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ABSTRACT
Software defects significantly reduce system dependability.
Among various types of software bugs, semantic and con-
currency bugs are two of the most difficult to detect. This
paper proposes a novel method, called MUVI, that detects
an important class of semantic and concurrency bugs. MUVI
automatically infers commonly existing multi-variable ac-
cess correlations through code analysis and then detects two
types of related bugs: (1) inconsistent updates—correlated
variables are not updated in a consistent way, and (2) multi-
variable concurrency bugs—correlated accesses are not pro-
tected in the same atomic sections in concurrent programs.

We evaluate MUVI on four large applications: Linux,
Mozilla, MySQL, and PostgreSQL. MUVI automatically in-
fers more than 6000 variable access correlations with high
accuracy (83%). Based on the inferred correlations, MUVI
detects 39 new inconsistent update semantic bugs from the
latest versions of these applications, with 17 of them recently
confirmed by the developers based on our reports.

We also implemented MUVI multi-variable extensions to
two representative data race bug detection methods (lock-
set and happens-before). Our evaluation on five real-world
multi-variable concurrency bugs from Mozilla and MySQL
shows that the MUVI-extension correctly identifies the root
causes of four out of the five multi-variable concurrency bugs
with 14% additional overhead on average. Interestingly,
MUVI also helps detect four new multi-variable concurrency
bugs in Mozilla that have never been reported before. None
of the nine bugs can be identified correctly by the original
race detectors without our MUVI extensions.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging-Diagnostics

General Terms: Languages, Reliability.

Keywords: Bug detection, concurrency bug, variable cor-
relation
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1. INTRODUCTION
1.1 Motivation

Software defects significantly reduce system dependability.
Among various types of bugs, semantic bugs and concur-
rency bugs are two of the most difficult to detect. This pa-
per focuses on detecting an important class of semantic and
concurrency bugs. Our work is based on a novel observation
that is general across different software and can be exploited
to detect related semantic and concurrency bugs. Our ob-
servation is that various access correlations commonly exist
among multiple variables. In other words, many variables
are inherently correlated and need to be accessed together
with their correlated peers in a consistent manner. These
variables need to be either updated together consistently or
accessed together to give the program a consistent view in-
stead of a partial view. For simplicity of description, we refer
to those variables that share such an access correlation as
correlated variables. We also use variable access correlations
and variable correlations interchangeably in this paper.

Variable correlation is a fundamental aspect of program
semantics. Consciously or unconsciously, programmers rely
on variable correlation to emulate the inherent correlation
in the real world and ease their programming. For exam-
ple, programmers may use correlated variables to represent
correlated real-world entities; use one variable to specify the
other’s property, state or constraints; or use multiple vari-
ables to describe different aspects of a complex object.

Figure 1 and Figure 2 give four real-world variable access
correlation examples from MySQL and Mozilla. In the ex-
ample shown in Figure 1(a), thd->db_length describes the
length of a string (thd->db). The semantic connection deter-
mines their access correlation: whenever thd->db is modi-
fied, thd->db_length needs to be updated accordingly or
at least be checked to see if it is still consistent, as done in
Figure 1(b). Similarly, in the Mozilla example shown in Fig-
ure 2(a), a flag variable (cache->empty) indicates whether
an array variable (cache->table) is empty. Whenever an
item is inserted into or removed from the table, empty needs
to be updated accordingly as shown in Figure 2(b), so that
subsequent execution can decide whether the table can be
accessed or not. Section 3 and Section 7 will show more
multi-variable correlation examples from real-world applica-
tions such as Linux and Mozilla.

Although they are very important, most semantic multi-
variable access correlations usually exist only in program-
mers’ mind, because they are too tedious to document. As



Class THD
{
    char *db;
/* currently selected database name*/

    ...
uint       db_length;

/* length of the database name */
    …
} /* client connection descriptor*/

MySQL-5.20 sql_class.h

820   void Query_cache::store_query (  )
821  {

902    if (thd->db_length)
903       memcpy(thd->query, 

thd->db, thd->db_length);

991  } /* Store a query to cache */

           MySQL-5.2 sql_cache.cc

1655   int Event_job_data::execute( )
1656   { 

1674      thd db = my_strdup(dbname.str);
1675      thd db_length = dbname.length;

1701   } /* Execute a connection event*/

     MySQL-5.2 event_data_objects.cc

1721   int Event_job_data::compile( THD* thd)
1722   {

1820      thd db= old_db;

1833   } /* Compile an event*/

     MySQL-5.2 event_data_objects.cc

Forgets to write 
thd db_length !     

Will lead to 
misbehavior or 

crash!

(a) Definition (d) Bug (violating the access correlation)(b) Variable access correlation (c) Variable access correlation

class String
{
...

  uint32 str_length;
               /*occupied string length*/
  uint32 Alloced_length;
               /*allocated string length*/

}
            MySQL-5.2.0 sql_string.h

(f) Variable access correlation

184   int String:: free ( )
185   { 

189      Alloced_length = 0;
192      str_length = 0; 

194   } /* free a String */

     MySQL-5.2 sql_string.h

408   bool String::append (  )
409  {           
412 if (Alloced_length < newlen + 1 ){ 

 /* realloc and copy string */
442        Alloced_length = newlen + 1;
443       }
444 str_length = newlen;   
             ...         
446   } /* String appending */
           MySQL-5.2 sql_string.cc

(g) Variable access correlation

663   void String::qs_append ( ... )
664   {
665      memcpy ( Ptr + str_length, str, len+1);
666      str_length += len;
667   }   

     MySQL-5.2 sql_string.cc

Increasing string-
length without 

even a check on 
Alloced_length is 

wrong!

(e) Definition (h) Bug (violating the access correlation)

Example 1

Example 2

Figure 1: Two multi-variable access correlation examples and the related inconsistent update bugs from MySQL-5.2.0

(Both are new bugs detected by MUVI from the latest version MySQL and are recently confirmed by developers.)

a result, access correlations can be easily violated by other
programmers or even the same programmers due to miscom-
munication or careless programming.

Unfortunately, existing techniques cannot effectively ex-
tract such semantic correlations. Traditional compiler anal-
ysis cannot catch them, because many correlated variables
are just semantically correlated and do not necessarily have
data dependencies, such as the variable empty and the vari-
able table shown in Figure 2 (a).

Violating multi-variable access correlations can lead to
two types of bugs: (1) multi-variable inconsistent update
bugs and (2) multi-variable related concurrency bugs. The
former is general to both sequential and concurrent pro-
grams, but has never been studied before. The latter is
specific to concurrent programs, and has not been well ad-
dressed by previous concurrency bug detection tools.

Bug Type 1: Multi-Variable Inconsistent Updates If
a programmer is unaware of or forgets about a multi-variable
access correlation, he/she may update only one variable and
forget to update or check other correlated variables to make
sure that they are still consistent. We call this type of bugs
“multi-variable inconsistent updates”.

Figure 1(d) gives a real-world bug example from the latest
version of MySQL. This bug violates the access correlation
between thd->db and thd->db_length. The string variable
is updated with a new value, but the length variable is not
updated. Such inconsistency can lead to a crash or other
program misbehavior. We detected this bug using our tool
and reported it to the MySQL developers who later con-
firmed it as a true bug.

Figure 1(h) gives another inconsistent update bug exam-
ple, also detected by our tool, from the latest version of
MySQL. The variable Alloced_length is correlated with
string_length since a string’s actual length should never
go beyond the length allocated for it. Every modification
to string_length requires a corresponding check or update
to Alloced_length as shown in Figure 1 (f) and (g). How-
ever, function qs_append simply updates the string_length
without any update or check to Alloced_length. This mis-
take can corrupt the String object. This bug has also
been confirmed by MySQL developers based on our report.

More multi-variable inconsistent update bug examples will
be shown in Section 7.

Bug Type 2: Multi-Variable Concurrency Bugs Un-
fortunately, in concurrent programs, even if programmers
put correlated accesses together everywhere, the execution
may still violate the access correlation due to the interleaving
across threads. The correct way is to access the correlated
variables atomically —within the same atomic region. Oth-
erwise, a remote access (read/write) from another thread
could interleave between these correlated accesses, either
getting an inconsistent view (in case of remote reads) or pro-
ducing inconsistent final results (in case of remote writes).

Figure 2 (a–b) shows a real-world concurrency bug exam-
ple from Mozilla. This bug violates the access correlation be-
tween cache->table and cache->empty. Actually, the pro-
gram does update the two variables consistently everywhere
within each thread, as shown in function js_FlushPropertyCache

and js_PropertyCacheFill. However, due to the lack of proper
synchronization, concurrent execution of these code segments
can still violate the access correlation. As shown in the fig-
ure, thread 1 executes js_FlushPropertyCache, nullifying the
whole table and setting empty to be true. Unfortunately,
these two actions can be interleaved by another thread’s
js_PropertyCacheFill operation. As a result, empty is false,
but table is all-zero. Subsequent execution will reference
the object in this empty table based on the empty-flag’s
value (FALSE), and cause a program to crash.

