minimized timing distance in between.

In order to enforce such a timing condition, ConMem-v in-
struments the binary code right before and after wp and rp. At
run-time, whenever wp or rp is going to be executed, ConMem-
v checks whether the other instruction has already ‘arrived’. If so,
wp will be arranged to execute first, immediately followed by rp.
If not, an artificial delay (several iterations of usleep()) is added
into this thread, waiting for the other instruction to arrive from a dif-
ferent thread. This process is demonstrated in Figure 11 (consider
A as wp and B as rp).

A B

B
the first arrival

delay

the real execution
point

Figure 11: ConMem-v perturbation illustration

Note that, as a general principle in ConMem-v, ConMem-v only
improves the chances of a bug to occur and does not provide any
guarantee. All the delay inserted by ConMem-v has time-out, so
that the program will not hang.
Validating Con-UnInit bug reports The input to Con-UnInit
validation is a list of instruction pairs {w,r} from the Con-UnInit
bug report. w is an instruction that initializes a memory location
that is later read by r from a different thread.

ConMem-v’s target here is to execute w after r. To achieve
this target, ConMem-v instruments the binary code to postpone the
execution of w in order to wait for r to execute first (consider r
as A and w as B in Figure 11). ConMem-v can keep track of all
heap/global writes to know whether an uninitialized read has truly
occurred. In practice, just observing whether r is executed before w
pretty much already tells users whether the Con-UnInit bug report
is a true bug.
Validating Con-Dang bug reports The input to ConMem-v here
is a list of instruction pairs {F ,a}. F is a call instruction that
invokes the de-allocation to a memory region that contains the
memory location accessed by a from a different thread.

ConMem-v’s target here is to postpone the execution of a in
order for the F to occur first, which is conducted as Figure 11 (F
is A, a is B). In order to know whether a dangling pointer has truly
occurred, ConMem-v records and compares the memory address
accessed by a and the range of the memory region freed by F .
Validating Con-Overflow bug reports The input here is a list of
data race pairs {i1,i2}. i1 and i2 race upon a shared buffer index
variable. The target of ConMem-v is to make the race truly occur
(i.e., first execute i1 right before i2 without any other instruction in
the middle and then i2 right before i1) and observe what happens
after the race.

ConMem-v’s perturbation strategy for Con-Overflow bugs is
similar with those for the above three. The unique complexity of
Con-Overflows is that even if a buffer index is corrupted to a
wrong value through data races, overflow may not happen. In our
current validator, we look for fail-stop symptoms (crash or assertion
failure) to tell whether buffer overflow has happened, which can be
improved by more accurate buffer-overflow detection designed for
sequential programs [17, 30].
Discussions Two types of interleaving enforcement approaches
were proposed before. One is to execute programs on single-core
machines and control the scheduling [27, 42]; the other is to insert
artificial delays [11, 34]. ConMem-v chooses the latter one for
better performance.

In summary, ConMem-v will not report any false positives.
In addition, benefiting from the clear error pattern of memory
bugs, ConMem-v does not need manually written oracles to judge
whether a bug has occurred. However, ConMem-v could have false
negatives. Some timing conditions require sophisticated interleav-
ing manipulation and may be missed by ConMem-v.
6. Methodology
Applications ConMem is evaluated using 7 widely-used C/C++
applications, including 3 server (Apache HTTP server, MySQL
data base server, and Cherokee HTTP server), 3 desktop (Mozilla
web browser, PBZIP2 parallel decompressor, and Transmission bit-
torrent client) and 1 scientific application (FFT) from SPLASH2 [47].
Except for FFT, all of them contain real concurrency bugs that can
cause crashes.

Bugs in evaluation We use 9 concurrency bugs3 that can cause
client and server crash for evaluation. These 9 bugs are all real
bugs introduced by the original developers. We carefully set up
this bug set to make sure it is representative, covering different

3 One of these 9 bugs, PBZIP2-2, was not reported in previous document. It
is detected in ConMem experiment.

types of faults and error propagation patterns, as shown in Table 7.
FFT contains a non-severe concurrency bug introduced by external
library developers. We add it into our bug set to measure the false
positive rate and overhead of ConMem on scientific applications.

