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26.1 Review of Last Class

26.1.1 PAC-learnability and consistency

We defined PAC-learnability as follows:

Definition 26.1.1 A concept class C is PAC-learnable if there is an algorithm A such that for
all ǫ > 0 and δ > 0, for all distributions D on the domain, and for all target functions f ∈ C,
given a sample S drawn from D, A produces a hypothesis h in some concept class C ′ such that with
probability at least 1 − δ, Prx∼D [h(x) 6= f(x)] < ǫ.

Both the running time of algorithm A and the size of S should be poly(1/ε, 1/δ, n, log |C|). Finally,
h(x) should be easy to compute.

Recall that we do not require h to be drawn from the same concept class as C. The motivating
example was that we were trying to find functions in the concept class of 3-term DNF formulas,
but doing so is NP-hard. However, by instead finding a consistent 3-DNF formula, we could still
get accurate results, and the problem becomes easy.

Finally, the requirement that the running time of A and the size of S should be polynomial in
log |C| makes sense if one considers the fact that, since there are |C| possible functions, simply
recording which we chose requires at least log |C| bits. Thus outputting the function we chose gives
a lower bound on the running time of log |C|.

There is an easy goal that, if it is possible to reach, implies that a class is PAC-learnable:

Theorem 26.1.2 If there is an algorithm A that, given a sample S, solves consistency in time
poly(|S|, n) (in other words, produces an h ∈ C ′ consistent with S), then we can PAC-learn C if
we choose a sample size of at least |S| ≥ 1

ǫ
(log 1

δ
+ log |C ′|).

As long as C ′ isn’t too much bigger than C, this satisfies the requirements given above for PAC-
learnability. A proof of this was given last class.

26.1.2 Noisy Data

We also discussed how to compensate for noisy data. Specifically, there may not be a function f
that is completely consistent with any sample. In this case, our goal is to try to learn a function
that makes the fewest mistakes.

One way of looking at what we did above is as follows. There is a function f ∈ C that classifies all
data with an error rate of zero: errorD(f) = 0. We draw S ∼ D and use it to produce a hypothesis
h that classifies all data in S with error zero: errorS(h) = 0. When we try generalize this h to the
whole domain, h does well: with probability at least 1 − δ, we have errorD(h) ≤ ǫ.
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With noisy data, our model changes to the following. There is a function f ∈ C that classifies
all data with an non-zero error rate of p: errorD(f) = p. We draw S ∼ D and use it to produce
a hypothesis h that classifies all data in S with the lowest possible error rate of all possible h:
errorS(h) = minh′∈C′ errorS(h′) = p′. When we generalize this h to the whole domain, h does well:

with probability at least 1 − δ, we have errorD(h) ≤ p′ +
√

(log 1
δ

+ log |C|)/(2|S|).

26.2 Weak PAC-learnability

We now turn our attention to another question. The conditions required for PAC-learnability seem
a bit strong: algorithm A needs to work for any δ and any ǫ. However, suppose that we only had
an algorithm that worked for a specific value of δ and ǫ? Is it still possible to do PAC learning? It
turns out the answer is “yes,” even if 1− δ is close to zero (i.e. we have very low confidence) and ǫ
is just under 1/2 (i.e. we are only doing slightly better than raw guessing).

We define a new notion, called “weak PAC-learnability,” and refer to the previous definition as
“strong PAC-learnability.” Weak PAC-learnability is defined as follows:

Definition 26.2.1 A concept class C is weakly PAC-learnable if there exists a γ > 0 and a δ′ > 0
such that there exists an algorithm A such that for all distributions D and all target functions
f ∈ C, given a sample S ∼ D then A will produce a hypothesis h such that with probability δ′,
Prx∼D [h(x) 6= f(x)] ≤ 1

2 − γ.