Multi-variable concurrency bug has not been well studied
so far. The only piece of previous work (to the best of our
knowledge) [3] that tries to automatically detect multiple-
variable involved data race bugs uses a lock-based heuristic:
if two variables, x and y, are ever accessed within one lock
critical-section, they should never be separately accessed in
different critical sections throughout the program. Although
this work raises the issue about multi-variable concurrency
bugs, its solution does not work well: all the reported bugs
in their experimental results turned out to be false positives.
The reason is that two variables being accessed inside one
critical section once does not imply that they always need
to be accessed in the same critical section. Furthermore,



struct JSPropertyCache {

  JSPropertyCacheEntry  
table [SIZE];

  JSBool empty;
/* whether the 

table is empty*/
   …
}

Thread 1 Thread 2

(a) Variables with 
access correlation                         

(b) Bug (violating the access correlation due to conflict 
accesses from another thread, even though no data 

race on any single variable)

Access interleaving order 

js_PropertyCacheFill  ( ... ) 
{

cache table[indx] = obj;

cache empty = FALSE;   

} Mozilla jsinterp.h

...

lock ( t )

unlock ( t )

lock ( e )

unlock ( e )

struct JSRuntime  {
    ...

 uint32 totalStrings;
/* # of allocated strings*/

    double lengthSum;
/* Total length of 

       allocated strings */
    …
}

Mozilla jscntxt.h

Thread 1                                   Thread 2
js_NewString( )
{
   // allocate a new string

JS_ATOMIC_INCREMENT
(&(rt->totalStrings));

PR_Lock(rtLock);
 rt->lengthSum += length;
PR_Unlock(rtLock);

} Mozilla jsstr.h Mozilla jsstr.c

(c) Variables with 
access correlation                         

(d) Bug (using different locks to protect correlated variable 
accesses leads to multi-variable concurrency bugs)

js_FlushPropertyCache( )
{

  memset
( cache  table, 0, SIZE);

cache  empty = TRUE;

}
Mozilla jsinterp.c

...unlock ( t )

lock ( t )

lock ( e )

unlock ( e )

Example 1 Example 2
Inconsistent variables that will lead to crash or wrong results

...

printJSStringStats  ( ... ) 
{
   count = rt totalStrings;
   mean = rt lengthSum / count;
   printf ( %lu strings, 
                mean length %g \n ,
                count, mean);
}

Mozilla jsinterp.h

Figure 2: Two multi-variable access correlation examples and related concurrency bug examples. (a)(b) shows a

real example from Mozilla-0.8. Without the locks, the previous race detector may detect each individual access as

a race but will NOT suggest that these two accesses need to be protected within the same atomic section. If both

accesses were protected individually using locks as shown on (b), it is still a bug but cannot be detected by previous

concurrency bug detectors. (c-d): This is a new concurrency bug detected by our MUVI tool from Mozilla-0.9.

Even if each single variable update is protected using locks, the bug still exists since the right implementation should

protect the two correlated variables in the same atomic section.

the two variables might coincidently appear in one critical
section that is set up for other nearby accesses.

Most of the existing tools on concurrency bug detection
cannot deal with above multi-variable related concurrency
bugs. The well-known lock-set data race detectors [7, 35],
happens-before race detector [30] and various (static or dy-
namic) enhancements of them [5, 8, 28, 43] are all designed
to detect single variable races. Specifically, they only check
whether the concurrent accesses to each single variable are
synchronized, i.e. using the same lock or having strict happens-
before order among each other. Simply doing race detection
at a coarse granularity, such as for each shared object [37],
cannot solve this problem since it cannot deal with access
correlations among variables belonging to different objects.
It can also cause many false positives since not all fields from
one object are correlated and need to be accessed within the
same atomic region [43]. Atomicity violation bug detection
tools [11] check the atomicity of certain code regions, which
could include accesses to multiple variables. However, when
inferring atomic code regions, existing techniques [25, 40]
still focus on single variable. For example, AVIO’s access
interleaving invariants are associated with each single vari-
able only. In summary, multi-variable access correlations
were not considered in previous tools and therefore multi-
variable concurrency bugs cannot be correctly identified.

Of course, if one of the correlated variables is not syn-
chronized properly, previous tools may detect it but they
would suggest an inaccurate root cause that could result in
two problems: (1) The programmers simply ignore the bug,
if they find the single variable race to be benign or confus-
ing. (2) The programmers give an incorrect or incomplete
fix: protecting each single variable separately, instead of the
right fix—protecting accesses to the multiple correlated vari-
ables together within the same atomic region. Such a fix will
pass the checking of previous tools, but the bug still exists!

Multi-variable concurrency bugs might exist even if ac-
cesses to every single variable are well synchronized. Previ-
ous tools would fail to detect such bugs, as shown in Fig-
ure 2(b). Figure 2(c–d) shows a new multi-variable con-
currency bug detected by our tool in Mozilla. In this ex-
ample, programmers have used locks to protect all updates
to rt->totalStrings and rt->lengthSum. However, since
different locks are used, the correlated updates are still not
protected in the same atomic region so the bug still occurs.

While data races may be eliminated or substantially re-
duced by the emerging transactional memory trend [16, 27],
multi-variable concurrency bugs can persist and cause soft-
ware failures. The reason is that if the updates of two cor-
related variables are separated into different transactions,
the atomicity is still not guaranteed. Recent work such as
AtomicSet [36], Colorama [4] recognized this issue and pro-
posed letting programmers manually specify explicitly which
variables are correlated. However, this will require signifi-
cant manual effort and may miss those correlations of which
programmers are not consciously aware.

With the increasing popularity of concurrent programs
driven by the multi-core architecture reality, it is impor-
tant to address this fundamental limitation associated with
concurrency bug detection. This is particularly important
because concurrency bugs are notoriously hard to reproduce
and diagnose due to their non-deterministic property [19].
An effective tool that can help detect more types of concur-
rency bugs would be highly demanded by programmers.

1.2 Our Contributions
This paper proposes an innovative and practical approach

called MUVI (MUlti-Variable Inconsistency) to automati-
cally identify multi-variable access correlations from pro-
grams, and detect both multi-variable related inconsistent
updates and concurrency bugs. We evaluate our ideas and
our tool using several large open-source applications, includ-
ing Linux, Mozilla, MySQL and PostgreSQL. Specifically,
our paper makes the following contributions:

(1) The first tool (to the best of our knowledge) to automat-
ically identify the commonly existent multi-variable access
correlations in large programs: Our tool combines static pro-
gram analysis and data mining techniques to automatically
infer multi-variable correlations. MUVI also automatically
prunes false positives and ranks correlations using various
techniques. Our experimental results with Linux, Mozilla,
MySQL, and PostgreSQL (with 0.8–3.6 million lines of code)
show that MUVI identifies a total of 6449 multi-variable ac-
cess correlations efficiently (within 19–175 minutes) with an
accuracy of around 83%.

The automatically-inferred variable correlations can be
used in three different ways: (1) They can be stored in a
specification database so that programmers can refer to it



to avoid mistakes and encapsulate correlated accesses to im-
prove the code modularization. (2) They can be used to
automatically annotate the source code so that other tools
can leverage such semantic information. For example, the re-
cently proposed AutoLocker [27] can use this correlation in-
formation to assign the same lock to correlated variables. It
can also help provide variable grouping information needed
in Colorama [4] and AtomicSet [36]. (3) They can be used
to detect program bugs—violations to these correlations, as
demonstrated in our work (summarized below).

(2) The first tool to automatically detect multi-variable in-
consistent update bugs: Based on the inferred multi-variable
correlations, MUVI also automatically scans the source code
to detect places where correlated variables are not updated
consistently. MUVI applies code analysis and other tech-
niques to prune false positives and rank bug reports. Our
experimental evaluation shows that MUVI has detected a
total of 39 (22, 7, 9 and 1, respectively) new bugs from the
latest version of Linux, Mozilla, MySQL and PostgreSQL
with 17 bugs recently confirmed by the corresponding de-
velopers based on our bug reports. Moreover, we have also
detected 20 places with bad programming practices that can
easily introduce bugs later. Our inconsistent update bug de-
tection false positive rate is reasonable (41% on average).

(3) Address the fundamental multi-variable limitation of pre-
vious concurrency bug detection methods. We extend two
classic race detection methods (lock-set and happens-before)
to detect multi-variable related data races. We also dis-
cuss how to extend other concurrency bug detectors such
as AVIO [25], RaceTrack [43], and RacerX [8] to deal with
multi-variable concurrency bugs. We evaluate the above
multi-variable extensions using five real-world multi-variable
concurrency bugs, whose root causes can not be detected by
the original race detection tools. Our extensions successfully
help previous tools to identify the correct root causes of four
out of the five tested bugs. Interestingly, our multi-variable
extensions also help detect four new multi-variable concur-
rency bugs in Mozilla that have never been reported before.
None of the nine bugs can be identified correctly by the orig-
inal race detectors without our multi-variable extensions.

2. VARIABLE CORRELATIONS
Correlation, originating from statistics, means a pair of

items’ departure from independence. Many items in real-
world are not independent among each other, neither are
program variables in our software. Variable access correla-
tion is inherent in program semantics. The following shows
the typical semantic reasons of variable access correlations:

• Constraint Specification: A variable specifies a constraint,
a property or a state of its correlated peers. For example,
in Figure 1(a), thd->db_length describes the length prop-
erty of the string thd->db; in Figure 2(a), cache->empty
records the state of cache->table.