Bug-ID Causes Effect Description
MySQL-1 Atom. Server crash at NULL-ptr dereference
MySQL-2 Atom. Server crash at NULL-ptr dereference
PBZIP2-1 Order/Atom. Crash at NULL-ptr dereference
Apache-1 Multi-Atom. Crash due to dangling ptr
Mozilla Multi-Atom. Crash due to dangling ptr
PBZIP2-2 Order Crash due to dangling ptr
Apache-2 Atom. Crash/corrupted-log due to overflow
Cherokee Atom. Crash/wrong-message due to overflow
Transmission Order Crash due to uninitialized read
FFT Order/Atom. Wrong output due to uninitialized read

Table 7: 10 bugs in evaluation (Atom.: single-variable atomicity
violation; Order: order violation; Multi-Atom.: multi-variable
involved atomicity violation.)

Experiment setup
The experiments are conducted on dual quad-core Intel Xeon

(2.67GHz) machines, with Linux, version 2.6.18. We use the
PIN [25] binary instrumentation framework for all our tools. We
use Valgrind–Helgrind [30] as the race detection front-end for Con-
Overflow.

Our experiments use bug-triggering inputs reported by the user,
like previous dynamic concurrency bug detectors [23, 40, 48].
Note that the bugs never manifest during our bug detection runs.
Actually, many concurrency bugs do not manifest even after days’
execution with bug triggering inputs [27, 34], which is exactly why
ConMem’s predictive detection will be useful.

Our evaluation executes each bug-triggering input (or a set of
bug-triggering client requests) to the end in order to measure the
false positives and the performance. The reported performance
number is the average across multiple runs.

ConMem includes four sub-tools for four types of concurrency-
memory errors. Each application will be executed with the bug-
triggering input once for each sub-tool. We present the bug de-
tection results of each sub-tool. When ConMem is compared with
other detection tools, the true bugs as well as the false positives
from all the four sub-tools are put together. The artificial delay used
by ConMem-v is 1 milli-second at a time.

We also compare ConMem with two state-of-the-art inter-
leaving checking approaches: race-based (short for Race) and
atomicity-violation-based (short for Atom). Race is a lock-set–
happens-before hybrid race detector, originally implemented in
widely-used Valgrind-Helgrind detector [30] and slightly modified
by us for better race coverage. Atom is implemented by us based
on an algorithm described in previous work [34]. It predicatively
identifies each static memory instruction that can be unserializably
interleaved with its preceding access to the same memory loca-
tion from the same thread (the most common type of atomicity
bugs [22, 23, 46]). There are other race and atomicity bug detec-
tors, such as happens-before race detectors [31] and training-based
atomicity detectors [23]. We did not choose them, because their
training requirement or interleaving-sensitive design will make the
comparison apples to oranges.

7. Experimental Results
7.1 Overall Results
Overall, as shown in Table 8, ConMem can detect 9 out of 10 tested
concurrency bugs, showing a good coverage on this set of severe

concurrency bugs. In comparison, Race and Atom detect 4 and 6
out of the 10 bugs, respectively.

Bug-ID ConMem Race Atom
MySQL-1 Y Y Y
MySQL-2 Y N Y
PBZIP2 Y Y Y
Apache-1 Y N N
Mozilla N N N
PBZIP2-2 Y N N
Apache-2 Y Y Y
Cherokee Y Y Y
Transmission Y N N
FFT Y N Y

Table 8: Bugs detection results (are the bugs detected?)
ConMem shows a good bug detection capability on these eval-

uated bugs, because it effectively captures the most common error
propagation pattern among concurrency bugs with crash-effects.
Specifically, three bugs (MySQL-1, MySQL-2, and PBZIP2) are
detected by Con-NULL; Apache-1 and PBIP2-2 are detected by
Con-Dangling; Apache-2 and Cherokee are detected by Con-
Overflow; Transmission and FFT are detected by Con-UnInit.

ConMem still misses one severe bug in Mozilla. The reason is
that the buggy interleaving in Mozilla first causes semantic errors
before it finally corrupts memory states and crashes Mozilla. This
type of concurrency–semantic error pattern is not captured by Con-
Mem. Because of the complexity of this bug, Race and Atom also
failed to correctly detect this bug.

Atom and Race failed to detect 3 and 4 severe concurrency bugs
that can be detected by ConMem, mainly because these bugs are not
caused by data races or simple atomicity violation. For example,
Apache-1 is caused by conflicting accesses to multiple variables.
Therefore, it is not detected by either Race or Atom. PBZIP2-2 and
Transmission are both caused by order violation problems and are
missed by Atom. In addition, the heuristics used in the Valgrind-
Helgrind algorithm to prune false positives also lead to some false
negatives in Race.