Our question can now be rephrased to ask “does weak PAC-learnability imply strong PAC-learnability?”
We will that it can by two steps. The first shows that it is possible to boost the confidence from δ′

to any arbitrary δ, while not increasing the error rate “too much.” The second step will boost the
accuracy from 1

2 − γ to an arbitrary ǫ while leaving the confidence unchanged.

26.2.1 Boosting the confidence

We first show how to boost the confidence. Suppose that we are given an algorithm A that gives
an h with Prx∼D [h(x) 6= f(x)] ≤ ε with probability δ′. We will show that we can generate a h′

such that Prx∼D [h(x) 6= f(x)] ≤ 2ε with probability at least 1 − δ, for any δ > 0.

We will first look at an idea that doesn’t work. Imagine drawing k samples S1, . . . , Sk, using A to
generate hypotheses h1, . . . , hk, then combining the his in some way. Taking a majority function
doesn’t work, because most of the hi’s can be wrong. (Recall that δ′ can be close to 0.) Taking
the opposite doesn’t work either, because they could mostly be correct. Because of the very weak
guarantees in our problem statement, there is essentially no way to combine the hi’s to get what
we want.

However, we can use a similar process to get something that will work. We draw k samples and
produce hypotheses as before. Note that if we draw enough, chances are that at least one of the
hypotheses will be good; we just have to figure out which one it is. (We use the term “good” to
refer to a hypothesis h for which the bounds on the error apply, and “bad” for the others.) To
figure out which hi is the best hypothesis, we test the accuracy of each of them on another sample
Sk+1.

2



For this process to work with high probability, we must ensure two things:

1. We must choose k large enough that we are sufficiently assured that there will be a good
hypothesis in the set of hi’s

2. We must choose the size of Sk+1 so that it is large enough that we are sufficiently assured
that the good hypothesis will do a good enough job on Sk+1 that we will choose it over a bad
hypothesis

26.2.1.1 Choosing k

This is the easy part. For each i ∈ [k], the chance that hi is good is at least δ′. Thus the probability
that no hi is good is (1 − δ′)k. We will set k so that this is at most δ/2 for our target δ. (The
division by 2 leaves us some leeway for error in the next step.) This ensures that with probability
at least 1 − δ/2, there is a good hypothesis in the set.

Setting (1− δ′)k = δ
2 , we can solve for k, to be log δ

2/ log(1− δ′). By using the approximation that
log 1

1−x
≈ x, we can simplify this to 1

δ′
log 2

δ
.

26.2.1.2 Choosing |Sk+1|

For any good hypothesis hi, we want the error rate over the sample Sk+1 to be, with high probability,
about the same as the error rate over the entire distribution. Specifically, we want it to be within
ε/2. More formally, we want Pr

[

| errorD(hi) − errorSk+1
(hi)| > ε

2

]

to be “small enough.”

We can bound the above probability using Chernoff’s bound to 2·exp
(

−2ε2

4 |Sk+1|
)

. To see this, we

an alternate form of Chernoff’s bound presented in Kearns and Vazirani ([1], section 9.3). Suppose
that X = Σn

j=1Xj with every Xj a Boolean random variable as in the original formulation, and for
all j, Pr[Xj = 1] = p. Then if we take a sample and observe that a proportion p̂ of the drawn Xj ’s

are equal to 1, then we can bound the difference between p and p̂ as Pr[|p̂ − p| ≥ γ] ≤ 2e−2nγ2

.

In our example, the samples we are drawing for the Xj’s are each member of Sk+1, and Xj = 0
if the hypothesis hi is correct and Xj = 1 if it is incorrect. Thus n is |Sk+1|. Because the
probability p of Xj = 1 is equal to the overall error rate of hi, p = errorD(hi); our estimator is then
p̂ = errorSk+1

(hi). Finally, γ = ε
2 . Plugging these into the alternate form of Chernoff’s inequality

gives us our goal.

