
CS787: Advanced Algorithms

Scribe: Daniel Wong and Priyananda Shenoy Lecturer: Shuchi Chawla
Topic: Applications of Network Flow Date: 9/14/2007

5.1 Introduction and Recap

In the last lecture, we analyzed the problem of finding the maximum flow in a graph, and how it
can be efficiently solved using the Ford-Fulkerson algorithm. We also came across the Min Cut-Max
Flow Theorem which relates the size of the maximum flow to the size of the minimal cut in the
graph.

In this lecture, we will be seeing how various different problems can be solved by reducing the
problem to an instance of the network flow problem. The first application we will be seeing is the
Bipartite Matching problem.

5.2 Bipartite Matching

A Bipartite Graph G(V,E) is a graph in which the vertex set V can be divided into two disjoint
subsets X and Y such that every edge e ε E has one end in X and the other end in Y . A matching
M is a subset of edges such that each node in V appears in at most one edge in M . A Maximum
Matching is a matching of the largest size.

X

Y

Fig 1 : Bipartite Graph

A clarification about the terminology:

Definition 5.2.1 (Maximal Matching) A maximal matching is a matching to which no more
edges can be added without increasing the degree of one of the nodes to two; it is a local maximum.

Definition 5.2.2 (Maximum Matching) A maximum matching is one which is the largest pos-
sible; it is globally optimal.

1

It can be shown that for any maximal matching Mi, |Mi| ≥ 1
2 |M | where M is the maximum

matching. Given this, it is straightforward to obtain a 2-approximation to the maximum matching.

The problem of finding the maximum matching can be reduced to maximum flow in the following
manner. Let G(V, E) be the bipartite graph where V is divided into X, Y . We will construct a
directed graph G′(V ′, E′), in which V ′ which contains all the nodes of V along with a source node
s and a sink node t. For every edge in E, we add a directed edge in E′ from X to Y . Finally we
add a directed edge from s to all nodes in X and from all nodes of Y to t. Each edge is given unit
weight.

X

Y

s t

Fig 2: The Bipartite Graph converted into a flow graph

Let f be the maximum integral flow of G′, of value k. Then we can make the following observations:

1. There is no node in X which has more than one outgoing edge where there is a flow.

2. There is no node in Y which has more than one incoming edge where there is a flow.

3. The number of edges between X and Y which carry flow is k.

By these observations, it is straightforward to conclude that the set of edges carrying flow in f
forms the maximum matching for the graph G.

The running time for the Ford-Fulkerson algorithm is O(mF) where m is the number of edges in E
and F =

∑
e∈δ(s)(ce). In case of bipartite matching problem, F ≤ |V | since there can be only |V |

possible edges coming out from source node. So the running time is O(mn) where n is the number
of nodes.

An interesting thing to note is that any s − t path in the residual graph of the problem will
have alternating matched and unmatched edges. Such paths are called alternating paths. This
property can be used to find matchings even in general graphs.

5.2.1 Perfect Matching

A perfect matching is a matching in which each node has exactly one edge incident on it. One
possible way of finding out if a given bipartite graph has a perfect matching is to use the above

2

algorithm to find the maximum matching and checking if the size of the matching equals the number
of nodes in each partition. There is another way of determining this, using Hall’s Theorem.

Theorem 5.2.3 A Bipartite graph G(V,E) has a Perfect Matching iff for every subset S ⊆ XorS ⊆
Y , the size of the neighbors of S is at least as large as S, i.e |Γ(S)| ≥ |S|
We will not discuss the proof of this theorem in the class.

5.3 Scheduling Problems

We will now see how the Max Flow algorithm can be used to solve certain kinds of scheduling
problems. The first example we will take will be of scheduling jobs on a machine.

Let J = {J1, J2, ..., Jn} be the set of jobs, and T = {T1, T2, .., Tk} be slots available on a machine
where these jobs can be performed. Each job J has a set of valid slots Sj ⊆ T when it can be
scheduled. The constraint is that no two jobs can be scheduled at the same time. The problem is
to find the largest set of jobs which can be scheduled.

This problem can be solved by reducing it to a bipartite matching problem. For every job, create
a node in X, and for every timeslot create a node in Y . For every timeslot T in Sj , create an edge
between J and T . The maximum matching of this bipartite graph is the maximum set of jobs that
can be scheduled.

We can also solve scheduling problems with more constraints by having intermediate nodes in the
graph. Let us consider a more complex problem: There are k vacation periods each spanning
multiple contiguous days. Let Dj be the set of days included in the jth vacation period. There are
n doctors in the hospital, each with a set of vacation days when he or she is available. We need to
maximize the assignment of doctors to days under the following constraints:

1. Each doctor has a capacity ci which is the maximum total number of days he or she can be
scheduled.

2. For every vacation period, any given doctor is scheduled at most once.

We will solve this problem by network flow. As was done earlier, for every doctor i we create a node
ui and for every vacation day j we create a node vj . We add a directed edge with unit capacity
from start node s to ui and from vj to sink t. To include the constraints, the way the graph is
constructed in the following way:

• The doctor capacities are modeled as capacities of the edge from the source to the vertex
corresponding to the doctor.

