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ABSTRACT

Software errors are a major cause for system failures. To effec-
tively design tools and support for detecting and recovering from
software failures requires a deep understanding of bug® character-
istics. Recently, software and its development process have signif-
icantly changed in many ways, including more help from bug de-
tection tools, shift towards multi-threading architecture, the open-
source development paradigm and increasing concerns about secu-
rity and user-friendly interface. Therefore, results from previous
studies may not be applicable to present software. Furthermore,
many new aspects such as security, concurrency and open-source-
related characteristics have not well studied. Additionally, previous
studies were based on a small number of bugs, which may lead to
non-representative results.

To investigate the impacts of the new factors on software er-
rors, we analyze bug characteristics by first sampling hundreds of
real world bugs in two large, representative open-source projects.
To validate the representativeness of our results, we use natural
language text classification techniques and automatically analyze
around 29,000 bugs from the Bugzilla databases of the software.

Our study has discovered several new interesting characteristics:
(1) memory-related bugs have decreased because quite a few ef-
fective detection tools became available recently; (2) surprisingly,
some simple memory-related bugs such as NULL pointer derefer-
ences that should have been detected by existing tools in develop-
ment are still a major component, which indicates that the tools
have not been used with their full capacity; (3) semantic bugs are
the dominant root causes, as they are application specific and dif-
ficult to fix, which suggests that more efforts should be put into
detecting and fixing them; (4) security bugs are increasing, and the
majority of them cause severe impacts.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging; D.2.4 [Software

Engineering]: Software/Program Verification

1\We use “bug” and “error” interchangeably.
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1. INTRODUCTION

1.1 Motivation

Software failures greatly reduce system dependability. As soft-
ware becomes more and more complex, there is an urgent need to
explore more effective software testing and debugging tools and
software engineering methods to minimize the number of bugs that
escape into production runs. Since some bugs still slip through even
the strictest testing, system designers also need to provide fault tol-
erant mechanisms to recover from these inevitable software fail-
ures.

To design effective tools for improving software quality requires
a good understanding of software error characteristics in represen-
tative software. Such characteristics include bug distribution, im-
pact, resolution time, and correlations. For example, if many bugs
are caused by simple typos or copy-pastes [23], software develop-
ment tools can provide more support to help detect these automati-
cally. In testing, developers can focus on bugs based on the severity
of the impact so that resource can be utilized more effectively [34].

Many empirical studies, including a few classic ones [9, 14,
17, 28, 35, 36], have been performed ten years ago to understand
the characteristics of software errors. For example, several re-
searchers (e.g. [14, 17]) have studied software errors occurring dur-
ing software development, testing and validation phases. Sullivan
and Chillarege [35, 36] analyzed error type, defect type and error
trigger distribution for shipped code of two IBM database manage-
ment products and one IBM operating system. They found that
undefined state errors dominated but did not have high impact on
availability, while memory allocation errors, pointer errors, and
synchronization errors had high impact. These studies provide use-
ful insights and guidelines for software engineering tool designers
and reliable system builders.

Over the last ten years, however, many factors in software devel-
opment have significantly changed. As most previous studies were
conducted using old software that was developed under the old
development environment (e.g. without modern debugging tools)
with traditional development paradigms and software architectures,
it is unclear whether their results still apply. In addition, rising is-
sues such as security concerns and multithread-related problems
are not well studied in previous work.



Specifically, the following changes in software and development
motivate a new study with modern software to answer those newly
rising issues as well as to provide new answers to old questions:

e More Effective Modern Debugging Tools: Quite a few bug
detection tools such as Purify [20] and Valgrind [27] have
been recently proposed and widely used. An interesting ques-
tion is whether they are helpful in minimizing the number of
memory bugs in released code. To answer this question re-
quires a new empirical study of bugs from some modern soft-
ware developed after those debugging tools became available
around 1997. If these tools become a standard practice in
software testing and validation, there should be fewer mem-
ory bugs in modern software than that reported before for
traditional software, and the diagnosis time for these types
of bugs should be much shorter than that for other types of
bugs. If the empirical results with modern software indicate
otherwise, it may imply that these tools are not effectively
used by programmers due to either too many false positives
or to other reasons.