We now want to choose |Sk+1| so that is is bounded by δ/2k; we will see how this works out in
a moment. We want to ensure that no good hypothesis is too far off across all the hi’s. Taking

the union bound, we get that Pr
[

∃i. | errorD(hi) − errorSk+1
(hi)| > ε

2

]

< k · exp
(

−2ε2

4 |Sk+1|
)

< δ
2 .

Thus with probability of at most 1− δ
2 , no hi has a difference in error of more than ε

2 between the
global true error ε and the emperical error on Sk+1, and thus no hi has an emperical error greater
than 3

2ε.

Thus when we choose the hk with the least error, with probability 1 − δ
2 it will have an emperical

error of at most 3
2ε. Going again to the probabilistic bound of 1

2ε between the emperical and false
error, this means that the true error is at most 3

2ε + 1
2ε = 2ε.

3



26.2.1.3 Final confidence boosting algorithm

For us to not choose an h with low enough error, either there must have not been one present (a
failure of the first part) or we chose the wrong hypothesis (a failure of the second part). Both parts
have a probability of δ/2 of failure, so by union bound the probability of either failing is at most
δ. This means that with probability at least 1 − δ, we will get a good enough hypothesis.

With the preceding parts in place, we can give a formal presentation of the algorithm to boost
confidence:

for i from 1 to k, where k = 1
δ′

log 2
δ
:

draw Si ∼ D, run A to find hi

Draw Sk+1 ∼ D with size O(1/ǫ2 log k/δ) (ensuring that exp
(

−2ε2

4 |Sk+1|
)

≤ δ
2k

)

Find errors errorSk+1
(hi) for each i

Output argminhi
errorSk+1

(hi)

26.3 Error Reduction

In the previous section, we were interested in raising the confidence in our hypothesis. In this
section, we study a boosting algorithm that decreases the error probability, given that the error
probability of the hypothesis produced by our algorithm is bounded away from 1/2.

Suppose that with probability 1 − δ, some algorithm A produces a hypothesis that has an error
probability of no more than 1/2 − γ. For δ = 0, we first show how to design an algorithm that
produces (with probability 1− δ) a hypothesis that has an error probability of 1/2−γ′ with γ′ > γ.
We then apply this procedure recursively to get an error probability of ǫ for any ǫ > 0.

First consider the following approach that doesn’t work. Following the ideas of probability am-
plification, we would be tempted to get k samples S1, . . . , Sk from a distribution D, and use A
to create k different hypotheses h1, . . . , hk. Given some x taken from our distribution D, we will
then compute hi(x) for all i and side with the majority. By Chernoff’s bound, the majority vote is
correct with high probability.

This approach doesn’t work. The sample sets S1, . . . , Sk are independent of each other; however,
the resulting hypotheses h1, . . . , hk are correlated. Therefore, we cannot use Chernoff’s bound to
say that the majority vote is correct with high probability. Other concentration bounds discussed
in class don’t give us a good probability of the correctness of the majority vote either, so we will
have to modify our approach.

Suppose that with probability 1, A gives a hypothesis h that has error probability p = 1/2− γ. We
would like to decrease this error probability to 1/2− γ′ with γ′ > γ. In order to do that, we invoke
A three times, each time with a slightly different distribution. Let D be our original distribution.
We let D1 be D, and use A on a sample S1 from D1 to get a hypothesis h1. In the next round,
we would like to focus more on the examples x for which h1 errs. Unfortunately, we have no quick
way of sampling from the subset of the examples that are marked incorrectly by h1. We can skew
the distribution so that the total weight of the correctly marked examples is 1/2, which makes the
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total weight of the incorrectly marked examples 1/2 as well. We achieve this as follows:

D2(x) =

{

D1(x)
2(1−p) if h1(x) is correct,
D1(x)

2p
if h1(x) is incorrect.

We pick our second sample, S2, from this distribution, and use A to come up with a hypothesis
h2. Finally, our last distribution, D3, consists only of those examples x for which h1(x) 6= h2(x)
(examples on which h1 and h2 disagree). We take a sample S3 from this distribution and use A to
construct a hypothesis h3 from it. Our final hypothesis then becomes h = Maj(h1, h2, h3).

