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Abstract whether or not it believed andB are similar to each other.
For example, perhapswas learned from some past train-
We consider the following clustering problem: we have ing data. In this case, a natural approach to clustering is to
a complete graph om vertices (items), where each edge apply f to every pair of documents in your set, and then to
(u,v) is labeled either or — depending on whetherand find the clustering that agrees as much as possible with the
v have been deemed to be similar or different. The goal results.
is to produce a partition of the vertices (a clustering) that Specifically, we consider the following problem. Given
agrees as much as possible with the edge labels. That isa fully-connected grap&y' with edges labeled+" (similar)
we want a clustering that maximizes the number @dges  or “—” (different), find a partition of the vertices into clus-
within clusters, plus the number ef edges between clus- ters that agrees as much as possible with the edge labels.
ters (equivalently, minimizes the number of disagreements In particular, we can look at this in terms of maximizing
the number of- edges inside clusters plus the numbe#of  agreementéthe number of+ edges inside clusters plus the
edges between clusters). This formulation is motivated fro number of - edges between clusters) or in terms of mini-
a document clustering problem in which one has a pairwise mizing disagreementé&he number of- edges inside clus-
similarity functionf learned from past data, and the goalis ters plus the number of edges between clusters). These
to partition the current set of documents in a way that cor- two are equivalent at optimality but, as usual, differ from
relates withf as much as possible; it can also be viewed as the point of view of approximation. In this paper we give
a kind of “agnostic learning” problem. a constant factor approximation to the problem of minimiz-
An interesting feature of this clustering formulation is ing disagreements, and a PTAS for maximizing agreements.
that one does not need to specify the number of clugters We also extend some of our results to the case of real-valued
as a separate parameter, as in measures suck-aedian edge weights. This problem formulation is motivated in part
or min-sum or min-max clustering. Instead, in our formu- by some clustering problems at Whizbang Labs in which
lation, the optimal number of clusters could be any value learning algorithms have been trained to help with various
between 1 and, depending on the edge labels. We look clustering tasks [8, 9, 10].
at approximation algorithms for both minimizing disagree-  What is interesting about the clustering problem defined
ments and for maximizing agreements. For minimizing dis- here is that unlike most clustering formulations, we do not
agreements, we give a constant factor approximation. For need to specify the number of clustdrsis a separate pa-
maximizing agreements we give a PTAS. We also show howameter. For example, inmedian [7, 15] or min-sum clus-
to extend some of these results to graphs with edge labelsering [20] or min-max clustering [14], one can always get
in [~1,+1], and give some results for the case of random a perfect score by putting each node into its own cluster —
noise. the question is how well one can do with orlglusters. In
our clustering formulation, there is just a single objestiv

d . 1An example of one such problem is clustering entity namesthit
1 Introduction problem, items are entries taken from multiple databaseg, (#ink of
names/affiliations of researchers), and the goal is to dohust uniq”

Suppose that you are given a seadocuments to clus- — collecting together the entries that correspond to theesamiity (per-
son). E.g., in the case of researchers, the same person apgegr

ter into topics. Unfortunately, you have no idea of what myriple times with different affiliations, or might appeance with a
a “topic” is. However, you have at your disposal a classi- middle name and once without, etc. In practice, the classffigypi-
fier f(A B) that given two documentd and B, outputs cally would output a probability, in which case the naturdge label is
; log(Pr(same)/Pr(different)). This is 0 if the classifieuissure, positive if
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and the optimal clustering might have few or many clusters:  Our PTAS for approximating the number of agreements
it all depends on the edge labels. means that if the optimal clustering has error rgtthen we

To get a feel for this problem, notice that if there exists can find one of error rate at mast- . Our running time is
a perfect clustering, i.e., one that gets all the edges ciprre exponential inl /¢, but this means that we can achieve any
then the optimal clustering is easy to find: just delete-all*  constant error gap in polynomial time. What makes this in-
edges and output the connected components of the graplteresting from the point of view of agnostic learning is that
remaining. (This is called the “naive algorithm” in [10].) there are very few nontrivial problems where agnostic learn
Thus, the interesting case is when no clustering is perfect.ing can be done in polynomial time. Even for simple classes
Also, notice that for any grap#y, it is trivial to produce a  such as conjunctions and disjunctions, no polynomial-time
clustering that agrees with at ledsdlf of the edge labels:  algorithms are known that give even an error gap/&— e.
if there are morer- edges than- edges, then simply put all
vertices into one big cluster; otherwise, puteach vertexin 2 Notation and Definitions
its own cluster. This observation means that for maximiz-
ing agreements, gettinglaapproximation is easy (note: we LetG = (V, E) be a complete graph onvertices, and

