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19.1 Introduction

In the last lecture we talked about streaming algorithms and using unbiased estimators and sampling
to solve problems in that setting. Recall the setting of streaming algorithms. We have a stream
of elements indexed 0 to T where T is some large number and the elements are drawn from [n]
where again n is large. We have limited space and time to work with any element typically to
O(poly(log(n), log(T ))). Also recall that we define mi = |{j : aj = i}| to be the frequency of
element i.

19.2 More on sampling

For our sampling approach we want to take some k-elements at random from [n] and keep only
track of frequencies of the elements in this sample at the end extrapolating data from it. The
problem with this approach is that sometimes we have [n] too large to be able to choose a good
sample ahead of time since we expect to only see a small subset of [n] to show up in our stream.
An example of this are IP addresses on a router. In such a case we really wish to choose our sample
only from the distinct elements we actually see.

Let us define S = {i ∈ [n]|mi ≥ 1} to be the set of all elements that occur in our stream. Also
∀t ≤ T define St = {i ∈ [n]|∃j ≤ t(aj = i)} the set of all elements seen up to time t. To make the
problem slightly easier we will limit ourselves to try and choose an element et uniformly at random
from St.

To do this assume first we have a perfect hash function h : [n] → [n]. Then we can can just let
et = argmini∈St

h(i). Since we don’t actually have a perfect hash function though we will need to
use a family of hash functions and we will want them to be minwise independent.

Definition 19.2.1 We say a family of m hash functions hi : [n] → [n], i ≤ m is minwise indepen-
dent if ∀X ⊂ [n] and x ∈ X,

Pr
1≤i≤m

[hi(x) = min(h(X))] =
1
|X| .

Unfortunately no such family of size O(log(n)) is known so we shall need to settle for a slightly
weaker condition called ε-minwise independent.

Definition 19.2.2 We say a family of m hash functions hi : [n] → [n], i ≤ m is ε-minwise
independent if ∀X ⊂ [n] and x ∈ X,

Pr
1≤i≤m

[hi(x) = min(h(X))] =
1
|X|(1± ε).

1



Since such families are known to exist of size O(log(n)log(1/ε)) we have the necessary tool we need
to choose uniformly at random from St. We need only keep track of our element with least hash
and at each t check whether h(at) < h(et−1) and if so let et = at otherwise do nothing. If we need
to keep a sample of k distinct elements we need only use k different hash functions.

19.3 Online algorithms

In this section we will talk about online algorithms. In the case of online algorithms we again have
some data coming to us in a stream but in this case the basic problem is we need to make decisions
before we see all of the stream. That is we are trying to optimize but we need to commit to partial
steps during the way. To make this concept clearer let us look at an example.

19.3.1 Rent or Buy (Ski rental)

In the rent or buy problem sometimes also called the ski rental problem we need to figure out
whether to rent or buy skis. Suppose we go skiing every winter and thus need skis. We can either
buy a pair for some cost B and then use them forever, or we can rent them every winter for cost
R but then we will have to rent them again when we want to go skiing next year. If we know how
many times we will go skiing in our lifetime it is easy to choose whether to buy or rent just by
comparing the total cost of each option, but we do not actually know how many times we will go
until it’s far too late. Thus we need to come up with another solution.

An easy algorithm is to just rent every winter until we have payed B in rent and then buy the skis
once that point comes. While this algorithm doesn’t seem very smart the amount we pay is always
within a factor of 2 from the optimal solution. Since if we go skiing fewer times then B

R then we
have actually chosen the optimal course of action and if not then the optimal solution is to buy the
skis in the first place so the optimal cost is B and we have paid exactly 2B (assuming B

R is integer).

Note that the 2 here is not an approximation ratio it is something we call a competitive ratio. That
is the ratio of our cost to the best cost we can get given that we would actually know everything
in advance.

Definition 19.3.1 Assume we have a problem and some algorithm Alg such that given an instance
I of our problem ALG(I) gives the cost of the solution Alg comes up with. Furthermore assume
OPT (I) is the cost of the best possible solution of the problem for instance I. Then

max
I

ALG(I)
OPT (I)

is called the competitive ratio of the algorithm Alg.

