
CS787: Advanced Algorithms

Scribe: Blayne Field Lecturer: Shuchi Chawla
Topic: Random Walks and Markov Chains Date: November 26, 2007

27.1 Introduction

As we have seen in the course up to this point, randomization has been a useful tool for developing
simple and efficient algorithms. So far, most of these algorithms have used some sort of independent
coin tosses. In this lecture, we started looking at choosing a sample from a large space, with our
choices being dependent on previous choices. We looked at this concept through the framework of
random walks and Markov chains.

Definition 27.1.1 A random walk is a process in which at every step we are at a node in an

undirected graph and follow an outgoing edge chosen uniformly at random. A Markov chain is

similar, except the outgoing edge is chosen according to an arbitrary distribution.

27.1.1 Examples of random walks

Random walks can occur in many situations, and are useful for analyzing various scenarios. Con-
sider the following betting game: a player bets $1, and either loses it or wins an addition dollar
with probability 1

2 . Since the probability of either thing happening is equal, we can think of this
as a random walk on a line graph, where each node represents the amount of wealth at any point
of time. This allows us to learn about numerous aspects of the game, such as the probability
distribution of the amount of money at a given time. We can also ask about the probability of the
player running out of money before winning a certain amount, and if that happens, what is the
expected amount of time before that happens.

Another situation where random walks occur is shuffling a deck of cards. One possible way of
drawing a permutation u.a.r. is to start at an arbitrary permutation and apply a local shuffling
operation multiple times. This can be thought of as a random walk on a graph of all permutations.
Our graph would contain nodes for each of the 52! permutations, and the connectivity of the graph
would be determined by what local operations are allowed. For example, if we could just randomly
choose 1 card, and move it to the top, each node would have degree 52 (if we include self-loops).
Analyzing this random walk may allow us to determine how many local steps we would need to
take in order to be reasonably close to the uniform distribution.

27.2 Properties of random walks

There are numerous properties of random walks that we may be interested in. They are listed and
defined informally below:
Stationary distribution: what is the distribution of our current location if we run the random walk
for an infinite number of steps.
Hitting time: denoted huv is the expected time to get from u to v.

1

Commute time: denoted Cuv is the expected time to get from u to v, and back to u
Cover time (starting at u): denoted Cu is the expect time to visit every node (starting at node u)
Cover time (for a graph): denoted C(G) = maxu Cu.

27.3 Transition matrix

A random walk (or Markov chain), is most conveniently represented by its transition matrix P. P
is a square matrix denoting the probability of transitioning from any vertex in the graph to any
other vertex. Formally, Puv = Pr[going from u to v, given that we are at u]. Thus for a random
walk, Puv = 1

du

if (u, v) ∈ E, and 0 otherwise (where du is the degree of u). Thus for the example
graph given below the transition matrix would be:

P =













0 1
3

1
3

1
3 0

1
3 0 0 1

3
1
3

1
3 0 0 1

3
1
3

1
4

1
4

1
4 0 1

4
0 1

3
1
3

1
3 0













27.4 Stationary distributions

Thus if we have a distribution π over the nodes, we can obtain the distribution after one step by
computing π′ = P T ·π. Using this definition, we can define a stationary distribution πs as a distribu-
tion with the property that P T ·πs = πs. Stationary distributions are not always unique, but under
certain conditions, they are. It also is the case that under certain conditions, limt→∞(P T)tπ = πs

for all starting distributions π. We will discuss these conditions in the next lecture.

For the following examples, consider a graph G = (V,E), with n = |V | and m = |E|. Let du denote
the degree of vertex u.

Lemma 27.4.1 πv = dv

2m
is a stationary distribution for G

Proof: (P T · π)u =
∑

v Pvuπv =
∑

v:(v,u)∈E
dv

2m
∗ 1

dv

=
∑

v:(v,u)∈E
1

2m
= πu (because Pvu = dv

2m
if

(v, u) ∈ E and 0 otherwise).

