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Abstract

We consider the following clustering problem: we have
a complete graph onn vertices (items), where each edge(u; v) is labeled either+ or� depending on whetheru andv have been deemed to be similar or different. The goal
is to produce a partition of the vertices (a clustering) that
agrees as much as possible with the edge labels. That is,
we want a clustering that maximizes the number of+ edges
within clusters, plus the number of� edges between clus-
ters (equivalently, minimizes the number of disagreements:
the number of� edges inside clusters plus the number of+
edges between clusters). This formulation is motivated from
a document clustering problem in which one has a pairwise
similarity functionf learned from past data, and the goal is
to partition the current set of documents in a way that cor-
relates withf as much as possible; it can also be viewed as
a kind of “agnostic learning” problem.

An interesting feature of this clustering formulation is
that one does not need to specify the number of clustersk
as a separate parameter, as in measures such ask-median
or min-sum or min-max clustering. Instead, in our formu-
lation, the optimal number of clusters could be any value
between 1 andn, depending on the edge labels. We look
at approximation algorithms for both minimizing disagree-
ments and for maximizing agreements. For minimizing dis-
agreements, we give a constant factor approximation. For
maximizing agreements we give a PTAS. We also show how
to extend some of these results to graphs with edge labels
in [�1;+1], and give some results for the case of random
noise.

1 Introduction

Suppose that you are given a set ofn documents to clus-
ter into topics. Unfortunately, you have no idea of what
a “topic” is. However, you have at your disposal a classi-
fier f(A;B) that given two documentsA andB, outputs�Department of Computer Science, Carnegie Mellon University.fnikhil,avrim,shuchig@cs.cmu.edu. This research was sup-
ported in part by NSF grants CCR-0085982, CCR-0122581, CCR-
0105488, and an IBM Graduate Fellowship.

whether or not it believesA andB are similar to each other.
For example, perhapsf was learned from some past train-
ing data. In this case, a natural approach to clustering is to
applyf to every pair of documents in your set, and then to
find the clustering that agrees as much as possible with the
results.

Specifically, we consider the following problem. Given
a fully-connected graphG with edges labeled “+” (similar)
or “�” (different), find a partition of the vertices into clus-
ters that agrees as much as possible with the edge labels.
In particular, we can look at this in terms of maximizing
agreements(the number of+ edges inside clusters plus the
number of� edges between clusters) or in terms of mini-
mizing disagreements(the number of� edges inside clus-
ters plus the number of+ edges between clusters). These
two are equivalent at optimality but, as usual, differ from
the point of view of approximation. In this paper we give
a constant factor approximation to the problem of minimiz-
ing disagreements, and a PTAS for maximizing agreements.
We also extend some of our results to the case of real-valued
edge weights. This problem formulation is motivated in part
by some clustering problems at Whizbang Labs in which
learning algorithms have been trained to help with various
clustering tasks [8, 9, 10].1

What is interesting about the clustering problem defined
here is that unlike most clustering formulations, we do not
need to specify the number of clustersk as a separate pa-
rameter. For example, ink-median [7, 15] or min-sum clus-
tering [20] or min-max clustering [14], one can always get
a perfect score by putting each node into its own cluster —
the question is how well one can do with onlyk clusters. In
our clustering formulation, there is just a single objective,

1An example of one such problem is clustering entity names. Inthis
problem, items are entries taken from multiple databases (e.g., think of
names/affiliations of researchers), and the goal is to do a “robust uniq”
— collecting together the entries that correspond to the same entity (per-
son). E.g., in the case of researchers, the same person mightappear
multiple times with different affiliations, or might appearonce with a
middle name and once without, etc. In practice, the classifier f typi-
cally would output a probability, in which case the natural edge label is
log(Pr(same)/Pr(different)). This is 0 if the classifier isunsure, positive if
the classifier believes the items are more likely in the same cluster, and
negative if the classifier believes they are more likely in different clusters.
The case off+;�g labels corresponds to the setting in which the classifier
has equal confidence about each of its decisions.



and the optimal clustering might have few or many clusters:
it all depends on the edge labels.

To get a feel for this problem, notice that if there exists
a perfect clustering, i.e., one that gets all the edges correct,
then the optimal clustering is easy to find: just delete all “�”
edges and output the connected components of the graph
remaining. (This is called the “naive algorithm” in [10].)
Thus, the interesting case is when no clustering is perfect.
Also, notice that for any graphG, it is trivial to produce a
clustering that agrees with at leasthalf of the edge labels:
if there are more+ edges than� edges, then simply put all
vertices into one big cluster; otherwise, put each vertex into
its own cluster. This observation means that for maximiz-
ing agreements, getting a2-approximation is easy (note: we
will show a PTAS). In general, finding the optimal cluster-
ing is NP-hard, which can be seen via a tedious reduction
from X3C (details can be found in [5]).

Another simple fact to notice is that if the graph contains
a triangle in which two edges are labeled+ and one is la-
beled�, then no clustering can be perfect. More generally,
the number of edge-disjoint triangles of this form gives a
lower bound on the number of disagreements of the optimal
clustering. This fact is used in our constant-factor approxi-
mation algorithm.

For maximizing agreements, our PTAS is quite similar
to the PTAS developed by [12] for MAX-CUT on dense
graphs, and related to PTASs of [4, 3]. Notice that since
there must exist a clustering with at leastn(n � 1)=4
agreements, this means it suffices to approximate agree-
ments to within an additive factor of�n2. This problem
is also closely related to work on testing graph properties
of [13, 19, 1]. In fact, we show how we can use the Gen-
eral Partition Property Tester of [13] as a subroutine to geta

PTAS with running timeO(neO(( 1� ) 1� )). Unfortunately, this
is doubly exponential in1� , so we also present an alterna-
tive direct algorithm (based more closely on the approach
of [12]) that takes onlyO(n2eO( 1� )) time.

