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Abstract
Fixing software bugs has always been an important and time-
consuming process in software development. Fixing concurrency
bugs has become especially critical in the multicore era. How-
ever, fixing concurrency bugs is challenging, in part due to non-
deterministic failures and tricky parallel reasoning. Beyond correctly
fixing the original problem in the software, a good patch should also
avoid introducing new bugs, degrading performance unnecessarily,
or damaging software readability. Existing tools cannot automate
the whole fixing process and provide good-quality patches.

We present AFix, a tool that automates the whole process
of fixing one common type of concurrency bug: single-variable
atomicity violations. AFix starts from the bug reports of existing bug-
detection tools. It augments these with static analysis to construct
a suitable patch for each bug report. It further tries to combine the
patches of multiple bugs for better performance and code readability.
Finally, AFix’s run-time component provides testing customized
for each patch. Our evaluation shows that patches automatically
generated by AFix correctly eliminate six out of eight real-world
bugs and significantly decrease the failure probability in the other
two cases. AFix patches never introduce new bugs and usually have
similar performance to manually-designed patches.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.5 [Software Engineering]:
Testing and Debugging; D.4.1 [Operating Systems]: Process Man-
agement

General Terms Algorithms, Experimentation, Languages, Mea-
surement, Performance, Reliability, Verification

Keywords atomicity violations, automated debugging, concur-
rency, critical regions, deadlock, mutex locks, mutual exclusion,
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Thread 1
1 void buf write(. . .) {
2 int tmp = buf len + str len;
3 if (tmp > MAX)
4 return;
5
6 memcpy(buf[buf len],
7 str, str len);
8 buf len = tmp;
9 }

Thread 2
1void buf write(. . .) {
2int tmp = buf len + str len;
3if (tmp > MAX)
4return;
5
6memcpy(buf[buf len],
7str, str len);
8buf len = tmp;
9}

Figure 1. Real-world concurrency bug from Apache. Interleaving
“ ” could cause crash. Interleaving “ ” could corrupt the log.

1. Introduction
1.1 Motivation
Bug fixing is an indispensable part of software development. It
requires developers to understand a bug’s root cause, design a patch,
implement the patch, and finally validate the patch. This process
consumes a huge amount of resources, especially manual effort,
during software development. Krebs [15] finds that it frequently
takes more than one month to finish the fixing process for one bug.
Meanwhile, there are endless bugs waiting to be fixed. Software
companies such as Microsoft face pressure to release patches
monthly or even more frequently [24]. Furthermore, patches are
error-prone. Even after consuming so many development resources,
nearly 70% of patches are buggy in their first release [7, 31, 33],
often at great financial cost [27]. Self-healing software that fixes its
own bugs has long been desired but is yet unrealized [11]. The need
for automatic repair techniques remains for concurrency bugs.

Concurrency bugs are synchronization mistakes in multithreaded
programs. They are widespread due to software developers’ se-
quential thinking habits. Concurrency bugs have already caused
real-world disasters [29]. In the current multi-core era, with mul-
tithreaded software becoming pervasive, concurrency bugs are a
growing threat to software reliability.

Many advanced techniques have been proposed for bug detection,
software testing, and verification to help identify concurrency bugs
[9, 25, 37]. However, software reliability does not improve until
detected bugs are actually fixed. Unfortunately, fixing concurrency
bugs is not trivial and developers are left to themselves to face the
enormous pressure of fixing ever-so-many concurrency bugs.

Figure 1 shows an example of a real-world concurrency bug. Ex-
isting bug detectors [5, 25, 37] can accurately report two problematic
atomicity violations: (1) when lines 2 and 6 are interleaved ( )
by line 8, Apache could crash; and (2) when lines 6 and 8 are inter-
leaved ( ) by line 8, Apache could corrupt its log. Unfortunately,
even with accurate bug detection, bug fixing is nontrivial:
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• To fix the first report, if we simply lock before line 2 and unlock
after line 6, the program could deadlock after buf write exits at
line 4.

• To fix the second report, we should not simply put lines 6–8 and
line 8 each into one critical region. As line 8 is part of the critical
region for lines 6–8, this would lead to deadlock again.

• Two patches that separately fix the above two atomicity viola-
tions could deadlock among each other: one thread acquires the
first patch’s lock at line 2 and waits for the second patch’s lock
before line 6; a different thread acquires the second patch’s lock
at line 6 and waits for the first patch’s lock before line 8.

Generally speaking, developers face several unique challenges to
generate good patches for concurrency bugs. First, concurrency bugs
pose unique challenges in understanding their root causes. Their
non-determinism makes manual inspection difficult. In addition,
understanding their root causes demands non-local and parallel
thinking. Even with the help of tools for bug detection [4, 12],
failure diagnosis [26], and failure replay [39, 42], it is still non-
trivial to understand how to fix a bug’s root cause. As a result, it is
common that patches released by developers fail to (completely) fix
the original concurrency bug. This happened for two of the eight
real-world concurrency bugs used in our experimental evaluation.

Second, patches to concurrency bugs often involve synchroniza-
tion operations that have non-local impact. As a result, these patches
can easily introduce additional bugs, such as deadlocks and data
races. As a notorious example, the patch to Mozilla concurrency
bug #54743 led to new concurrency bugs in the field. Patches for
the latter caused further problems, which took more than one year
to finally fix [14].

Third, patches to concurrency bugs often constrain program
interleavings or introduce serialization bottlenecks, which could
cause unexpected and unnecessary performance degradation.

Because of these challenges, long repair times and wrong patches
are common for concurrency bugs [20]. Future programming lan-
guages may eventually help developers avoid some of these concur-
rency bugs. For now, though, software developers are in great need
of immediate support for automatic repair of concurrency bugs.

1.2 Contributions
In this paper, we build a system, AFix, that automates the whole
process of fixing one common type of concurrency bug: single-
variable atomicity violations [9, 19, 20, 25, 37]. AFix leverages
existing techniques for bug detection and interleaving testing to
bootstrap its fixing process. It uses static analysis and static code
transformation to automatically design and implement code patches.
It further incorporates run-time monitoring to help developers
validate and evaluate each patch it generates.

The design of AFix focuses on the challenges encountered by
developers in their manual patching process. Specifically, AFix
tries to fix the original bug without introducing new functionality
problems, degrading performance excessively, or harming code
readability.

Guided by these goals, AFix automates a developer’s typical bug
fixing process. The first step is bug understanding. AFix discovers
single-variable atomicity violations using CTrigger [25], an existing
bug-detection and testing tool which we review further in Section 2.

The second step is patching one bug. AFix maps the dynamically-
based bug report to static code structures. It conducts static analysis
and static code transformation to fix one problem. Correctness issues
are thoroughly analyzed in this step, which we discuss in Section 3.

The third step is patch merging and optimization for a set of
bugs. AFix collects the patches for each bug report together and
statically identifies patches that can be merged or optimized for
better performance or readability. This step is addressed in Section 4.