• To prevent the doctor to be scheduled more than once in a vacation period, we introduce
intermediate nodes. For any doctor i and a vacation period j, we create an intermediate node
wij . We create an edge with unit capacity from ui to wij . For every day in the vacation
period that the doctor is available, we create an edge from wij to the node corresponding to
that day with unit capacity.

3

s

doctors

t

intermediate nodes

vacation periods

ci

1
1

1

Fig 3: Scheduling Problem with constraints

Let us see if the an integral flow through the graph produces a valid schedule. Since the edge
connecting s to the node corresponding to the doctor has the capacity equal to the total availability
of the doctor, the flow through the doctor node cannot exceed it. So the first constraint is satisfied.
From any doctor to any vacation period the flow is atmost one, since the intermediate node has
only one incoming edge of unit capacity. This makes sure that the second criteria is met. So the
flow produced satisfies all the constraints.

If k is the size of an integral flow through the graph, then the total number of vacation days which
have been assigned is also k, since the edges which connect the nodes corresponding to the vacation
days to the sink node have unit capacity each. So the size of the scheduling is equal to the size of
the flow. From this we can conclude that the largest valid scheduling is produced by the maximum
flow.

5.4 Partitioning Problems

Now we will see how certain kinds of paritioning problems can be solved using the network flow
algorithm. The general idea is to reduce it to min-cut rather than max-flow problem. The first
example we will see is the Image segmentation problem.

5.4.1 Image Segmentation

Consider the following simplification of the image segmentation problem. Assume every pixel in
an image belongs to either the foreground of an image or the background. Using image analysis
techniques based on the values of the pixels its possible to assign probabilites that an individual
pixel belongs to the foreground or the background. These probabilites can then be translated to
“costs” for assigning a pixel to either foreground or background. In addition, there are costs for
segmenting pixels such that pixels from differant regions are adjacent. The goal then is to find an
assignment of all pixels such that the costs are minimized.

Let fi be the cost of assigning pixel i to the foreground.
Let bi be the cost of assigning pixel i to the background.

4

Let sij be the cost of separating neighboring pixels i and j into different regions.

Problem: Find a partition of pixels into, p ∈ S, the set of foreground pixels and S̄, the set of
background pixels,such that the global cost of this assignment is minimized.

Let (S, S̄) be the partition of pixels into foreground and background respectively. Then the cost of
this partition is defined as:

cost(S) =
∑

i∈S

bi +
∑

i/∈S

fi +
∑

i∈S,j /∈S
i and j are neighbours

sij (5.4.1)

We need to find an S which minimizes cost. This problem can be reduced to a min-cut max-flow
problem. The natural reduction is to a min-cut problem.

Let each pixel be a node, with neighboring pixels connected to each other by undirected edges with
capacity sij . Create additional source and sink nodes, s and t, respectively which have edges to
every pixel. The edges from s to each pixel have capacity bi. The edges from each pixel to t have
capacity fi.

bi

fi

s

t
vi

sij

background
foreground

Fig 3: Image segmentation flow graph

Any cut in the graph will then naturally separate the pixels into two groups. With the arrangement
the capacity of the cut is the cost associated with that partition. The min-cut max-flow algorithm
will find such a partition of minimum cost.

5.4.2 Image Segmentation cont.

Consider a modification of the original problem. Replace fi and bi with values representing the
“benefit/value” for assigning the pixel i to either the foreground or background.

Problem: Find an assigment such that for all pixels, p ∈ S, the set of foreground pixels, or S̄, the
set of background pixels,such that the global value is maximized. Where value is:

5

val(S) =
∑

i∈S

fi +
∑

i/∈S

bi −
∑

i∈S,j /∈S
i and j are neighbours

sij (5.4.2)

Since the min-cut approach is a minimization problem, we need to convert it into a minimization
problem in order to reduce it to min-cost. Let (S, S̄) be the partition of pixels into foreground and
background respectively.

We can relate cost (defined as per 5.4.1) and val by assuming cost to mean “lost benefit”:

cost(S) =
∑

i

(bi + fi)− val(S) (5.4.3)

Since
∑

i(bi + fi) is a constant for any given instance, the problem of maximising val reduces to
minimizing the cost.

We can reformulate cost as

cost(S) =
∑

i∈S

bi +
∑

i/∈S

fi +
∑

i∈S,j /∈S
i and j are neighbours

sij (5.4.4)

Comparing this to the previous problem, we see that this is the same as interchanging bi and fi

in the graph we used to solve the first problem; i.e. the weight of the nodes from s to vi is set
as fi and weight of vi to t is set as bi. Solving this using min-cut will give us the partition which
maximizes the benefit.

s

t
vi

sij

background foreground

fi

bi

Fig 4: Flow graph for maximizing benefits

5.5 Max-Flow with Costs

Let us consider an extension of the perfect matching problem where different edges have different
costs. The naturally leads to the min-cost max-flow problem. In this case, not only do we have to
find a max flow through the graph, but also have to find one with the least cost.

6

Likewise, in the min-cost perfect matching problem, the cost of a perfect matching M is
∑

eεM c(e)f(e)
where f(e) is the cost of including the edge e in the matching.

It can be shown that by directing the flow through the minimum cost augementing path first,we
will find the maximum flow with the least cost.

References

[1] Eva Tardos, Jon Kleinberg Algorithm Design. Pearson Education, 2006.

7