Relation to agnostic learning: One way to view this
clustering problem is that edges are “examples” (labeled as
positive or negative) and we are trying to represent the target
functionf using a hypothesis class of vertex clusters. This
hypothesis class has limited representational power: if we
want to say(u; v) and(v; w) are positive in this language,
then we have to say(u;w) is positive too. So, we might
not be able to representf perfectly. This sort of problem —
trying to find the (nearly) best representation of some arbi-
trary targetf in a given limited hypothesis language — is
sometimes calledagnosticlearning [17, 6]. The observation
that one can trivially agree with at least half the edge labels
is equivalent to the standard machine learning fact that one
can always achieve error at most1=2 using either theall
positiveor all negativehypothesis.

Our PTAS for approximating the number of agreements
means that if the optimal clustering has error rate�, then we
can find one of error rate at most� + �. Our running time is
exponential in1=�, but this means that we can achieve any
constant error gap in polynomial time. What makes this in-
teresting from the point of view of agnostic learning is that
there are very few nontrivial problems where agnostic learn-
ing can be done in polynomial time. Even for simple classes
such as conjunctions and disjunctions, no polynomial-time
algorithms are known that give even an error gap of1=2��.
2 Notation and Definitions

Let G = (V;E) be a complete graph onn vertices, and
let e(u; v) denote the label (+ or�) of the edge(u; v). LetN+(u) = fug [ fv : e(u; v) = +g andN�(u) = fv :e(u; v) = �g denote the positive and negative neighbors ofu respectively.

We letOPT denote the optimal clustering on this graph.
In general, for a clusteringC, let C(v) be the set of vertices
in the same cluster asv. We will useA to denote the clus-
tering produced by our algorithms.

In a clusteringC, we call an edge(u; v) a mistake if ei-
ther e(u; v) = + and yetu 62 C(v), or e(u; v) = � andu 2 C(v). Whene(u; v) = +, we call the mistake apos-
itive mistake, otherwise it is called anegative mistake. We
denote the total number of mistakes made by a clusteringC bymC , and usemOPT to denote the number of mistakes
made byOPT.

For positive real numbersx, y andz, we usex 2 y�z to
denotex 2 [y � z; y+ z]. Finally, letX for X � V denote
the complement(V nX).
3 A Constant Factor Approximation for Min-

imizing Disagreements

We now describe our main algorithm: a constant-factor
approximation for minimizing the number of disagree-
ments.

The high-level idea of the algorithm is as follows. First,
we show (Lemma 1) that if we can cluster a portion of
the graph using clusters that each look sufficiently “clean”
(Definition 1), then we can charge off the mistakes made
within that portion to “erroneous triangles”: triangles with
two + edges and one� edge. Furthermore, we can do
this in such a way that the triangles we charge are nearly
edge-disjoint, allowing us to bound the number of these
mistakes by a constant factor of OPT. Second, we show
(Lemma 2) that there must exist a nearly optimal cluster-
ing OPT0 in which all non-singleton clusters are “clean”.
Finally, we show (Theorem 3 and Lemma 7) that we can al-
gorithmically produce a clustering of the entire graph con-
taining only clean clusters and singleton clusters, such that
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mistakes that have an endpoint in singleton clusters are
bounded byOPT0, and mistakes with both endpoints in
clean clusters are bounded using Lemma 1.

We begin with a definition of a “clean” cluster and a
“good” vertex.

Definition 1 A vertexv is calledÆ-goodwith respect toC,
whereC � V , if it satisfies the following:� jN+(v) \ Cj � (1� Æ)jCj� jN+(v) \ (V n C)j � ÆjCj
If a vertexv is notÆ-good with respect to (wrt)C, then it is
calledÆ-bad wrt C. Finally, a setC is Æ-clean if all v 2 C
areÆ-good wrtC.

We now present two key lemmas.

Lemma 1 Given a clustering ofV in which all clusters areÆ-clean for someÆ � 1=4, then the number of mistakes
made by this clustering is at most8mOPT.

Proof: Let the clustering onV be (C1; � � � ; Ck). We will
bound the number of mistakes made by this clustering by8
times the number of edge-disjoint “erroneous triangles” in
the graph, where an erroneous triangle is a triangle having
two+ edges and one� edge. We then use the fact thatOPT
must make at least one mistake for each such triangle.

First consider the negative mistakes. Pick a negative
edge(u; v) 2 Ci � Ci that has not been considered so far.
We will pick a w 2 Ci such that both(u;w) and (v; w)
are positive and associate(u; v) with the erroneous triangle(u; v; w). We now show that for all(u; v), such aw can
always be picked such that no other negative edges(u0; v)
or (u; v0) (i.e. the ones sharingu or v) also pickw.

SinceCi is Æ-clean, neitheru nor v has more thanÆjCij
negative neighbors insideCi. Thus (u; v) has at least(1 � 2Æ)jCij verticesw such that both(u;w) and (v; w)
are positive. Moreover, at most2ÆjCij � 2 of these could
have already been chosen by other negative edges(u; v0) or(u0; v). Thus(u; v) has at least(1 � 4Æ)s + 2 choices ofw that satisfy the required condition. SinceÆ � 1=4, (u; v)
will always be able to pick such aw.

Note that any positive edge(v; w) can be chosen at most
2 times by the above scheme, once for negative mistakes
on v and possibly again for negative mistakes onw. Thus
we can account for at least a fourth (because only positive
edges are double counted) of the negative mistakes using
edge disjoint erroneous triangles.

Now, we consider the positive mistakes. Just as above,
we will associate mistakes with erroneous triangles. We
will start afresh, without taking into account the labelings
from the previous part.

Consider a positive edge betweenu 2 Ci andv 2 Cj . LetjCij � jCj j. Pick aw 2 Ci such that(u;w) is positive and

(v; w) is negative. There will be at leastjCij�Æ(jCij+ jCj j)
such vertices as before and at mostÆ(jCij+jCj j) of them will
be already taken. Moreover only the positive edge(u;w)
can be chosen twice (once as(u;w) and once as(w; u)).
Repeating the above argument, we again see that we ac-
count for at least half (hence at least a quarter) of the posi-
tive mistakes using edge disjoint triangles.