The fourth step is patch testing. AFix conducts testing and run-
time analysis customized for each patch. Testing checks whether the
original problem has been fixed and looks for new problems. The
low-overhead run-time analysis targets correctness and performance
properties that cannot be statically guaranteed or optimized in
preceding steps. It provides the developers an option to compare
and refine patches. We discuss this step in detail in Section 5.

Overall, this paper makes the following contributions:

• AFix makes a first step in automating the whole process of
fixing one common type of concurrency bug. AFix can save
developers’ manual bug fixing effort by automatically generating
patches or patch candidates for concurrency bugs detected
during in-house testing or for concurrency failures discovered
during production runs. AFix can also help address some tough
challenges that usually bother developers. For example, AFix
can avoid generating buggy patches. AFix’s run-time analysis
also helps developers conduct customized patch testing and
evaluation.

• Our experience of applying AFix discovers several limitations
of state-of-art bug detectors regarding helping bug diagnosis
and bug fixing, such as not grouping bugs with the same root
cause together and reporting incorrect root causes. We expect
this experience to help guide future research in bug detection.

• We evaluate AFix on eight real-world concurrency bugs, with
promising results. AFix correctly fixes six out of eight reported
bugs. For the remaining two bugs, where the root causes were
incorrectly reported by CTrigger, AFix patches significantly
decrease failure rates. AFix patches also have good readability
based on our manual inspection and do not introduce any new
bugs. In comparison, naı̈ve patches cannot fix any of these bugs,
and cause deadlocks in seven out of eight cases. Even the original
developers made mistakes in fixing two of these eight bugs. AFix
patches also show good performance. Software patched by AFix
is less than 1% slower than the original buggy software for all
but one case.

2. Background: Bug Detection Using CTrigger
AFix is a bug fixer, not a bug finder. It depends on problem reports
from existing bug-detection tools to guide its repairs. The high-level
ideas in AFix are general to all atomicity-violation detectors, but
the lower-level details are tuned to the specific bug finder used. This
section briefly describes CTrigger: the specific concurrency-bug
detector and tester used by our current AFix implementation.

2.1 CTrigger General Operation
CTrigger is an in-house concurrency-bug detection and testing
framework [25] that targets single-variable atomicity-violation bugs.
As shown in Figure 2, when two consecutive accesses that read or
write the same shared variable from the same thread are interleaved
by another access from a different thread, their execution effect
may be different from any serial execution, in which case a single-
variable atomicity-violation bug has occurred. An empirical study
by Lu et al. [20] finds that single-variable atomicity-violation bugs
are one of the most common types of concurrency bug in real code.

CTrigger includes a detection phase and a testing phase. Dur-
ing its detection phase, CTrigger monitors a few executions of the
concurrent program, predicts what single-variable atomicity viola-
tions could happen in the future under the same input, and outputs
the instruction counters for the three instructions involved in each
atomicity violation. These three instructions are referred to as p
(preceding), c (current), and r (remote), as shown in Figure 2. In its
testing phase, CTrigger tries to force each atomicity violation iden-
tified above by injecting delays at selected points. If an atomicity
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Figure 2. Types of atomicity violations that CTrigger detects. “ ”
shows execution order. “x” is a shared memory location.

violation occurs and the program execution fails, CTrigger reports
the involved (p,c,r) triple. At the end, a list of atomicity violations
that can truly harm the software are reported.

In this project, we use CTrigger bug reports to drive AFix. We
will discuss how to extend AFix for general atomicity-violation
bugs in Section 3.7. In remainder of this paper, when we talk
about atomicity violations, by default, we mean the type of single-
variable bugs reported by CTrigger. We continue to use p, c, and r to
represent the three instructions involved in each atomicity violation,
as shown in Figure 2.

2.2 CTrigger Modifications and Limitations
During the design and evaluation of AFix, we modified two aspects
of CTrigger to better drive automated bug fixing. First, the original
CTrigger only reports one (p,c,r) triple for each distinct c instruc-
tion, to simplify its design. This is probably a good decision for
bug detection, but not a good one for bug fixing, because it leads
to incomplete patches. We modified CTrigger to output all possible
combinations. Second, the original CTrigger only reports instruc-

tion counters for (p,c,r), which again is problematic in bug fixing,
especially when p and c are inside different functions (discussed in
Section 3). Therefore, we modified CTrigger to report the complete
call stack for each p, c, or r.

AFix can be no wiser than the bug detector which drives its
fixes. Our CTrigger-based implementation of AFix, then, is affected
by a few other features of CTrigger. For the most part these are
not peculiar to CTrigger, though, but rather are shared with other
concurrency-bug detection and testing tools.

First, separate CTrigger bugs sometimes should not be fixed by
separate patches. We discuss this further in Section 4.

Second, CTrigger might detect an atomicity violation that is a
side effect of another non-atomicity-violation bug. As a result, no
matter how well AFix fixes the reported CTrigger bug, the software
failure may still occur. We discuss this further in Section 6.

2.3 A Naı̈ve Fixing Scheme
Given one CTrigger bug report, a naı̈ve patch is to acquire some lock
before p and r, then release the same lock after c and r. As shown
in Figure 1, for many real-world bugs, this naı̈ve patch would cause
problems, such as introducing new bugs, introducing significant and
unnecessary performance degradation, and hurting code readability.
We have implemented this naı̈ve fixing scheme and compare it with
AFix using real-world bugs in Section 6.

3. Fixing One Bug Report
This section describes how AFix fixes a single atomicity violation
detected by CTrigger. The next section will discuss how to fix
multiple violations together.

3.1 Overview
As discussed in Section 2.1, a single CTrigger bug report identifies
an instruction r that may non-serializably interleave two other
instructions p and c, thereby causing failure. Fixing this bug requires
changing the code to ensure that the code region from p to c is
mutually exclusive with r. AFix performs this change in four steps:

1. Put p and c into a critical region. The challenge here is to
guarantee that p and c are inside one critical region under all
possible control flows, without introducing new bugs. Potential
new bugs to avoid include double lock, double unlock, unlock
without lock, deadlocks, and others shown in Figure 3. We
describe how AFix handles this step in Sections 3.2 to 3.4.

2. Put r into another critical region. This step can be easily done by
adding a lock-acquisition operation before r and a lock-release
operation after r.

3. Make the above two regions mutually exclusive with respect to
each other. This step involves more than just assigning the same
lock to both critical sections. We discuss hidden traps and how
to avoid them in Section 3.5.

4. Select or introduce a lock to protect the two critical regions.
Section 3.6 discusses how a lock is chosen.

3.2 Single-Function Operation
We start with an algorithm that decides where to acquire and release
locks when p and c reside in the same function. We further assume
that this function is not recursive. Under these restrictions, the
algorithm follows a natural strategy: find all nodes that are on any
path from p to c, and make sure a lock is held at exactly these nodes.

To implement this strategy, AFix first analyzes the control-flow
graph to get the set of CFG nodes that are on any intraprocedural
path that starts from p and ends at c without touching p or c in



lock;
if (gPtr) {

puts(gPtr);
unlock;

} else {
. . .

