CS787: Advanced Algorithms

Scribe: Mayank Maheshwari and Priyananda Shenoy Lecturer: Shuchi Chawla
Topic: k-server Problem(continued); Online learning Date: 11/07/2007

22.1 Introduction and Recap

In the last lecture we were discussing the k-server problem, which is formulated as follows: Let M
be a metric space with n points. There are k servers which can service requests. When a request
occurs from a particular location, a server must be placed at that location. The problem is to
minimize the total distance traveled by the servers. In this class we will see one algorithm for this
problem, the Work Function Algoritm.

22.2 Work Function Algorithm

Let X be a configuration of the servers; i.e. the set of locations the servers are located. Then
we define OPT;(X) as the optimal cost of serving requests o[l :] and ending at configuration X.
Then the Work Function algorithm, for servicing i¢th request, chooses the configuration X; using
the following rule:

X, = arg H}%D{OPTZ(X) + d(Xl',l, X)}

Theorem 22.2.1 WFA is (2k-1) competitive

Proof: We will be proving that for any sequence of requests o

WFA(o) < (2k —1)OPT(0) + k*D

where D is the diameter of the metric space.

Let Xg, X1, ..., Xt be the configurations chosen by the WF Algorithm for servicing requests rg, 71, ..., 7.
We are interested in seeing how OPT;(X;) evolves over time. So when the ith request r; comes,
we keep track of the difference in the optimal cost of servicing ¢ requests and ending up at the
configuration X; chosen by our algorithm, and the optimal cost of servicing ¢ — 1 requests and
ending up at the previous configuration X;_;. This difference is given by

OPT;(X;) — OPT;—1(X;-1)

Adding and subtracting OPT;(X;_1) we get,

(OPTi(Xi) — OPTi(Xi-1)) + (OPTi(Xi1) = OPT;1(Xi1)) (1)

The term (OPT;(X;—1) — OPT;_1(X;-1)) keeps track of how the optimal cost of ending at X;_1
changes due to the zth request. The term (OPT;(X;) — OPT;(X;-1)) tells us how our movement
from X;_1 to X; changes the potential function.

In the offline case, we used a dynamic programming approach to arrive at an optimal solution. The
recurrence used by the DP was

OPT;(X) = min OPT;1(Y) +d(X,Y)
o7y

Since Y > r;,we have OPT;_1(Y) = OPT;(Y). By taking X = X;_;, we see that Y = X;. This
gives us

OPT‘(X,‘ 1) = OPTZ(XZ) + d(Xi,Xi_l)
OPT,(X:) — OPT/(X;s_1) = —d(Xi, X;_1)

Substituting this in (1) we get,

(OPT(Xi—1) — OPT;—1(Xi-1)) — d(Xi, Xi—1)

Summing over all the steps across the evolution,

Z{OPT —OPT,1(X;1)} =) _d(X;, X;1)

7

This sum is equal to the optimal cost of servicing all the requests and ending at the last configuration
chosen by the WF Algorithm X;. And)", d(X;, X;_1) is nothing but the total cost incurred by our
algorithm. Therefore we get

Z{OPT — OPT;_1(Xi1)} = WFA(0) = OPTy(X)
> OPT(o)
OPT(0c) + WFA(0) < {OPT —OPT;_1(X;1)}

To get a bound on the RHS expression, let us define the “extended cost” FXT; as

EXT; = max{OPTi(X) — OPTi—1(X)}
Then
WFA(o)+ OPT(0) < Y EXT; (2)

We will now try to get a bound on EXT;’s. First we will try to get a bound on this term in the
special case where n = k 4 1, and then we will get a bound for the general case.

Claim 22.2.2 if n = k + 1, then WFA the competitive ratio k

We will prove this claim using a potential function argument. Let us define a potential function ®
as

®; =Y OPT(X)
X

with &y = 0. Let us consider the increase in the potential function value for a particular request .
From the way we defined EXT;, this increase is atleast FXT;.

S, —D; 1 > EXT;

Summing over all requests, we get

¢ >) EXT, (3)
7

By definition we have,

o, = > OPT,(X)
X

Since there are only k£ 4 1 configurations possible, we can get an upper bound for the RHS value

o, < (B+1) max OPT(X)

We know that OPT (o) = minx OPT;(X). We can get an upper bound on maxx OPT;(X) using
the fact

max OPT;(X) < OPT(c) + maxd(X, X)
X X, X

We know that max, ¢ d(X, X) < kD where D is the diameter of the space. So we get

&, < (k +1)(OPT(0) + kD)

Substituting this in (3)

Y EXT; <%

< (k+1)OPT (o) + (k + 1)kD

Using this in (2), we get

WFA(0) < kOPT(0) + (k + 1)kD

Hence our algorithm is k-competitive for the case where n = k4 1. We will now try to get a bound
for the general case.