Now depending on whether there are more negative mis-
takes or more positive mistakes, we can choose the triangles
appropriately, and hence account for at least 1/8 of the total
mistakes in the clustering.

Lemma 2 There exists a clusteringOPT0 in which each
non-singleton cluster isÆ-clean, andmOPT0 � ( 9Æ2 +1)mOPT.

Proof: Consider the following procedure applied to the
clustering ofOPT and call the resulting clusteringOPT0.
Procedure Æ-Clean-Up: Let COPT1 ; COPT2 ; :::; COPTk be
the clusters inOPT.

1. LetS = ;.
2. Fori = 1; � � � ; k do:

(a) If the number ofÆ3 -bad vertices inCOPTi is more
than Æ3 jCOPTi j, then,S = S [ COPTi , C0i = ;. We
call this “dissolving” the cluster.

(b) Else, letBi denote theÆ3 -bad vertices inCOPTi .
ThenS = S [ Bi andC0i = COPTi nBi.

3. Output the clusteringOPT0: C01; C02; :::; C0k; fxgx2S.

We will prove thatmOPT andmOPT0 are closely related.
We first show that eachC0i is Æ clean. Clearly, this holds

if C0i = ;. Now if C0i is non-empty, we know thatjCOPTi j �jC0ij � jCOPTi j(1� Æ=3). For each pointv 2 C0i, we have:jN+(v) \ C0ij � (1� Æ=3)jCOPTi j � Æ=3jCOPTi j= (1� 2Æ=3)jCOPTi j> (1� Æ)jC0ij
Similarly, counting positive neighbors ofv in COPTi \C0i and
outsideCOPTi , we get,jN+(v) \ C0ij � (Æ=3)jCOPTi j+ (Æ=3)jCOPTi j� 2Æ3 jC0ij(1� Æ=3)< ÆjC0ij ( asÆ < 1)
Thus eachC0i is Æ-clean.

We now account for the number of mistakes. If we
dissolve someCOPTi , then clearly the mistakes associated
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with vertices in originalCOPTi is at least(Æ=3)2jCOPTi j2=2.
The mistakes added due to dissolving clusters is at mostjCOPTi j2=2.

If COPTi was not dissolved, then, the original mistakes inCOPTi were at leastÆ=3jCOPTi jjBij=2. The mistakes added
by the procedure is at mostjBijjCOPTi j. Noting that6=Æ <9=Æ2, the lemma follows.

For the clusteringOPT0 given by the above lemma, we
useC0i to denote the non-singleton clusters andS to denote
the set of singleton clusters. We will now describe Algo-
rithm Cautious that tries to find clusters similar toOPT0.
Throughout the rest of this section, we assume thatÆ = 144 .

Algorithm Cautious:

1. Pick an arbitrary vertexv and do the following:

(a) LetA(v) = N+(v).
(b) (Vertex Removal Step): While 9x 2 A(v) such

thatx is 3Æ-bad wrtA(v), A(v) = A(v) n fxg.
(c) (Vertex Addition Step): Let Y = fyjy 2 V; y is7Æ-good wrtA(v)g. LetA(v) = A(v) [ Y .2

2. DeleteA(v) from the set of vertices and repeat until no
vertices are left or until all the produced setsA(v) are
empty. In the latter case, output the remaining vertices
as singleton nodes.

Call the clusters output by algorithm CautiousA1; A2; � � �. Let Z be the set of singleton vertices
created in the final step. Our main goal will be to show that
the clusters output by our algorithm satisfy the property
stated below.

Theorem 3 8j, 9i such thatC0j � Ai. Moreover, eachAi
is 11Æ-clean.

In order to prove this theorem, we need the following
two lemmas.

Lemma 4 If v 2 C0i, whereC0i is aÆ-clean cluster inOPT0,
then, any vertexw 2 C0i is 3Æ-good wrtN+(v).
Proof: As v; w 2 Ci, jN+(v)\C0ij � (1�Æ)jC0ij, jN+(w)\C0ij � (1� Æ)jC0ij andjN+(w) \ C0ij � ÆjC0ij.

Also, (1 � Æ)jC0ij � jN+(v)j � (1 + Æ)jC0ij. Thus, we
get the following two conditions.jN+(w) \N+(v)j � (1� 2Æ)jC0ij � (1� 3Æ)jN+(v)jjN+(w)\N+(v)j � 2ÆjC0ij � 2Æ1� Æ jN+(v)j � 3ÆjN+(v)j
Thus,w is 3Æ-good wrtN+(v).

2Observe that in the vertex addition step, all vertices are added in one
step as opposed to in the vertex removal step

Lemma 5 Given an arbitrary setX , if v1 2 C0i andv2 2C0j , thenv1 andv2 cannot both be3Æ-good wrtX .

Proof: Firstly if v is 3Æ-good wrt some arbitrary setX , then(1� 3Æ)jX j < N+(v) < (1 + 3Æ)jX j.
Suppose thatv1 andv2 are both3Æ-good with respect toX . Then,jN+(v1)\X j � (1�3Æ)jX j andjN+(v2)\X j �(1�3Æ)jX j, hencejN+(v1)\N+(v2)\X j � (1�6Æ)jX j,

which implies thatjN+(v1) \N+(v2)j � (1� 6Æ)jX j.
Also, sincev1 lies in a Æ-clean clusterC0i in OPT0,jN+(v1)nC0ij � ÆjC0ij, jN+(v2)nC0j j � ÆjC0j j andC0i\C0j =;. It follows thatjN+(v1) \N+(v2)j � Æ(jC0ij+ jC0j j).
Now notice thatjC0ij � jN+(v1) \ C0ij + ÆjC0ij �jN+(v1) \ X \ C0ij + jN+(v1) \ X \ C0ij + ÆjC0ij �jN+(v1)\X \ C0ij+3ÆjX j+ ÆjC0ij � (1+ 3Æ)jX j+ ÆjC0ij.