}

p

c

(a) Unreleased lock; potential deadlock later

while (. . .) {
lock;
ptr = aPtr;

}
puts(ptr);
unlock;

p

c

(b) Potential double lock or unlock without
lock

void foo() {
lock;
ptr = aPtr;
if (. . .) foo();
puts(ptr);
unlock;

}

p

p

c

c

(c) Potential double lock

Figure 3. Traps in bug fixing. Lock and unlock operations have been placed before and after each p and c node, respectively.

lock;
if (gPtr) {

puts(gPtr);
unlock;

} else {
unlock;
. . .

}

p

c

(a) Added unlock avoids unreleased lock

lock;
while (. . .) {

ptr = aPtr;
}
puts(ptr);
unlock;

p

c

(b) Moved lock avoids double lock or unlock
without lock

void foo() {
reentrant lock;
ptr = aPtr;
if (. . .) foo();
puts(ptr);
reentrant unlock;

}

p

p

c

c

(c) Reentrant lock avoids double lock

Figure 4. AFix’s handling of traps from Figure 3. Shaded nodes comprise the p–c critical region.

between.1 We refer to this set of nodes as the protected nodes: these
are the nodes which will be included in the critical region. The
protected nodes may be computed as follows:

1. Search forward from p (either depth- or breadth-first) without
ever crossing beyond c. That is, temporarily treat c as having
no successors for purposes of this search. Call this set of all
forward-reachable nodes P.

2. Search backward from c (either depth- or breadth-first) without
ever crossing beyond p. That is, temporarily treat p as having
no predecessors for purposes of this search. Call this set of all
backward-reachable nodes C.

3. The protected nodes are P∩C. This is the set of nodes that are
reachable from p, and from which c can be reached, without
additional crossings through p or c along the way.

It is not difficult to prove that this algorithm correctly identifies
the protected nodes which must form a critical region. Any node in
P must be reachable from p without crossing any successor edge
of c. Conversely, any node in C must be able to reach c without
crossing any predecessor edge of p. Therefore, any node in P∩C
must be along a p–c path in which p and c respectively appear only
first and last, never as intermediate nodes.

Each depth- or breadth-first search requires time at most linear
in the number of nodes and edges. Computing the intersection is

1 No p or c in between is because CTrigger is designed to report atomicity
violations between two consecutive memory accesses to the same variable.

likewise at most linear in the number of nodes. Therefore the entire
algorithm to identify protected nodes is at most linear in the number
of nodes and edges in the CFG for the function containing p and c.

Next, AFix inserts lock-acquisition operations on each edge that
crosses from an unprotected node to a protected node, and inserts
lock-release operations on each edge that crosses from a protected
node to an unprotected one.2

Figure 4 shows the result of applying this approach to the traps
from Figure 3. AFix avoids the first trap by inserting a lock release
operation for the else clause, and avoids the second one by moving
the lock acquisition operation out of the for loop. Handling the third
trap requires additional analysis (Section 3.3).

AFix patches thus guarantee two important properties. First, the
lock is not held at any unprotected nodes, because it is released
whenever execution crosses from protected nodes to unprotected
nodes. Second, the lock is held at every protected node, including
p and c, because it is acquired whenever execution crosses from
unprotected nodes to protected nodes. These two properties help
us answer the following questions regarding the suitability of the
above critical region as part of a bug fix:

Are p and c inside the critical region on all paths? Yes, they are.
Given any path that goes from p to c, every node on that path must
be in the protected node set. The lock is always held throughout any
execution along any such path.

2 In practice, to place code “on” an edge from x to y, create a new node n
and replace the x→ y edge with two edges: x→ n and n→ y. Code intended
to appear on the original x→ y edge is placed in the newly-created node n.



Can the added code introduce double-lock bugs? No, it cannot.
AFix only acquires locks on an edge that crosses from an unprotected
node to a protected node. Since the lock is not held at unprotected
nodes, double-lock bugs never occur in AFix patches. By contrast,
the naı̈ve fix suggested in Section 2.3 would easily lead to double-
lock problems, as shown in Figure 3b.

Can the added code introduce double-unlock or unlock-before-
lock bugs? No, it cannot. AFix only releases locks on an edge
that crosses from a protected node to an unprotected node. Since
the lock is held at protected nodes, double-unlock or unlock-before-
lock bugs never occur in AFix patches. By contrast, the naı̈ve fix
suggested in Section 2.3 would easily lead to problems in scenarios
like Figure 3b when the while-loop condition is initially false.

Can the added code introduce new data races? No, it cannot. The
patch does not introduce any new interleavings into the program.
Possible thread schedules in the patched program must be a subset
of those that were already possible in the original program.

Can the added code introduce new deadlocks? This is a much
tougher question to answer. In general, it is impractical to prove
a C/C++ programs deadlock-free. We address this risk using a
mixture of static analysis (Section 3.3) and dynamic monitoring
(Section 5.1).

Is this the best policy? There could be other policies to decide
where to add locks and unlocks in order to protect p and c. We
have designed and implemented several other schemes. Some of
them generate smaller critical regions than the current AFix does for
some special control flow structures. We prefer to use the current
AFix algorithm presented above, because it has a huge advantage
in simplicity. It is far easier to reason about and has better compos-
ability in the interprocedural case than other schemes. The patches
generated by it also always have good readability. Furthermore, our
experiments never observe any excessive performance degradation
caused by the current AFix algorithm.

3.3 Deadlock Analysis and Avoidance
AFix statically analyzes each critical region to determine whether
it includes any potentially-blocking operations. These operations
include lock-acquisitions, condition-wait operations, barriers, thread
join operations, and some ad-hoc synchronizations like spin loops.
The first few of these are easy to identify. To identify ad-hoc spin
loops, AFix checks whether there is loop inside the critical region,
and whether heap or global variables are accessed inside the loop.
If any such loop exists, we conservatively assume that it might
constitute an ad-hoc spin loop. This could be made more precise in
the future [35, 41], but is sufficient for AFix’s current needs.

If this analysis finds no potentially-blocking operations within
the critical region, then there is no risk of deadlock and AFix
uses standard pthread mutex lock calls to acquire locks. This is
the case for AFix’s handling of the first two traps as shown in
Figures 4a and 4b. If potentially-blocking operations are found, then
deadlock is a real risk. In this case, AFix instead acquires locks
using pthread mutex timedlock: this will time out if it is unable to
acquire the lock after some maximum delay. AFix’s run-time system
monitors each timed lock in the patch to identify when our attempted
fix has actually introduced a circular wait. This information can help
developers refine AFix patches. We discuss this further in Section 5.

Currently, we set the time-out delay to a relatively large value:
ten seconds by default. The only disadvantage of long time-out
limits is longer latency in discovering any deadlocks that do arise.

One subtle issue that is not covered above is recursion. As
shown in Figure 3c, double lock/unlock and deadlocks could arise
in the case of recursive calls. AFix identifies all such cases using a
simple reachability analysis of the static call graph. When recursion

void newlog()
{
. . .
close();
open();
. . .

