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12.1 Set Cover

Let E = {e1, e2, .., en} be a set of n elements. Let S1, S2, .., Sm be subsets of E with associated
costs c1, .., cm. As explained in a previous lecture, the problem of set cover is to choose 1 or more
of the m subsets such that the union of them cover every element in E, and the objective is to
find the set cover with the minimum cost. In a previous lecture, we have seen a greedy solution to
the set cover which gave a log n approximation. In this lecture, we will see a linear programming
solution with randomized rounding to achieve an O(logn) approximation.

12.1.1 ILP formulation of set cover

Let Xi be a random variable associated with each subset Si.
Xi = 1, if Si is in the solution, and 0 otherwise.

The ILP formulation:
Minimize

∑m
i=1 ciXi s.t

∀e ∈ E,
∑

i:e∈Si Xi ≥ 1 - (1)
∀Xi, Xi ∈ {0, 1} - (2)

The constraints in (1) ensure that every element is present in atleast one of the chosen subsets.
The constraints in (2) just mean that every subset is either chosen or not. The objective function
chooses a feasible solution with the minimum cost.

It can be noted that this problem formulation is a generalization of the vertex cover. If we map
every edge to an element in E, and every vertex to one of the the subsets of E, the vertex cover is
the same as the set cover problem with the additional constraint that every element e appears in
exactly 2 subsets (corresponding to the 2 vertices it is incident on).

12.1.2 Relaxing to an LP problem

Instead of Xi ∈ {0, 1}, relax the constraint so that Xi is in the range [0, 1]. The LP problem can be
solved optimally in polynomial time. Now we need to round the solution back to an ILP solution.

12.1.3 Deterministic rounding

First, let us see the approximation we get by using a deterministic rounding scheme analogous to
the one we used in the vertex cover problem.

Theorem 12.1.1 We have a deterministic rounding scheme which gives us an F-approximation
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to the solution, where F is the maximum frequency of an element.

Proof: Let F be the maximum frequency of an element, or the maximum number of subsets an
element appears in.
Pick a threshold t = 1

F .
If x1, .., xm is the solution to the LP, the ILP solution is all subsets for which xi ≥ 1

F .

This results in a feasible solution because in any of the constraints in (1) we have atmost F variables
on the LHS, and atleast one of them should be ≥ 1

F , so we will set atleast one of those variables
to 1 during the rounding. So, every element will be covered. It can be noted here that the vertex
cover has F = 2, and hence we used a threshold of 1

2 during the previous lecture. If the values
of X1, .., Xm are x

′
1, .., x

′
m after rounding, ∀i, x′i ≤ Fxi [since if xi ≥ 1

F we round it to 1, and 0
otherwise]
So the cost of the ILP solution ≤ F(cost of the LP solution). So, this deterministic rounding gives
us an F approximation to the optimal solution.

12.1.4 Randomized rounding

Algorithm:
Step 1. Solve the LP.
Step 2 (Randomized rounding). ∀ i, pick Si independently with probability xi (where xi is the
value of Xi in the LP solution).
Step 3. Repeat step 2 until all elements are covered.

The intution behind the algorithm is that higher the value of xi in the LP solution, the higher
the probability of Si being picked during the random rounding.

Theorem 12.1.2 With a probability (1− 1
n), we get a 2logn approximation.

Proof:

Lemma 12.1.3 The expected cost in each iteration of step 2 is the cost of the LP solution.

Proof: Let Yi be a random variable.
Yi = ci if Si is picked, and 0 otherwise.
Let Y =

∑n
i=1 Yi,

E[Y] =
∑n

i=1E[Yi] [by linearity of expectation]
=
∑n

i=1 cixi
= cost of the LP solution.
This is a nice result as the expected cost of the ILP solution is exactly equal to the cost of the LP
solution.

Lemma 12.1.4 The number of iterations of step 2 is 2logn with a high probability (whp).
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Proof: Fix some element e ∈ E.
Pr[e is not covered in any one execution of step] =

∏
i:e∈SiPr[Si is not picked] (since the subsets

are picked independently)
=
∏
i:e∈Si(1− xi)

≤
∏
i:e∈Si e

−xi (using the fact that if x ∈ [0, 1], (1− x) ≤ e−x)

= e
−
P
i:e∈Si

xi

≤ 1
e (since the LP solution satisfies constraint (1) which means

∑
i:e∈Si xi ≥ 1)

If we execute step 2 (2logn) times,
Pr[element e is still uncovered] ≤ 1

e2logn
(since each execution is independent)

= 1
n2 .

By the union bound, Pr[∃ an uncovered element after 2logn executions] ≤ 1
n

Hence with a high probability, the algorithm will terminate in 2log n iterations of step 2.