Overall, ConMem has a good coverage on the evaluated real-
world concurrency bugs that can cause crashes, not limited to any
specific interleaving patterns. It can well complement existing race
and atomicity-violation bug detection tools.

7.2 False Positive Results
Before automated pruning

Table 9 shows the numbers of false positives (vs. true bugs) of
all the tools on the 7 evaluated applications. Every report of Race
is a pair of static race instructions; every report of Atom is a static
instruction that can be unserializably interleaved with its preceding
access; every report of ConMem is a static instruction that, under
certain interleaving, can dereference NULL-pointer, access freed
memory regions, etc. Since some bug reports in Table 9 share the
same root cause, the total number of true bug reports there is larger
than that in Table 8.

In general, ConMem’ false positive rate is much lower (about
one tenth) than Race and Atom, benefiting from its effect-oriented
approach. ConMem’s false positive rate (about 2.5 false positives
per true bug) is reasonably low considering ConMem’ predictive
detection capability on severe concurrency bugs.

All these tools, including Race and Atom, have done a good job
in identifying bug-prone interleavings from the huge interleaving
space. As we can see in Table 9 (the ShrMem-Inst column), the
number of dynamic memory accesses to memory locations that are
truly shared among threads ranges from 978 to 182532. The inter-
leaving space size grows exponentially to that number. Considering

App. # ShrMem Inst Races Atom. Con-Null Con-Dangling Con-UnInit Con-Ovfl ConMem Total
Static Dynamic #FP #Bug #FP #Bug #FP #Bug #FP #Bug #FP #Bug #FP #Bug #FP #Bug

Apache 297 76540 14 1 157 2 4 0 6 3 0 0 0 1 10 4
MySQL 1086 17379 267 2 155 2 4 2 1 0 11 0 0 0 16 2
Transm. 507 978 42 0 33 0 8 0 5 0 3 1 0 0 16 1
PBZIP2 93 1744 17 6 21 4 6 6 0 2 3 0 0 0 9 8
FFT 205 182532 8 0 16 5 0 0 0 0 0 4 0 0 0 4
Cherokee 598 48502 8 2 28 2 0 0 0 0 0 0 0 1 0 1
Mozilla 76 18330 13 0 48 0 0 0 0 0 2 0 0 0 2 0
False Positive Rates 369:11 458:15 22:8 12:5 19:5 0:2 53:20

Table 9: Bug reports and false positives before ConMem-v pruning (Note: 1. the bug report number here is larger than that in Table 8,
because some bug reports share one root cause. 2. #FP: # of false positive; #Bug: # of bugs; #ShrMem Inst: instructions that access
variables truly shared with other threads.)

that, the interleavings singled out by Race, Atom and ConMem are
much fewer.

ConMem has much smaller false positive rates than Race and
Atom, mainly because of its effect-oriented approach (i.e., taking
vertical stripes in the interleaving space of Figure 1). As discussed
in Section 1, races and unserializable interleavings do not always
end up as bugs. Although the algorithms in Race and Atom already
use good heuristics to prune false positives, the false positive prob-
lem is still there.

Table 10 provides a further breakdown for the false positives of
ConMem. As we can see, 51 of these 53 false positives are caused
by un-identified custom synchronizations. These 51 bug reports in-
volve infeasible interleavings and can never occur. ConMem mis-
takenly reported these 51 bugs because it did not consider while/if-
flags and producer-consumer queue synchronizations in the pro-
gram. The remaining 2 false positives come from harmless un-
initialized read, as discussed in Section 4.3.

Note that, according to Table 10, almost all buggy interleavings
reported by ConMem are true and severe bugs, as long as they
are feasible. This is a big accuracy improvement over data race
detection tools, where only about 2–10% feasible data races are
true bugs [4, 28].

App. # Customized synchronization Benign
If/While-flag Producer-Consumer Queue UnInit

Apache 5 5 0
MySQL 3 13 0
Transm. 14 0 2
PBZIP2 6 3 0
FFT 0 0 0
Cherokee 0 0 0
Mozilla 2 0 0

Table 10: Causes of ConMem false positives

Automated false positive pruning of ConMem-v
All the 73 bug reports of ConMem are sent to ConMem-v for

validation. As a result, ConMem-v automatically prunes out all 53
false positives, without introducing any false negative regarding the
bugs shown in Table 8 and Table 7.