}

void close() {
. . .

p: log = CLOSE;
}

void open() {
. . .

c: log = OPEN;
}

void insert() {
. . .

r: if (log == OPEN)
logwrite(. . .);

. . .
}

Figure 5. Atomicity violation in MySQL. When r executes between
p and c, the database log drops an “insert” log entry.

is possible, we use reentrant (a.k.a. counted or nested) locks. In
all other cases, we use non-reentrant locks as these can be faster.
AFix implements reentrant locks by associating a mutex.count
counter and a mutex.owner thread-ID with each reentrant lock
mutex. mutex.owner records the thread-ID of the lock’s current
owner, and mutex.count records the current nesting level in the
owner thread. AFix uses reentrant locks in all scenarios when an
AFix-added critical region could be called by another AFix-added
critical region using the same lock. Figure 4c shows how AFix
handles the third trap using a reentrant lock.

3.4 Multiple-Function Operation
AFix’s task is more complicated when p and c come from different
functions. This is not unusual; Figure 5 shows one example taken
from MySQL.

We could use interprocedural analysis in computing the pro-
tected node set. For example, context-free language reachability
can describe the interprocedurally-valid paths from p to c with only
non–p-or-c nodes in between. However, it is generally considered
taboo to put matched lock and unlock operations in distinct functions
due to the poor composability of locks. Examination of manually-
designed patches shows that programmers usually add each atomic
region’s lock acquire and release statements inside the same func-
tion. We comply with this practice by adopting an intraprocedural
approach that starts and ends each newly-added atomic region inside
one function.

The extention to the basic algorithm is inspired by the manual
approach a developer might take: study the calling contexts of p and
c, find a single common function through which both p and c are
reached, and add the critical region to this function. For example,
for the bug shown in Figure 5, function newlog is a suitable home
for the p–c critical region.

To carry out the above design, we modify the original CTrigger
bug detection tool to output the complete call stack for each
atomicity violation. AFix compares the call stacks of p and c, and
identifies the last (innermost) function f on the common prefix of
the two call-stack chains. If p is not already directly in f , then we
find the call node in f that eventually leads to p in the CTrigger
bug report. We treat this call node as the p node to be protected.
Similarly, we replace c with the call node in f that eventually reaches
c. After performing these substitutions, the new p and c must both be
contained within f , and AFix proceeds as described in Section 3.2.

3.5 Harmonizing Two Critical Regions
The process described above yields a critical region protecting all
paths from p to c, guarded by some lock. A second critical region is
created by acquiring and releasing the same lock immediately before
and after r. However, this alone is not enough: some additional
analysis is needed to harmonize these two critical regions so that
they cooperate without introducing new bugs.



AFix first checks whether these two critical regions overlap. Let
f be the function containing both p and c, possibly after performing
the substitutions in Section 3.4. If f does not appear on CTrigger’s
call stack for r, then the two regions do not overlap and no additional
work is needed. If r appears directly within f , then the two regions
overlap if r is actually in the set of protected nodes computed earlier.
If r is not directly in f but f does appear in the call stack leading
to r, then identify the specific call node in f that leads to r, and
check whether this call node is in the protected set. Recursion can
lead to multiple f on the call chain. Handling this requires a minor
extension that if any of the calls in f which lead to r are themselves
inside the p–c critical region, then the lock operations protecting
r are redundant and may be removed. Recall that AFix is working
with each specific dynamic stack trace reported by AFix’s front-
end bug detector. Therefore, AFix knows the exact call instructions
along the call chain, which makes the identification easy.

In all cases, the effect is to determine whether reaching r in
the stack configuration reported by CTrigger necessarily implies
already being inside the p–c critical region. If it does, then the lock
operations around r are redundant, and may simply be removed.
Otherwise, the lock operations around r are retained.

For example, consider the (line 6, line 8, line 8) atomicity
violation depicted in Figure 1. A naı̈ve patch will put lines 6–8
inside one critical region and line 8 inside another. AFix removes
the redundant critical region around line 8.

Note that we do not guarantee that there is no other way to reach
r; we only promise to protect r when reached in the specific stack
configuration reported by CTrigger. If other routes to r avoid the
p–c critical region and thereby cause additional failures, we assume
that additional bug reports from CTrigger will eventually mark these
as needing fixes as well.

3.6 Lock Selection and Reuse
Lastly, AFix decides which lock to use. In our current implementa-
tion, when we only face one bug report, AFix simply creates a new
global lock to use at the boundaries of the p–c and r critical regions.

One might consider reusing an existing lock. This is especially
appealing if p and c are already inside a critical region in the original
program. Doing this requires identifying some lock that is live and
reachable at r and at every edge entering or leaving the p–c critical
region. This is quite challenging in the general case of heap-allocated
locks reached by traversing complex, linked data structures. If r is
not even in the same function as p and c, and therefore has access
to different local variables, the challenge is even greater.

Global locks, however, have fixed names. This makes them
inviting targets for reuse. We have implemented a simple scheme
that identifies global locks that protect the intended p–c critical
region in the same function. If some such global lock is identified,
AFix uses it instead of creating a new lock, and elides inserting
some additional lock acquire/release statements. For example, when
one p–c critical region is already protected by a global lock, AFix
does not insert additional lock acquire/release statements to protect
it. In practice, though, we never find any reusable global locks for
the bugs used in our experimental evaluation.

3.7 Implementation Details and Discussion
Implementation Details AFix implements these static analyses
in LLVM [17]. After analysis, AFix changes the target software’s
LLVM byte-code to apply the patch. In our current implementation,
AFix uses locks provided by the POSIX threads (pthread) library
to enforce mutual exclusion. A subtle implementation issue is that
CTrigger describes (p,c,r) triples in terms of executable instruction
addresses. To aid patch readability, AFix maps each instruction back
to source code lines. We never insert lock or unlock operations in the

p: array[1] = 2;
for (i = 0; i < 2; i++) {
. . .

c: array[i] = i;
. . .

}
(a) Original code

lock(L);
p: array[1] = 2;

for (i = 0; i < 2; i++) {
. . .

c: array[i] = i;
unlock(L);
. . .
lock(L);

}
unlock(L);

(b) AFix patched

Figure 6. Made-up example for the rare case when AFix may fail

middle of a source code line, even if this requires slight expansion
of critical regions.

Assessing patch quality In terms of correctness, AFix guarantees
not to introduce new bugs. In particular, AFix restricts possible
interleavings, but never allows any interleaving that was not already
possible before patching. Note that AFix patches could cause
temporary circular wait, but thanks to timed locks these do not
become deadlocks.

AFix can successfully fix bugs reported by CTrigger in all but
two scenarios. One is that a lock inside an AFix patch may time out if
AFix cannot statically prove deadlock-freedom, and atomicity is no
longer guaranteed when the lock does time out. This case is captured
by the AFix run time and feedback will be provided for further patch
refinement. The other case is very rare. It occurs when p or c has
more than one dynamic instance and may access different memory
locations. In this situation, the p–c pair that requires protection
may not be the consecutive ones protected by AFix. This case is
theoretically possible, but very rare in reality. Figure 6 shows one
made-up example. In this example, p is followed by two dynamic
instances of c. The first instance accesses a different variable from
p, while the second instance accesses the same variable as p. AFix
puts p and the first dynamic instance of c into the critical region, as
shown in Figure 6b, and the control flow could leave the protected
region between the two instances of c. However, what should be in
the critical region is p and the second dynamic instance of c. In this
extremely rare example, AFix patch will mistakenly end the critical
region before the second instance of c.