There is also an alternate definition which is sometimes called the strong competitive ratio.

Definition 19.3.2 Assume the same as above, then we also call r the competitive ratio, if

ALG(I) ≤ r OPT (I) + c

holds for all I and some constant c independent of I. When c is 0, r is the strong competitive ratio.
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19.3.2 List Update

One important application area of online algorithms is maintaining data structures efficiently. With
incoming search requests and updates over time, we want to develop an algorithm that could
dynamically adjust the data structure so as to optimize search time. Think of a binary search tree
with n elements, the search time is generally no more than log n. But if we know the frequency of
search terms, we could change the structure of the tree so that the more frequent elements are at
a higher level, and thus we have a better search term.

Here we study an online algorithm for an easier data structure, list. We have a list of size n. For
simplicity, we also assume that there are no insertion or deletion to the list. Over time, we have
a sequence of requests. At every step, the algorithm gets a request for element i. We pay a cost
i to move to position i. There is no cost on moving i forward to any position before its original
position. And there is a cost of 1 for a single transposition of i with a position after it. Our goal
is to minimize the total cost over time.

We observe that if the distribution of input search terms is known ahead, we can order the list from
most frequently requested element to the least frequently requested one. The problem is that we
do not know this distribution ahead of time. We need to develop some online algorithm (with no
prior knowledge of input distribution) to minimize the total cost.

Algorithm 1 (Move-To-Front): The first intuition is that every time when we see an element
we move it to the front of the list. This seemingly naive algorithm turns out to have quite good
performance (2-competitive ratio as wee see later).

Algorithm 2 (Frequency-Ordering): In this algorithm, we order elements in decreasing order
of frequency of searched elements so far. At each step, when we see an element, we add one to
its frequency and if necessary move it forward to a appropriate position. This algorithm seems to
be better than the previous one, however it turns out to have poor performance (Ω(n)-competitive
ratio as we see later).

Algorithm 3 (Move-Ahead-One): In this algorithm, we move an element forward one position
every time we see it. This algorithm also performs poorly (Ω(n)-competitive ratio as we see later).

Now we give proof of the competitive ratios of these three algorithms. The analysis of online
algorithms often include the process of a competing adversary trying to find a input on which the
algorithm works poorly but there exists a good optimal algorithm (with prior knowledge).

Claim 1: Move-Ahead-One has Ω(n)-competitive ratio.

Proof: Suppose the list is 1, 2, ..., n. A bad input sequence (one that the adversary comes up) is
n, n−1, n, n−1, n, n−1, .... Move-Ahead-One will repeatedly move element n to position n−1, then
move element n− 1 to position n− 1, then move element n to position n− 1... This gives a cost of
n at each step. If we know the input sequence, an optimal solution will be put element n and n− 1
at the front two positions, giving a cost of O(1) at each step. This shows that Move-Ahead-One
has Ω(n)-competitive ratio.

Claim 2: Frequency-Ordering has Ω(n)-competitive ratio.

Proof: The bad input sequence the adversary constructs is as follow. In the first
(
n
2

)
steps, element
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i is requested n− i+1 time in the order from 1 to n, i.e. 1 is requested n times, then 2 is requested
n− 1 times ... n is requested 1 time. Notice that the cost of these steps for Frequency-Ordering is
the same as the optimal algorithm with knowledge of input sequence.

¿From then on, every element is requested n times in the order from n to 1. After the first
(
n
2

)
steps, Frequency-Ordering algorithm gives the list 1, 2, ..., n. Then when element n is requested n
times, it moves from the tail to the front of the list, costing totally n(n + 1)/2 = O(n2). When
element n− 1 is requested for the first time, it is at the tail of the list. For n requests of n− 1, the
element moves from tail to front, costing n(n + 1)/2 = O(n2). This analysis applies to all the n
elements, giving a total cost of O(n3). However, if we know the input sequence, we can construct
the optimal algorithm to bring element n to front the first time it is requested after the first

(
n
2

)
steps, which cost O(n) for element n. The same analysis apply to the rest of the elements, giving
a total cost of O(n2). This shows that Frequency-Ordering gives Ω(n)-competitive ratio.