Claim 22.2.3 For any values of k and n, WFA is (2k-1) competitive

To show this, we will do the following construction. Let M be our metric space. Then we will
construct a metric space M in the following manner. For every point a in M, we create a point @,
called the antipode of a , such that d(a,a) = D. The distance between antipodes is equal to the
distance between their corresponding original points; i.e. d(a,b) = d(a,b). The distance between a
point and an antipode of another point is given by d(a,b) = D — d(a,b). It is easy to see that this
construction yields a valid metric space.

Fig 1: The metric spaces M and M

b a
MUM
Fig 2: An example where all points lie on a line.

ol L

d

We transform the space M to M UM. The problem doesn’t change, since none of the newly added
points issue requests.

We will consider the “worst case scenario” which maximizes the distance covered at step ¢. We will
claim, and later give a proof sketch that this happens when a request comes from location r; and
all servers are at its antipode 7.

Claim 22.2.4 argmaxx{OPT;(X)— OPT;_1(X)} = (73,73, ..., T5)
Assuming that this claim holds good, we will proceed with obtaining an upper bound for ", EXT;.

Let Y; = (7,74, ...,7;) be the “worst case” configuration. Then we have

EXT; = OPT,(Y;) — OPT,1(Y;)
Y EXT; =) OPT,(Y;)) =Y OPT, 1(Y;) (4)

Let us examine the sequence in which the optimal algorithm OPT services the requests.

iy g

Fig 3: The sequence of how OPT services the requests

If OPT moves a server from r; to r; , we will match ¢ with j. Then the following holds true

OPT,(Y;) < OPT;_1(Y;) + kd(rs,7;)

This works for most of the r;’s except the k r;’s at the end where the servers stop. For these servers

OPT,(Y;) < OPT + kD

Summing over all ¢

ZOPT k(OPT + kD) +Z{0PTJ 1(Y;) + kd(ri,r5)}

SKOPT + KD+ OPT; (Yy) + k> _d(ri,r))
- :
but >, d(ri, ;) < OPT so

Z OPT;(Y; Z OPT;_1(Y;) < kOPT + k*D + kOPT

Z EXT, < 2kOPT + k*D

Substituting this in (2)

2kOPT + k*D
(2k —1)OPT + k*D

WFA(c) 4+ OPT(0)

<
WFA(o) <

Hence the Work Function Algorithm is (2k — 1)-competitive.

We will now give a brief sketch of proving the claim we made in the general case analysis.
Proof of Claim 22.2.4(Sketch):

For simplicity, we will assume that there is only one server. Similar analysis can be done for multiple
servers as well.

Suppose we get ith request r; from location a. Let the previous request r;_; be from location
b. Since there is only one server, the configuration X is just a single location where the server is
located, say .

OPT;(z) — OPT;_1(x)
= (OPT;—1(b) + d(a,b) + d(a,x)) — (OPT;—1(b) + d(b, x))
=d(a,z) — d(b,z) + d(a,b)

if = @ then,

d(a,a@) — d(b,@) = D — (D — d(a,b)) = d(a,)

So we see that the distance is maximized when the server was located at position @.

22.3 Metric Task System Problem

The Metric Task system problem is a generalization of the k-server problem. The Work Function
Algorithm is used to solve this problem and it gives a competitive ratio of 2N — 1 where N is the
number of points in the metric space.

Given: A Metric space M where |M| = N and one server. M has a distance function d which
satisfies the following properties:

Ve,y,z € M
o d(z,y) >0

o d(z,y) =d(y,)

o d(z,y) < d(z,2) +d(z,y)

v

The setting can be viewed as the server needs to execute tasks coming in a stream on machines
located at points in the metric space M. A task can be well suited to a machine and so the cost
of executing it at that point is low. We can also move the server to machine at another point in
M which is suited to the task but we incur a cost in moving the task from one point to another.
So we get a task and the server should execute it on best machine possible without incurring too
much cost in moving from one machine to another.

Goal: The server needs to execute the incoming tasks on the machines located at the |M| points
such that the cost of executing those tasks is minimized.