In terms of performance, AFix patch strives to avoid introducing
unnecessary performance degradation. AFix always ends a critical
region immediately when there is no hope to reach c. Of course, for
specific bugs, there could be faster patches by using lock-free data
structures, reader-writer locks, etc. Crafting a general algorithm for
using these special tricks is left for future work.

Extending AFix AFix focuses on locks, because they are the most
commonly supported and used synchronization primitives in mul-
tithreaded programs. AFix could be easily extended to other prim-
itives that support atomicity. For example, if we use transactional
memory, then the analysis to determine where to put lock and
unlock is suitable for deciding where to begin and end transactions.
Of course, some detailed concerns will be different. For example,
concerns over deadlocks and lock selection go away, while new
concerns arise over live-lock and I/O inside transactions.

Although our algorithm description and current AFix implemen-
tation is for CTrigger, the AFix algorithm can be easily extended to
work with other atomicity-violation bug detectors including those
for multi-variable atomicity-violation bugs. Bug reports from many
atomicity-violation detectors can be generalized as “code region
X needs to be mutually exclusive with code region Y .” With this
knowledge, a patch can be generated using the AFix algorithms
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Figure 7. Scenarios where patches should or must be merged

discussed above: select one function to add lock/unlock operations,
determine where inside that function to add lock/unlock operations,
analyze the necessity of reentrant and timed locks, harmonize two
critical regions, etc.

4. Fixing Multiple Bug Reports
Bug detectors often report multiple bugs that should be fixed by
one patch, such as the two atomicity violations in Figure 1 and the
scenarios depicted in Figure 7. This section describes how AFix
coordinates multiple fixes in order to improve patch quality.

Provided with a set of bug reports, AFix first designs patches
for each bug independently. Before applying these patches to the
software, AFix considers all patches together. If one patch subsumes
another, as shown in Figure 7a, the redundant patch is discarded. If
two patches have overlapping critical regions, as shown in Figures 7b
and 7c, AFix will further analyze how to merge the patches.

4.1 Removing Redundant Patches
AFix creates two critical regions for each bug triple (p,c,r): one
containing p and c, and one containing r alone. Strictly speaking,
a patch is completely redundant if both of its critical regions can
be subsumed by another patch. Sometimes, a patch’s p–c region is
subsumed by another patch, but its r region is not. Since the r region
is extremely short, AFix still chooses to discard the subsumed p–c
critical region in this situation. The lock used to protect r will be
changed to the lock used in the subsuming patch.

Under AFix’s locking policy, a critical region p–c is subsumed
by another critical region p′–c′ if and only if the set of CFG nodes
in p–c critical region is a subset of those in p′–c′. The reasoning
is clear. The lock for p′–c′ is held at every node inside its critical
region. If all p–c nodes are contained within p′–c′, then the p–c
lock is redundant.

The above conditions are straightforward to check for two
critical regions in the same function intraprocedurally. For two
regions in different functions, AFix extends the above subsuming
conditions interprocedurally as follows. First, let f denote the
function containing critical region p–c, and let f ′ denote the function
containing critical region p′–c′. Let n be the call node inside f ′ that
eventually leads to f (and therefore to p–c), if such a node exists.
Then p′–c′ subsumes p–c if and only if

1. f ′ is in the common prefix of p and c’s call stacks, and

2. n is inside the p′–c′ critical region.

Notice that both f and f ′ are in the common prefix of p and
c’s call stacks, and f is chosen by our critical region identification
algorithm, so we know that f is closer to p and c than f ′ on the
common prefix of p and c’s call stacks.

Since we have modified CTrigger to provide the complete call-
stack information, the above analysis is not difficult. Note that the
simplicity of our interprocedural subsumption analysis benefits from
AFix’s policy requiring that each critical region’s locks and unlocks
appear within the same function.

Overall, AFix compares each pair of patches and deletes the
redundant ones.

4.2 Merging Related Patches
The general problem of patch merging can be described as follows.
Given a set of critical regions, some guarded by the same lock
and some by different locks, how can we adjust the lock variables
and the critical-region boundaries to achieve the best balance of
performance, readability, and correctness?

This question rarely has a provably-optimal answer, because
performance is affected by many factors. These include but are not
limited to the length of each critical region, the cost of acquiring
and releasing a lock, how many threads will execute each critical
region, and how much contention each lock-acquisition will face.
Much of this cannot be decided statically.

Facing this challenge, AFix uses a simple heuristic to decide
when and how to merge critical regions. We should note that
although we believe this scheme can achieve a good balance between
performance, readability, correctness, and analysis simplicity, there
is no firm guarantee of performance improvement going from non-
merged to merged patches. Developers can make informed decisions
based on AFix’s run-time performance profiling results. Different
merging policies can also be plugged into AFix in the future.

4.2.1 When to Merge
AFix merges patches when one patch’s lock-protected critical
regions include the p, c, or r nodes of another patch. More formally,
consider two sets of nodes for any given patch i. Let Anchorsi
represent the set of all nodes “anchoring” this patch. Initially this
consists of just {pi,ci,ri}: the set of nodes representing the original
bug for which this patch was created. Let Criticali represent the
set of all nodes contained in critical regions guarded by patch i’s
lock. Initially this will consist of ri (as a single-node critical region)
along with pi, ci, and any other protected nodes along pi–ci paths
as computed in Section 3.2.

For any two patches i, j, if Anchorsi∩Critical j 6= /0, then patches
i and j should be merged. In other words, if the critical regions of
one patch include any of the anchor nodes of another, then the two
patches should be combined into one. Let the Anchors and Critical
sets of this merged patch be the unions of the corresponding sets
for the patches being merged. A single lock will guard all nodes in
the combined Critical set. This merged patch is available for further
merging; the process continues until the original patch collection
has been collapsed into a (possibly) smaller one in which no patch’s
p, c, or r nodes are contained in the lock-guarded critical regions of
any other.

4.2.2 Merging Two Critical Regions
Once AFix decides to merge, it enacts the merge in two steps:

1. Update the positions of lock and unlock operations. AFix puts
an unlock operation on every edge that exits the merged Critical
set, and a lock operation at every edge that enters the Critical set.
This has the effect of removing all redundant lock and unlock
operations among merged patches.

2. Unite lock variables. AFix arbitrarily chooses one lock variable
to use and puts this variable into every lock and unlock operation
performed by the merged patch.

For example, AFix merges the two critical regions in Figure 7b,
and deletes unlock(L1) and lock(L2). Similarly, AFix also merges



the three critical regions in Figure 7c, and discards all but the first
lock(L1) and the last unlock(L2), thereby eliminating the potential
deadlock. For the bug shown in Figure 1, the final merged patch
has just one lock operation inserted before line 2, and two unlock
operations inserted before line 4 and after line 8.