So,jC0ij � 1+3Æ1�Æ jX j. The same holds forC0j . So,jN+(v1)\N+(v2)j � 2Æ 1+3Æ1�Æ jX j.
However, sinceÆ < 1=9, 2Æ(1 + 3Æ) < (1� 6Æ)(1� Æ)

and we have a contradiction. Thus the result follows.

This gives us the following important corollary.

Corollary 6 After the remove phase of the algorithm, no
two vertices from distinctC0i andC0j can be present inA(v).

Now we go on to prove Theorem 3.

Proof of Theorem 3:We will first show that eachAi is either
a subset ofS or contains exactly one of the clustersC0j . The
first part of the theorem will follow.

For a clusterAi, letA0i be the set produced after the ver-
tex removal phase such the clusterAi is obtained by apply-
ing the vertex addition phase toA0i. We have two cases.
First, we consider the case whenA0i � S. Now during the
vertex addition step, no vertexu 2 C0j can enterA0i for anyj. This follows because, sinceC0j is Æ-clean and disjoint
from A0i, for u to enter we need thatÆjC0j j � (1 � 7Æ)jA0ij
and(1 � Æ)jC0j j � 7ÆjA0ij, and these two conditions cannot
be satisfied simultaneously. ThusAi � S.

In the second case, someu 2 C0j is present inA0i. How-
ever, in this case observe that from Corollary 6, no vertices
from C0k can be present inA0i for anyk 6= j. Also, by the
same reasoning as for the caseA0i � S, no vertex fromC0k
will enterA0i in the vertex addition phase. Now it only re-
mains to show thatC0j � Ai.

Sinceu was not removed fromA0i it follows that many
vertices fromC0j are present inA0i. In particular,jN+(u) \A0ij � (1 � 3Æ)jA0ij and jN+(u) \ A0ij � 3ÆjA0ij. Now(1 � Æ)jC0j j � jN+(u)j implies thatjC0j j � 1+3Æ1�Æ jA0ij <2jA0ij. Also, jA0i \ C0j j � jA0i \N+(u)j � jN+(u) \ C0j j �jA0i\N+(u)j�ÆjC0j j. So we havejA0i\C0j j � (1�5Æ)jA0ij.

We now show that all remaining vertices fromC0j will
enterAi during the vertex addition phase. Forw 2 C0j such

thatw =2 A0i, jA0i \ C0j j � 5ÆjA0ij and jN+(w) \ C0j j �
4



ÆjC0j j together imply thatjA0i\N+(w)j � 5ÆjA0ij+ÆjC0j j �7ÆjA0ij. The same holds forjA0i\N+(w)j. Sow is 7Æ-good
wrt A0i and will be added in the Vertex Addition step. Thus
we have shown thatA(v) can containC0j for at most onej
and in fact will contain this set entirely.

Next, we will show that for everyj, 9i s.t. C0j � Ai.
Let v chosen in Step 1 of the algorithm be such thatv 2C0j . We show that during the vertex removal step, no vertex
fromN+(v)\C0j is removed. The proof follows by an easy
induction on the number of vertices removed so far(r) in
the vertex removal step. The base case(r = 0) follows from
Lemma 4 since every vertex inC0j is 3Æ-good with respect toN+(v). For the induction step observe that since no vertex
from N+(v) \ C0j is removed thus far, every vertex inC0j
is still 3Æ-good wrt to the intermediateA(v) (by mimicking
the proof of lemma 4 withN+(v) replaced byA(v)). ThusA0i contains at least(1 � Æ)jC0j j vertices ofC0j at the end
of the vertex removal phase, and hence by the second case
above,C0j � Ai after the vertex addition phase.

Finally we show that every non-singleton clusterAi is11Æ-clean. We know that at the end of vertex removal phase,8x 2 A0i, x is 3Æ-good wrtA0i. Thus, jN+(x) \ A0ij �3ÆjA0ij. So the total number of positive edges leavingA0i
is at most3ÆjA0ij2. Since, in the vertex addition step, we
add vertices that are7Æ-good wrtA0i, these can be at most3ÆjA0ij2=(1� 7Æ)jA0ij < 4ÆjA0ij. ThusjAij < (1 + 4Æ)jA0ij.

Since all verticesv in Ai are at least7Æ-good wrtA0i,N+(v) \ Ai � (1� 7Æ)jA0ij � 1�7Æ1+4Æ jAij � (1� 11Æ)jAij.
Similarly,N+(v) \ Ai � 7ÆjA0ij � 11ÆjAij. This gives us
the result.

Now we are ready to bound the mistakes ofA in terms ofOPT andOPT0. Call mistakes that have both end points
in some clustersAi andAj as internal mistakes and those
that have an end point inZ as external mistakes. Similarly
in OPT0, we call mistakes among the setsC0i as internal
mistakes and mistakes having one end point inS as external
mistakes. We bound mistakes of Cautious in two steps: the
following lemma bounds external mistakes.

Lemma 7 The total number of external mistakes made by
Cautious are less than the external mistakes made byOPT0.
Proof: From theorem 3, it follows thatZ cannot contain
any vertexv in someC0i. Thus,Z � S. Now, any exter-
nal mistakes made by Cautious are positive edges adjacent
to vertices inZ. These edges are also mistakes inOPT0
since they are incident on singleton vertices inS. Hence
the lemma follows.

Now consider the internal mistakes ofA. Notice that
these could be many more than the internal mistakes ofOPT0. However, we can at this point apply Lemma 1
on the graph induced byV 0 = [iAi. In particular, the
bound on internal mistakes follows easily by observing that

11Æ � 1=4, and that the mistakes of the optimal clustering
on the graph induced byV 0 is no more thanmOPT . Thus,

Lemma 8 The total number of internal mistakes of Cau-
tious is� 8mOPT.

Summing up results from the lemmas 7 and 8, and using
lemma 2, we get the following theorem:

Theorem 9 mCautious� 9( 1Æ2 + 1)mOPT.

4 A PTAS for maximizing agreements

In this section, we give a PTAS for maximizing agree-
ments: the total number of positive edges inside clusters
and negative edges between clusters.