• Different Representation: Two variables represent the same
information in different ways. As shown in Table 1(a),
rx_bytes and rx_packets record the incoming network
traffic in different units: number of bytes and number
of packets. They are accessed together 1 in 49 functions
except for one, which is a new inconsistent update bug de-
tected by MUVI and confirmed by the Linux developers.

1More formal discussion of togetherness is in Section 3.1.
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fb.h

Linux
libiscsi.h

struct tm {
  int tm_sec;                       /* second */
  int tm_min;                       /* minute */
} /* time */

25 ( 0 )

struct fb_var_screeninfo {
  u32 red_msb;                    /* red */
  u32 blue_msb;                   /* blue */
  u32 green_msb;                /*green*/
  u32 transp_msb;                /*transparency*/
} /* for color display */

11 ( 1 )

struct iscsi_session {
  spinlock_t lock;                 /* lock */
  int              state;                /* critical data */
}

20 ( 0 )

Linux
list.h

struct hlist_node {
  struct hlist_node *next;     /* next */
  struct hlist_node **pprev; /* pevious */
} /* linked list */

32 ( 0 )

MySQL
mysql-
test.c

struct st_test_file* cur_file;    
struct st_test_file* file_stack;

/* cur_file points to the top of stack  */
69 ( 0 )

# of functions they 
are together (not)Variable definitionssourceID

Linux
net-

device.h

struct net_device_stats {
  u64 rx_bytes;              /* #of received bytes */
  u64 rx_packets;         /* #of received packets*/
}

49 ( 1 )

g
Linux
net-

device.h

struct net_device_stats {
  u64 rx_bytes;              /* #of received bytes */
  u64 tx_aborted_erros; /* #of transfer aborts*/
}

4 ( 68 )

h
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sql_
class.h

Class THD {
NET net;       /* client connection descriptor */
uint  db_length; /*length of database name*/

}
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Table 1: Six examples with multi-variable correlation

and two examples with no access correlation, and their

access patterns (the number of times they are accessed

together within the same function). The numbers in ()

are the numbers of times that the correlated variables

are not accessed together.

• Different Aspects: The correlated variables specify dif-
ferent aspects of a complex data to emulate correlated
real-world entities. For example, tm_min and tm_sec in
Table 1(b) represent the minute and the second of a cer-
tain moment. They are accessed together in 25 functions
and never separated. Table 1(c) shows four correlated
fields, red_msb, blue_msb, green _msb and transp_msb,
that represent the red, blue, green and transparency in-
formation for color screenplay. They are accessed together
in 11 functions with only one exception, which is also a
recently confirmed new bug detected by MUVI.

• Implementation-demand: The correlated variables coop-
erate with each other in order to implement a specific
functionality of the program. Table 1(d) shows that the
field lock is used to protect the critical data state in
structure iscsi_session; therefore accesses to state are
always together with accesses to lock. Similar examples
can be seen in Table 1(e) (double-linked list data struc-
ture) and Table 1 (f) (stack data structure).

Obviously, not any two variables from a program are access-
correlated. For global variables, such claim is intuitive. For
multiple fields from the same structure, this also holds. The
(g), (h) in Table 1 provide two examples: although the fields
in each pair belong to the same structure, they do not have
access correlation as they are accessed together in only 3–4
functions and are accessed separately in 68 or 87 functions.

Since correlated variables are connected semantically, vi-
olating an access correlation poses the risk of breaking the
semantic connections and consistency, and might threaten



Constraint Definition Example
read(x) ⇒read(y) Every read to x semantically Figure 2: read to cache->table

requires a read to y has to be preceded by checking cache->empty

write(x) ⇒write(y) Every write to x semantically Figure 1: update to a string variable (THD::db)
requires a write to y will bring update to its length variable (THD::db_length), vice versa.

write(x) ⇒AnyAcc(y) Every write to x semantically Table 1(d): write to state has to
requires an access to y check or grab the lock lock

AnyAcc(x) ⇒AnyAcc(y) Every access to x semantically Table 1(c): accesses to fb_var_screeninfo’s
requires an access to y green, blue, read, transp fields are always together.

Table 2: Examples of access constraints in correlations. AnyAcc means either read or write. There are totally nine

types of access constraints. Here we only show four types for demonstration. The other five types are (1) read(x)

⇒write(y), (2) read(x) ⇒AnyAcc(y), (3) write(x) ⇒read(y), (4) AnyAcc(x) ⇒read(y), and (5) AnyAcc(x) ⇒write(y).

the program correctness, as demonstrated in the bug exam-
ples shown in Section 1 and 7.
Access constraints in correlations Access correlations
do not necessarily mean that correlated variables only need
to be updated together. As shown in Table 2, sometimes,
correlated variables are always accessed (both read and write
included) together; sometimes, reading a variable should be
preceded by checking (reading) another variable; in some
other cases, writing one variable requires checking (reading)
or writing its correlated variables.

Similarly, some multi-variable access correlations are not
necessarily symmetric. Modifying one may require modify-
ing or checking the others accordingly, but the other way
around is not necessarily true. In the example (d) shown in
Table 1, updating state requires accessing the lock variable,
but accessing lock does not need to modify state.

Based on the above two observations, there are nine dif-
ferent types of access constraints for two correlated variables
(four of which are illustrated in Table 2). For simplicity of
description, for two variables x and y, we use the following
notation to represent an access correlation formally:

A1(x) ⇒ A2(y)

where A1 and A2 can be any of the three: “read”, “write”
or “AnyAcc” (either read or write). For example, an access
correlation, write(x) ⇒read(y), means that every time x is
modified, the program needs to read the value of y together.
Similarly, AnyAcc(x) ⇒AnyAcc(y) means that if x is accessed
(either read or written), y needs to be accessed together.
The “togetherness” notion is defined in the next section.

3. VARIABLE CORRELATION ANALYSIS
Variable access correlations are typically too many and

tedious for programmers to specify manually. Therefore,
if we can automatically infer such access correlations, we
can use them as specifications, annotations and help bug
detection. This section presents how MUVI automatically
infers variable correlations from programs.

3.1 Correlation Analysis Overview
Similar to much previous work on extracting information

and invariants from source code [9, 20, 22] and dynamic
execution [10, 15], we assume that the target program is
reasonably mature, i.e., it is not at its initial development
stage. Almost all open source and commercial software meet
this requirement, so it does not significantly limit the appli-
cability of our work.

Since our goal is to extract multi-variable access corre-
lations, not arbitrary correlations, we base our correlation
analysis on variable access patterns and examine what vari-
ables are usually read or written together. For example, if

every time when variable x is updated, variable y is also read
together, it is very likely that some underlying program se-
mantic (access-correlation) connects them together. In this
case, we claim that write(x) ⇒read(y).

“Access Together” Definition: A non-trivial question
that immediately emerges is how we claim that two accesses
are “together”. There could be many possible measures. For
example, we can use source code distance (measured in terms
of lines of code) or dynamic execution distance (measured
in the dynamic instruction trace) as a metric. Although
no single measure is absolutely the best in all cases, in our
scenario, dynamic execution distance is obviously not a good
measure. The reason is that two correlated accesses can
easily be separated by a loop or a function invocation, and
thus have a large dynamic distance. In contrast, static code
distance does not suffer from this limitation. It is also more
aligned with programmers’ coding process, which is usually
centered around semantic correlations and functionalities.

Obviously, simply counting the absolute source code line
gap between accesses is not enough, because that naive count-
ing will consider two accesses in two adjacent functions as
“together”, which is unreasonable. Therefore, a good static
distance based measure should also consider code structures
such as basic blocks, functions, and files. Comparing all
these units, a basic block is too small, while a file is too
large. A function is the right unit since, from the program-
mers’ point of view, a function is usually the basic unit to
perform a certain task, which fits the correlation semantic.

Based on all these considerations, MUVI defines “access
together” as: if two accesses (reads or writes) appear in the
same function with less than MaxDistance statements apart,
these two accesses are considered together, where MaxDis-
tance is an adjustable threshold.

Our current prototype uses a cutoff threshold to determine
whether two accesses are together. It is also conceivable to
use a scalar metric, ranging from 0 to 1, to measure the “to-
getherness”. Such scalar metric can also be used for ranking
and false positive pruning.

“Access Correlation” Definition: Now we can formally
define access correlation: x has access correlation with y,
i.e. A1(x) ⇒A2(y), iff A1(x) and A2(y) appear together at
least MinSupport times and whenever A1(x) appears, A2(y)
appears together with at least MinConfidence probability,
where MinSupport and MinConfidence are tunable parame-
ters, A1 and A2 can be, respectively, any of the three: read,
write or AnyAcc, and together-ness is defined as above.

Correlation Inference Steps: MUVI’s correlation anal-
ysis is then to find out all A1(x) ⇒A2(y) from the target
program. It is conducted in three steps:



(1) Access Information Collection: MUVI parses the source
code and collects each function’s variable access information,
including the set of variables accessed within each function,
the access types and locations in source code. The informa-
tion is stored in an Acc_Set database.