The above merging process is only used for critical regions in-
side the same function. Actually, it covers the intraprocedural case
of redundant patch removal from Section 4.1: if a patch is subsumed
by another patch in the same function, they will be merged based
on AFix’s merging policy. Currently, AFix first conducts interproce-
dural redundant-patch removal and then conducts intraprocedural
patch merging. If some other merging policy is adopted in the future,
intraprocedural redundant-patch removal may still be needed.

4.2.3 Benefits of Merging
Merging patches as described above has several beneficial effects
on patch quality:

• Code readability is improved. In practice, it is common that
many atomicity violations are reported within few lines of code,
such as the Apache case shown in Figure 1. Using many different
locks severely hurts code maintenance and readability.

• Performance can usually improve due to fewer lock and unlock
operations without enlarging the critical region too much, such
as in Figure 7. Of course, there is no guarantee of performance
improvement, because merging can also reduce potential con-
currency in certain scenarios.

• Correctness is either the same or improved, because we have
larger critical regions now. In fact, Section 6 reports that this
helps AFix lower the failure rates of some real-world software
bugs that were inaccurately reported by CTrigger.

• Deadlock risk is reduced. It is easy to have one patch deadlock
with another patch, as shown in Figure 7c. Merging solves this
problem. Under AFix’s merging policy, holding one AFix lock
and trying to acquire another AFix lock is impossible, because
these two locks would have been merged.

5. Run-Time Monitoring and Feedback
Not all properties can be guaranteed statically. AFix collects addi-
tional information at run time to help developers refine patches.

5.1 Deadlock and Performance Monitoring
AFix uses time-outs for lock acquisitions that cannot be guaranteed
to be deadlock-free as discussed in Section 3.3. Therefore, deadlocks
caused by AFix patches manifest as lock time-outs. Of course, a
time-out could also occur without deadlock: a lock may simply
encounter too much contention and require a longer waiting period.

AFix implements two run-time deadlock-detection algorithms,
through LLVM byte-code rewriting, suitable for different usage
scenarios. The first, suitable for in-house patch testing, reports
whether a deadlock has occurred immediately after a time-out. It has
small overhead at each lock/unlock operation. The second deadlock
detector, suitable for production-run deployment, has nearly zero
overhead if there is no AFix lock time-out. It takes a little bit longer
to complete deadlock diagnosis.

In the first scheme, AFix follows the traditional deadlock-
detection algorithm: it maintains a resource graph and looks for
cycles when an AFix-added lock times out. To maintain a resource
graph, AFix monitors every lock acquisition, lock release, and
condition-variable signal and wait, all from the beginning of execu-
tion. Its overhead, then, depends on the density of these operations.

In the second scheme, AFix starts its monitoring and analysis
only after an AFix lock times out, a moment that we will refer to as
T . AFix uses information collected after T to recover the resource

graph at the moment of T , as follows. When some thread t releases
a lock l, AFix checks whether it also saw t return from a lock(l)
call. If not, then l must have been acquired by t sometime before T ,
and therefore was held by t at the moment of T . Right after a lock l
is acquired by thread t, AFix checks whether it has observed t begin
a lock(l) call. If not, then t must already have been waiting for l at
the moment of T . Eventually, AFix will recover the whole resource
graph and report whether there was a deadlock. This post–time-out
monitoring ends when either a deadlock is identified or the program
exits. If the program encounters another AFix lock time-out, AFix
will work on recovering multiple resource graphs at the same time.
Since AFix lock time-outs are rare after in-house patch testing, this
scheme is well-suited to monitoring production runs.

Of course, AFix’s run-time system could miss a deadlock if the
deadlock involves ad-hoc synchronization, such as spin loops. This
is an open problem for all deadlock detection tools.

Currently, AFix relies on developers to refine the patch using
its deadlock-detection results. When a time-out is diagnosed as a
non-deadlock, developers may want to extend the time-out threshold
in related AFix locks. When the time-out is caused by deadlock,
developers could discard this patch and choose another, such as a
patch that has some critical regions merged. AFix’s run-time can
also be combined with previous deadlock-prevention systems [13]
to automatically fix patch-induced deadlocks in the future.

Other than deadlock monitoring, AFix also supports performance
profiling during in-house testing. In profiling mode, AFix measures
the waiting time and the number of time-outs for each lock acqui-
sition inside an AFix patch. If excessive waiting time or time-outs
are observed at a critical region that merges multiple bug reports’
patches, developers may want to split this big critical region to
reduce lock contention and improve performance.

5.2 Patch Testing
Each patch generated by AFix undergoes two testing phases. The
first phase uses the existing CTrigger testing. CTrigger provides a
noise injection scheme for each bug it reports. Through a binary
instrumentation framework [22], CTrigger deterministically calls
sleep before or after specific instructions: before c, after p, etc. We
apply CTrigger testing to AFix-patched software and see whether
software failures could still occur.

The second patch testing phase is a more general interleaving
test implemented by us. Before executing every instruction inside
an AFix critical region, a random number generator decides whether
to sleep or not. Similar random delays are also inserted right before
the locks and right after the unlocks added by AFix. The sleep
probability and the length of the sleep are tunable knobs. This phase
can help identify patches that fail to completely fix the bug due to
bug-detection limitations of CTrigger.

6. Experimental Results
AFix is implemented using LLVM version 2.7. Experiments are
performed on an eight-core Intel Xeon machine running Red Hat
Linux 5 with kernel version 2.6.18.

We evaluated AFix on eight real-world bugs from six open-
source applications. These bugs were all initially reported by soft-
ware users to each application’s bug database or mailing list. We
apply CTrigger to these applications using the bug-triggering inputs
described in the user bug reports. In each case, CTrigger detects one
or more (p,c,r) triples. We have confirmed that atomicity violations
described by each triple lead to failure symptoms matching users’
descriptions. Table 1 gives additional information about these bugs,
applications, and CTrigger detection results.

For each bug listed in Table 1, AFix generates two versions of
patched software: one with the patch-merging technique presented
in Section 4 applied and one without. We refer to the former as



Developer # CTrigger
Bug ID Application LoC Fix Time Reports

FFT FFT 1.2K N/A 5
PBZIP2 PBZIP2 2.0K N/A 4
Apache Apache 333K 30 days 2
MySQL1 MySQL v4.0.12 681K 10 days 1
MySQL2 MySQL v4.0.19 693K 13 days* 2
Mozilla1 Mozilla-JS v1.4.2 87K 12 days* 2
Mozilla2 Mozilla-JS v1.5 108K > 3 days] 1
Cherokee Cherokee v0.9.2 83K > 1 day] 4

Table 1. Bugs used in experimental evaluation. Developer fix time
is the time between developers’ first response to a bug report and
a correct patch checked in, if known. Mozilla-JS is the JavaScript
Engine of Mozilla. *: incorrect patches were submitted during this
period. ]: the bug was reported by developers who suggested a fixing
strategy in the initial bug report.