The total expected cost is just the expected cost of each iteration multiplied by the number of
iterations.
So E[cost] = (2log n).Cost(LP solution) with a probability (1− 1

n) (using Lemmas 12.1.3 and 12.1.4).

12.2 Concentration Bounds

In analyzing randomized techniques for rounding LP solutions, it is useful to determine how close to
its expectation a random variable is going to turn out to be. This can be done using concentration
bounds: We look at the probability that given a certain random variable X, the probability that
X lies in a particular range of values (Say, the deviation from the expectation value). For instance,
we want Pr[X ≥ λ] for some value of λ. Note that if a random variable has small variance, or
(as is often the case with randomized rounding algorithms) is a sum of many independent random
variables, then we can give good bounds on the probability that it is much larger or much smaller
than its mean.

12.2.1 Markov’s Inequality

Given a random variable X ≥ 0, we have,

Pr[X ≥ λ] ≤ E[X]
λ

(12.2.1)

Also, given some f : X → <+ ∪ {0},

Pr[f(X) ≥ f(λ)] ≤ E[f(X)]
f(λ)

(12.2.2)

If the above function f is monotonically increasing then in addition to (12.2.2), the following also
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holds:

Pr[X ≥ λ] = Pr[f(X) ≥ f(λ)] ≤ E[f(X)]
f(λ)

(12.2.3)

12.2.2 Chebyshev’s Inequality

We now study a tighter bound called the Chebyshev’s bound.
Let f(X) = (X −E[X])2. Note that f is an increasing function if X > E[X].
We have,

Pr[|X −E[X]| ≤ λ] = Pr
[
(X −E[X])2 ≤ λ2

]
(12.2.4)

=
E
[
(X −E[X])2

]
λ2

=
σ2(X)
λ2

(12.2.5)

That is, the deviation of X from E[X] is a function of its variance(σ(X)). If the variance is small,
then we have a tight bound.

Also not that with probability p, X ∈ E[X]±
√

1
pσ(X)

12.2.3 Chernoff’s bound

We present Chernoff’s bound which is tighter compared to the Chebyshev and Markov bounds.

Let random variables X1, X2, ..., Xn be independent and identically distributed random vari-
ables, where Xi ∈ [0, 1]. Note that the class of indicator random variables lie in this category.

Let X =
∑n

i=1Xi. Also E[X] =
∑n

i=1 E[Xi] = µ

For any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
(12.2.6)

It can also be shown for δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ e−
“
δ2

2+δ

”
µ (12.2.7)

Note that the above probability resembles a gaussian/bell curve. When 0 ≤ δ ≤ 1

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

3
µ (12.2.8)

Pr[X ≤ (1− δ)µ] ≤ e−
δ2

2
µ (12.2.9)
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Example: Coin tossing to show utility of bounds. We toss n independent unbiased coins. We
want to find a t such that: Pr[No. of times we get heads in n tosses ≥ t] ≤ 1/n.

We use indicator random variables to solve this: If the ith coin toss is heads, let Xi = 1, oth-
erwise Xi = 0. Let X =

∑n
i=1Xi. Here X is the total number of heads we get in n independent

tosses. Note that µ = E[X] =
∑n

i=1 E[Xi] = n/2, since E[Xi] = 1/2 (The probability of getting a
heads).

To get bounds on Pr[X ≥ t], we first apply Markov’s inequality:

Pr[X ≥ t] ≤ E[X]
t

=
n/2
t

Pr[X ≥ t] = 1/n⇒ n/2
t

= 1/n⇒ t = n2/2

But, we don’t do any more than n coin tosses, so this bound is not useful. Note that Markov’s
bound is weak.

Applying Chebyshev’s inequality:

Pr[X ≥ t] ≤ Pr[|X − µ| ≥ t− µ] ≤ σ2(X)
(t− µ)2

Evaluating σ(X) where Xi ∈ {0, 1},
E[Xi] = 1/2

σ2(Xi) = E
[
(Xi −E[Xi])2

]
=

1
2

(
1
4

) +
1
2

(
1
4

) = 1/4

Since this is a sum of independent random variables, the variances can be summed together:

σ2(X) =
n∑
i=1

σ2(Xi) = n/4

Evaluating t,

Pr[X ≥ t] ≤ σ2(X)
(t− µ)2

= 1/n

⇒ t = µ+ n/2 = n

Again this bound is quite weak.

Applying Chernoff’s bound:

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

3
µ = e−

δ2

6
n

Taking,

e−
δ2

6
n = 1/n
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we get,

δ =

√
6logn
n

⇒ t = (1 + δ)µ = n/2 +

√
3nlogn

2
This bound is much nicer than what we obtained earlier, showing us this gradual increase in
tightness of the bounds across Markov, Chebyshev and Chernoff.
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