Claim 3: Move-To-Front has 2-competitive ratio.

Proof: To prove this claim, we first compare Move-To-Front to a static list (say 1, 2, ..., n), and
show the competitive ratio between them is 2.

Here we use an idea similar to amortized analysis. The idea is that we pay some cost for the
elements being affected by a move-to-front act. Later on when we search for an element, we use
the money we paid for it before. More specifically, when we move an element i at position p to the
front, the p− 1 elements originally before position p are moved backward for 1 position. Thus, we
pay $1 cost for each element that is at a position before p in the Move-To-Front list before moving
i and is at a position before i in the static list, i.e. whose value is smaller than i. Notice that we
have at most i− 1 such elements. We get $1 cost for each element that is at a position before p in
the Move-To-Front list before moving i and is at a position after i in the static list. We have at
least p− i such elements. The amount money we pay can be also thought of as a potential function,
which is always non-negative.

Now let TCt be the cost of Move-To-Front plus the total amount of money we pay after the first t
steps. We have TC0 = 0. For step t, the amount of money we pay is no more than i − 1 and the
amount of money we get is no less than p − i. The cost of search element i in the static list is i.
Therefore,

TCt − TCt−1 ≤ p + (i− 1)− (p− i) = 2i− 1

TCt − TCt−1 ≤ 2 ∗ (cost of static list at step t)

When we sum up TCt − TCt−1 over t, we have

TCt ≤ 2 ∗ (total cost of static list)

This shows that Move-To-Front has 2-competitive ratio as compare to a static list.

Now we generalize this analysis to comparing Move-To-Front to an arbitrary algorithm. Let σ be
the sequence of requests. Let OPT (σ) be the optimal algorithm for sequence σ. At step t, consider
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Move-To-Front’s list LMTF and optimal algorithm’s list LOPT . We define Π(LMTF ) as the number
of different positions in the Move-To-Front list and in the optimal list.

Π(LMTF ) = |{(x, y)|x is ahead of y in LMTF and y is ahead of x in LOPT }|

At step t, consider the difference between step t − 1 and t, ∆costMTF + ∆Π(LMTF ). Here,
∆Π(LMTF ) is the potential function, i.e. the amount of money we pay at step t. Suppose at
step t, element i is searched and it is at position p in LMTF and at position p′ in LOPT .

Now consider the first case when optimal algorithm doesn’t move i or move to a position that is
before its original position. The cost we pay for moving i to the front in Move-To-Front is for the
elements that are before i in LOPT and are originally before i in LMTF . There are at most p′ − 1
such elements. We get money for elements that are after i in LOPT and are originally before i in
LMTF . There are at least p− p′ such elements. Thus, we have

∆Π(LMTF ) ≤ (p′ − 1)− (p− p′) = 2p′ − p− 1

If optimal algorithm exchange i with some position behind, we gain in addition the cost of exchang-
ing positions in the optimal algorithm. Therefore, we have

∆Π(LMTF ) ≤ 2p′ − p− 1 + (number of paid exchange)

And the cost of searching i in LMTF is p. All together, we have

∆costMTF + ∆Π(LMTF ) ≤ p + 2p′ − p− 1 + (number of paid exchange)

∆costMTF + ∆Π(LMTF ) ≤ 2p′ − 1 + (number of paid exchange)

When we sum this up over t, we have (Total cost of MTF ) ≤ 2 ∗ (total cost of OPT ). This gives
a 2-competitive ratio.

In fact, 2-competitive ratio is the best for any deterministic algorithm. However, using randomized
algorithms, we can reach a 1.6-competitive ratio. We can briefly reason the advantage of randomized
algorithm being that the adversary cannot see the output of a randomized algorithm and thus
cannot come up a competing input sequence, while for deterministic algorithms, the adversary can
observe the output and come up with a competing input sequence.

Next time, we will see another example of online algorithm, namely the cashing problem. We will
develop both a deterministic algorithm and a randomized algorithm for it.

5


