
CS787: Advanced Algorithms

Scribe: Mayank Maheshwari, Chris Hinrichs Lecturer: Shuchi Chawla
Topic: Hashing and NP-Completeness Date: September 21 2007

Previously we looked at applications of randomized algorithms, and began to cover randomized
hashes, deriving several results which will be used in today’s lecture notes. Today we will finish
covering Randomized hashing and move on to the definition of the classes P and NP, and NP-
Completeness.

8.1 Hashing Algorithms

Sometimes it is desireable to store a set of items S taken from a universe U using an amount of
storage space n and having average lookup time O(1). One system which has these properties is
a hash table with a completely random hash function. Last time we saw how to implement this
using a 2-universal hash family. Unfortunately these hash families can have a large lookup time in
the worst case. Sometimes we want the worst case lookup time to also be O(1). We will now see
how to achieve this perfect hashing.

8.1.1 Perfect hashing – reducing worst case loopkup time

Given a 2-uniform hashing function h (informally, a function which has a 1/n probability of as-
signing 2 different independently chosen elements of U to the same value i, also called “bin i”) and
that |S| = m, |U | = u and S ⊆ U we can construct an array [n] of n bits such that if an element
i ∈ S maps to h(i) then the array answers that i is in S. Note that there is a certain probability
that this will be false because elements not in S can be mapped to the same location by the hash
function. If there are more than one element in S mapped to the same bit i then the single bit in
the array is replaced by a linked list of elements, which can be searched until the desired element is
found. Under this arrangement, the worst case lookup time is determined by the longest expected
linked list in [n], which is equivalent to the expected number of assignments of elements in S to a
single bin, i.e. collisions in bin i. The expectation of the number of collisions at bin i is given by

E[Xi] = 1/n

(

m

2

)

(8.1.1)

where Xi is a random variable representing the number of elements in S mapped to bin i. In order
for the expected lookup time to be O(1) the quantity on the right hand side of (8.1.1) must be
O(1) which means that n must be O(m2).

In order to ensure that E[Xi] = O(1) we can repeatedly choose new hash functions h from a 2-
Universal family of functions H : U → [n2] until one is found which produces no more than O(1)
collisions in any bin.

1



8.1.2 Perfect hashing with linear space

An improvement on this method of hashing elements of S which reduces its space complexity is to
choose n ≈ m and instead of using a linked list of elements which map to the same bin, we can use
another hash of size n to store the elements in the list. Let bi be the number of elements in bin i.
We note that the expected maximum number of elements in a single bin, is roughly

√
n because

we know from theorem 7.1.1 that Pr[maxi bi ≥ k] ≈ 1/k2 and thus Pr[any bi ≥
√

n] ≈ 1/n, so we
accpet with high confidence that no bin has more than

√
n items in it. The size of this hash is

roughly the square of the number of elements to be stored in it, making its expected lookup time
O(1) as discussed above.

If bi is the number of elements placed in bin i, i.e. the number elements in the sub-hash in bin i,
(if bi 6= 1), then the total amount of space used by this method, Tsp is given by:

Tsp = m + E

[

∑

i

b2

i

]

(8.1.2)

The first term is for the array itself, and the second is for the sub-hashes, each of which stores bi

items, and requires b2

i space. We can note that

E

[

∑

i

b2

i

]

=
∑

i

2 ∗
(

bi

2

)

+
∑

i

bi (8.1.3)

because

(

bi

2

)

=
bi ∗ (bi − 1)

2

The
∑

i bi term is equal to m, the number of items stored in the main hash array. We can approx-
imate the summation term my saying that

∑

i

(

bi

2

)

≈ 1

m

(

m

2

)

Tsp then becomes

Tsp ≈ 2m +
2

m

m(m − 1)

2
≈ 3m (8.1.4)

2



8.2 Bloom Filters

Before we go on to the idea of bloom filters, let us define the concept of false positive.

Definition 8.2.1 (False Positive) A given element e ∈ U and |S| = m and the elements of S
are mapped to an array of size n. If the element e /∈ S but the hashing algorithm returns a 1 or

“yes” as an answer i.e. the element e is mapped to the array, it is called a false positive.

Now the probability of a false positive using perfect hashing is:

Pr[a false positive] = 1 − Pr[0 in that position]

= 1 − (1 − 1

n
)m

(n � m)

≈ 1 − (1 − m

n
) =

m

n

This probability of getting a false positive is considerably high. So how can we decrease this?

By using 2-hash functions, we can reduce this probability to (m
n

)2. So, in general, by using k-hash
functions, we can decrease the probability of getting a false postive to a significantly low value. So,
a fail-safe mechanism to get the hashing to return a correct value by introducing redundancy in
the form of k-hash functions is the basic idea of a bloom filter. Problem:Given an e ∈ U , we have
to map S to [n] using k hash functions.

So to solve this problem, we

• Find h1(e), h2(e),. . . , hk(e).

• If any of them is 0, output e /∈ S, else output e ∈ S.

Now the Pr[a false positive] = 1 − Pr[any one position is 0].