will show a PTAS). In general, finding the optimal cluster- |ete(u,v) denote the labeH or —) of the edg€g(u, v). Let
ing is NP-hard, which can be seen via a tedious reduction N+ (u) = {u} U {v : e(u,v) = +} andN~(u) = {v :

from X3C (details can be found in [5]). e(u,v) = —} denote the positive and negative neighbors of
Another simple fact to notice is that if the graph contains « respectively.
a triangle in which two edges are labeledand one is la- We letOPT denote the optimal clustering on this graph.

beled—, then no clustering can be perfect. More generally, In general, for a clustering, letC(v) be the set of vertices
the number of edge-disjoint triangles of this form gives a in the same cluster as We will use 4 to denote the clus-
lower bound on the number of disagreements of the optimaltering produced by our algorithms.
clustering. This fact is used in our constant-factor approx In a clustering’, we call an edgéu, v) a mistake if ei-
mation algorithm. there(u,v) = + and yetu ¢ C(v), ore(u,v) = — and

For maximizing agreements, our PTAS is quite similar v € C(v). Whene(u,v) = +, we call the mistake pos-
to the PTAS developed by [12] for MAX-CUT on dense itive mistake otherwise it is called aegative mistakeWe
graphs, and related to PTASs of [4, 3]. Notice that since denote the total number of mistakes made by a clustering

there must exist a clustering with at leastn — 1)/4 C by m¢, and usenopr to denote the number of mistakes
agreements, this means it suffices to approximate agreemade byOPT.
ments to within an additive factor af22. This problem For positive real numbers y andz, we user € y+z to

is also closely related to work on testing graph properties denoter € [y — z,y + z]. Finally, letX for X C V denote
of [13, 19, 1]. In fact, we show how we can use the Gen- the complementV \ X).
eral Partition Property Tester of [13] as a subroutine teaget

PTAS with running timeO(neO((%)%)). Unfortunately, this 3 A Constant Factor Approximation for Min-

is doubly exponential i, so we also present an alterna- imizing Disagreements
tive direct algorithm (based more closely on the approach
B 1 . . . .
of [12]) that takes only) (n?e®(<)) time. We now describe our main algorithm: a constant-factor

approximation for minimizing the number of disagree-
Relation to agnostic learning: One way to view this  ments.
clustering problem is that edges are “examples” (labeled as The high-level idea of the algorithm is as follows. First,
positive or negative) and we are trying to represent theetarg we show (Lemma 1) that if we can cluster a portion of
function f using a hypothesis class of vertex clusters. This the graph using clusters that each look sufficiently “clean”
hypothesis class has limited representational power: if we(Definition 1), then we can charge off the mistakes made
want to say(u, v) and (v, w) are positive in this language, within that portion to “erroneous triangles”: trianglestiwi
then we have to safu,w) is positive too. So, we might two + edges and one- edge. Furthermore, we can do
not be able to represefitperfectly. This sort of problem —  this in such a way that the triangles we charge are nearly
trying to find the (nearly) best representation of some arbi- edge-disjoint, allowing us to bound the number of these
trary targetf in a given limited hypothesis language — is mistakes by a constant factor of OPT. Second, we show
sometimes calledgnostidearning [17, 6]. The observation (Lemma 2) that there must exist a nearly optimal cluster-
that one can trivially agree with at least half the edge kabel ing OPT’ in which all non-singleton clusters are “clean”.
is equivalent to the standard machine learning fact that oneFinally, we show (Theorem 3 and Lemma 7) that we can al-
can always achieve error at mast2 using either theall gorithmically produce a clustering of the entire graph con-
positiveor all negativehypothesis. taining only clean clusters and singleton clusters, suah th



mistakes that have an endpoint in singleton clusters are(v,w) is negative. There will be at leggt;| — §(|C;| + |C;])
bounded byOPT’, and mistakes with both endpoints in such vertices as before and at mi{$€;|+|C;|) of them will