Bug ID naı̈ve unmerged merged manual

FFT - - ? X
PBZIP2 - - - X
Apache - - X X
MySQL1 - X X X
MySQL2 - X X ?
Mozilla1 - X X ?
Mozilla2 - X X X
Cherokee - X X X

Table 2. Overall patch quality

the merged version and the latter as the unmerged version. We also
compare AFix with two other versions of patched software: (1) the
patch manually generated by developers, referred to as manual, and
(2) the naı̈ve patch described in Section 2.3, referred to as naı̈ve.
Our experiments also compare the above patched versions with the
original buggy software, referred to as original.

Our evaluation considers three aspects of patch quality:

Correctness. We use CTrigger testing and intensive random noise
injection to check whether the bug has been fixed and whether
new bugs are introduced. We report and compare the failure rates
of different versions of software. We also use the AFix run time
to check whether timed-out locks actually represent deadlocks.

Performance. We measure the performance of different versions
of patched or unpatched software. We also measure how long it
takes AFix to perform its static analysis and patch insertion.

Code readability. We manually compare AFix patches with the
manual patch. We present results through case studies.

6.1 Overall Results
Table 2 presents a compact summary of patch quality. “X” indi-
cates that the original bug is fixed, no new bug is observed, and
performance degradation is negligible. “?” indicates that the patch
is incomplete, but decreases the failure rate without hurting perfor-
mance. “-” marks cases where the fix introduces new bugs, does
not significantly reduce the failure rate, or imposes an intolerable
performance deficiency. For manual patches, “?” means develop-
ers submitted intermediate patches that are later determined to be
incomplete by developers or testing groups (i.e., the original soft-
ware failure can still occur with the patch applied). “X” means that
the first developer-submitted patch is complete. For the bugs in
our study, developers submitted no patch that could introduce new

Bug ID original naı̈ve unmerged merged

FFT 74% 73% 87% 30%
PBZIP2 94% 100%* 66% 20%
Apache 85% 100%* 83% 0%
MySQL1 41% 100%* 0% 0%
MySQL2 53% 100%* 0% 0%
Mozilla1 41% 100%* 0% 0%
Mozilla2 48% 100%* 0% 0%
Cherokee 81% 100%* 0% 0%

Table 3. Failure rates under interleaving testing. “100%*” marks
cases where the test input deterministically causes deadlock.

bugs or intolerable performance deficiencies. We obtained the above
information from corresponding Bugzilla records.

Patches generated with merging are highly competitive with
manually-generated patches. AFix successfully fixes six out of eight
bugs. In two cases, MySQL2 and Mozilla1, merged patches are even
better than the first few patches generated by developers. For FFT
and PBZIP2, AFix is limited by CTrigger’s inaccurate root-cause
identification. Even here, the merged patches reduce (but cannot
entirely eliminate) failures.

Unmerged patches fix five out of eight bugs. Deadlock prevents
this from fixing the Apache bug that merging does correctly fix. The
naı̈ve approach fixes no bug. It causes deadlock in all but FFT, and
fails to fix FFT due to CTrigger inaccuracy.

6.2 Correctness Results
Table 3 shows the failure rates of different versions of software under
random noise-injection testing (Section 5.2). We set up exactly the
same noise injection environment for all versions of software for
each bug: the same program region to inject random noise, which is
around the buggy code region; the same sleep probability; and the
same sleep length. We use slightly different sleep probabilities and
sleep lengths for different bugs, because we want to make sure the
testing is intensive enough to make the original unpatched software
fail frequently. This lets us effectively evaluate whether the patches
are useful. We execute each version of software 100 times.

Merged patches eliminate software failures for six out of eight
bugs in our testing. Merging provides incomplete patches for FFT
and PBZIP2, but drops failure rates from 74% to 30% in FFT and
from 94% to 20% in PBZIP2. The failure rates do not drop to 0%
because CTrigger’s bug detection is inaccurate: atomicity violation
is a side effect but not the root-cause of these two bugs. Specifically,
following a CTrigger report (p,c,r), merging correctly ensures that
r does not execute between p and c. However, the real problem in
FFT is that r should not execute after either p or c, while the problem
in PBZIP2 is that r should execute after both p and c. Merging can
only partially fix these two problems.

Unmerged patching behaves slightly worse than merged, elimi-
nating failures for five out of eight bugs. It leads to non-deterministic
deadlocks in Apache and PBZIP2 due to the reason depicted in Fig-
ure 7c. Once the lock times out after a deadlock, atomicity violation
and subsequent failure can still occur. For FFT, unmerged patching
has a much larger failure rate than merged due to its smaller critical-
region size. In FFT, the bug occurs when an instruction r executes
after any one of a set of six instructions. Merging puts all six into
one critical region, making the bug less likely to occur.

Naı̈ve patching is clearly a very bad choice, leading to deadlock
in seven out of eight bugs. There are several different reasons for
these deadlocks. For MySQL2 and PBZIP2, deadlocks are caused
due to intraprocedural control flows, as depicted in Figure 3. For
MySQL1 and Mozilla1, p and c are inside different functions.
Locking in one function and unlocking in another easily causes



Bug ID naı̈ve unmerged merged manual

FFT -0.02% -0.07% -0.02% 0.19%
PBZIP2 N/A 89,132% 181.82% 0.20%
Apache N/A 0.45% -0.97% -0.26%
MySQL1 N/A 0.48% 0.48% 0.45%
MySQL2 N/A -0.09% -0.09% 1.02%
Mozilla1 N/A 0.49% 0.55% 0.12%
Mozilla2 N/A -0.40% -0.40% -0.20%
Cherokee N/A -1.02% -1.04% 0.39%

Table 4. Performance overheads relative to original

deadlocks when the first function is called twice without the second
function in between. In Apache, Cherokee, and Mozilla2, naı̈ve
double-lock bugs arise because r is inside a p–c region. Apache and
PBZIP2 also deadlock among different locks added by the patch.

We also reapplied CTrigger to the patched code. According to
CTrigger’s definitions, both merged and unmerged patches success-
fully fix all eight bugs. We also manually checked all these patches.
Our findings are consistent with the random testing results. In those
cases with 0% failure rates, the bugs are all truly fixed.

Overall, merging generates correct patches that not only fix the
original bugs but also introduce no new bugs, as long as its front-end
bug detector provides a reasonably-accurate bug report. Unmerged
patching is also good, but is vulnerable to deadlock.

6.3 Performance Results
Patched application performance Table 4 shows that merged and
unmerged AFix fixes provide good run-time performance, with
negligible difference between them. Note that overheads cannot be
measured for most naı̈ve patches as these lead to deterministic
deadlocks. In most cases, AFix patches impose no perceivable
performance degradation compared with correct manual patches
or even the original buggy software. This is because the relevant
critical regions are usually small and off performance-critical paths.

Only PBZIP2 suffers from significant performance degradation
under AFix. The PBZIP2 bug is caused by a parent thread occa-
sionally destroying shared objects before worker threads finish. The
manual patch makes the main thread wait until all worker threads are
done, which is correct and lightweight. Due to CTrigger inaccuracy,
AFix mistakenly treats this bug as an atomicity-violation bug, and
fixes it by putting almost the whole worker thread into a critical
region, which causes huge overhead. The unmerged AFix patch is
much slower than the merged patch for PBZIP2, because the former
suffers from deadlock time-outs. Deadlock time-outs can also occur
in the unmerged patch of Apache, but this never happens during
performance evaluation without noise injection.