e Software Architecture Shift: Due to the recent advance in
hardware, many modern computer systems, especially server
systems, are all configured with multi-processors. As a re-
sult, many software architectures are multi-threaded or multi-
processed to exploit the parallelism provided by hardware.
These trends will continue especially since, with the con-
tinuous shrinking of transistor size and increasing chip area
density, multithreaded/multicore (multiple processors on one
chip or CMP) architecture is becoming a mainstream tech-
nology. For example, the Intel Pentium processor has already
provided hyper-threading and dual-core capabilities. Multi-
core technology is also embraced by other chip vendors in-
cluding AMD, IBM and Sun. To exploit these technologies,
increasingly more software is becoming multi-threaded. An
interesting question is whether modern software has more
concurrency bugs due to this software architecture shift? Do
these bugs cause severe impacts on systems?

e Emphasis on User-Friendly Interface: In order to provide
friendly user interface, graphical user interfaces (GUIs) have
become one of the major components in many systems. Al-
though GUIs have become more complex and widely used,
GUI testing techniques still significantly lag behind [26]. There-
fore, GUI-related bugs may have become more pervasive and
dominant. Further, since GUI modules and their develop-
ment process are quite different from other modules, do they
have different root causes?

e Rising Security Concerns: Over recent years, security is
becoming increasingly important as many malicious users
exploit software vulnerabilities to tamper system integrity,
steal confidential data, and make systems unavailable [11,
31]. Unfortunately, previous work has not addressed how
software errors affect system security. It is unclear how many
reported bugs are related to security, and what types of security-
related bugs there are, and how fast these security-related
bugs are fixed.

e New Software Development Paradigm: Recently more and
more software is developed using the open source paradigm
that allows programmers from the Internet to read, redis-
tribute, and modify the source code. For quality control,
most open source software (OSS) projects usually allow only
a small set of experienced developers to check code changes

into the main branch of the software. The OSS development
paradigm enables software to evolve at a much faster pace.
Some preliminary experiences seem to indicate that this pro-
cess produces better software than the traditional closed model,
in which only a few programmers can see the source and
everybody else can only use the binary code. This is why
the OSS paradigm is also endorsed by many industrial com-
panies including IBM and Sun. An interesting question is
whether OSS actually takes a much shorter time to fix bugs.

Furthermore, most previous studies were based on a small set
(usually with 60-500) of software bugs for the entire software rev-
olution, which may result in a large experimental error and mis-
leading results. For example, some bugs may not be included in
the sampled set but could account for a significant fraction in the
whole bug database of the evaluated software. Moreover, small
size datasets also make it difficult to study the bug trend with the
software evolution.

1.2 Contributions

To understand the effects of the above new factors on software
errors, we analyze bug characteristics in two large and popular OSS
projects, Mozilla and Apache Web Server, each of which contains
up to 4 million lines of code and about 90 release versions devel-
oped over the last 8-10 years. We first manually examine 362 ran-
domly selected bugs from the bug databases and study the bug dis-
tribution in three dimensions, root causes, impacts, and software
components. Furthermore, we also study the statistical correla-
tions among these dimensions, which has never been systemati-
cally studied before (to the best of our knowledge). In addition,
we also study 257 security related bugs and 90 concurrency bugs to
understand the characteristics of these emerging types of bugs.

To validate that our analysis results from the sampled datasets
are representative, we use natural language text classification and
information retrieval techniques to automatically classify a large
number (around 29,000) of bug reports. Such a large dataset en-
ables us to provide more accurate results such as trends of bug types
with software evolution which are usually difficult to draw repre-
sentative and accurate results from small datasets.

Our study has discovered several interesting findings:

e Memory bugs only account for 12.2-16.3%, much less than
the 28-38% reported in previous studies [35, 36], indicating
memory bugs are becoming less pervasive due to the avail-
able techniques to automatically detect them. Our results
also show bug detection tools can effectively reduce the diag-
nosis and resolution time of memory bugs. However, we also
found that there still exist many simple memory bugs such as
NULL pointer dereferences and uninitialized memory reads,
indicating memory bug detection tools have not been used at
their full capacity.

e Semantic bugs are the major root causes, accounting for 81.1-
86.7%, and their percentages increases with the maturity of
software. Moreover, they also have severe impacts on sys-
tem availability, contributing to 42.9-44.2% of crashes. Ad-
ditionally, it takes a longer time to diagnose and fix semantic
bugs, almost twice as memory bugs. Our results suggest that
more effort should be put into automatically detecting and
diagnosing semantic bugs.

e Our results show that security bugs are increasing signifi-
cantly over time in terms of number and relative percent-
age. Among different root causes of security vulnerabilities,



memory related bugs contribute for only 8.8-17.2% but are
usually severe, while semantic bugs are the dominant cause,
accounting for 71.9-83.9%.

e GUI bugs have become the major ones in graphical interface
software, accounting for 52.7% of bugs in Mozilla, and re-
sulting in 28.8% of all crashes. Furthermore, most GUI bugs
are caused by semantic errors, which indicates that design-
ing good GUI test cases with good coverages is probably the
only way to significantly reduce the number of GUI bugs.

e Concurrency bugs account for a small portion of bug re-
ports, probably because they are underreported. We found
that 55.5% of them cause hangs or crashes, which means that
most of them are benign faults (fail stop) so that most fail-
ures caused by them should be able to recover using simple
generic techniques such as restart or rollback and reexecute.