clean clusters are bounded using Lemma 1. be already taken. Moreover only the positive edgew)
We begin with a definition of a “clean” cluster and a can be chosen twice (once &s,w) and once agw,u)).
“good” vertex. Repeating the above argument, we again see that we ac-
o ) ) count for at least half (hence at least a quarter) of the posi-
Definition 1 A \{erte>_<v is called(S-go_odwnh respect tc’, tive mistakes using edge disjoint triangles.
whereC C V/, if it satisfies the following: Now depending on whether there are more negative mis-
o [IN*(v)NC| > (1-6)C| takes or more positive mistakes, we can choose the triangles
appropriately, and hence account for at least 1/8 of thé tota
o [N*(o)n(V\C)| <é[C| mistakes in the clustering.l
If a vertexw is notd-good with respect to (wrt, then it is
calledd-bad wrt C. Finally, a setC is é-cleanif all v € C Lemma 2 There exists a clusterin@PT' in which each
are 6-good wrtC. non-singleton cluster i$-clean, andmopt < (6‘% +
Dmopr.

We now present two key lemmas.
Proof: Consider the following procedure applied to the

Lemma 1 Given a clustering of” in which all clusters are  ¢|ystering ofOPT and call the resulting clusterir@PT'.
d-clean for somey < 1/4, then the number of mistakes

made by this clustering is at mdstiopr. Procedure §-Clean-Up: Let CPPT, COPT .. ,COPT be

Proof: Let the clustering o/ be (C1,---,C;). We will  the clustersirOPT.
bound the number of mistakes made by this clusterin§ by

times the number of edge-disjoint “erroneous triangles” in 1 Let§=0.

the graph, where an erroneous triangle is a triangle having 2. Fori =1, .-,k do:

two + edges and one edge. We then use the fact tlézP T

must make at least one mistake for each such triangle. (a) If the number of-bad vertices """ is more
First consider the negative mistakes. Pick a negative thanZ|COPT|, then,S = SUCPPT, Cl = 0. We

edge(u,v) € C; x C; that has not been considered so far. call this “dissolving” the cluster.

We will pick aw € C; such that bothu, w) and (v, w) (b) Else, letB; denote thel-bad vertices iCOFT.

are positive and associafte, v) with the erroneous triangle ThenS = S U B; andcfgz COPT\ B,. '

(u,v,w). We now show that for allu, v), such aw can C ’

always be picked such that no other negative edgés) 3. Output the clusterinPT'": C;,Ch, ...,Ch, {z}zes-

or (u,v') (i.e. the ones sharingor v) also pickw.

Since(; is d-clean, neither nor v has more tha@|C;|
negative neighbors insidé;. Thus (u,v) has at least
(1 — 20)|C;| verticesw such that botHu,w) and (v, w)
are positive. Moreover, at mo86|C;| — 2 of these could
have already been chosen by other negative e@dges) or + / OPT OPT
(u',v). Thus(u,v) has at leastl — 44)s + 2 choices of INTINCl = (1=0/3)(C; OP"‘F_ 231
w that satisfy the required condition. Singe< 1/4, (u,v) (1—24/3)IC;"
will always be able to pick sucha. > (1-9)|Cl|

Note that any positive edde, w) can be chosen at most _

2 times by the above scheme, once for negative mistakesSimilarly, counting positive neighbors efin C?*" NC; and
on v and possibly again for negative mistakeswnThus outsideCP"", we get,

we can account for at least a fourth (because only positive —

edges are double counted) of the negative mistakes using INT)nc] < (8/3)[CP7 | + (3/3)C ]

We will prove thatmopr andmgopt are closely related.
We first show that eact); is ¢ clean. Clearly, this holds

if C! = 0. Now if C! is non-empty, we know tha€ >t | >

ICll > |CPFT|(1 — §/3). For each point € C!, we have:

2

edge disjoint erroneous triangles. < 2 Gl
Now, we consider the positive mistakes. Just as above, - 3(1-4/3)
we will associate mistakes with erroneous triangles. We < 4Cl (asd<1)
will start afresh, without taking into account the labebng
from the previous part. Thus eaclt; is d-clean.
Consider a positive edge betweer C; andv € C;. Let We now account for the number of mistakes. If we

ICi| > |C;|. Pick aw € C; such thatu, w) is positive and  dissolve som&P "™, then clearly the mistakes associated



with vertices in originaC°" " is at least(d/3)2|COPT|? /2.

Lemma 5 Given an arbitrary setX, if v; € C; andv, €

The mistakes added due to dissolving clusters is at mostC/, thenv; andvy cannot both b&d-good wrt X'

COPTL2/2.