LetOPT denote the optimal clustering andA denote our
clustering. We will abuse notation and also useOPT to de-
note the number of agreements in the optimal solution. As
noticed in the introduction,OPT � n(n � 1)=4. So it suf-
fices to produce a clustering that has at leastOPT � �n2
agreements, which will be the goal of our algorithm. LetÆ+(V1; V2) denote the number of positive edges between
setsV1; V2 � V . Similarly, letÆ�(V1; V2) denote the num-
ber of negative edges between the two. LetOPT(�) denote
the optimal clustering that has all non-singleton clustersof
size greater than�n.

Lemma 10 OPT(�) � OPT� �n2=2.

Proof: Consider the clusters ofOPT of size less than or
equal to�n and break them apart into clusters of size1.
Breaking up a cluster of sizes reduces our objective func-
tion by at most

�s2�, which can be viewed ass=2 per node in
the cluster. Since there are at mostn nodes in these clusters,
and these clusters have size at most�n, the total loss is at
most�n22 .

The above lemma means that it suffices to produce a
good approximation toOPT(�). Note that the num-
ber of non-singleton clusters inOPT(�) is less than1� .
Let COPT1 ; : : : ; COPTk denote the non-singleton clusters ofOPT(�) and letCOPTk+1 denote the set of points which corre-
spond to singleton clusters.

4.1 A PTAS doubly-exponential in1=�
If we are willing to have a run time that is doubly-

exponential in1=�, we can do this by reducing our problem
to the General Partitioning problem of [13]. The idea is as
follows.

LetG+ denote the graph of only the+ edges inG. Then,
notice that we can express the quality ofOPT(�) in terms
of just the sizes of the clusters, and the number of edges in
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G+ between and inside each ofCOPT1 ; : : : ; COPTk+1 . In par-
ticular, if si = jCOPTi j andei;j = Æ+(COPTi ; COPTj ), then
the number of agreements inOPT(�) is:" kXi=1 ei;i#+��sk+12 �� ek+1;k+1�+24Xi6=j (sisj � ei;j)35 :

The General Partitioning property tester of [13] allows us
to specify values for thesi andeij , and if a partition ofG+
exists satisfying these constraints, will produce a partition
that satisfies these approximately. We obtain a partition that
has at leastOPT(�)� �n2 agreements. The property tester
runs in time exponential in( 1� )k+1 and polynomial inn.

Thus if we can guess the values of these sizes and num-
ber of edges accurately, we would be done. It suffices, in
fact, to only guess the values up to an additive��2n for thesi, and up to an additive��3n2 for the ei;j , because this
introduces an additional error of at mostO(�). So, at mostO((1=�3)1=�2) calls to the property tester need to be made.
Our algorithm proceeds by finding a partition for each pos-
sible value ofsi andei;j and returns the partition with the
maximum number of agreements. We get the following re-
sult:

Theorem 11 The General Partitioning algorithm returns a
clustering of graphG which has more thanOPT � �n2
agreements with probability at least1 � Æ. It runs in time
exponential in( 1� )1=� and polynomial inn and 1Æ .

4.2 A singly-exponential PTAS

We will now describe an algorithm that is based on the
same basic idea of random sampling used by the General
Partitioning algorithm. The idea behind our algorithm is
as follows: Notice that if we knew the density of positive
edges between a vertex and all the clusters, we could putv
in the cluster that has the most positive edges to it. How-
ever, trying all possible values of the densities requires too
much time. Instead we adopt the following approach: We
select a small random subsetW of vertices and cluster them
correctly intofWig with Wi � Oi 8i, by enumerating all
possible clusterings ofW . Since this subset is picked ran-
domly, with a high probability, for all verticesv, the density
of positive edges betweenv andWi will be approximately
equal to the density of positive edges betweenv andOi.
So we can decide which cluster to putv into, based on this
information. However this is not sufficient to account for
edges between two verticesv1 andv2, both of which do not
belong toW . So, we consider subsetsUi of sizem at a time
and try out all possible clusteringsfUijg of them, picking
the one that maximizes agreements with respect tofWig.
This gives us the PTAS.

Firstly note that ifjCOPTk+1 j < �n, then if we only consider
the agreements in the graphGnCOPTk+1 , it affects the solution
by at most�n2. For now, we will assume thatjCOPTk+1 j < �n
and will present the algorithm and analysis based on this
assumption. Later we will discuss the changes required to
deal with the other case.

In the following algorithm� is a performance param-
eter to be specified later. Letm = 883�40�10 (log 1� + 2),k = 1� and �0 = �388 . Let pi denote the density of
positive edges inside the clusterCOPTi and nij the den-
sity of negative edges between clustersCOPTi andCOPTj .

That is, pi = Æ+(COPTi ; COPTi )=�jCOPTi j2 �
and nij =Æ�(COPTi ; COPTj )=(jCOPTi jjCOPTj j).

We begin by defining a measure of goodness of a clus-
teringfUijg of some setUi with respect tofWig, that will
enable us to pick the right clustering of the setUi.
Definition 2 Ui1; : : : ; Ui(k+1) is �0-good wrtW1; : : : ;Wk+1 if it satisfies the following for all1 � j; l � k
(1) Æ+(Uij ;Wj) � p̂j�Wj2 �� 18�0m2
(2) Æ�(Uij ;Wl) � n̂jljWj jjWlj � 6�0m2

and, for at least(1� �0)n of the verticesx and8 j,
(3) Æ+(Uij ; x) 2 Æ+(Wj ; x) � 2�0m.

Our algorithm is as follows:

Algorithm Divide&Choose:

1. Pick a random subsetW � V of sizem.

2. For all partitionsW1; : : : ;Wk+1 of W do

(a) Let p̂i = Æ+(Wi;Wi)=�jWij2 �, and n̂ij =Æ�(Wi;Wj)=jWijjWj j.
(b) Let q = nm � 1. Consider a random partition ofV nW intoU1; : : : ; Uq, such that8i, jUij = m.