Overall, our results not only provide software development with
a good understanding about software bugs, but also enlighten bug
detection and recovery techniques, suggesting where effort should
be put into.

2. BUG SOURCES

To discover what has changed now, we study bugs from two large
widely-used new OSS projects, Mozilla and Apache HTTP Server.
Randomly Collecting Bugs In our study, we focus on the charac-
teristics of software errors that manifest at run time, that is, exclud-
ing new feature requests, compile-time errors, configuration errors,
environmental errors, and software maintenance. To ensure correct
classification, we only study fixed runtime bugs whose root causes
can be identified from reports because unfixed bugs may be invalid
and root causes described in the reports can be wrong. In this way,
we randomly select 548 fixed bug reports from the Mozilla Bugzilla
database [4]. As not every report describes a runtime bug, we man-
ually investigate them and narrow down to 264 runtime bugs, and
then classify them manually. We study bug characteristics based on
these manual labeled data, and further use them to train and eval-
uate automatic classifiers for the whole bug database as described
in Section 3.2. Similarly, we randomly select 209 fixed bug reports
from the Apache Bugzilla database [1], and then manually classify
98 runtime bugs. In the rest of this paper, we use the general name
“bugs” to refer to fixed runtime bugs.

Collecting Security Bugs We collect all of the 193 security vul-
nerabilities in Mozilla and all of the 64 in Apache Web Server kept
in National Vulnerability Database (NVD) [5].

3. BUGCLASSIFICATION AND ANALYSIS
3.1 Bug Categories

We classify bugs in three dimensions, Root Cause, Impact and
Software Component. According to root causes, bugs can be clas-
sified into three disjoint categories, Memory, Concurrency, and Se-
mantic, whose definition as well as the definition of impact cate-
gories, is shown in Table 1. Memory bug and semantic bugs are
further classified into sub-categories as shown in table 2. Bugs can
also be classified based on their impacts and software components.
The definition of each category is shown in Table 1.

Classifying Security Vulnerabilities Security vulnerabilities are
manually classified in three dimensions. The root cause dimension
is the same as that of general bugs. Based on impact, vulnerabili-
ties are classified into four categories, confidentiality (unauthorized

disclosure of information), integrity (unauthorized modification),
availability (disruption of service), and access (unauthorized ac-
cess). The third dimension is the NVD severity, which contains
three levels, High, Medium, and Low, as defined in [3].

3.2 Automatic Classification

The whole bug databases contain hundreds of thousands of bug
reports, so it may result in large statistical variances in distribution
analysis by sampling only hundreds of bugs.

To verify the analysis results from the sampled datasets, we pro-
pose a novel method to automatically classify a large number of
bugs, and then study bug characteristics based on such a large dataset.
Specifically, we apply text classification and information retrieval
techniques on the bug reports to automatically classify 29,000 bugs.
Such a large dataset also enables us to perform study on trend. Our
method consists of the following steps:

e Preprocessing In Bugzilla databases, each bug report may
contain the following information: bug ID, summary, time,
status, reporter, assignee, severity, bug description, discus-
sion comments, test cases, attachments, etc. We include most
of the information except time and attachments because time
is irrelevant for our classification, and the major contents in
attachments are source code that is hard for current clas-
sifiers to use. We represent bug documents in word level,
called bag-of-words approach. Each word in bug documents
is parsed into an index. Each bug document is represented
by a vector.

e Training We use the manually-labeled bugs as a training set
to produce classification models for different categories of
bugs. We use several different classifier learning methods,
including support vector machine(SVM) [37], Winnow, Per-
ceptron, and Naive Bayes [33]. We choose the best one based
on their accuracy.