If COPT was not dissolved, then, the original mistakes in
COPT were at least/3|CPT || B;| /2. The mistakes added
by the procedure is at moB;||[COFT|. Noting that6/5 <
9/62, the lemma follows. B

For the clustering)PT' given by the above lemma, we
useC| to denote the non-singleton clusters &htb denote
the set of singleton clusters. We will now describe Algo-
rithm Cautious that tries to find clusters similar@®T'.
Throughout the rest of this section, we assume&hatﬁ.

Algorithm Cautious:
1. Pick an arbitrary vertex and do the following:

(@) LetA(v) = N*(v).
(b) (Vertex Removal Step): While 3z € A(v) such
thatz is 30-bad wrtA(v), A(v) = A(v) \ {z}.

(c) (Vertex Addition Step): LetY = {y|ly € V,yis
75-good wrtA(v)}. Let A(v) = A(v) U Y .2

2. DeleteA(v) from the set of vertices and repeat until no
vertices are left or until all the produced seté&) are

empty. In the latter case, output the remaining vertices

as singleton nodes.

Call the clusters output by algorithm Cautious
A, Ay, .- Let Z be the set of singleton vertices

Proof: Firstly if v is 39-good wrt some arbitrary séf, then
(1—-30)|X| < N*t(v) < (1+38)|X].

Suppose that; andwv, are both3d-good with respect to
X. Then|N*(v1)NX| > (1-38)|X|and| Nt (vs)NX| >
(1-30)|X|, hencd Nt (v1 )N Nt (v2)NX| > (1-60)|X],
which implies that Nt (v1) N Nt (vq)| > (1 — 66)]X|.

Also, sincew, lies in ad-clean clusterC! in OPT’,
INT (1) \Ci| < OICil, [N (v2) \Cj| < 8[Cj andCiNC) =
0. It follows that| N * (v1) N N*(v2)| < 8(|Ci| + |CS]).

Now notice that|C!| < |N*(vi) N Cl + 4|C}]
INT(v1) N X NCl + |[N*t(v1) N X N Cl| + 6|C}|
INT(v1) N X NCL + 30| X| +6|Cl| < (1+38)|X|+4|C]|.
So,|C]| < X32|X|. The same holds fat;. So,|N*(v)
Nt (vg)| < 204530 | X1,

However, sincé < 1/9,26(1 + 30) < (1 — 646)(1 — 9)
and we have a contradiction. Thus the result followll

DIZIAIA

This gives us the following important corollary.

Corollary 6 After the remove phase of the algorithm, no

two vertices from distinat; andC} can be present ini(v).

Now we go on to prove Theorem 3.

Proof of Theorem 3We will first show that each; is either
a subset ofs or contains exactly one of the clustérs The
first part of the theorem will follow.

For a cluster4;, let A} be the set produced after the ver-

created in the final step. Our main goal will be to show that oy removal phase such the clustris obtained by apply-

the clusters output by our algorithm satisfy the property ing the vertex addition phase td!.

stated below.

Theorem 3 Vj, 3i such thatC;. C A;. Moreover, eachd;
is 115-clean.

In order to prove this theorem, we need the following
two lemmas.

Lemma 4 If v € C, whereC! is ad-clean cluster irOPT’,
then, any vertex € C} is 36-good wrt N+ (v).

Proof: Asv, w € C;, INT(v)NC}| > (1-68)|CL|, [Nt (w)N
Cil > (1 - 8)[cy| and| N+ (w) N C]| < 8[CY)-

Also, (1 — 9)|Ci| < |NT(v)] < (1 + 9)|C}|. Thus, we
get the following two conditions.

NF(w) N NH)] 2 (1-26)(C1] 2 (1= 30) [N (0)
IN* )R] < 2516} < <2 N* ()] < 35N+ (o)

Thus,w is 36-good wrtN*(v). W

20bserve that in the vertex addition step, all vertices ateddn one
step as opposed to in the vertex removal step

We have two cases.
First, we consider the case whely C S. Now during the
vertex addition step, no vertexe C; can enter4; for any

j. This follows because, sinc[é} is d-clean and disjoint
from A}, for u to enter we need thatC;| > (1 — 76)|A}]
and(1 - §)[Ci| < 76| A}, and these two conditions cannot
be satisfied simultaneously. Thds C S.

In the second case, somee C; is present ind;. How-
ever, in this case observe that from Corollary 6, no vertices
from C;, can be present id} for anyk # j. Also, by the
same reasoning as for the ca$e C S, no vertex fromC;,
will enter 4} in the vertex addition phase. Now it only re-
mains to show thatf} C A;.

