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Today we talk about an important technique of approximation algorithms: local search. We first
give fundamental ideas of local search approximation. Then we look into two problems where local
search based approximation algorithms apply, max-cut problem and facility location problem.

10.1 Fundamentals of Local Search

The basic idea of local search is to find a good local optima quickly enough to approximate the
global optima. This idea is somewhat like hill climbing. Starting from an arbitrary point, we try
to go down or climb up a little step and compare the objective value at the new point to that at
the old point. We then choose the step that increase the objective value. In this manner, we finally
reach a local maximal. Such algorithm is also known as ascending or descending algorithm.

We can also explain local search method using a graph. We consider a graph, whose nodes are
feasible solutions and whose edges connect two “neighboring” feasible solutions. Two feasible
solutions are neighbors if from either one we can obtain the other by a single “local” step. What
constitutes a local step depends on the problem, as we will see through examples later. Note that
we do not construct the entire graph, as its size would usually be exponential.

Once the structure of the graph is decided, in order to find a local optimum, we start with an
arbitrary node in the graph of feasible solutions, and we look at its neighbors to see if there is a
node with a better objective value. If there is, we find we move to that node feasible solution in
the graph. We don’t necessarily look for the neighboring node with the best objective value; in
most cases a better value is enough. We repeat this process until there is no neighbor with a better
objective value. At that point we find the local optimum. See figure below.

Starting Node

Local Maximal

Figure 10.1.1: Graph Representation of Local Search
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Now, the problem is how to design a good neighborhood structure for the graph. On one hand,
we cannot allow for any node to be neighbor to too many other nodes. Otherwise in the extreme
case we would get a complete graph and it would take exponential time to consider the neighbors
of even a single node. On the other hand, we cannot have too few neighbors for a node, because
we want any locally optimal node in the graph to have objective value within a factor of that of
the global optimum.

In summary, we seek the following properties in a graph of feasible solutions:

1. Neighborhood of every solution is small

2. Local optima are nearly as good as global optima

3. We can find some local optima in a polynomial number of steps

The third point is often proven by showing that at each step we improve the objective value by some
large enough factor. If the original solution has objective value V and the local optimal solution
has objective value V ∗, and at each step the objective value is improved by (1 + ε), then we will
have log(1+ε)

V ∗
V steps. We will give more details in the following examples.

10.2 Max-Cut Problem

Problem Definition:

Given: Unweighted graph G = (V, E)

Goal: Determine a cut (S, S), where S 6= V and S 6= ∅, such that val(s) =
∑

e∈E∩(S×S) we =
|E ∩ (S × S)| is maximized.

S S

Figure 10.2.2: A cut (S, S)

This problem is known to be NP-hard, which may appear surprising since its minimization version
is efficiently solvable.
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Since any nontrivial cut yields a feasible solution, we already know the nodes of our graph of feasible
solutions. We need to determine a neighborhood structure on this graph, in other words we need
to decide on what constitutes a local step.

Given a solution (S, S), we consider a local step as moving a vertex from one side of the partition
to another. So if v is in S (resp. S), then moving v to S (S) would be a local step.

Our algorithm then is the following. Start with any nontrivial partition. Take local steps until a
partition is reached such that none of its neighbors give a larger cut. Return this last partition.

Theorem 10.2.1 The max-cut algorithm described above runs in O(n2) steps, where n is the
number of vertices in the graph.

Proof: At every step, we improve the size of the cut by at least 1. Therefore, the number of steps
cannot be more than the total number of edges in the graph, which is O(n2).

Theorem 10.2.2 If (S, S) is a local optimal cut and (S∗, S∗) is the global optimal cut, then
val(S) ≥ 1

2val(S∗).