We randomly divide the whole sampling dataset into two
halves: training set for learning and tuning, and test set for
accuracy evaluation. Applying the classification methods on
the training set, we can get several models for different cate-
gories. Since each method has some parameters, we explore
the entire parameter space and use n-fold (n = 5) cross val-
idation [21] to find out the best method with the best pa-
rameter setting based on the accuracy metrics described in
Section 3.2. Additionally, to avoid the errors of accuracy
evaluation caused by tuning, we use only the training set for
tuning and use the test set for accuracy evaluation. Therefore,
the test set does not affect parameter tuning, and so accuracy
evaluation based on the test set could be representative for
the whole dataset.

e Evaluating Accuracy To evaluate how good the classifica-
tion models are, we can measure the prediction accuracy.
Four different types of prediction results are possible from
a binary classifier:

Predicted Class
Yes No
True Positive (7) | False Negative (F_)
False Positive (F7;.) | True Negative (7_)

Actual | Yes
Class No

We use the following metrics to evaluate accuracy:
1. Precision measures the portion of class members predicted
correctly over all instances classified as class members. It is

R
calculated as P = ot



Dimension | Category Description Abbr.
Memory Bugs caused by improper handling of memory objects. Mem
Root Concurrency Bugs that happen only in multi-threading (or multi-processes) environment, in- Con
cluding data race, deadlock, and synchronization.
Cause Semantic Inconsistent with the original design requirements or the programmers” intention. Sem
We consider all bugs as Semantic bugs unless they are already classified as Mem-
ory bugs or Concurrency bugs.
Hang Program keeps running but does not respond. Hang
Crash Program halts abnormally. Crash
Impact Data Corruption Mistakenly change user data. Corrupt
Performance Degradation Functions correctly but runs/responds slowly. Perf
Incorrect Functionality Not behave as expected. Func
Unknown The impact cannot be identified from the bug report. Unknown
Core Bugs related to core functionality implementations. Core
Software GUI Bugs related to graphical user interfaces. GUI
Component| Network Bugs related to network environment and network communication. Network
170 Bugs related to /0 handling. 170

Table 1: Categories of three dimensions. Some categories and definitions are borrowed from BugBench [25]. Impact dimension and Software
Component dimension each has a category called “Others” which contains bugs that can not be classified into the categories above.

Memory Leak Failures to release unused memory. MLK
Uninitialized Memory Read Read memory data before it is initialized. UMR
Memory Dangling Pointer Pointers still keep freed memory addresses. Dangling
Bug NULL Pointer Dereference Dereference of a null pointer. NULL
Overflow 1Megal access beyond the buffer boundary. Overflow
Double Free One memory Tocation is freed twice. 2Free
Missing Features A feature is supposed to be but is not implemented. MissF
Missing Cases A case in a functionality is not implemented. MissC
Corner Cases Some boundary cases are considered incorrectly or ignored. CornerC
Semantic Wrong Control Flow The control flow is incorrectly implemented. CtrIFTow
Bug Exception Handling Do not have proper exception handling. Except
Processing Processing such as evaluation of expressions and equations is incorrect. Process
Typo Typographical mistakes. Typo
Other Wrong Functionality Tm- | Any other semantic bug that does not meet the design requirement. FuncImpl
plementation

Table 2: Subcategories of memory and semantic bugs. Some definitions are borrowed from BugBench [25] and a book [7]. Both Memory Bugs and
Semantic Bugs have a category called “Others” which contains bugs that can not be classified into the categories above.

2. Recall measures the portion of class members predicted
correctly over all actual class members. It is calculated as
Ty
R =
Ty +F_"

3. F'1 is an even combination of precision and recall. It
is defined as F'1 = 24X, When precision and recall are
equally important, F'1 can be used.

For bug classification, the accuracy goal is both of high pre-
cision and recall, so we use F'1 as the accuracy metric in
learning parameter tuning.

e Applying Classification Model After we obtain classifica-
tion models for each category, we apply them on the whole
database to predict which categories a bug probably belongs
to. Specifically, we use the 548 sampled fixed bug reports as
training and test data to learn a model, and apply it on the
whole database to identify runtime bugs. Among all 75,519
fixed bugs in the whole database for Mozilla, 28,928 bugs
are identified as runtime bugs with precision of 89.6% in the
test set. Then the classification model for each bug category
is applied on the 28,928 runtime bugs.

Some bug categories such as concurrency bugs only constitute a
very small percentage of all reported bugs. Therefore, random sam-
pling cannot provide enough data for classifier training. To solve

this problem, we apply information retrieval techniques [22] on the
bug database to retrieve the specific category of bugs.

3.3 Studying the Trend

To study the trend of different categories of bugs, including mem-
ory, concurrency, semantic, and security bugs, we calculate the
number and relative percentage of bugs in each category reported
in each year. Some previous work investigates the trend of bug den-
sity over releases [29], but it does not study the trend of different
categories of bugs. Our analysis method on a large dataset enables
us to study the change of different categories over time.