Specifically, among the 20 true bug reports from ConMem,
ConMem-v successfully makes 15 bug reports manifest through
its systematic perturbation. Each of these 15 can be reliably (al-
most deterministically) exposed under ConMem-v, which will help
developers’ bug diagnose and fixing. There are still 5 bug reports
that are actually true bugs. However, the manifestation condition
is complicated, requiring artificial delays at multiple places, and
is not handled by our current prototype of ConMem-v. Note that
some bug reports in Table 9 have one common root cause and are
grouped into one bug in Table 7 and 8. Because of this, failing to

expose these 5 bug reports did not cause ConMem-v to miss any
root bug there.

The ConMem-v validation phase is fast, because of the small
number of ConMem bug reports. For example, validating the 17
bug reports of PBZIP2 only takes 20.02 seconds, roughly equal to
executing PBZIP2 without any instrumentation for 30 times.

Discussion One interesting question that the above evaluation
does not directly answer is how false positives would change under
longer execution with more inputs or more runs of one input.

As discussed in Section 4.2, the bug detection of ConMem is
sensitive to the code/path coverage, like all dynamic bug detec-
tors [23, 30, 40], and is mostly insensitive to the timing among
certain code. Therefore, we expect ConMem to report more true
bugs and more false positives when it observes more program runs
that touch previously unobserved code/path.

We also expect ConMem’s false positive rate to remain low for
most applications and most inputs, because of its effect-oriented
design philosophy. For example, if a program conducts few NULL-
pointer assignments, there will be few bug reports, no matter how
long the execution is.

7.3 Time and Space Overhead
Table 11 shows the run-time overhead of ConMem tools. Overall,
ConMem tools have reasonable run-time overhead: around 16X
slow down for memory intensive FFT and 3–29% latency overhead
for I/O intensive server applications. This overhead is comparable
to previous concurrency bug detection tools [23, 40, 48] and is
suitable for developers’ use.

Table 11 excludes the trace-analysis time of Con-NULL, which
takes less than 10% of the base-line execution time in our ex-
periments. Con-Overflow’s major overhead comes from Valgrind-
Helgrind race detector. The overhead of its dependence-analysis
ranges from 5% overhead (server applications) to 13X slow down
(for FFT).

Currently, Con-NULL, Con-UnInit, Con-Dangling, and Con-
Overflow are implemented as separate tools. Since many tasks
conducted by them overlap with each other, we expect the overhead
of the combined tool to be smaller than running each of them one
by one.

Bug-ID Con-UnInit Con-Dangling Con-NULL
Apache 28% 28% 19%
MySQL 13% 24% 29%
Cherokee 6.6% 2.7% 7.6%
Mozilla 196% 185% 505%
PBZIP2 78% 76% 116%
Transmission 80% 79% 82%
FFT 1556% 1285% 1113%

Table 11: ConMem Run-time Performance (overhead %)

In terms of space overhead, Con-NULL is the only tool in Con-
Mem that generates traces. In our experiments, the traces are rea-
sonably small under the bug triggering inputs, ranging from 50KB
to 30 MB. The fact that Con-NULL only analyzes memory accesses
to pointer variables greatly mitigates the trace size problem that is
encountered by all trace-based analysis tools. With the disk size
keeps increasing, we believe the trace size will not be an issue for
the usage of Con-NULL.

7.4 Synchronization Analysis in ConMem
When detecting Con-NULL, Con-UnInit, and Con-Dangling bugs,
ConMem conducts synchronization analysis to check whether the
timing condition of bug suspects can be satisfied in the future or
not. ConMem prunes out those suspects that are well protected by
mutual exclusion or order synchronizations. Table 12 shows the
number of bug suspects that are pruned out by this analysis. As
we can see, the pruning is effective.

Bug-ID Con-UnInit Con-Dangling Con-NULL
Apache 0 0 4
Mozilla 10 0 0
MySQL 62 2 74
PBZIP2 18 0 8
Cherokee 109 21 64
Transmission 25 0 18
FFT 28 0 0

Table 12: Bug suspects pruned by synchronization analysis

8. Related Work
Many related works are discussed in earlier sections. Here, we only
discuss a few that are closely related and not discussed yet.

Concurrent programs’ empirical study Due to the lack of con-
currency bug sources, only a few studies [12, 22] have been done,
and they mostly focus on the interleaving patterns of concurrency
bugs. Most recently, interesting studies are also conducted to eval-
uate how new synchronization primitives (such as Transactional
Memory) can be used to write concurrent programs [37]. Our pa-
per complements previous studies by looking at concurrency bugs’
error propagation process.