AFix patch generation performance All of AFix’s static analyses
have been designed with scalability in mind. On every benchmark,
AFix takes no more than one second to analyze the program, develop
its patches, and inject them into the code. Clearly, AFix has the
potential to significantly speed up the bug-fixing process.

6.4 Readability Case Studies
AFix’s patch merging technique improves patch readability and
maintainability. For six out of eight bugs, CTrigger reports two
to five atomicity violations related to each bug. The unmerged fix
therefore adds two to five new locks and up to ten new critical
regions into the software. Merging simplifies this to use just one lock
in five out of six cases. Manual inspection shows that all merging
decisions made by AFix improve readability.

Taking the Cherokee bug as an example, CTrigger reports four
atomicity violations in three different functions. The unmerged fix

therefore adds four global lock variables, six lock operations, and
seven unlock operations into the software. AFix finds some of these
critical regions to be redundant and some to be mergeable. The final
patch requires only one lock, one lock operation, and one unlock
operation, for excellent code readability and maintainability. In fact,
the merged patch closely resembles the manual patch.

6.5 Other Results
AFix’s run-time deadlock detection gives accurate results for both
merged and unmerged patches. For example, in PBZIP2, both
merged and unmerged strategies encounter lock time-outs. The
AFix run-time system correctly determines that the time-outs in the
unmerged patch are caused by deadlocks among patches, but that
the time-outs in the merged patch are not. Rather, merging simply
has produced large critical regions with much lock contention, and
therefore requires longer time-outs.

AFix’s post–time-out deadlock-detection algorithm exhibits
excellent performance on all bugs. Its overhead is already included
in the performance numbers measured in Table 4. AFix’s always-on
deadlock detection has less than 5% overhead for all bugs except
for Mozilla1 and Mozilla2, where the always-on monitoring causes
300% and 97% overhead respectively. This is due to the frequent
lock/unlock operations in Mozilla’s JavaScript Engine.

7. Related Work
7.1 Concurrency Bug Detection
Many detection tools have been built to identify interleaving prob-
lems in multithreaded programs, such as races [4, 6, 10, 12, 32]
and atomicity violations [9, 12, 19, 37]. These tools provide good
starting points for automated bug fixing.

Of course, since these tools are designed to identify problems,
not to fix problems, they still leave many challenges for bug fix-
ing. For example, many bug detection tools have false positives.
“Fixing” false positives leads to over-synchronization and unnec-
essary performance degradation. Many bug reports do not include
complete run-time information, which could cause wrong or incom-
plete patches. Bug detectors seldom put bug reports that can be
fixed by one patch together, which can cause too many locks to be
added, harming code maintainability. Furthermore, naı̈ve patches
for accurately-described bug reports can easily introduce new bugs.

AFix has considered and addressed the challenges above. In the
future, AFix can be extended to work with more concurrency-bug
detectors to fix more bugs, which will also help bug-detection tools
to get more usage during software development.

7.2 Concurrent Program Synthesis
Existing tools that automatically add synchronizations to software
mostly have different goals from AFix, and hence different foci. Pro-
gram synthesis and sketching [8, 34, 38] use smart state-space search
and verification techniques to infer synchronization and make con-
current programs satisfy certain specifications. They are powerful
in the sense that the specification can be flexible. Unfortunately, the
nature of the problem makes them hard to scale to large real-world
C/C++ applications such as the ones fixed by AFix.

Some tools [23, 37] encourage programmers to represent their
synchronization intentions in non-lock language constructs, such
as atomic sets and atomic blocks, and transparently translate these
non-lock constructs to lock/unlock operations. In these cases, the
critical region boundaries are either directly specified by developers
or fixed at the entrances and exits of certain functions; the major
challenge is lock assignment. AFix, by contrast, derives critical
region boundaries with limited or no human intervention.

TraceFinder [36] performs whole-program synchronization anal-
ysis and pointer-alias analysis to identify atomic-block boundaries



that can guarantee conflict-serializability for the whole software.
TraceFinder has a different goal from AFix. It cannot scale to large
applications. It uses atomic blocks for synchronization, and does
not worry about lock assignment or deadlocks.

AFix is unique in fixing bugs reported by automatic bug-
detectors. AFix does not face the scalability problems encountered
by TraceFinder, because it does not try to figure out all the syn-
chronizations a program needs to use. Rather, AFix faces different
challenges.

7.3 Hot-Patching Concurrency Bugs at Run Time
Some proposed strategies for hot-patching software at run time are
not suitable for concurrency bugs [28]. Recent work by Wu et al.
[40] provides a framework to deploy hot patches manually designed
by developers. AFix can complement this framework by generating
patches automatically, instead of completely relying on developers.

Some run-time tools do not try to permanently fix concurrency
bugs in the software. Rather, they steer the execution to make fail-
ure less likely. Some pay the cost of performance degradation or
require non-existing hardware support [21]. Others assume that
critical-region boundaries are known [16, 30]. Deterministic exe-
cution systems [1–3] can make some concurrency bugs determin-
istically happen and some other bugs never occur. This promising
approach still faces many challenges, such as run-time overhead, in-
tegration with system non-determinism, language design, etc. Even
for software executed inside a deterministic run-time, fixing bugs
still requires manual intervention. In general, these tools look at
different problems from AFix. AFix generates patches that can com-
pletely fix bugs without unnecessary performance degradation. AFix
and these tools can complement each other.

Kivati [5] combines run-time bug detection with temporary
patch generation based on hardware watch-points. Its focus is to
lower bug detection overheads. However, the limited watch-point
resource (four per machine) prevents Kivati from managing many
different critical regions at the same time. Kivati does not handle
cases where p and c are inside different functions, such as the
Cherokee and MySQL1 bugs in Section 6. It causes unnecessarily
long critical regions when there are branches between p and c, as
shown in Figure 3a. It also does not handle critical-region merging
or deadlocks. Overall, Kivati lacks the off-line static analyses needed
to generate high-quality, permanent fixes.

AtomRace [16, 18] combines run-time bug detection with run-
time healing, with emphasis on bug detection. Its healer component
assumes that critical-region entrances and exits are all provided as
inputs. They do not address those challenges faced by the naı̈ve
patches discussed in our paper, and do not consider patch merging.

8. Conclusion
We have described AFix, a framework for automatically fixing
a common type of concurrency bugs. We have implemented the
system and shown AFix to be effective at generating high-quality
patches for atomicity-violation bugs detected by an automated
bug finder in several large, real-world applications. AFix conducts
thorough static analysis to reach a good balance among correctness,
performance, and code readability in its automatically generated
patches. AFix’s testing and monitoring run-time system also provide
useful feedback for further patch refinement. In the future we plan to
extend AFix to work with more general synchronization primitives
and more types of concurrency bug detectors.
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