(2) Access Pattern Analysis: MUVI uses a frequent pat-
tern mining technique to process the Acc_Set database and
finds out all the variable sets that frequently appear to-
gether. This step produces a pool of variable access cor-
relation candidates.

(3) Correlation generation, pruning and ranking: The last
step starts from the correlation candidates produced at step
2. It uses the detailed information stored in Acc_Set to
generate, prune and rank different types of correlations.

3.2 Access Information Collection
MUVI conducts flow-insensitive and inter-procedural static

analysis to collect variable access information from every
functions. In other words, the goal of this step is to compute
the Acc_Set for each function in the program. To achieve
this goal, MUVI needs to address several issues:

(1) which variables are we interested in? Theoretically, all
variables could be involved in some correlation relationships.
However, correlations involving structure/class fields and
global variables are usually more common and more im-
portant than those short-lived correlations involving only
scalar local variables. Therefore, MUVI considers two types
of variables: global variables and structure fields (regardless
of which object instance the field is associated with), rep-
resented by structure/class-name::field-name(e.g. THD::db).
These structures can be globally defined, locally defined or
dynamically allocated. For simplicity of description, we re-
fer to both global variables and structure fields as“variables”
in the remainder of the paper.

(2) what detailed access information do we need? For each
variable access, we need the following detailed information
to conduct further analysis: access type (read or write) for
classifying different types of correlations; source code posi-
tion (file name and line number) for measuring the “togeth-
erness” of two accesses; whether an access is from a function
itself or its callee functions for pruning purposes.

(3) how to handle function calls? A function can access a
variable directly (referred to as a direct access) or via its
callees (referred to as an indirect access). The Acc_Set of
a function should include both direct and indirect accesses.
Otherwise, some access correlations would be missed, espe-
cially in cases when a variable is read or written inside some
utility functions, such as get() or put(), for the purpose
of encapsulation. To achieve this, MUVI first builds a call
graph of the target program and then traverses the call graph
bottom up starting from the leaf nodes. All direct accesses
made in a function are added to this function’s Acc_Set. If
function F calls function f1, f1’s direct accesses are also
added to F ’s Acc_Set (as shown in Figure 3), but we do
not propagate f1’s accesses any further along the call chain,
i.e. not to F ’s callers. The rationale is that, if two accesses
are several functions apart in the call chain, the chance that
they are correlated is small (otherwise it is difficult for pro-
grammers to maintain the code). Therefore, if we propagate
f1’s direct accesses too many levels upward, we can easily
introduce many false correlations. As a future work, we can
make this scheme more flexible: allow propagations across

F ( ) {

   f1 ( );

   read x ; 

   f2 ( );

}

f1( ) {

a:  read y ; 

}

f2 ( ) {

   read z ; 

}

F

f2f1

Acc_Set ( F ) 
=  { x } U Acc_Set ( f1 ) U Acc_Set ( f2 )
= { x, y, z } 

Acc_Set ( f2 ) = { z } Acc_Set ( f1 ) = { y } 

(a) Exemplary code (b) Acc_Sets are generated based on call-graph

Figure 3: Acc_Set collection for an example call graph

many levels of function calls, but use higher weights for more
direct accesses and lower weights for less direct ones.

For a direct access a in a function f1, its source code posi-
tion is the line number where this access is made. However,
when this access is propagated to f1’s caller F , the access’s
source code position in F ’s Acc_Set is the source line where
F calls f1 so that F ’s direct accesses are still relatively close
to this access a.

Issues and Extensions The above algorithm used in our
current access information collection is context-insensitive,
i.e., it does not consider the caller’s effect during the anal-
ysis of Acc_Set. To be context-sensitive, we will need a
parameterized Acc_Set summary for each function, so that
different call sites of a function will get different Acc_Set

instantiations.
Since MUVI relies on source code parsing, we cannot get

information regarding accesses made inside a library whose
source code is unavailable. For those common and important
library calls (e.g. strlen, strcpy, memset), we can manually
specify their Acc_Sets, i.e. the access type of a library call
to its parameters in a similar way to previous work [41].
We can also extend our analysis to extract correlations from
binary code, which remains as our future work.

Since MUVI analyzes access correlations for fields in struc-
tures (regardless the object instance), pointer aliasing of
structure objects does not affect our analysis. For global
variables, pointer aliasing could affect the accuracy, but our
empirical results suggest that its effect is insignificant.

3.3 Access Pattern Analysis
The goal of this step is to identify variables that are ac-

cessed in the same function (i.e., appear in the same Acc_Set)
for more than a threshold number of times. For each set of
variables that satisfies this property, we refer to it as an
access pattern. Note that a pattern is not an access cor-
relation. Instead, it may imply a set of candidate access
correlations of different types, such as read(x) ⇒read(y),
read(x) ⇒write(y), etc.

Given the Acc_Set of each function, different approaches
can be used to extract such access patterns. One solution
is to count the number of Acc_Sets containing both x and
y for every pair of variables (x, y). Although this solution
is relatively simple, it cannot scale to large programs with
millions of lines of code, such as Linux. Moreover, it would
be hard to extend this algorithm to consider access correla-
tions that involve more than two variables such as write(x)
& write(y) ⇒read(z).

Since access correlations involving more than two vari-
ables do exist in real-world programs (e.g., Table 1(c) and
more examples in Section 7.4), we do not use the above
method. Instead, we leverage a well-studied data mining
technique: frequent itemset mining [13]. Frequent itemset
mining examines a database where each entry is an itemset,



i.e. a set of items, and tries to efficiently discover which sub-
itemsets (subsets of an itemset) are frequent, i.e. contained
in more than a threshold (called MinSupport) number of
database entries. For example, in an itemset database D,

D = {{w, y, z}, {v, w, y, z}, {w, x, y}},

if MinSupport=3, the mining result will show that itemsets
{w}, {y}, {w, y} are frequent. If MinSupport=2, itemsets
{w}, {y}, {z}, {w, y}, {w, z}, {y, z}, {w, y, z} are frequent.

The specific frequent itemset mining algorithm used in
MUVI is called FPclose [13]. It is one of the most efficient
frequent itemset mining algorithms. Due to space limit, we
do not present the details of the FPclose algorithm here.

We apply FPclose to our Acc_Set database, consisting of
the Acc_Sets of all functions from the target program. The
FPclose algorithm outputs the frequent sub-itemsets, i.e.,
access patterns—sets of variables that are accessed (regard-
less of their access types) in more than MinSupport num-
ber of functions. For example, at the threshold MinSupport
= 10, MySQL’s variable pair {THD::db, THD::db_length}
(Figure 1) is included in our candidate list, because they
appear together in 39 functions. On the other hand, the
non-correlated variable examples shown in Table 1(g)(h) in
the previous section will not be selected as candidates, since
they are accessed in only a few functions together.

3.4 Correlation Generation and Pruning
In this final step, MUVI takes the access patterns to gen-

erate correlations, prune false positives and rank the results.
Basically, given a pattern such as (x, y), it may indicate a
total of 18 correlations in the form A1(x) ⇒A2(y) or A1(y)
⇒A2(x), where A1 and A2 can be read, write, or Any-
Acc. For each of the above possibilities, MUVI determines
whether the access correlation holds by mainly considering
two basic metrics, support and confidence, plus some other
considerations.

• Support. Given a correlation C: A1(x) ⇒ A2(y), its sup-
port, denoted as support(C), is the number of functions
in which A1(x) and A2(x) are together (based on the def-
inition of togetherness in Section 3.1). Such a function is
called a supporter of this correlation. If a correlation can-
didate has fewer than MinSupport number of supporters,
it is pruned out.

• Confidence. The confidence of a correlation C: A1(x)
⇒ A2(y) measures the conditional probability that, given
A1(x)’s presence in a function, A2(y) is performed nearby
in the same function. It is calculated via support(C) /
support(A1(x)), where support(A1(x)) is the number of
functions that perform A1(x). Obviously, even if a cor-
relation candidate has many supporters, a low confidence
would make the correlation not trustworthy. Therefore,
MUVI uses a threshold MinConfidence to prune out cor-
relation candidates with too low confidence.

• Other considerations. In addition to the above two met-
rics, we also differentiate direct function supporters from
indirect function supporters to improve the accuracy of
correlation analysis. The former directly access variables
involved in the correlation, while the latter access the in-
volved variables via their callee functions. Clearly, di-
rect supporters carry more weight than indirect support-
ers. Due to this concern, MUVI counts the number of
direct supporters and prunes out correlation candidates
with lower than a threshold MinDirectSupport number of

direct supporters. It is also conceivable to give different
weights to direct and indirect supporters when counting
the support and confidence. Furthermore, we also prune
out false correlations caused by popular variables, such as
stdout and stderr. These variables are accessed in many
functions, and therefore can easily be falsely inferred as
correlating to many other variables. To address this prob-
lem, we prune out correlations that involve variables that
appear in more than a threshold number of functions.

Ranking Large software will have a long list of correla-
tions. In order to help programmers prioritize their efforts,
MUVI ranks the correlation results based on support and
confidence. Specifically, when the support is large enough,
indicating that its confidence is statistically reliable, we rank
the correlations based on their confidence; if the support is
not large enough, we rank the correlations based on support.