3.4 Measuring the Correlation

To study the correlation between two categories in different di-
mensions, we use a statistical metric called lift. The lift of category
A; indimension A and category B; in dimension B, lift(A;, B;),
is calculated as %’ where P(A;Bj;) is the probability
that a bug belongs to both category A; and B;. If lift(A;, B;) is
equal to 1, it means P(A;B;) = P(A;)P(Bj), which indicates
that category A; and B; are not correlated. If it is greater than 1,
category A; and Bj; are positively correlated, which means that if
a bug belongs to Aj;, it is more likely to also belongs to B;.
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Figure 1: Distribution of root causes with impacts. The numbers show 95% confidence level.

4. ROOT CAUSE ANALYSIS

We first present the analysis results based on sampled datasets in
Section 4, 5 and 6, and then present the results based on automatic
classification in Section 7 to confirm that the results from sampled
datasets are representative.

In this section, we analyze the root causes of bugs in modern
software and compare our results with those in the previous stud-
ies [35, 36], so that we can understand some important bug charac-
teristic changes.

Figure 1 summarizes the distribution of bugs with different root
causes and their corresponding impacts. From these figures, we can
observe the following:

Memory Bugs Have Decreased. Figure 1(a) shows that mem-
ory bugs account for a relatively small fraction of all bugs, 16.3% in
Mozilla and 12.2% in Apache. These percentages are much lower
than the 28-38% reported in previous work [35, 36]. Since de-
bugging tools are known to help detect/avoid memory bugs, this
reduction probably benefits from using these tools in recent years.

Figure 1(b) shows that among memory bugs, NULL pointer deref-
erence is a major cause, accounting for 37.2-41.7% in the memory
categories, and most of them resulting in a system crash. Memory
leak is another major cause, accounting for 16.7-30.2% of memory
bugs, which is much more than the 8% reported previously [36].
This may be because memory leaks are relatively more difficult
to detect without tools since their impacts may be “silent” within
some time. Since most memory bugs can be detected by the ex-
isting tools such as Purify, Valgrind and Coverity [2], our results
indicate that these debugging tools have not been used in develop-
ment with their full capacity yet.

Semantic Bugs Are Dominant Root Causes. Figure 1(a) shows
that the dominant root causes are semantic errors in both appli-
cations, accounting for 81.1% in Mozilla and 86.7% in Apache.
These results are much more than the 55-66% reported in a pre-
vious study [36] (bugs excluding memory bugs and concurrency
bugs). Therefore, semantic bugs not only remain to be the domi-
nant root causes, but also seem to have become more dominant.

One possible reason may be that most semantic bugs are appli-
cation specific and are different from memory bugs which are gen-
eral for any applications. Thus a programmer can easily introduce
semantic bugs due to a lack of thorough understanding of the sys-
tem, its requirements or its specifications. Additionally, it is harder
to automatically detect semantic bugs because they are more ap-
plication specific. The percentage increase of semantic bugs may
be attributed to the decrease of memory bugs. Further, the previ-
ous work [36] is based on commercial software, while our study is
based on OSS whose specifications are not well defined as commer-

cial software, and hence resulting in more semantic bugs in OSS.

In order to further understand what are the major causes among
semantic bugs, in Figure 1(c), we show the breakdown of seman-
tic bugs into subcategories. We see that most semantic bugs are
caused by wrong functionality implementation that does not meet
the design requirements. In addition, missing features and missing
cases also account for a large portion of semantic bugs, which is
consistent with the previous study [9]. Since knowledge about the
target system is critical for avoiding and detecting such semantic
bugs, these results suggest that it would be beneficial to develop
techniques to automatically extract specifications from programs,
similar to Daikon [15] and our previous work [24].

Interestingly, there are quite a few simple semantic bugs. For
example, typo errors account for 9.4-9.8% of the semantic bugs.
It indicates that careless programming is still causing many bugs,
suggesting that the development environment should provide some
tools for programmers to check for simple errors such as typos and
copy-and-paste related bugs (as our previous work [23] does).

In order to further understand concurrency bugs, instead of ran-
domly sampling, we use information retrieval technique to obtain
possible concurrency bugs; the results are presented in Section 9.

5. IMPACT ANALYSIS

In this section, we study the distribution of impacts and the cor-
relation between impacts and root causes.