Proof: Let (S, S) be locally optimal. For any vertex v in the graph, denote by C(v) the number
of neighbors of v that are across the cut. So if v is in S, then C(v) = |(u, v) ∈ E : u ∈ S|. Similarly,
denote by C ′(v) the number of neighbors of v that are in the same side of the cut as v. So if v ∈ S,
then C ′(v) = |(u, v) ∈ E : u ∈ S|.
Observe that for any vertex v in the graph we must have C ′(v) ≤ C(v), for otherwise we can move
v to the other partition and obtain a bigger cut, contradicting the local optimality of (S, S).

Now, since val(S) is the number of edges in the cut, the number of edges that are not in the cut is
|E| − val(S). Thus we have

val(S) =
1
2

∑

v∈V

C(v) ≥ 1
2

∑

v∈V

C ′(v) = |E| − val(S) .

This tells us that the number of edges in the cut is at least half of the total number of edges in the
graph, |E|. But we know that |E| is an upper bound on val(S∗), the number of edges in the global
max-cut. Therefore we have proved the claim.

Theorem 10.2.2 shows that our local search algorithm is a 2-approximation. There is another
algorithm that yields a 2-approximation, which uses randomization. In that algorithm, we put a
vertex in S or S at random (with a probability of 1

2 , v gets assigned to S). Then any edge in the
graph has a probability of 1

2 to be in the cut. So in expectation we get at least half of the edges in
the cut. We will not go into details of this algorithm.

For a long while a less-than-2-approximation to this problem was not known, but now there is an
algorithm that achieves a 1.3-approximation that uses sophisticated techniques. We will study this
algorithm in a few weeks.
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10.3 Facility Location

Most of the difficulty in the study of local search approximation algorithms tends to be in the
analysis activity rather than in the design activity. We now move on to a problem that is more
representative of this fact: a simple algorithm, but an involved analysis.

10.3.1 Problem Definition

Consider the following prominent problem in Operations Research, named Facility Location. A
company wants to distribute its product to various cities. There is a set I of potential locations
where a storage facility can be opened and a fixed “facility cost” fi associated with opening a
storage facility at location i ∈ I. (Sometimes we will say “facility i” to mean “facility at location
i”). There also is a set J of cities to which the product needs to be sent, and a “routing cost”
c(i, j) associated with transporting the goods from a facility at location i to city j. The goal is to
pick a subset S of I so that the total cost of opening the facilities and transporting the goods is
minimized.

In short, we want to minimize

C(S) = Cf (S) + Cr(S) , (10.3.1)

where

Cf (S) =
∑

i∈S

fi , (10.3.2)

and

Cr(S) =
∑

j∈J

min
i∈S

c(i, j) . (10.3.3)

Notice that once a subset S of I is chosen, which facilities service which cities is automatically
determined by the way Cr(S) is defined.

In the way we have stated it so far, this problem is a generalized version of SET COVER, which can
be seen by the following reduction: Given a SET COVER instance (S,P), where P ⊂ 2S , map each
P ∈ P to a facility and each s ∈ S to a city, then set fP to 1 and set c(P, s) to either 0 or +∞
depending on if s ∈ P or not, respectively.

This reduction implies that the Facility Location problem would not allow a better approximation
than what we can best do with SET COVER. In today’s lecture we want to study a constant fac-
tor approximation to Facility Location, and for this purpose we impose some restrictions on the
problem.

We restrict the costs c(i, j) to form a metric. A metric is a function that is symmetric and that
satisfies the triangle equality. For the costs in our problem this means (respectively) that we have
c(i, j) = c(j, i) for each i, j ∈ I ∪ J , and that we have c(i, j) ≤ c(i, k) + c(k, j) for all i, j, k ∈ I ∪ J .
Notice that we have extended the notion of cost to in-between facilities and also cities. To make
sense out of this, just think of costs as physical distances, and interpret equation (10.3.3) as each
city being serviced by the nearest open facility.
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10.3.2 A local search algorithm

Our local search algorithm works as follows. We pick any subset S of the set I of facilities. This
gives us a feasible solution right away. We then search for the local neighborhood of the current
feasible solution to see if there is a solution with a smaller objective value; if we find one we update
our feasible solution to that one. We repeat this last step until we do not find a local neighbor
that yields a reduction in the objective value. There are two types of “local steps” that we take in
searching for a neighbor: i) remove/add a facility from/to the current feasible solution, or ii) swap
a facility in our current solution with one that is not.