Parameter setting Setting above threshold parameters
needs to consider the tradeoffs between false positives and
false negatives. Our default parameter setting (section 6)
should provide a good initial balance point for most appli-
cations as shown in our experiments on four applications
(Section 7). Users can start with the default setting and
tune it based on their empirical experience. If users have
concerns with the false positive number, they can increase
the threshold parameters, such as MinConfidence and Min-
Support. If users can tolerate more false positives, they can
decrease the parameters to get more inference results.

Parameter setting also depends on the targeting program
properties and how users plan to use the inferred correlation.
For example, small applications can use relatively small Min-
Support. If we want to use the correlations as strict require-
ments and report all violations to them as bugs, we would
better be conservative and pick large parameters. If we only
use the correlations as hints to help with bug detection, such
as in the case of the multi-variable concurrency bug detec-
tion in Section 5, we can be more aggressive and choose
relatively small parameter values.

4. INCONSISTENT UPDATE BUG
As discussed in Introduction, violating access correlations

can lead to two types of bugs, inconsistent update bugs and
multi-variable concurrency bugs. This section presents how
MUVI detects the first type of bugs, and the next section
will explain how MUVI detects the second type.

What is an inconsistent update? Inconsistent update
bugs are caused by violations to write ⇒AnyAcc access cor-
relations. That is, sometimes, the programmer updates one
variable, but forgets to update or check its correlated vari-
able. As a result, the memory states of the correlated vari-
ables become inconsistent. Such mistakes can be easily made
by programmers due to careless programming or miscommu-
nication (as demonstrated by many bugs detected by MUVI
in the latest version of Linux, Mozilla, etc). We do not con-
sider violations to access correlations that start with a read
access, because read does not directly change memory state
and usually does not cause severe damages by itself.

How to detect? Based on MUVI ’s correlation analysis
results, the basic algorithm of detecting inconsistent updates
is now straightforward. For any write(x)⇒AnyAcc(y) cor-
relation, we examine the violations to it. All the functions
that only update x without accessing y are treated as incon-
sistent update bug candidates.



Ranking and pruning We first prune out likely false bug
candidates based on caller–callee consideration. Given a bug
candidate function F , which misses the access to y, if y is
accessed in F ’s caller or callee functions, it is unlikely to
be a bug. In our current prototype, MUVI checks two-level
caller and callee functions. Of course, we can examine more
levels, but our empirical results with several large software
find it unnecessary.

After pruning, we rank the remaining bug candidates based
on the following considerations:

(1) Violations to the strong write ⇒write correlations
are ranked at the top. Intuitively, write ⇒write provides
the most rigorous consistency requirements. If an update to
y is “required” after each update to x, the violation, which
neither updates nor checks y, is most likely to cause memory
state inconsistency.

(2) The more violations a correlation has, the lower rank
it gets. Similar to previous rule inference work [20, 22], if
there are too many violations to a correlation, it is unlikely
for those violations to be all bugs. The rationale is that in
mature software, programmers are less likely to introduce
many bugs with the exact same root cause.

(3) The more trustworthy a correlation is, the more likely
a violation to it is a bug. After the previous two steps,
we rank the remaining violations based on the ranks of the
corresponding correlations.

As an example, Linux function velocity_receive _frame

violates the access correlation described in Table 1(a), write
(net_device_stats::rx_packets) ⇒write (net_device_stats
::rx_bytes). Since it is the only violation to a highly ranked
write⇒write correlation, it is ranked number 1 in our bug
report, and it has been confirmed as a true bug by the Linux
developers.
Discussion Of course, MUVI inconsistent update bug de-
tection cannot solve all the multi-variable inconsistency prob-
lem. Since MUVI only considers access types (read or write)
and not specific variable values, both false positives and false
negatives could occur due to special variable values.

It is possible that when x is assigned a certain value,
the update to y is unnecessary. For example, in MySQL,
SHOW_VAR::type describes the type of data stored in SHOW_VAR

::value. Usually, they are updated together. However,
when type is assigned to be UNDEF, there is no need to update
or check value. It is also possible that although two corre-
lated variables are updated together, the values assigned to
them are inconsistent. Both are out of the scope of our ap-
proaches and can potentially be solved by combining value
invariant techniques such as DIDUCE [15] and DAIKON [10]
with our variable correlation analysis.

5. MULTI-VARIABLE CONCURRENCY BUG
Concurrent execution is another major source of multi-

variable access inconsistency. This section first briefly de-
scribes the existing concurrency bug detection techniques
and then discusses how to extend them to detect multi-
variable concurrency bugs.

5.1 Background
Data Race Data-race is the best studied type of concur-
rency bugs. It occurs when two accesses, at least one of
which is a write, from different threads to one shared vari-
able (called conflict accesses) are not synchronized [35]. As
discussed in the Introduction, previous race detectors fo-

cus on concurrent accesses to each single variable and miss
synchronization problems among multiple correlated vari-
ables. In the following, we briefly describe the two classic
race detection algorithms: the lock-set algorithm [7, 8, 35,
43] and the happens-before algorithm [6, 30, 32]; and we will
demonstrate how to extend them in the next subsection.

The lock-set algorithm reports a data race bug when it
finds that there is no common lock held during accesses to
a shared memory location. To perform such a check, the
algorithm maintains the set of locks currently held by each
thread (called the thread Lock Set), and the set of locks that
have been used to protect each variable so far (called the
Candidate Set). A candidate set is initialized as all possible
locks, and updated upon every access to the corresponding
variable by intersecting with the thread lock set. A data
race is detected when the candidate set is empty. In our
study, we extend an existing dynamic implementation (by
open source developers) of this algorithm in Valgrind [29].

The happens-before algorithm [6] detects data-race bugs
by comparing the logic timestamps of accesses from different
threads to the same shared variable. If the timestamps do
not indicate a happens-before order among these accesses,
a race is reported. Here the logic timestamp is calculated
based on thread interaction and synchronization. In our
study, the basic happens-before algorithm is implemented
using a binary instrumentation tool, PIN [26].

5.2 Multi-Variable Race Detection
Multi-variable concurrency bugs cannot be solved by sin-

gle variable race detection. As shown in the real bug exam-
ples shown in Figure 2 and later in Figure 7, multi-variable
concurrency bugs could occur when there is no race or only
benign races on each single variable.

The basic idea of multi-variable extension to previous race
detectors is to, for any pair of conflicting accesses to the
same variable, in addition to examining their locksets or
their order, we also examine if either access has correlated
accesses, and if their correlated accesses share the same lock
or are also ordered with respect to the conflicting accesses.

5.2.1 Multi-Variable Extensions to Lock-Set
Following the above basic idea, the multi-variable exten-

sion to the lock-set algorithm, referred to as lock-setMV, is as
follows. For every pair of accesses, A1(x) and A2(x) (one is
a write), from different threads to the same shared variable
x, we check if they are protected by at least one common
lock (the basic lock-set algorithm), and also check if any cor-
related access A3(y), of A1(x) or A2(x), is also protected by
a common lock with A1(x) and A2(x), as shown in Figure 4.

Note that we require only correlated accesses, instead of
all accesses, to x and y to be protected by a common lock
with their conflicting accesses. For example, if x and y only
have a write-write correlation, then only those write accesses
to x and y that appear together are checked.

An implementation challenge is that the access correla-
tions are inferred from source code in the format of (global)
variable names and structure/class field names, while the
Valgrind lockset implementation works at binary code level.
Translation is therefore required to bridge this gap. For
global variables, we get their memory addresses from the
compiler and feed them to lock-setMV prior to the detection
run. For shared structure/class-objects, their dynamic allo-
cation and deallocation raise extra challenges. In order to
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Figure 4: Multi-variable extension to the lock-set algo-

rithm

dynamically update the mapping from structure/class fields
to memory locations for lock-setMV, we use source-to-source
code translation to wrap malloc-like and free-like functions
with structure type information. Lock-setMV dynamically
intercepts these wrappers to get the correlation information.

5.2.2 Multi-Variable Extensions to Happens-before
Extending the happens-before algorithm to consider vari-

able correlations is quite similar with our extension to the
lock-set algorithm. The logic timestamp calculation for each
memory access is the same as that in the traditional happens-
before algorithm. The difference is that happens-beforeMV

will compare the logic timestamp between not only accesses
to the same memory location but also correlated accesses.
If the timestamp comparison shows no happens-before rela-
tion with the above accesses, meaning that they can happen
in arbitrary orders, happens-beforeMV reports a bug.

5.3 Extensions to Other Detectors
Even though we only implemented and evaluated the multi-

variable extensions to lock-set and happens-before, it is straight-
forward to follow the same idea to extend other concurrency
bug detectors.

Extending other race detection tools Extending other
dynamic race detectors, in particular those hybrid ones such
as RaceTrack [43], is straightforward, since they combine the
lock-set and happens-before algorithms. Extending static
race checkers such as RacerX [8] and Chord [28] is even
easier, since MUVI ’s correlation information is collected
from source code, and thus is much easier to feed to static
checkers than to dynamic ones.

Extending atomicity violation detection Atomicity
violation is another type of important concurrency bugs.
It occurs when certain code region’s programmer-intended
atomicity, also called serializability 2, is not maintained dur-
ing execution.