(c) For alli do:

Consider all (k + 1)-partitions of Ui and
let Ui1; : : : ; Ui(k+1) be the partition that is�0-good wrt W1; : : : ;Wk+1 (by definition 2
above). If there is no such partition, chooseUi1; : : : ; Ui(k+1) arbitrarily.

(d) Let Aj = [iUij for all i. Let a(fWig) be the
number of agreements of this clustering.

3. Let fWig be the partition ofW that maximizesa(fWig). Return the clustersfAig; fxgx2Ak+1 cor-
responding to this partition ofW .
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We will concentrate on the ”right” partition of ofW given
byWi = W \ COPTi , 8i. We will show that the number of
agreements of the clusteringA1; : : : ; Ak+1 corresponding
to this partitionfWig is at leastOPT(�)� 2�n2. Since we
pick the best clustering, this gives us a PTAS.

We will begin by showing that with a high probability,
for most values ofi, the partition ofUis corresponding to
the optimal partition is good with respect tofWig. Thus
the algorithm will find at least one such partition. Next we
will show that if the algorithm finds good partitions for mostUi, then it achieves at leastOPT�O(�)n2 agreements.

We will need the following results from probability the-
ory. Please refer to [2] for a proof.

Fact 1: LetH(n;m; l) be the hypergeometric distribution
with parametersn;m and l (choosingl samples fromn
points without replacement with the random variable tak-
ing a value of 1 on exactlym out of then points). Let0 � � � 1. ThenPr[jH(n;m; l)� lmn j � �lmn ] � 2e� �2lm2n
Fact 2: LetX1; X2; :::; Xn be mutually independent r.v.s
such thatjXi � E[Xi]j < m for all i. Let S = Pni=1Xi,
then Pr[jS �E[S]j � a] � 2e� a22nm2

We will also need the following lemma:

Lemma 12 LetY andS be arbitrary disjoint sets andZ be
a set picked fromS at random. Then we have the following:Pr[jÆ+(Y; Z)� jZjjSj Æ+(Y; S)j > �0jY jjZj] � 2e��02jZj2 .

Proof: Æ+(Y; Z) is a sum ofjZj random variablesÆ+(Y; v)
(v 2 Z), each bounded above byjY j and having expected

value Æ+(Y;S)jSj .
Thus applying Fact 2, we getPr[jÆ+(Y; Z)� jZjÆ+(Y; S)=jSjj > �0jZjjY j]� 2e��02jZj2jY j2=2jZjjY j2 � 2e��02jZj=2
Now notice that since we pickedW uniformly at ran-

dom fromV , with a high probability the sizes ofWis are
in proportion tojCOPTi j. The following lemma formalizes
this.

Lemma 13 With probability at least1 � 2ke��02�m=2, 8i,jWij 2 (1� �0)mn jCOPTi j
Proof: For a given i, using Fact 1 and sincejCOPTi j � �n, Pr[jjWij � mn jCOPTi jj > �0mn jCOPTi j] �

2e��02mjCOPTi j=2n � 2e��02�m=2. Taking union bound over
thek values ofi we get the result.

Using Lemma 13, we show that the computed values ofp̂i
andn̂ij are close to the true valuespi andnij respectively.
This gives us the following two lemmas3.

Lemma 14 If Wi � COPTi and Wj � COPTj , then

with probability at least1 � 4e��02�m=4, Æ+(Wi;Wj) 2m2n2 Æ+(COPTi ; COPTj )� 3�0m2.
Proof Sketch:We can apply lemma 12 in two steps -

first to boundÆ+(Wi; COPTj ) in terms ofÆ+(COPTi ; COPTj )
by considering the process of pickingWi from COPTi , and
second to boundÆ+(Wi;Wj) in terms ofÆ+(Wi; COPTj ) by
fixing Wi and considering the process of pickingWj fromCOPTj . Then using lemma 13, we combine the two and get
the lemma.

Lemma 15 With probability at least1� 8�02 e��03�m=4, p̂i �pi � 9�0
Proof Sketch:Note that we cannot use an argument simi-

lar to the previous lemma directly here since we are dealing
with edges inside the same set. We use the following trick:
consider the partition ofCOPTi into 1�0 subsets of size�0n0
each, wheren0 = jCOPTi j. The idea is to bound the number
of positive edges between every pair of subsets ofCOPTi us-
ing argument in the previous lemma and adding these up to
get the result.

Now let Uij = Ui \ COPTj . The following lemma shows
that for alli, with a high probability allUijs are�0-good wrtfWig. So we will be able to find�0-good partitions for mostUis.

Lemma 16 For a giveni, letUij = Ui \ COPTj , then with

probability at least1�32k 1�02 e��03�m=4, 8j � k, fUijg are�0-good wrtfWjg.
Proof Sketch:The first and second conditions of Defini-

tion 2 can be obtained by applying an argument similar to
lemmas 15 and 14 respectively.

In order to obtain the third condition, we considerÆ+(x; Uij) as a sum ofm f0; 1g random variables (corre-
sponding to pickingUi from V ), each of which is1 iff the
picked vertex lies inCOPTj and is adjacent tox. Then an ap-
plication of Chernoff bound followed by union bound gives
us the condition.

Now we can bound the total number of agreements ofA1; : : : ; Ak; fxgx2Ak+1 in terms ofOPT:

3Please refer to [5] for full proofs of the lemmas.
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Theorem 17 If jCOPTk+1 j < �n, thenA � OPT� 3�n2 with
probability at least1� �.
Proof: From lemma 16, the probability that we were not
able to find a�0-good partition ofUi wrt W1; � � � ;Wk is at
most32 1�02 e��03�m=4. By our choice ofm, this is at most�2=4. So, with probability at least1 � �=2, at most�=2 of
theUis do not have an�0-good partition.

In the following calculation of the number of agree-
ments, we assume that we are able to find good partitions
of all Uis. We will only need to subtract at most�n2=2
from this value to obtain the actual number of agreements,
since eachUi can effect the number of agreements by at
mostmn.