Dominant Impacts. Figure 2 summarizes the distribution of dif-
ferent impacts with the corresponding root causes. It shows that in-
correct functionality is the dominant impact; indeed, the percentage
of incorrect functionality is 64.3-69.4%, much larger than the 35%
reported in the previous work [35]. This is because the percentage
of semantic bugs has significantly increased in modern software
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Figure 2: Distribution of impacts



Impact | Memory | Concurrency | Semantic Memory Subcategories Semantic Subcategories

MLK | UMR | NULL | MissF | MissC | CornerC | CtrlFlow | Except | Process | Typo | FuncImpl
Hang 0.77 9.43 0.77 0.00 0.00 2.06 0.00 2.20 0.00 2.36 5.08 0.00 0.00 0.35
Crash 331 0.73 0.55 0.78 3.05 5.08 0.22 0.68 1.13 0.73 1.95 0.00 0.73 0.38
Func. 0.11 0.65 1.19 0.23 0.30 0.00 1.31 1.31 1.01 1.08 0.70 121 0.86 1.33

Table 3: Correlation between root causes and impacts in Mozilla. Categories with too few examples are not shown due to statistical insignificance.

Component | Memory | Concurrency | Semantic || MLK | UMR | NULL [| MissF | MissC | CornerC | CtrIFlow | Except | Process | Typo | Funcimpl
Core 1.84 1.06 0.83 1711197 | 1.85 || 0.75 | 0.99 0.82 1.06 1.14 0.99 [0.35 0.81
GUI 0.31 1.09 1.14 029]038] 036 || 1.32 | 1.01 1.06 0.81 0.73 114 [1.45 1.15

Table 4: Correlation (lift) between root causes and software components in Mozilla.

and most of them cause incorrect functionality as shown in Fig-
ure 1(a).

In contrast, because memory bugs have decreased substantially,
the severe impacts on availability, including crashes and hangs,
have also been reduced to 18.4-22.0%. However, although the per-
centage of these impacts is reduced, they still account for a consid-
erable portion and can significantly compromise availability. Thus,
recovery techniques are still needed to provide highly available ser-
vices.

Correlations Between Causes and Impacts. Figure 2 also shows
that the major cause of crashes is memory bugs, accounting for
53.8-57.1%, which is similar to what has been found in the pre-
vious work [35]. Semantic bugs are clearly more likely to cause
incorrect functionality, accounting for 96.6-98.5%, which is also
consistent with the previous studies. However, among the crashes,
42.9-44.2% are contributed from semantic bugs, which is higher
than that reported in the previous work [35]. It indicates that al-
though most semantic bugs result in incorrect functionality, they
are also one of the important factors of unavailability.

In order to further understand the correlation between causes and
impacts, we show the correlation metric /ift in Table 3. Not surpris-
ingly, here we see that hanging has an extremely strong correlation
with concurrency bugs, while crashing has a strong correlation with
memory bugs. The (incorrect) functionality impact has a relatively
strong correlation with semantic bugs, though no specific subcate-
gory of semantic bug has an exceptionally high correlation. Inter-
estingly, although semantic bugs are overall negatively correlated
with crashing and hanging, some specific semantic bugs are posi-
tively correlated with them.

6. BUGS IN DIFFERENT COMPONENTS

In this section, we study where the dominant bugs are located
in software components, including core, GUI, network, 1/O, and
others. To the best of our knowledge, there is no previous work
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Figure 3: Distribution of bugs in software components

on studying bug characteristics from this perspective. Since the
modern software tends to emphasize friendly user interfaces, we
are particularly interested in studying characteristics of GUI bugs.
Due to the lags of GUI testing techniques, we believe that charac-
terization of GUI bugs is very important.

Bug distribution in software components Figure 3 shows the
distribution of bugs within different components and their impacts.
As we can see, GUI modules are critical for software reliability in
modern graphical interface software, such as Mozilla. GUI mod-
ules account for more than half of bugs in Mozilla and also cause
around 30% of Mozilla crashes. Unfortunately, GUI testing tech-
niques still lag far behind now. Future research should pay more
attention to GUI related testing and debugging.

Root causes of GUI bugs The correlations between software
components and root causes for Mozilla are shown in Table 4. In-
terestingly, the results indicate that bugs within GUI and core mod-
ules have quite different root causes. The major root cause of bugs
in core modules is memory related, while that of GUI bugs is se-
mantic and concurrency bugs. Such difference is likely because
the GUI modules and their development process are quite different
from other modules. Further, GUI bugs are correlated to the sub-
categories of missing features and other wrong functionality imple-
mentation that are application specific. The results indicate that the
existing debugging tools aiming at memory bugs are unsuitable for
GUI bugs, while study on application-specific semantic bugs can
be helpful.

7. AUTOMATIC CLASSIFICATION

This section presents our preliminary results with automatic clas-
sification on Mozilla so that we can confirm that the results of dis-
tribution based on the sampled bugs in previous sections are repre-
sentative. Currently we are still improving the classification accu-
racy by exploiting higher level information to represent documents
and optimizing the queries in information retrieval for small cate-
gories as described in Section 3.2.