An important and challenging problem in atomicity viola-
tion detection is to infer which code regions are intended to
be atomic. Existing solutions rely on either manual annota-
tion [11, 27, 36] or inference based on single-variable-centric
access patterns [25, 40].

The access correlations extracted by MUVI can serve for
atomicity violation detection well. An access correlation es-
sentially indicates that the correlated accesses need to be
done atomically. Taking the concurrency bug in Figure 2 as
an example, correlation write(cache->empty) ⇒write(cache

->table) indicates that the writes to the two variables need
to be atomic. The violation to this atomicity is exactly the
root cause for that real bug from Mozilla.

The multi-variable atomicity information above can well
complement existing tools like AVIO [25] and SVD [40].
These tools infer atomic regions based on ‘code unit’ com-

2A property for several concurrently executed actions, when
their data manipulation effect is equivalent to that of a serial
execution of them.

posed of two consecutive accesses from one thread to one
shared variable or read-write data dependency, respectively.
Both of them would miss above atomic region composed of
accesses to cache->empty and cache->table, where two dif-
ferent variables with no data-dependency are involved. In
the following, we demonstrate how to extend AVIO to take
advantage of the MUVI access correlation information.
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         A3(x)
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Figure 5: Serializability of two variable access inter-

leaving. The atomicity of above code regions composed

of two accesses from one thread to correlated variables x

and y is violated if interleaving follows case 1–3 with at

least one write to both x and y.

The first step of our extension is straightforward: MUVI
can extend AVIO’s code-unit by including accesses, which
have correlations among each other. Afterward, the chal-
lenge is to decide the atomicity (serializability) of concurrent
accesses to two variables. This is much more complicated
than the single-variable case in the original AVIO, because
multiple variables create many more possible access inter-
leaving combinations. Due to the space limit, we omit the
serializability analysis details and simply list the atomicity
condition results based on our analysis of 64 different access
interleaving combinations in Figure 5.

6. EVALUATION METHODOLOGY
Evaluated Applications We have evaluated MUVI cor-
relation analysis and inconsistent update bug detection us-
ing the latest versions of four applications: Linux (drivers),
Mozilla , MySQL, and PostgreSQL as listed in Table 3.

Application Version LOC Description
Linux (drivers) 2.6.20 3.6M Operating System
Mozilla-Firefox 2.0.0.1 3.4M Web browser
MySQL 5.2.0 1.9M Database Server
PostgreSQL 8.2.3 832K Database Server

Table 3: Applications (latest versions) used in MUVI

correlation analysis and inconsistency bug detection.

In order to evaluate MUVI ’s multi-variable concurrency
bug detection capability, we use five known real-world 3

bugs from Mozilla and MySQL, as shown in Table 4.
Platform All of our experiments are conducted on a ma-
chine with a 2.4GHz Pentium processor, 512 KB L2 cache,
1GB of memory, running Linux 2.4.20 as the OS. We extend
the EDG [14] compiler front-end for static code analysis.
Parameter setting and sensitivity analysis The de-
fault parameters in MUVI variable access correlation anal-
ysis are set as follows: MinSupport is 10, MinDirectSupport
is 5, MinConfidence is 0.8, and MaxDistance is 10 lines of

3Since the race detectors are dynamic, we need to reproduce
the bug during the execution to examine whether the detec-
tors can catch them. But interestingly, we also found four
new multi-variable concurrency bugs that have never been
reported before.



BugId App. Description
Moz- Mozilla- Wrong-ordered concurrent updates
js1 suite make empty table’s empty flag false;

v0.9 leads to system crash (Figure 1)
Moz- Mozilla- Wrong-ordered read/write to gcPoke

js2 suite flag leads to reading wrong liveAtoms;
v0.8 makes garbage collection failure

Moz- Mozilla- Wrong-ordered concurrent updates make
imap Thunder- URL-in-progress flag true, but URL

-bird v1.7 string NULL; system crash
MySQL MySQL- Un-atomic read to log-file’s name and

-log v4.0.16 log-file are interleaved by remote
thread switching file; log-file failure

MySQL MySQL- Un-atomic table deletion and logging are
-blog v3.23.56 interleaved by remote thread’s table insertion

and logging; security problem (Figure 8)

Table 4: Concurrency bugs tested with lock-setMV and

happens-beforeMV. It does not include the four new

multi-variable concurrency bugs detected by our tools–

one of them is shown on Figure 2(d); another will be

shown in the next section.

code. We choose these values based on our sensitivity anal-
ysis. In the next section, we show the parameter sensitivity
study for two critical parameters, MinSupport and MinCon-
fidence. We fix all other parameters using the default set-
tings and change the targeting parameter (MinSupport or
MinConfidence) to measure the accuracy of inferred access
correlations. We will also conduct experiments to discuss
how the parameter setting would affect the bug detection
results and discuss the effect of our function call handling.
Accuracy measurement In our evaluation, we separately
measure the accuracy (false positives and false negatives) of
our variable access correlation analysis, inconsistent update
bug detection and multi-variable concurrency bug detection.

7. EXPERIMENTAL RESULTS
7.1 Variable Access Correlation Analysis

Table 5 shows the variable access correlation analysis re-
sults. As we can see, variable access correlations are very
common in real applications: totally 6449 access correlations
(include only AnyAcc⇒AnyAcc) are inferred, with 5954 vari-
ables and 1467 structures involved. The analysis is efficient.
For 3–4 million lines of code as Linux kernel has, it takes
MUVI only 3 hours to infer 3353 access correlations.

To evaluate the accuracy of the correlations inferred by
MUVI, it is too time-consuming to examine all 6449 corre-
lations. Therefore, we take an approach similar to previous
work [21] by randomly sampling 100 correlations from each
application and manually verifying whether they are true.
The results show that the false positive rate is reasonably
low, around 17% on average.

App. #Access- #Involved #Involved %False Analysis
Correlations Variables Structures Positive Time

Linux 3353 3038 587 19% 175m2s
Mozilla 1431 1380 394 16% 157m40s
MySQL 726 703 209 13% 19m25s
PostgreSQL 939 833 277 15% 98m23s
Total 6449 5954 1467 17%* 450m30s

Table 5: Variable correlations inferred by MUVI. The

correlations presented here include only AnyAcc⇒AnyAcc

and the other types are presented in Table 8. * The

false positive here means the average false positive rate.

The above results indicate that MUVI can efficiently and
reasonably accurately infer access correlations, which can be
stored in a database as a specification for reference by pro-
grammers or leveraged by other tools such as AutoLocker [27],
DAIKON [10] and Colorama [4].

False positives of access correlation inference MUVI
still has around 17% false correlations. They come from two
major sources. (1) Macro and inlined functions are repli-
cated by the compiler pre-processor and result in redundant
supporters. Pruning these supporters requires special treat-
ment of these macros and inlined functions. (2) In a few
cases, variables are just coincidentally accessed together for
many times, but there is no real correlation between them.
This is especially true for some variables that get most of
their support from read together. It is possible to prune out
some of them by giving more weight to write-write patterns.

False negatives of access correlation inference Simi-
lar to previous work, MUVI is definitely not a panacea. It
will miss variable access correlations in following cases: (1)
true correlation with low supports. This is a common prob-
lem for almost all statistics based techniques [9, 22]. To
solve this problem, we might need to look for other sources
of correlation evidence. (2) conditional correlation. Some
access correlations might only exist within certain program
state (an example, Figure 8, will be discussed in Section 7.3).
Current MUVI prototype can not distinguish program con-
texts and phases, and would miss such correlations.

7.2 Inconsistent Update Bug Detection
Overall Table 6 shows the inconsistent update bugs de-
tected by MUVI. Out of the MUVI inconsistent update bug
reports, we manually examined the top 100 ones, and iden-
tified 39 true bugs (17 of them have been confirmed by the
corresponding open source developers). All of these bugs
are new bugs in the latest versions of Linux, MySQL,
Mozilla, and PostgreSQL. Almost all of the detected bugs
are semantic bugs, and therefore cannot be detected by ex-
isting tools such as memory bug detection tools.

In addition to the two examples shown in Figure 1 in
Introduction, here we show three more examples of recently
confirmed bugs detected by MUVI in Figure 6.

Bad programming practices Besides true bugs, there
are quite a few violations that are bad programming prac-
tices that do not cause problems now but can easily intro-
duce bugs later. For example, in PostgreSQL, pointer PG-

conn::inStart points to the starting point of a message,
pointer PGconn::inCursor is used as a cursor pointing to
a position inside a message during the message reading. In
one function, the current message is discarded and there-
fore PGconn::inStart is moved to the next message, but

App. #MUVI #New #New #Bad #False False pos.
Bug Bugs Bugs program- Positives sources

Report Found Confirmed ming S1 S2 S3
Linux 40 22 12 5 13 6 3 4
Mozilla 30 7 0 8 15 8 7 0
MySQL 20 9 5 3 8 5 2 1
PgSQL 10 1 0 4 5 5 0 0
Total 100 39 17 20 41 24 12 5

Table 6: Inconsistent update bugs detected by MUVI.