So let’s say the

Pr[some given position is 0] = (1 − 1

n
)mk ≈ exp(

−mk

n
) = (say)p. (8.2.5)

So Pr[any given position is 1]= 1−p. And Pr[all positions that e maps to are 1 given e /∈ S]=(1−
p)k.

This is correct if all the hash functions are independent and k is small.

Problem:The probability of getting a false positive using k-hash functions is (1 − p)k. So how can
we minimize it?

Let us say the function to be minimized is f(k) = (1 − exp(−km
n

))k.

3



By first taking the log of both sides and then finding the first derivative, we get

d

dk
log(f(k)) =

d

dk
k log(1 − exp(

−km

n
))

= log(1 − exp(
−km

n
)) +

k

1 − exp(−km
n

)
exp(

−km

n
)
m

n

= log(1 − p) − p

1 − p
log(p)

By substituting p = exp(−km
n

) and km
n

= − log(p)

To minimize this function, we need to solve the equation with its first derivative being equal to 0.

So to solve this equation:

log(1 − p) − p

1 − p
log p = 0

⇒ (1 − p) log(1 − p) = p log p

Solving this equation gives p = 1

2
.

So we get

exp(
−km

n
) =

1

2
⇒ k =

n

m
ln 2

So with that value of k, we can deduce the value of f(k) as:

f(k) = Pr[positive]

= (1 − p)k

=
1

2

n

m
ln 2

= c
n

m .

If we choose n = m log m where c < 1 is a constant, this gives f = 1

m
.

So this way, we can reduce the probability of getting a false positive by using k-hash functions.

8.3 NP-Completeness

8.3.1 P and NP

When analyzing the complexity of algorithms, it is often useful to recast the problem into a decision
problem. By doing so, the problem can be thought of as a problem of verifying the membership
of a given string in a language, rather than the problem of generating strings in a language. The

4



complexity classes P and NP differ on whether a witness is given along with the string to be
verified. P is the class of algorithms which terminate in an amount of time which is O(n) where n
is the size of the input to the algorithm, while NP is the class of algorithms which will terminate
in an amount of time which is O(n) if given a witness w which corresponds to the solution being
verified. More formally,

L ∈ NP iff ∃ P-time verifier V ∈ P s.t.

∀ x ∈ L, ∃ w, |w| = poly(|x|), V(x, w) accepts

∀ x 6∈ L, ∀ w, |w| = poly(|x|), V(x, w) rejects

The class Co-NP is defined similarly:

L ∈ Co-NP iff ∃ P-time verifier V ∈ P s.t.

∀ x 6∈ L, ∃ w, |w| = poly(|x|), V(x, w) accepts

∀ x ∈ L, ∀ w, |w| = poly(|x|), V(x, w) rejects

An example of a problem which is in the class NP is Vertex Cover. The problem states, given a
graph G = (V,E) find a set S ⊆ V, then ∀e ∈ E, e is incident on a vertex in S, and |S| ≤ k for
some number k. There exists a verifier V by construction; V takes as input a graph G, and as a
witness a set S ⊆ V and verifies that all edges e ∈ E are incident on at least one vertex in S and
that |S| ≤ k. If G has no vertex cover of size less than or equal to k then there is no witness w
which can be given to the verifier which will make it accept.

8.3.2 P-time reducibility

There exist some problems which can be used to solve other problems, as long as a way of solving
them exists, and a way of converting instances of other problems into instances of the problem
with a known solution also exists. When talking about decision problems, a problem A is said to
reduce to problem B if there exists an algorithm which takes as input an instance of problem A,
and outputs an instance of problem B which is guaranteed to have the same result as the instance
in problem A, i.e. if LA is the language of problem A, and LB is the language of problem B, and
if there is an algorithm which translates all l ∈ LA into lB ∈ LB and which translates all l′ 6∈ LA

into l′B 6∈ LB then problem A reduces to problem B.

The practical implication of this is that if an efficient algorithm exists for problem B, then problem
A can be solved by converting instances of problem A into instances of problem B, and applying
the efficient solver to them. However, the process of translating instances between problems must
also be efficient, or the benefit of doing so is lost. We therefore define P-time reducibility as the
process of translating instances of problem A into instances of problem B in time bounded by a
polynomial in the size of the instance to be translated, written A ≤P B. This reduction is also
called Cook reduction.

5



8.3.3 NP-Completeness

If it is possible to translate instances of one problem into instances of another problem, then if
there exists a problem L such that

∀L′ ∈ NP, L′ ≤P L

then an algorithm which decides L decides every problem in NP. Such problems are called NP-
Hard. If a problem is in NP-Hard and NP, then it is called NP-Complete. If there exists a P-time
algorithm which decides an NP-Complete problem, then all NP problems can be solved in P-time,
which would mean that NP ⊆ P . We already know that P ⊆ NP because every P-time algoritm
can be thought of as an NP algorithm which takes a 0-length witness. Therefore, P = NP iff
there exists a P-time algorithm which decides any NP-Complete problem. This result was proved
independently by Cook and Levin, and is called the Cook-Levin theorem. The first problem proved
to be in NP-Complete was Boolean SAT, which asks, given a Boolean expression, is there a setting
of variables which allows the entire expression to evaluate to True?

6