Distribution of Root Causes. Table 5 shows the distribution of
bugs with different root causes. Compared with the results using
sampled bugs in Section 4, the percentage of memory and semantic
bugs are similar, which indicates that the distribution results based
on sampled bugs and a large dataset are consistent.

Trend of Root Causes. In order to understand the trend of bug
distribution along software evolution, we plot the relative percent-

Cause Percentage Classification Accuracy
Precision | Recall F1
Memory 13.2% 0.736 0.929 | 0.821
Semantic 78.0% 0.874 0.954 | 0.912

Table 5: Distribution of root causes based on automatic classification.
Precision, recall, and F1 are defined in Section 3.2.
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Figure 4: Trend of bugs with different root causes

Impact Percentage Classification Accuracy
Precision | Recall F1
Hang 2.5% 0.714 0.833 | 0.769
Crash 13.0% 0.852 0.852 | 0.852
Data corruption 1.8% 0.400 1.00 0.571
Performance degradation 2.2% 0.500 0.500 | 0.500
Incorrect Functionality 75.2% 0.860 0.909 | 0.884

Table 6: Distribution of impacts based on automatic classification.

ages of memory and semantic bugs in Figure 4. Although software
becomes mature and stable, semantic bugs that are specific to ap-
plications still remain dominant. Semantic bugs increase gradually
with the maturity of software, while memory bugs decrease grad-
ually. However, both types have not changed too much, compared
with concurrency bugs that are decreasing significantly (Section 9).
Bug detection tools such as Purify only affect the relative percent-
age of memory bugs a little during this period, because they had
become available before 1999 and are used during these years.

Distribution of Impacts. Table 6 shows the distribution of bugs
with different impacts. Compared with the results using sampled
bugs in Section 4, the distribution is similar.

8. SECURITY RELATED BUGS

Security is becoming increasingly important recently. However,
previous work has not addressed how software errors affect secu-
rity. To study the security related bugs, we collect 193 security
vulnerabilities in Mozilla and 64 in Apache HTTP Server from
NVD [5]. In this section we would like to understand (1) whether
security bugs are increasing, and (2) what types of bugs cause vul-
nerability.

Are Security Related Bugs Increasing? Figure 5(a) shows
the numbers of vulnerabilities along time. We also normalize the
numbers to relative percentage by comparing with the total fixed
bugs reported in Bugzilla during the corresponding year. The trend
shows that the numbers of vulnerabilities are increasing for both
Mozilla and Apache. Although there are some exceptional points
in some years, such as Mozilla in 2003 2, the normalized percent-
ages are increasing significantly over the recent years. It demon-
strates that security issue is becoming increasingly important for
both client and server software.

What Types of Bugs Lead to Vulnerabilities? Figure 5(b)
shows the distribution of root causes and severity for security bugs.
Surprisingly, memory bugs account for only 8.8-17.2%, while se-
mantic bugs cause 71.9-83.9% of vulnerabilities. This finding is
against the belief that buffer overflows are the most common form
of security vulnerability [13]. The reason may be that most buffer
overflows have been detected and fixed before release due to the
available debugging tools recently.

The different distribution of impacts for Mozilla and Apache

2Data in 2005 only contain bug reports until July.

shown in Figure 5(c) indicates that vulnerabilities have different
impacts on client and server systems. For client systems, most se-
curity bugs result in unauthorized accesses, while for Apache Web
Server, both availability and unauthorized accesses are the major
vulnerabilities.

Cause Severity Impact

High [Medium| Low [Confidentiality] Integrity [Availability] Access

Mem [1.80/1.62]0.55/2.91]0.00/0.31] 0.00/0.00 0.00/0.65] 3.01/1.29 [1.31/2.22

Con [0.00/0.001.65/8.00{2.51/0.00] 6.40/4.92 [0.00/7.11] 0.00/0.00 |0.00/0.00

Sem [0.87/0.85|1.09/0.52{1.14/1.17] 1.11/1.18 [1.19/1.08] 0.85/0.93 |0.92/0.73

Others|0.58/1.19{1.27/0.00{1.94/1.12| 1.65/0.82 |1.82/0.00| 0.00/1.19 |0.59/0.00

Table 7: Correlation (Iift) between root causes and severity/impacts
for security related bugs. The first number is for Mozilla, and the sec-
ond one is for Apache Web Server.