#New bugs confirmed means that the bugs are already

confirmed by the corresponding developers after we re-

ported these errors. “S1” stands for semantic exception,

“S2” for wrong correlation, and “S3” for no future read.



static int imsttfb_check_var (struct 
   fb_var_screeninfo *var, struct fb_info *info)
{ ...

var->red_msb = 0;
var->green_msb = 0;
var->blue_msb = 0;
var->transp_msb = 0;

} drivers/video/imsfftb.c

static int  neofb_check_var(struct   
    fb_var_screeninfo *var, struct fb_info *info)
{  ...
   var->red_msb=0;
   var->green_msb=0;
   var->blue_msb=0;
   …  // missing update to var transp_msb
}

drivers/video/neofb.c  

(a) A new (confirmed) bug found by MUVI in latest version Linux driver framebuffer component

static int velocity_receive_frame
(struct velocity_info *vptr, int idx)
{  ...
   stats->rx_bytes += pkt_len;

 // missing update to stats rx_packets
}

static int fr_rx(struct sk_buff *skb)
{ ...

stats->rx_packets++; 
stats->rx_bytes += skb->len;

    ...
}

 drivers/net/via-velocity.cdrivers/net/wan/hdlc_fr.c

red_msb, green_
msb, blue_msb 
and transp_msb 
are used together 
to set up color.

Missing any one  
can make display 
failure.

rx_bytes and
rx_packets are 
explained earlier

How could receiv-
ing bytes without 
receiving packets?

(b) A new (confirmed) bug found by MUVI in latest version Linux driver network component

int genphy_setup_forced ( … )
{
      ...
    if ( phydev  speed == SPEED1000 ) 
       ctl |= SPEED1000;
    if ( phydev  duplex == DUPLEXFULL )  
       ctl |= FULLDPLX;
    ret = phy_write(phydev, MII_BMCR, ctl);
    …
} drivers/net/phy/phy_device.c

int phy_mii_ioctl ( …  )
{
   ...
   u16 val = mii_data->val_in;

phydev  duplex =
             ( val & FULLDPLX) ? 
              DUPLEXFULL : DUPLEXHALF; 
   …   // missing update to phydev speed
   phy_write(phydev, MII_BMCR, val);
} drivers/net/phy/phy.c

duplex (full/half)  
and speed (1000/
100/10 Mbps), co-
reside in the same 
BMCR  register.

Should be read/set 
together.
Otherwise, duplex/
speed information 
is missed 

(c) A new (confirmed) bug found by MUVI in latest version Linux driver network component

correct

correct

correct BUG

BUG

BUG

Figure 6: Examples of new inconsistent update bugs

detected by MUVI in the latest version of Linux. They

have recently been confirmed by the developers.

PGconn::inCursor is not changed, still pointing inside the
discarded message. Fortunately, in all other places in the
program, the use of inCursor is always preceded by a check-
ing of inStart, therefore such dangerous inconsistent up-
date does not lead to a bug. However, future code revision
may easily introduce a bug as a programmer may assume
that these variables are always consistent. Therefore, such
cases reported by MUVI can help programmers to clean up
the code and improve the software quality.

False positives of inconsistent update bug detection
Although MUVI has pruned some false alarms using inter-
procedural analysis and confidence filtering, there are still
some false positives caused by the following reasons (the
breakdowns are also shown on Table 6):

(1) Semantic exceptional cases. Even if the correlations
are correct, they can still be violated in cases of special se-
mantic requirements. For example, in Mozilla, nsHTMLRe-

flowMetrics::height and nsHTMLReflowMetrics::width de-
note the height and width of an HTML object. They are
always read and updated together. However, in function
AdjustForCollapsingCols, since only col(umns) are col-
lapsed, the program only updates width, but not height.

(2) Wrong correlations. All of the correlations inferred by
MUVI are directly fed to bug detection, so wrong correla-
tions result in around one third of the bug false positives.

(3) No future reads. It does not cause problems when
a function modifies a variable without accessing the corre-
lated peers if there is no future read to that variable. How-
ever, such an assumption about no future read needs to be
carefully maintained. Therefore, such false positives can be
treated as warnings as they are still helpful to programmers.

Among the above three sources of false positives, it is
the easiest to solve the issue (3). False positives caused by
it can be pruned by some compiler analysis, such as live-
ness analysis. Pruning false positives caused by issue (2)
requires improving the accuracy of access correlation infer-
ence as discussed earlier. The issue (1) contributes the most
to the false positives in our experiments. Solving this issue
requires automatic inference of special program semantics,
which is very challenging and remains as our future work.

Bug Lock-setMV Happens-beforeMV

Detect False Over- Detect False Over-
Bug? Pos. head∗ Bug? Pos. head∗

Moz-js1 Y 1 39.9% Y 1 21.2%
Moz-js2 Y 2 39.8% Y 5 1.0%
Moz-imap Y 0 13.2% Y 0 1.0%
MySQL-log Y 3 6.5% Y 6 5.0%
MySQL-blog N 0 5.9% N 1 3.2%
Note: In addition to the above existing concurrency
bugs, we detected four new multi-variable concur-
rency bugs that have never been reported before.

Table 7: Dynamic multiple-variable concurrency bug

detection results. (In detect-bug columns, ‘Y’ means

correct root cause identified; ‘N’ means not identified.

None of these five bugs’ correct root causes can be iden-

tified without MUVI extension. The numbers of false

positives are the additional static false positives intro-

duced by our extensions (excluding those introduced by

the original race detectors). *: The overhead is the extra

monitor-run overhead over the original race detectors.)

False negatives of inconsistent update bug detection
The false negatives of MUVI inconsistent update bug de-
tection would come from two main sources: (1) some true
correlations are missed by MUVI access correlation analy-
sis; (2) some true bugs might be ranked low in MUVI bug
reports and are therefore missed by programmers. In our
current prototype, this happens when there is relatively big
number of violations or small number of supports. Part of
this problem can be solved by better ranking algorithms,
which we will study in the future.

7.3 Concurrency Bug Detection
Overall Table 7 shows the evaluation results on five real-
world multi-variable concurrency bugs. Both lock-setMV and
happens-beforeMV can correctly identify the root causes of
four tested multi-variable concurrency bugs. None of these
tested bugs’ true root causes, i.e. multi-variable concurrency
bugs, can be identified by the original lock-set or happens-
before algorithms without MUVI’s extensions.

Furthermore, MUVI also detects four new multi-variable
concurrency bugs that have never been reported before. We
have already shown an example in Figure 2(d). Figure 7
shows another new bug we find from Mozilla. In this bug, the
function in thread 1 is invoked with lock protection, but the
function in thread 2 is not. Actually, were not the correlation
between table->entryCount and table->removedCount, the
single-variable race between the two threads seemed benign.
But with MUVI ’s multi-variable extension, the race detec-
tors correctly identify the problem: the consistency of the
correlated accesses is broken by remote conflict accesses.

False positives of multi-variable concurrency bug de-
tection MUVI extension also introduces a small number
(0-6) of false positives. Since the original lock-set algorithm
reports races more aggressively than happens-before, our ex-
tension introduces slightly more additional false positives to
happens-before than to lock-set.

MUVI ’s false positives come from two sources: wrong
correlations and benign multi-variable races. Like benign
single variable races, benign multi-variable races also exist
due to special program semantics. Some of the benign multi-
variable races can be pruned by sophisticated atomicity vi-
olation analysis like what we did for AVIOMV in section 5.



struct JSDHashTable {
    ...

uint32 entryCount;
/* number of entries 

                       in table */
uint32  removedCount;

/* number of entries 
removed from table */

    …
}

Mozilla jsdhash.h

Thread 1 Thread 2
JS_DHashTableRawRemove( )
{
   ...
   /* remove an entry from table */

table  removedCount++;

table  entryCount--;

}

JS_DHashTableEnumerate  ( ... ) 
{/* shrink table if many entries removed*/

   if ( table  removedCount
                              >= threshold ) {
      entries = table  entryCount;
    /*checking & calculating new capacity
      based on entries*/
   }

…
/* shrink table based on above capacity*/

}Mozilla jsdhash.c Mozilla jsdhash.c
(a) Variables with access correlation (b) Bug 

Figure 7: A new multi-variable concurrency bugs found

by MUVI in Mozilla. Thread 2 interleaves thread 1’s

update to table->entryCount and table->removedCount and

reads inconsistent values. As a result, the table may not

be correctly shrunk. If only considering the race on each

single variable, the programmer can easily get confused.

However, benefiting from MUVI ’s multi-variable exten-

sions, the detectors can identify the correct root cause.

int mysql_delete(TABLE *t,…){
lock ( l ); 

          …
t rows = 0;

          …
unlock ( l );

binlog.write(“DELETE”)

}

int mysql_insert(TABLE *t, …) {
lock ( l );

...
t rows++;

…
unlock ( l );

binlog.write(“INSERT”)

}mysql      sql_delete.cc mysql      sql_insert.cc

Thread 1 Thread 2
Real Execution:
    Flush t
    Insert into t  
(table t contains one row)
BinLog Record:
    INSERT  t
    DELETE t
    (table t has no row)

Security Problem:
DB Recovery would fail

lock (b);

unlock (b);
...

lock (b);

unlock (b);
...