We now bound the error of our new hypothesis. First assume that the hypotheses h1, h2, and h3

are independent. Then the probability that both h1 and h2 err on x is p2, and the probability that
h3 errs and that h1 and h2 disagree on input x is 2p2(1 − p). Therefore, the total probability of
error is at most 3p2 − 2p3. This is strictly less than p when p ∈ (0, 1/2). Thus there exists γ′ > γ
such that the error probability of our new hypothesis h is at most 1 − γ′.

We now show that we get the same error probability when our three intermediate hypotheses are
not independent. Call the probability that h1 and h2 both err on x m1, and the probability that
h1 is correct and h2 errs on x m2. The probability that h1 and h2 disagree can then be epxressed
as p − m1 + m2. To see that, first notice that p is the probability that h1 errs. If we subtract m1

from it, we get the probability that h1 errs and h2 doesn’t. Finally, we add the probability that h2

errs and h1 doesn’t. We can do this because the three events we mentioned are disjoint.

By construction of D2, errorD2
(h2) = m1

2p
+ m2

2(1−p) , which is equal to p by assumption. Then

m1 = 2p2 − m2p
1−p

. Now the probability that h errs on x is m1 +p(p−m1 +m2). The first term is the
probability that h1 and h2 both err. The second term is the probability that h3 errs and that h1

and h2 disagree. This is equal to (1− p)m1 + p2 + pm2 = (1− p)2p2 −m2p + p2 + pm2 = 3p2 − 2p3,
which is what we wanted to show.

We can repeat this process recursively to get majorities of majorities. Figure 26.3.1 shows the
recursion tree. When the recursion tree becomes high enough, we will get a hypothesis that makes
an error with probability at most ǫ. At each level, we recursively apply the approach described
earlier and take the majority of the majorities one level lower in the tree. We obtain the hypotheses
that appear in the leaves by sampling from a distribution and running the algorithm A. We obtain
the hypotheses that are in the nodes (labeled by the majority function in Figure 26.3.1) of the tree
recursively. At a given node, we are given a distribution D. We use the first child of that node (we
make a recursive call) to produce a hypothesis h1 using D1 = D as the distribution. After that, we
skew D1 to get D2 as discussed before, and make another recursive call to get a hypothesis h2 using
D2 as the distribution (this is represented by the second child of a node). Finally, we construct the
distribution D3 and make our final recursive call to get a hypothesis h3. We output the hypothesis
that takes the majority of h1, h2, and h3. The order in which we find the intermediate hypotheses
is determined by a preorder traversal of the tree in Figure 26.3.1.

We now show that the tree has logarithmic depth. We will do this in two stages. First, we find the
number of levels sufficient to get γ′ ≥ 1/4. After that, we assume γ ≥ 1/4 and find the number of
levels necessary to get γ′ = 1/2 − ǫ.

We saw that after getting three hypotheses, our new combined hypothesis has an error probability
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Figure 26.3.1: Recursion tree representing all the majorities we have to compute in order to create
our final hypothesis. Each subtree in the bottom part corresponds to producing one hypothesis
with error probability at most 1/2 − γ where γ > 1/4. The top of the tree then represents taking
all these hypotheses and producing a hypothesis with error probability at most ǫ. The total height
of the tree is O(log 1

γ
+ log log 1

ǫ
).

of 3p2 − 2p3 = p[3p − 2p2]. This means that to get an upper bound on the error probability of the
new hypothesis, we multiply the error probability of the old hypothesis by 3p − 2p2. If we use the
fact that p = 1/2 − γ, we get that the new error probability p′ is at most p · 2(1

2 − γ)(1 + γ) =
(1
2 − γ) · 2(1

2 − γ)(1 + γ). To get the new value of γ, we express γ′ = 1 − p′ in terms of γ, which
gives us γ′ = γ(3

2 − 2γ2), so we can obtain the next value of γ from the previous one if we multiply
it by 3

2 − 2γ2. Since γ < 1/4 by assumption, 3
2 − 2γ2 > 11

8 . This means that each level of recursion
increases the value of γ by a constant factor. To find the number of levels of recursion before γ is
at least 1/4, we solve the inequality γ(11

8 )k > 1
4 for k.