It is possible to consider variations on the local steps such as removing/adding more than one
facility, or swapping d facilities out and bringing e facilities in, etc.. With more refined local steps,
we can reach better local optima, but then we incur additional runtime due to the neighborhood
graph getting denser. For our purposes the two local steps we listed above suffice, and indeed we
show below that our algorithm with these two local steps give us a 5-factor approximation1.

10.3.3 Analysis

Theorem 10.3.1 Let S be a local optimum that the above algorithm terminates with, and S∗ be a
global optimum. Then

C(S) ≤ 5 · C(S∗) .

We break up the proof of this theorem into two parts. First we show an upper bound on the routing
cost of a local optimum, then we do the same for the facility cost.

Lemma 10.3.2
Cr(S) ≤ C(S∗) .

Proof:

Consider adding some facility i∗ in the globally optimal solution S∗ to the locally optimal S to
obtain S′. Clearly, C(S) ≥ C(S′) because our algorithm must have explored S′ as a local step
before concluding that S is locally optimal. If i∗ was already in S then there is no change. So we
have

Cf (S′)− Cf (S) + Cr(S′)− Cr(S) ≥ 0 .

Since S′ = S ∪ {i∗}, we rewrite the above as

fi∗ + Cr(S′)− Cr(S) ≥ 0 . (10.3.4)

Before moving on we introduce some notation for brevity. Given (a feasible solution) S ⊂ I, a
facility location i, and a city j, we define the following:

— NS(i) = the set of cities that are serviced by facility i in S,2

1Actually, these two steps give us a 3-factor approximation, but we do not cover that analysis here.
2For reasons that will become clear later, a better way to think of the “facility i services city j in S” relation is

“facility i is the closest to j among all facilities in S”. For brevity we will continue to speak of the “service” relation,
but the latter interpretation lends itself better to generalizations and should be kept in mind.
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— σS(j) = the facility that services city j in S – i.e., facility i such that j ∈ NS(i),

— σ∗(j) = σS∗(j),

— σ(j) = σS′(j).

As mentioned earlier, by the way the objective function C was defined (see 10.3.3), given the set
of facilities S′, the decision of which city gets served by which facility is automatically determined:
each city gets served by the nearest facility and indeed this is the best we can do with S′. We
exploit this fact next, by doing worse with S′.

Consider NS∗(i∗), the set of cities that are serviced by i∗ in the globally optimal solution S∗. Now,
some of these cities may be serviced, in the solution S′, by facilities other than i∗, because S′ may
contain facilities that are closer to them. What if we “re-route” S′ so that each of these cities in
NS∗(i∗) actually gets served by i∗, and not necessarily by the nearest open facility to it? Clearly
we would incur a non-negative increase in the total routing cost of S′.

We can state the last argument as it corresponds to the problem formulation. Consider Cr(S′),
the routing costs of S′. Cr(S′) is the sum of the distances of each city to a nearest facility in S′.
What we really mean by “re-route” is to just take some terms in this sum and substitute it with
terms that are not smaller than the ones we take out. In particular, for each city j ∈ NS∗(i∗), we
take out c(σ(j), j), the shortest distance between j and a facility in S′, and instead substitute it
with c(i∗, j), a possibly larger–but surely not smaller–distance. Therefore the resulting sum is not
smaller than Cr(S′). Call this new sum C̄r(S′).

Observe that by construction, C̄r(S′) differs from Cr(S) only in the terms j ∈ NS∗(i∗), and that
we have:

C̄r(S′)−
∑

j∈NS∗ (i∗)

c(i∗, j) = Cr(S)−
∑

j∈NS∗ (i∗)

c(σ(j), j) .