Figure 8: The false negative (bug MySQL-blog in Ta-

ble 4) of Lock-setMV and Happens-beforeMV. The cor-

relation between t→rows and binlog is conditional, and is

therefore missed by MUVI. Specifically, t→rows can be

accessed many times, and usually binlog need not be ac-

cessed together. Only when a request’s processing is at

the end and t→rows is given a final value, does binlog

need to be consistently modified.

False negatives of multi-variable concurrency bug
detection MUVI extension misses one tested bug (bug
MySQL-blog), as shown in Figure 8. The reason of this
false negative is that MUVI can not detect the conditional
correlation, which only holds within certain program con-
texts, associated with this bug. How to combine program
contexts with variable correlations remains as future work.

Performance Our MUVI extension only adds a small
percentage of extra overhead on the original race detec-
tors: 5.9%-40% for lock-set; and 1%-21% for happens-before.
Note that, due to the completely different implementations
(one using Valgrind and the other using PIN), the extra
overhead of lock-setMV and happens-beforeMV are incompa-
rable. Since the original implementations already incur too
large overheads (more than 10X) to be used in production
runs, our additional overheads have no major impact.

7.4 Distribution of Variable Correlations
How many correlated peers? Figure 9 shows the distri-
bution of the variables with different numbers of correlated
peers. The results from Linux and Mozilla show that most
variables are only correlated with a small number of peers:
around half of the variables are correlated with only one
variable and around 20% are correlated with two variables.

This result indicates that access correlations do not exist
between any two random variables. Even though most struc-
tures contain many fields, only those fields that have true
semantic connections have access correlations.
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Figure 9: Distribution of correlated variables with dif-

ferent number of peers in Linux and Mozilla. The results

with the other two applications are similar.

How many correlations in each type? Table 8 shows
the number of correlations in each type. Around half of
the correlations are asymmetric and therefore we need to
differentiate the direction in correlation analysis. Table 8
also shows other types of access correlations MUVI finds.
The distribution shows that most of the correlations are ei-
ther read together or written together. read ⇒write and
write ⇒read are relatively rare. Variables with these two
types of correlations usually also support read ⇒read or
write ⇒write. This indicates that the correlated variables
should be either used or updated consistently.

Sym. Asym. rr rw wr ww
Linux 1595 1758 1141 325 408 1113
Mozilla 651 780 697 151 237 341
MySQL 316 410 339 61 81 161
PostgreSQL 586 353 365 112 131 269

Table 8: Direction and access types of correlations. (rr

is read ⇒read, rw is read ⇒write, and so on. Due to the

space limit, the remaining four types are not shown.)

7.5 Sensitivity Analysis
In order to demonstrate how to choose parameters in MUVI,

we perform a sensitivity study on MinConfidence and Min-
Support. We only show the results of MySQL variable cor-
relation inference in Figure 10. The other applications also
share similar trends.
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Figure 10: Parameter sensitivity (MySQL) (For each

confidence or support threshold value, the false positive

rates are measured by examining 10 randomly selected

access correlation candidates with the specified confidence

and support values).

Figure 10(a) shows how the false positive rate of MUVI
variable correlation inference changes with different Min-
Confidence (all other parameters are fixed as default values).
The false positive rate dramatically decreases from higher
than 50% to around 20% when the confidence reaches 80%.
Therefore, we choose 0.8 as the default MinConfidence.

Figure 10(b) shows how the false positive rate of MUVI
variable correlation inference changes with different Min-
Support (all other parameters are fixed as default values).
Similarly, we can see the dramatic change of false positive



rate around the support range of 10, and therefore we choose
10 as the default MinSupport.

Parameter setting also affects the bug detection results.
Here, we show the results from MUVI inconsistent update
bug detection on Linux and MySQL based on different MinDi-
rectSupport for demonstration. Comparing against the bugs
detected by MUVI under the default setting (MinDirectSup-
port=5), Figure 11 shows the number of bugs detected under
different MinDirectSupport (all other parameters use default
values). More bugs would be missed with larger MinDirect-
Support. For example, with MinDirectSupport 30, only 1
(out of the total 22) Linux inconsistent update bug and 3
(out of the total 9) MySQL bugs can be detected.

5 8 12 16 20 30

MinDirectSupport Thresholds
Figure 11: The number of Linux and MySQL inconsis-

tent update bugs that are detected at different MinDirect-

Support (here we use the set of bugs detected by MUVI

default setting as the baseline)

Apart from the parameter setting, other MUVI design also
needs to consider the false positive–negative tradeoff. In our
current prototype, not only direct accesses but also indirect
accesses of one-level callee functions are considered in the
Acc Set (Section 3.2). Although this design choice results
in a few more false positives, it also allows us to extract
more true correlations. Take MySQL variable correlation
inference as an example. Our experiment shows that MUVI
can infer 51 more true correlations 4 than the alternative
design where only direct accesses are considered (all other
settings are exactly the same), with a reasonable number
(15) of additional false positives.

8. RELATED WORK
Inferring specifications from programs Many studies
have been conducted on automatically extracting specifica-
tions from programs [1, 2, 20, 22, 38, 39, 42], but most of
them focused on procedures and component interfaces in-
stead of variable correlations. For example, Kremenek et
al. [20] use probabilistic graph models to infer properties of
a function such as ownership, allocator, deallocator, etc.

A study conducted by Engler et al. [9] shares the same
high level idea with our work. But their work focuses on de-
tecting inconsistency via logic reasoning : for example, some
statement indicates that a pointer might be NULL (since
it performs a check) but a subsequent statement assumes
that this pointer must not be NULL (since it references the
pointer directly)—so a conflict. It does not perform pattern
analysis except for one type: “function A should be paired
with function B”. Some other recent studies have been con-
ducted to extract invariants such as value invariants [10, 15]
and failure-predicates [23].

Unlike above work, our work detects inconsistency via pat-
tern analysis on multi-variable access correlations. In ad-
dition, we also detect multi-variable concurrency bugs and

4Based on our manual examination.

extract multi-variable correlations that can be used to an-
notate programs for other tools.
Code mining for patterns MUVI is also related to previ-
ous work that uses data-mining to detect software bugs. Dy-
naMine [24] detects common function API usage patterns by
mining software patches. CP-Miner [21] applies data mining
to identify copy-pasted code and further detects copy-paste-
related wrong variable-name bugs. PR-Miner [22] also uses
data mining techniques to find rules, specifically, frequent
function call sequences from source code, and then detects
bugs caused by missing or wrong function calls.

Similarly, MUVI also uses data mining to infer patterns of
different types—multi-variable access correlations, and then
detect completely different classes of software bugs—multi-
variable inconsistent updates and related concurrency bugs.
Concurrency bug detection As discussed in earlier sec-
tions, much work has been done in detecting data races [5,
6, 8, 28, 30, 31, 32, 35, 37, 43] and atomicity violations [11,
25, 34, 40]. Almost all of them focus on single-variable data
races or atomicity violations. Model checking is also widely
used for concurrency bug detection [12, 17, 33]. Model
checking tools first abstract the program state and then sys-
tematically explore the whole state space to disclose bugs.
In order to shrink the state space, many model checking
tools assume that accesses to different variables are inde-
pendent of each other. Therefore, they will similarly miss
multi-variable concurrency bugs.

As demonstrated in our extensions to lockset and happens-
before, MUVI can help previous concurrency bug detectors
to detect multi-variable concurrency related bugs.
Techniques for easing concurrent programming Much
work has been done to ease the implementation of concur-
rent programs. Recently, transactional memory [16, 18] is
a widely-recognized approach along this direction. While
it can significantly eliminate single-variable races, multi-
variable concurrency bugs can still occur. AutoLocker [27]
proposes using compilers to add locks automatically. It as-
sumes that programmers need to manually annotate corre-
lated variables to use the same lock.

MUVI well complements the above work since it can au-
tomatically infer variable correlations and provide this in-
formation to the above tools.

9. CONCLUSIONS AND FUTURE WORK
This paper proposes an innovative approach, MUVI, that

combines source code analysis and data-mining techniques
to automatically infer variable access correlations and detect
related bugs. MUVI extracts 6449 access correlations from
Linux, Mozilla, MySQL and PostgreSQL with high (83%)
accuracy. Based on these correlations, MUVI detects 39
new bugs (17 already confirmed) from these applications.
MUVI extensions to two representative existing race detec-
tors (lock-set and happens-before) correctly identify the root
causes of four tested real-world multi-variable concurrency
bugs and also detect four new multi-variable concurrency
bugs that have never been reported before.

Our results indicate that multi-variable access correlation
is a common and important program semantic property in
various real-world programs and their violations can cause
important semantic bugs in operating system and server
code. The access correlations inferred by MUVI can be used
to automatically annotate programs for other tools such as
AutoLocker [27] and Colorama [4].



Our work is only a beginning in the multi-variable cor-
relation research. It can be extended in four aspects: (1)
Detect other types of multi-variable related bugs, such as
read inconsistency, multi-variable atomicity violation bugs,
etc. (2) Improve MUVI correlation analysis and bug detec-
tion accuracy via better code analysis. (3) Extend MUVI
to analyze dynamic traces to get run-time correlation. (4)
Evaluate more real-world applications.
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