We start by calculating the number of positive
edges inside a clusterAj . These are given byPaPx2Aj Æ+(Uaj ; x). Using the fact thatUaj is good wrtfWig (condition (3)),Px2Aj Æ+(Uaj ; x)�Px2Aj (Æ+(Wj ; x)� 2�0m)� �0njUaj j= Pb Æ+(Wj ; Ubj)� 2�0mjAj j � �0njUaj j�Pbfp̂j jWj j22 � 18�0m2g � 2�0mjAj j � �0njUaj j
The last follows from the fact thatUbj is good wrtfWig
(condition (1)). From Lemma 13,Px2Aj Æ+(Uaj ; x) � Pbfm2n2 p̂j(1� �0)2 jCOPTj j22�18�0m2g � 2�0mjAj j � �0njUaj j� mn p̂j(1� �0)2 jCOPTj j22 � 18�0mn�2�0mjAj j � �0njUaj j
Thus we bound

Pa Æ+(Aj ; Uaj) as
Pa Æ+(Aj ; Uaj) �p̂j(1� �0)2 jCOPTj j22 � 18�0n2 � 3�0njAj j.

Now using Lemma 15, the total number of agreements is at
leastPjfp̂j(1� �0)2 jCOPTj j22 g � 18�0n2k � 3�0n2�Pjf(pj � 9�0)(1� �0)2 jCOPTj j22 g � 18�0n2k � 3�0n2
Hence,A+ � OPT+ � 11�0kn2 � 21�0n2k � OPT+ �32�0n2k.
Similarly, consider the negative edges inA. Using lemma
14 to estimateÆ�(Uai; Ubj), we get,Pab Æ�(Uai; Ubj) � Æ�(COPTi ; COPTj )�9�0n2 � 2�0njAij � �0njAj j
Summing over alli < j, we get the total number of negative
agreements is at leastOPT� � 12�0k2n2.

So we have,A � OPT � 44�0k2n2 = OPT � �n2=2.
However, since we lose�n2=2 for not finding�0-good parti-
tions of everyUi (as argued before),�n2 due toCOPTk+1 , and�n2=2 for usingk = 1� we obtainA � OPT� 3�n2.

The algorithm can fail in four situations: more than�=2Uis do not have an�0-good partition with probability at
most�=2, lemma 13 does not hold for someWi with prob-
ability at most2ke��02�m=2, lemma 15 does not hold for
somei with probability at most8k�02 e��03�m=4 or lemma 14
does not hold for some pairi; j with probability at most4k2e��02�m=4. The latter three quantities are at most�=2 by
our choice ofm. So, the algorithm succeeds with probabil-
ity greater than1� �.

Now we need to argue for the case whenjCOPTk+1 j � �n.
Notice that in this case, using an argument similar to lemma
13, we can show thatjWk+1j � �m2 with a very high prob-
ability. This is good because, now with a high probability,Ui(k+1) will also be�0-good wrtWk+1 for most values ofi. We can now count the number of negative edges from
these vertices and incorporate them in the proof of Theo-
rem 17 just as we did for the otherk clusters. So in this
case, we can modify algorithmDivide&Chooseto consider�0-goodness of the(k+1)th partitions as well. This gives us
the same guarantee as in Theorem 17. Thus our strategy will
be to run AlgorithmDivide&Chooseonce assuming thatjCOPTk+1 j � �n and then again assuming thatjCOPTk+1 j � �n,
and picking the better of the two outputs. One of the two
cases will correspond to reality and will give us the desired
approximation toOPT.

Now eachUi hasO(km) different partitions. Each iter-
ation takesO(nm) time. There aren=m Uis, so for each
partition ofW , the algorithm takes timeO(n2km). Since
there arekm different partitions ofW , the total running time
of the algorithm isO(n2k2m) = O(n2eO( 1�10 log ( 1� ))). This
gives us the following theorem:

Theorem 18 For any Æ 2 [0; 1], using� = Æ3 , Algorithm

Divide&Choose runs in timeO(n2eO( 1Æ10 log ( 1Æ ))) and with
probability at least1� Æ3 produces a clustering with number
of agreements at leastOPT� Æn2.
5 Minimizing disagreements in [�1; 1]-

weighted graphs

In section 3, we developed an algorithm for minimizing
disagreements in a graph with+1 and�1 weighted edges.
Now we consider the situation in which edge weights lie in
the interval[�1; 1].

To address this setting, we need to define a cost model –
the penalty for placing an edge inside or between clusters.
One natural model is a linear cost function. Specifically,
given a clustering, we assign a cost of1�x2 if an edge of
weightx is within a cluster and a cost of1+x2 if it is placed
between two clusters. For example, an edge weighing0:5
incurs a cost of0:25 if it lies inside a cluster and0:75 oth-
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erwise. A0�weight edge, on the other hand, incurs a cost
of 1=2 no matter what.

It turns out that any algorithm that finds a good cluster-
ing in af�1; 1g�graph also works well in the[�1; 1] case
under a linear cost function.

Theorem 19 LetA be an algorithm that produces a clus-
tering on a f�1; 1g�graph with approximation ratio�.
Then, we can construct an algorithmA0 that achieves an
approximation ratio of(2� + 1) on a [�1; 1]�graph, with
the linear cost function.

Proof: Let G be a [�1; 1]�graph, and letG0 be thef�1; 1g�graph obtained when we assign a weight of1 to
all positive edges inG and�1 to all the negative edges (0
cost edges are weighted arbitrarily). LetOPT be the opti-
mal clustering onG andOPT0 the optimal clustering onG0.
Also, letm0 be the measure of cost (onG0) in thef�1; 1g
penalty model andm in the new[�1; 1] penalty model.

Then,m0OPT0 � m0OPT � 2mOPT. The latter is becauseOPT incurs a greater penalty of1 in m0 as compared tom
only when a positive edge is between clusters or a negative
edge inside a cluster. In both these situations,OPT incurs
a cost of at least1=2 in m and at most1 in m0. This gives
us the above equation.