γ

(

11

8

)k

>
1

4

log γ + k log
11

8
> log

1

4

k >
log 1

4 − log γ

log 11
8

We can rewrite the numerator of the last fraction as log 1
4−log γ = log 1

4γ
= log 1

γ
−log 4 = O(log 1

γ
).

Since the denominator of that fraction is constant, we can conclude that k = O(log 1
γ
). Thus, to

get γ′ > 1/4 (and p′ < 1/4), we need O(log 1/γ) levels of recursion.

Now p is at most 1/4, so γ > 1/4. After an additional level of recursion, we will have p′ =
p(3p − 2p2) < 3p2. Then let p1 be the error probability of the hypothesis one level of recursion
higher than the hypothesis with error probability p < 1/4, and define p2 similarly using p1 instead
of p. In general, we have pi < 3p2

i−1. Then
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p1 < 3p2 = 31p2 < (3
4 )1p

p2 < 3p2
1 < 3(3p2)2 = 33p4 < (3

4)3p
p3 < 3p2

2 < 3(3p2
1)

2 = 33p4
1 < 33(3p2)4 = 37p8 < (3

4)7p
...

pk < (3
4 )2

k
−1p

The maximum value of p is 1/4, and we would like pk < ǫ. To find a lower bound on k, we need to
solve the inequality below.

1

4

(

3

4

)2k
−1

< ǫ

(2k − 1) log
3

4
< log 4ǫ

2k >
log 4ǫ + log 3

4

log 3
4

k > log

(

log 4ǫ + log 3
4

log 3
4

)

> log

(

log 4ǫ + log 3
4

−1

)

> log

(

− log
3

4
− log 4ǫ

)

> log

(

− log
3

4
+ log

1

4ǫ

)

> log

(

− log
3

4
+ log

1

ǫ
− log 4

)

= O

(

log log
1

ǫ

)

.

Therefore, we need additional log log 1/ǫ levels of recursion to turn γ into 1/2−ǫ and get a hypothesis
with error probability of at most ǫ.

We have left out the discussion of sampling from D2 and D3. It can be shown that we can sample
from D2 and D3 efficiently if p is not too close to 0 or 1. Since p is at most 1/2, the only case
we have to worry about is when p is close to 0. But if p is close to zero, we can stop and use
the hypothesis whose error probability is p (close to zero) as our hypothesis that has low error
probability.

26.4 Closing Remarks

The recursive approach from the previous section requires us to take too many samples. It turns
out that we can repeat the process of picking D2 by creating the distribution Di+1 from Di and
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hiusing

Di+1(x) =

{

Di(x)
2(1−p) if hi(x) is correct,
Di(x)

2p
if hi(x) is incorrect.

.

Intuitively, in each step, we give all the incorrectly marked examples more weight before we take
another sample and produce another hypothesis.

After repeating this process for (1/ǫ2) log(1/γ) steps, we let our final hypothesis h be the majority
vote of the hypotheses created so far. This boosting algorithm is called Adaboost. It can be shown
that the hypothesis produced by Adaboost makes an error with probability at most ǫ. Adaboost
also yields a much simpler hypothesis, namely a majority of one set of hypotheses, whereas the
algorithm we explain in Section 26.3 produces a complex hypothesis that requires us to recursively
find majorities of majorities of smaller sets of hypotheses.

26.5 Next Time

So far we have pushed the discussion of sampling from various distributions aside. In the next
lecture, we will talk more about picking samples from various distributions. After that, we will talk
about random walks and Markov chains.
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