2

27.5 Random walks on edges

For our next result, we will think about random walks in a slightly different way, where instead of
walking from node to node, our walk goes from edge to edge. Whenever we are on an edge uv, we
choose the next edge u.a.r from the set of edges incident to v. Then we can see that the uniform
distribution on edges (πu→v = 1

2m
∀(u → v) ∈ E) is a stationary distribution. This is because

(P T · π)v→w =
∑

u:(u,v)∈E
1

2m
1
dv

= 1
2m

= πv→w

Lemma 27.5.1 ∀(u, v) : (u, v) ∈ E, we have Cuv ≤ 2m

Proof: Note: this is just a sketch of the proof, as certain technical details are omitted. If we
view the process as a random walk on sequence of edges, we can bound the commute time by the
expected amount of time between consecutive occurences of the edge u → v. The expected length
of the gap between consecutive occurences if we run for t steps is simply t divided by the actual
number of times we see the edge u → v. We also know that since the stationary distribution is
uniform, we expect to see the edge t

2m
times. As t goes to infinity, the actual number of times we

see u → v appraoches its expectation t
2m

with probability 1 (due to the law of large numbers). We
can then approximate the actual number seen by the expected number seen, and thus we expect
the length of the gap to be t

t

2m

= 2m.

27.6 Cover time

If we had a bound on the commute time for all pairs (u, v) (call this bound x), we could get a bound
(in expectation) on the cover time by running the random walk for x ∗ n steps. Unfortunately, the
bound given by lemma 27.5.1 is only valid for pairs (u, v) where there is an edge between u and v.
However, we can still come up with a different method for bounding the cover time.

Lemma 27.6.1 C(G) ≤ 2m(n − 1)

Proof: Let T be an arbitrary spanning tree of G. For each edge (u, v) in T , add the edge
(v, u). We can then bound the cover time of G with the expected time needed to complete an
Euler tour of T . Since each node in T has even degree (due to the doubling of the edges), we
know that an Euler tour must exist. If we list the vertices visited as v1, v2, . . . , vk = v0, we have
C(G) ≤ h(v0v1) + h(v1v2) + . . . + h(vk−1v0) =

∑

uv∈T h(u, v) + h(v, u) =
∑

uv∈T Cuv ≤ 2m(n − 1),
since each of the (n − 1) edges that was in T orginally shows up in both directions. For example,
the cover time of the graph given before could be bounded by using the spanning tree below, so
C(G) ≤ h21 + h14 + h41 + h13 + h35 + h53 + h31 + h12.

3

It turns out that for some graphs, the bound given in lemma 27.6.1 is tight. One example of this is
the line graph with n vertices, depicted below (Ln). According to the lemma, C(G) ≤ 2(n − 1)2 =
O(n2). Also, we can note that h1,0 ≤ 2(n− 1)− 1, since h0,1 = 1, and Cuv = huv + hvu by linearity
of expectation. We will show in the next lecture that the cover time for this graph is indeed Θ(n2).

However, the bound is not always tight, as in the case of the complete graph, Kn. In this case,
m = n(n−1)

2 , so C(Kn) = O(n3) by the lemma. However, we can get a much tighter bound on the
cover time for this graph. Since in the complete graph, we can go from any node to any other in
one step, the problem of visiting all nodes can be viewed as an instance of the coupon collector
problem. As we saw in a previous lecture, this would give us a bound of O(n log n).

One last example is the lollipop graph (pictured below) , which has n vertices, half of which form
Kn

2

, with the remainder forming Ln

2

(and attached to the complete graph portion). The lemma

in this case gives C(G) = O(n3), which happens to be tight. This is because it takes Ω(n3) time
to get from u to v. We can see this by the following analysis: for just the line graph, it should
take Ω(n2) steps, Ω(n) of which will be spent at u, since the nodes should approach a uniform
distribution. However, if we are at u, there is a 2

n
probability of leaving the clique, see we need to

visit u Ω(n) times to ’escape’ back to the line graph. However, if we are in the clique portion it
takes Ω(n) steps to get back to u. Thus each time we end up in u from the line graph, we expect
to take Ω(n2) steps to get back into the line graph. Thus the expected number of steps is Ω(n3).
This illustrates that the number of edges doesn’t always give the best estimate, since both this and
the last example had O(n2) edges.

27.7 Testing s-t connectivity

Since any graph has at most O(n2) edges, the cover time is O(n3) for any graph. Thus we can use
random walks to test for s-t connectivity using very smalls amounts of space. This problem can be
solved using either BFS or DFS, but they use Ω(n) space. This bound on the cover time suggests
a simple randomized algorithm for testing s-t connectivity. We just run a random walk starting
at s for 2n3 steps and output ’connected’ if we ever encounter t on our walk. This algorithm will
succeed with probability 1

2 , so if we desired gives an upper bound on the expected time of our
algorithm, and allows us to use log n bits to store our current location in the walk, and O(log n)

4

bits as a counter for our time in the walk. This shows that s − t connectivity can be solved in
randomized log space. It was recently shown that the procedure can be derandomized, while still
still using logarithmic space.

5