Concurrency bug detection, testing and avoidance Existing con-
currency bug detection tools can be categorized into race detection
[14, 31, 40, 50], atomicity violation detection [6, 13, 15, 23, 39, 48]
and deadlock detection [19, 21]. ConMem complements existing
tools by focusing on the crash effect, instead of specific interleav-
ing pattern. The predictive interleaving analysis in ConMem is in-
spired by previous predictive race and atomicity violation detec-
tors [6, 13, 40].

Many innovative approaches, such as training [23] and inter-
leaving testing [27, 34, 42], have been proposed to address the false
positive problem in concurrency bug detection. ConMem uses sim-
ilar synchronization analysis and perturbation-based interleaving
enforcement techniques with some of these tools [34]. ConMem
complements these tools by handling the problem from a differ-
ent perspective. It focuses on certain effect of concurrency bugs,
instead of a specific interleaving pattern.

Atom-Aid [24] and PSet [49] extended existing dynamic bug
detectors by prohibiting certain patterns of interleavings at run time
through hardware support in order to survive concurrency bugs
during production runs. Software-only tools like Grace [2] and
Kendo [32] achieve similar goals for certain types of multithreaded
programs at runtime. ConMem can well complement these works

by exposing concurrency bugs before they escape to the production
run.

Interleaving testing [11, 27] works on systematically exploring
the interleaving space. ConMem can complement these works by
providing a different perspective on splitting the interleaving space.
Deterministic execution works [9, 32] also try to solve the inter-
leaving space challenge. They try to achieve that by limiting the
number of interleavings that a program can follow.

Concurrent program analysis and model checking A lot of
inspiring research has been conducted on static analysis and model
checking in concurrent programs. A recent study [7] inventively
proposes leveraging race detection to improve data flow analysis
in concurrent programs. The idea is very inspiring. However, due
to pointer-alias and other issues, there are still as many as 40%
of all pointer dereferences in the program that cannot be proved
to be safe in their experiments. ConMem has completely different
design target with these static analysis tools. ConMem does not
aim to provide any guarantee. Actually, ConMem also does not
aim to report all potential memory errors in concurrent programs.
By focusing on the concurrency-memory error pattern, ConMem
can use relatively simple algorithms to effectively detect severe
concurrency bugs. In addition, as a dynamic bug detection tool,
ConMem naturally has the advantage of no pointer-alias problem
and can achieve better accuracy and scalability.

Model checking can also be used to validate certain properties in
concurrent programs. Recently, a lot of progress has been made [27,
36] in model checking big concurrent programs. However, the
state explosion problem still exists. We expect the effect-oriented
approach and the error-propagation characteristics studied in this
paper to help provide heuristics to future model checking.

General software failure diagnosis The effect-oriented approach
used in ConMem shares a similar flavor with failure diagnosis
tools [10, 45]. These tools look for the root causes of observed
failures through data slicing. A failure that has already occurred
and been recorded is essential to these tools. Different from them,
ConMem searches for unknown interleaving errors that can cause
previously unobserved failures.

9. Conclusions and Future Work
This paper proposes an effect-oriented approach to detecting severe
concurrency bugs. By focusing on the concurrency-memory error-
propagation pattern revealed by our characteristics study, ConMem
effectively and predicatively detects concurrency bugs with crash
effects. In our evaluation with 9 real-world severe concurrency
bugs, ConMem detects more bugs with significantly fewer false
positives than race and atomicity violation detectors. In addition,
ConMem-v prunes out all false positives and provides reliable ways
to expose all the true bugs reported by ConMem.

In general, ConMem has several nice features to help devel-
opers: predictive bug detection, no training requirement, easy-to-
validate bug results, high accuracy and high coverage on crash-
effect concurrency bugs. By looking at the interleaving space from
a different perspective, ConMem can well complement existing
concurrency bug detection tools.

In the future, ConMem can be extended in the following ways.
First, we could use static analysis to improve ConMem’s ability
to identify pointer variables and buffer index variables. Second,
we could try to identify customized synchronizations and further
decrease the remaining false positives of ConMem. Finally, we can
also apply the effect-oriented idea to detecting other types of severe
bugs (e.g., security vulnerability, silent data corruption, etc.) in both
C programs and Java programs.

10. Acknowledgments
We would like to thank our shepherd, Emery Berger, and the anony-
mous reviewers for their invaluable feedback. We thank the Opera
group from UCSD for sharing with us their bug benchmarks. We
also thank Mark Hill for his invaluable feedback and suggestions.
This research is partially supported by a Claire Boothe Luce faculty
fellowship.