Combining the above with (10.3.4), we obtain:

0 ≤ fi∗ + C̄r(S′)− Cr(S) = fi∗ +
∑

j∈NS∗ (i∗)

[c(i∗, j)− c(σ(j), j)] .

Repeating this for all i∗ ∈ S∗ and summing up, we get

∑

i∗∈S∗


fi∗ +

∑

j∈NS∗ (i∗)

[c(i∗, j)− c(σ(j), j)]


 ≥ 0 .

Rearranging, we get ∑

i∗∈S∗
fi∗ +

∑

i∗∈S∗
j∈NS∗ (i∗)

[c(i∗, j)− c(σ(j), j)] ≥ 0 .

Now, observing that the double sum in the last inequality is going through all the cities, we replace
it with a single sum and write the inequality as

∑

i∗∈S∗
fi∗ +

∑

j∈J

[c(σ∗(j), j)− c(σ(j), j)] ≥ 0 ,

6



which is the same thing as
Cf (S∗) + Cr(S∗)− Cr(S) ≥ 0 ,

proving the lemma.

Lemma 10.3.3
Cf (S) ≤ 2 · C(S∗) + 2 · Cr(S) ≤ 4 · C(S∗) .

Proof: We begin with some more notation. In the proof of the previous lemma we defined σ(j)
to be a function of cities. Now we extend it to facility locations. Given a solution S, a facility
location i, we define:

– σS(i) = argmini′∈S c(i, i′). In words, the nearest facility in S to i.

– σ∗(i) = σS∗(i).

The rest of the proof proceeds somewhat along the lines of the proof of the previous lemma.
Therefore we omit the details when we employ the same type of arguments as before.

Consider swapping some facility i in the locally optimal solution S with σ∗(i), the nearest facility
in S∗ to i. Clearly, this gives us a solution S′ with an objective function value larger than or equal
to that of S, because S is locally optimal. Note that if σ∗(i) was already in S, there is no change.

With i swapped out and σ∗(i) swapped in, we now consider the following. If we “route” the goods
in S′ so that each city that was in NS(i) now gets served by σ∗(i), and not necessarily by the nearest
open facility to it, then this would again yield a non-negative change in the objective function value
of S′. As a result, the combined increase in the cost of this configuration, call it δ, would be

0 ≤ δ = fσ∗(i) − fi +
∑

j∈Ns(i)

[c(j, σ∗(i))− c(j, i)] .

Recalling that the function c is a metric, we observe the following inequality regarding the term
inside the summation in the last equation:

c(j, σ∗(i))− c(j, i) ≤ c(i, σ∗(i)) ≤ c(i, σ∗(j)) ≤ c(i, j) + c(j, σ∗(j))

The first and last inequalities follow from the triangle inequality. The second inequality follows
from the fact that in S∗, the distance between city i and its serving facility σ∗(i) is no larger than
that between i any other facility in S∗, in particular σ∗(j). (Here we have used the σ∗ function
with both a city and a facility location as argument). We now have

0 ≤ δ ≤ fσ∗(i) − fi +
∑

j∈NS(i)

[c(j, i) + c(j, σ∗(j))] .

Expanding the summation on the right, we first get
∑

j∈NS(i) c(j, i), which is the routing cost of the
cities served by i in S; denote this by Ri. Second, we get

∑
j∈NS(i) c(j, σ∗(j)), which is the routing

cost of the cities served by i in S∗; denote this by R∗
i .
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Now we can rewrite the last inequality as

0 ≤ δ ≤ fσ∗(i) − fi + Ri + R∗
i

Summing this equation over all i ∈ S , we obtain
∑

i∈S

fσ∗(i) − Cf (S) + Cr(S) + Cr(S∗) ≥ 0 .

We are not quite done yet. The first sum is counting some facilities in S∗ more than once and not
counting some at all. We will finish this proof in the next lecture.
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