To solve the k-server problem using metrical task system, we let each state of the system correspond
to one possible configuration of the k-server problem. Therefore, the number of states is (],X) . This
is a more general problem and we will not delve into the intricacies of it. But the Work-Function
Algorithm covered in the previous section can be used to solve the Metrical Task System problem
and it gives a competitive ratio of 2N — 1.

22.4 Online Learning

The online learning algorithms are a method to solve class of prediction problems. The problem
is generally characterized by number of experts (say) n and every expert has a cost vector corre-
sponding to the prediction associated with it. The objective is to maximize the cost associated with
the cost vectors of an expert and do as well as the expert. The algorithm at every step needs to
pick an expert and then the cost vector (consisting of 0’s and 1’s is revealed). This is similar to the
Metrical Task System problem with a few differences,namely, there are two underlying assumptions
for this class of problems:

1. It is free to move from one point (expert) to another i.e. the algorithm doesn’t incur any
cost.

2. The algorithm ALG is not compared with the optimal OPT in hindsight.

Goal: The algorithm should do nearly as well as the expert.

We will consider a few specific problems in this case. The first one is the Pick-a-Winner problem.
22.4.1 Pick-a-Winner Problem

In this problem, we get profits instead of costs and we need to maximize it.

Problem Statement: There are n different buckets and an adversary throws coins in the bucket. In
this game, we need to pick a bucket and if the adversary oblivious of our choice throws the coin in
that bucket, we get the coin. The game gets over when there are maximum d coins thrown in a
bucket.

This is a case of oblivious adversary in which we take the help of randomization to work to our
advantage. If we pick the buckets deterministically, the adversary would know our choice and would

always throw the coins in the other buckets.
So if we pick the bucket uniformly at random, the expected number of coins that we get
E[number of coins won|= d - Pr[picking a bucket u.a.r.] = %.

With this approach, we get a competitive ratio of %
22.4.1.1 Multiplicative Updates Method(Exponential weights)

In this method of solving the Pick-a-Winner problem, we increase the probability of picking a
bucket by a factor of 2 each time the adversary throws a coin in that bucket. So the algorithm can
be seen as

Algorithm

e Start with, for all buckets i, w; = 1 where w; is the weight of bucket q.
e Whenever a coin falls into a bucket, double its weight.

e At every step, pick an i with probability proportional to w;.

e Game ends when a bucket has d coins.

The adversary wants to end the game quickly and to distribute the coins over the n buckets so that
the profit the algorithm achieves is not high.

Analysis

Let us say after ¢ coin tosses, the total weight of the n buckets in the problem be W; = > w;(t).
Let the expected gain be F; and the probability of success or winning the game is ;"V; where ¢ is
the bucket we choose in round ¢ + 1. Now let us see how W, evolves in the algorithm.

Wip1 =Wi+w; =Wy + Wy - Fy

So Wii1 = Wi(14 F;). Whenever there is a large increase in weight of the bucket, our gain is large.

At the end of the game i.e. when a bucket receives d coins, the W;,q can be written as, where
> Fy is our total expected gain:

24 < Wfinal = nHt(l + Ft)

Taking natural logs on both sides,

dlog,2 < log.n+) log, (1 + F)

This implies), F; > dIn2 —Inn ~ 0.7d — Inn.

We can see that the algorithm gives a profit with a factor close to the maximum profit but we lose
an additive term. To minimize the additive loss in our profit, we can modify the algorithm in a
way that instead of doubling the weight of a bucket each time a coin falls in it, we increase the
weight by a factor of (1 + €). So we can rewrite all the equations in the analysis with the factor of
¢ introduced. So now Wiy = Wi(1 + €Fy) and (1 + €)¢ < Wpina = n[[,(1 + €F)

dlog(l+¢€) < logn—i—Zlog(l—FeFt)
t

< logn—i-ZeFt
t
ALG = > 4 L 1 s ©
LG=Y"F > Slog(l+e - _logn fog(1+>c— 5]
t
€ 1
> (1—=)d—-logn
2 €

Now if € = 1/'%8” then the ALG > d — 3./dlogn.

The additive factor which we lose here is known as the regret bound or the regret of algorithm which
is the factor the algorithm looses in order to converge to the profit of the expert. We will see more
on the regret bounds in the next lecture.

References

[1] Yair Bartal Lecture Notes on Online computation and network Algorithms.
http://www.cs.huji.ac.il/ algo2/on-line/on-line-course.html.

10