References
[1] Apache Bugzilla. How important is the bug?

http://issues.apache.org/bugwritinghelp.html.
[2] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multi-

threaded programming for c/c++. In OOPSLA, 2009.
[3] Bugzilla@Mozilla. A bug’s life cycle.

https://bugzilla.mozilla.org/page.cgi?id=fields.html#severity.
[4] J. Burnim and K. Sen. Asserting and checking determinism for

multithreaded programs. In FSE, 2009.
[5] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[6] F. Chen, T. F. Serbanuta, and G. Rosu. jpredictor: A predictive runtime
analysis tool for java. In ICSE, 2008.

[7] R. Chugh, J. W. Voung, R. Jhala, and S. Lerner. Dataflow analysis for
concurrent programs using datarace detection. In PLDI, 2008.

[8] Coverity. Software quality and security analysis.
http://www.coverity.com/.

[9] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[10] M. Dimitrov and H. Zhou. Anomaly-based bug prediction, isolation,
and validation: an automated approach for software debugging. In
ASPLOS, 2009.

[11] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multi-threaded
java program test generation. IBM Systems Journal, 2002.

[12] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In IPDPS, 2003.

[13] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker
for multithreaded programs. In POPL, 2004.

[14] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic
race detection. In PLDI, 2009.

[15] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs. In PLDI,
2008.

[16] P. J. Guo and D. Engler. Linux kernel developer responses to static
analysis bug reports. In USENIX, 2009.

[17] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Usenix Winter Technical Conference, 1992.

[18] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in c programs. In Automated and
Algorithmic Debugging, 1997.

[19] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immu-
nity: Enabling systems to defend against deadlocks. In OSDI, 2008.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[21] T. Li, C. Ellis, A. Lebeck, and D. Sorin. On-demand and semantic-free
dynamic deadlock detection with speculative execution. In USENIX
ATC, 2005.

[22] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes – a
comprehensive study of real world concurrency bug characteristics. In
ASPLOS, 2008.

[23] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity
violations via access interleaving invariants. In ASPLOS, 2006.

[24] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detecting
and surviving atomicity violations. In ISCA, 2008.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, 2005.

[26] Mozilla Developers. Bug 123930 (deadlock).
https://bugzilla.mozilla.org/show bug.cgi?id=123930. Let them
eat races.

[27] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. In OSDI, 2008.

[28] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared mem-
ory dependencies using strata. In ASPLOS, 2006.

[29] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Au-
tomatically classifying benign and harmful data racesallusing replay
analysis. In PLDI, 2007.

[30] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[31] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race
detection. In PPoPP, 1991.

[32] M. Olszewski, J. Ansel, and S. P. Amarasinghe. Kendo: efficient
deterministic multithreading in software. In ASPLOS, 2009.

[33] C.-S. Park and K. Sen. Randomized active atomicity violation detec-
tion in concurrent programs. In FSE, 2008.

[34] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing atomicity violation
bugs from their finding places. In ASPLOS, 2009.

[35] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
Pres: probabilistic replay with execution sketching on multiprocessors.
In SOSP, 2009.

[36] S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In PLDI,
2004.

[37] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional
programming actually easier? In WDDD, 2009.

[38] O. Ruwase and M. Lam. Cred: A practical dynamic buffer overflow
detector. In NDSS, 2004.

[39] C. Sadowski, S. N. Freund, and C. Flanagan. Singletrack: A dynamic
determinism checker for multithreaded programs. In ESOP, 2009.

[40] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM TOCS, 1997.

[41] SecurityFocus. Software bug contributed to blackout.
http://www.securityfocus.com/news/8016.

[42] K. Sen. Race directed random testing of concurrent programs. In
PLDI, 2008.

[43] K. Sen and G. Agha. Automated systematic testing of open distributed
programs. In FSE, 2006.

[44] M. Sullivan and R. Chillarege. A comparison of software defects in
database management systems and operating systems. In FTCS, 1992.

[45] N. Sumner and X. Zhang. Algorithms for automatically computing
the causal paths of failures. In Fundamental Approaches to Software
Engineering, 2009.

[46] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization con-
straints with data in an object-oriented language. In POPL, 2006.

[47] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In ISCA, 1995.

[48] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector
for shared-memory server programs. In PLDI, 2005.

[49] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In ISCA, 2009.

[50] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection of
data race conditions via adaptive tracking. In SOSP, 2005.

[51] Z. Li et. al. Have things changed now? – an empirical study of bug
characteristics in modern open source software. In ASID workshop in
ASPLOS, 2006.