The correlation metric lift shown in Table 7 indicates that mem-
ory bugs are more severe than the other types of bugs, and they are
likely to cause unavailability and unauthorized accesses because
systems can be intruded by exploiting buffer overflows [6]. Thus
besides reducing the number of buffer overflows in source code
using bug detection tools, it is also important to prevent attackers
from exploiting them. StackGuard [12] is such a tool that can pro-
tect against stack smash attacks. In addition, semantic bugs are less
severe than memory bugs, and are likely to cause confidentiality
and integrity problems.

9. CONCURRENCY BUGS

Because concurrency bugs account for only a small portion in
bug report databases, it is difficult to study their characteristics by
randomly sampling hundreds of bug reports. For example, Chan-
dra and Chen collected only 12 transient bugs in their study [8]. To
this end, we use information retrieval techniques to obtain potential
concurrency bugs, and then manually verify these potential concur-
rency bugs. In this way, we have collected 90 concurrency bugs
from the top of retrieval results for Mozilla. The larger available
dataset allows us to study the characteristics of concurrency bugs,
which has never been done before.

Are Concurrency Bugs Increasing? Figure 6(a) shows the
changes of concurrency bugs over time in Mozilla. Unexpectedly,
the number of concurrency bugs increased only in the first two
years (1999-2000) but sharply decreased later. To show the rel-
ative percentage, we normalize the number by all fixed bugs in the
corresponding year (which is not absolute percentage because we
only collect part of concurrency bugs). The relative percentage has
the same trend except in 2005. The number and relative percentage
of concurrency bugs increased, and then decreased as the software
became stable, which is different from the trend of memory and
semantic bugs shown in Figure 4.

However, the previous studies [8, 18] indicated the perception
that the relative percentage of Heisenbugs (transient bugs) should
increase when the software becomes stable because the other non-
transient bugs are fixed but the transient bugs are still remaining in
the software. Our finding about the trend of concurrency bugs does
not follow this perception. A possible explanation is that the hard-
to-reproduce concurrency bugs are underreported. Before the soft-
ware became stable (the first two years), most of the concurrency
bugs that could be easily reproduced were reported and fixed, and
the other concurrency bugs that were difficult to reproduce were not
reported and remained in software. When we verified the concur-
rency bugs, we found that most of them could not be reproduced by
developers with an acceptable probability, say more than once out
of ten times. Therefore, when the software became stable, even
though the software still contained many concurrency bugs, the
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Figure 6: Concurrency bugs in Mozilla. Data in 2005 only con-
tain bug reports until July.

failures caused by them were unlikely to be reported by users or
to be fixed by developers because they were difficult to reproduce.

What Are the Impacts from Concurrency Bugs? Figure 6(b)
shows the distribution of impacts from concurrency bugs. Com-
pared with all bugs shown in Figure 2, concurrency bugs can cause
much more severe impacts on systems, which is consistent with
previous work [36]. Specifically, 42.2% of concurrency bugs can
cause hanging due to synchronization errors and deadlocks, 10 times
higher than all bugs. Further, 55.5% of concurrency bugs lead to
fail-stop failures (crashes and hangs), which can be detected and
recovered by generic recovery techniques.

10. RELATED WORK

Many efforts have been made to study fault related character-
istics of large software systems [8, 10, 16, 19, 28, 29, 30, 32, 36].
They show important results and have also identified some counter-
intuitive findings. By analyzing the error type, defect type and
error trigger distribution for shipped code of three IBM software
systems, Sullivan and Chillarege [36] found that memory bugs are
a major type and can have high impact. Chandra and Chen [8]
showed that only 5-14% of faults are triggered by transient con-
ditions in release software, which is against the intuition that tran-
sient bugs are more difficult to reproduce and hence to fix so that
most bugs left in release software should be transient. Ostrand
and Weyuker [29] found that the majority of post-release faults oc-
curred in files that had no pre-release faults. This observation con-
tradicts the conventional wisdom and suggest most testing efforts
for post-release software be put on previous fault-free or less-faulty
parts instead of most faulty parts.

11. CONCLUSION

This paper investigates the impacts of new factors on software
errors and studies the bug characteristics in two large modern OSS
projects. We manually collect 709 bugs, including 362 randomly
sampled bugs, 257 security related bugs from NVD, and 90 concur-
rency bugs. We then classify bugs from different dimensions (root
causes, impacts and software components) and study the correla-
tion between categories in different dimensions. Additionally, we
use text classification and information retrieval techniques to auto-
matically classify tens of thousands of bugs so that we can verify
the analysis results from sampled datasets and perform more rep-
resentative study on bug trend. Our study found several new in-
teresting bug characteristics in modern OSS that can provide useful
guidelines for related research.
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