Our algorithmA0 simply runsA on the graphG0 and
outputs the resulting clusteringA. So, we have,m0A ��m0OPT0 � 2�mOPT.

Now we need to boundmA in terms ofm0A. Notice that,
if a positive edge lies between two clusters inA, or a neg-
ative edge lies inside a cluster, then the cost incurred byA
for these edges inm0 is 1 while it is at most1 in m. So, the
total cost due to such mistakes is at mostm0A. On the other
hand, if we consider cost due to positive edges inside clus-
ters, and negative edges between clusters, thenOPT also
incurs at least this cost on those edges (because cost due to
these edges can only increase if they are clustered differ-
ently). So cost due to these mistakes is at mostmOPT.

So we have,mA � m0A +mOPT � 2�mOPT +mOPT= (2�+ 1)mOPT
Another natural cost model is one in which an edge of

weightx incurs a cost ofjxj when it is clustered improperly
(inside a cluster ifx < 0 or between clusters ofx > 0) and
a cost of0 when it is correct. We do not know of any good
approximation in this case (see Section 7).

6 Random noise

Going back to our original motivation, if we imagine
there is some true correct clusteringOPT of our n items,

and that the only reason this clustering does not appear per-
fect is that our functionf(A;B) used to label the edges has
some error, then it is natural to consider the case that the the
errors are random. That is, there is some constant noise rate� < 1=2 and each edge, independently, is mislabeled with
respect toOPT with probability�. In the machine learning
context, this is called the problem of learning with random
noise. As can be expected, this is much easier to handle
than the worst-case problem. In fact, with very simple al-
gorithms one can (whp) produce a clustering that is quite
close toOPT, much closer than the number of disagree-
ments betweenOPT andf . The analysis is fairly standard
(much like the generic transformation of Kearns [16] in the
machine learning context, and even closer to the analysis
of Condon and Karp for graph partitioning [11]). In fact,
this problem nearly matches a special case of the planted-
partition problem of McSherry [18]. We present our analy-
sis anyway since the algorithms are so simple.

One-sided noise: As an easier special case, let us con-
sider only one-sided noise in which each true “+” edge is
flipped to “�” with probability�. In that case, ifu andv are
in different clusters ofOPT, thenjN+(u) \ N+(v)j = 0
for certain. But, ifu andv are in the same cluster, then
every other node in the cluster independently has proba-
bility (1 � �)2 of being a neighbor to both. So, if the
cluster is large, thenN+(u) andN+(v) will have a non-
empty intersection with high probability. So, consider clus-
tering greedily: pick an arbitrary nodev, produce a clusterCv = fu : jN+(u) \ N+(v)j > 0g, and then repeat onV � Cv . With high probability we will correctly clusterall
nodes whose clusters inOPT are of size!(logn). The re-
maining nodes might be placed in clusters that are too small,
but overall the number of edge-mistakes is only~O(n).
Two-sided noise: For the two-sided case, it is technically
easier to consider the symmetric difference ofN+(u) andN+(v). If u andv are in the same cluster ofOPT, then
every nodew 62 fu; vg has probability exactly2�(1� �) of
belonging to this symmetric difference. But, ifu andv are
in different clusters, then all nodesw in OPT(u)[OPT(v)
have probability(1��)2+�2 = 1�2�(1��) of belonging
to the symmetric difference. (Forw 62 OPT(u)[OPT(v),
the probability remains2�(1 � �).) Since2�(1 � �) is a
constant less than1=2, this means we can confidently de-
tect thatu and v belong to different clusters so long asjOPT(u) [ OPT(v)j = !(pn logn). Furthermore, us-
ing just jN+(v)j, we can approximately sort the vertices
by cluster sizes. Combining these two facts, we can whp
correctly cluster all vertices in large clusters, and then just
place each of the others into a cluster by itself, making a
total of ~O(n3=2) edge mistakes.
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7 Open Problems and Concluding Remarks

In this paper, we have presented a constant-factor ap-
proximation for minimizing disagreements, and a PTAS for
maximizing agreements, for the problem of clustering ver-
tices in a fully-connected graphG with f+;�g edge labels.
In Section 5 we extended some of our results to the case of
real-valued labels, under a linear cost metric.

One interesting open question is to find good approxi-
mations for the case when edge weights are inf�1; 0;+1g
(equivalently, edges are labeled+ or � but G is not nec-
essarily fully-connected) without considering the 0-edges
as “half a mistake”. In that context it is still easy to clus-
ter if a perfect clustering exists: the same simple strategy
works of removing the� edges and producing each con-
nected component of the resulting graph as a cluster. The
random case is also easy if defined appropriately. However,
our approximation techniques do not appear to go through.
We do not know how to achieve a constant-factor, or even
logarithmic factor, approximation for minimizing disagree-
ments. Note that we can still use ourDivide & Choose
algorithm to achieve an additive approximation of�n2 to
the number of agreements. However, this does not imply a
PTAS for maximizing agreements becauseOPT might beo(n2) in this variant.

A further generalization of the problem is to consider un-
bounded edge weights (lying in[�1;+1]). For example,
the edge weights might correspond to the log odds of two
documents belonging to the same cluster. Here the num-
ber of disagreements could be defined as the total weight of
positive edges between clusters and negative edges inside
clusters, and agreements defined analogously. Again, we
do not know of any good algorithm for approximating the
number of disagreements in this case. We believe the prob-
lem of maximizing agreements should be APX-hard for this
generalization, but have not been able to prove it. We can
show, however, that a PTAS would give ann� approxima-
tion algorithm fork-coloring, for any constantk.4 The in-
completef�1; 0;+1g graph model seems to be as hard as
this problem.

For the original problem on a fully connectedf+;�g
graph, another question is whether one can approximate the
correlation: the number of agreements minus the number
of disagreements. It is easy to show that OPT must be
(n)
for this measure, but we do not know of any good approx-
imation. It would also be good to improve our (currently
fairly large) constant for approximating disagreements.
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