Sinceu was not removed fromd; it follows that many
vertices fromC; are present imd;. In particular,[ N+ (u) N
Al > (1 - 38)|4} and |[N*(u) N AL < 35|4. Now
(1 =0)[Cj] < IN*(u)| implies that|C}| < L3014 <
2(All. Also, [AL N CY| > |AL N N*(u)| = [N*(u) N C]| >
[A;N N (u)| —6|C]|. Sowe haveA;NC)| > (1—50)]Ajl.

We now show that all remaining vertices frot) will
enter4; during the vertex addition phase. Rore C; such

thatw ¢ Aj, |A; N Cj| < 5647 and [N+ (w) N Cj| <




4/C;| together imply thatA; N N+ (w)| < 58] A} +6|C;| <
75| A|. The same holds fged; N N+ (w)|. Sow is 75-good
wrt A7 and will be added in the Vertex Addition step. Thus
we have shown that(v) can contairC; for at most ongj
and in fact will contain this set entirely.

Next, we will show that for everyj, 3i s.t. C; C A;.
Let v chosen in Step 1 of the algorithm be such that

Ci. We show that during the vertex removal step, no vertex

from N*(v)N C} is removed. The proof follows by an easy
induction on the number of vertices removed so(figrin
the vertex removal step. The base case 0) follows from
Lemma 4 since every vertex  is 36-good with respect to

N (v). For the induction step observe that since no vertex

from N*(v) N C} is removed thus far, every vertex i

is still 36-good wrt to the intermediate(v) (by mimicking
the proof of lemma 4 withV * (v) replaced byA (v)). Thus
A} contains at leastl — §)|C;| vertices ofC; at the end

116 < 1/4, and that the mistakes of the optimal clustering
on the graph induced by’ is no more thamno pr. Thus,

Lemma 8 The total number of internal mistakes of Cau-
tious is< 8mopr.

Summing up results from the lemmas 7 and 8, and using
lemma 2, we get the following theorem:

Theorem 9 mcautious< 9(5= + 1)mopr.

4 A PTAS for maximizing agreements

In this section, we give a PTAS for maximizing agree-
ments: the total number of positive edges inside clusters
and negative edges between clusters.

Let OPT denote the optimal clustering arddenote our

of the vertex removal phase, and hence by the second caselustering. We will abuse notation and also G¥eT to de-

aboveC} C A; after the vertex addition phase.
Finally we show that every non-singleton clustéy is

115-clean. We know that at the end of vertex removal phase,fices to produce a clustering that has at |€aBtI' — en

Vz € Al, z is 36-good wrt AL, Thus,|N*(z) N Al <
3d]A}|. So the total number of positive edges leaviag
is at most3§| A}|?. Since, in the vertex addition step, we
add vertices that argd-good wrt A}, these can be at most
30| AL2/(1 = 78)| A}| < 46| A}l. Thus|A;| < (1 + 48)| A}l
Since all vertices in A; are at leastd-good wrt A},
N+(0) N Ay > (1 76)[ Al > =104, > (1 - 116)|4,].
Similarly, N* (v) N A; < 75|Al| < 115|4;|. This gives us
the result. W

Now we are ready to bound the mistakes®4fn terms of
OPT andOPT’. Call mistakes that have both end points
in some clusters!; and A; as internal mistakes and those
that have an end point if as external mistakes. Similarly
in OPT’, we call mistakes among the sets as internal
mistakes and mistakes having one end poirft &s external

mistakes. We bound mistakes of Cautious in two steps: the

following lemma bounds external mistakes.

note the number of agreements in the optimal solution. As

noticed in the introductiolPT > n(n — 1)/4. So it suf-

2
agreements, which will be the goal of our algorithm. Let
d%(V1, V) denote the number of positive edges between
setsVy, Vo, C V. Similarly, letd— (Vy, V4) denote the num-
ber of negative edges between the two. O&tT(¢) denote
the optimal clustering that has all non-singleton clustérs
size greater thaan.

Lemma 10 OPT(e) > OPT — en?/2.

Proof: Consider the clusters dPT of size less than or
equal toen and break them apart into clusters of size
Breaking up a cluster of sizereduces our objective func-
tion by at mos{(5), which can be viewed ag/2 per node in
the cluster. Since there are at mastodes in these clusters,
and these clusters have size at mostthe total loss is at

2
moste%. |

The above lemma means that it suffices to produce
good approximation toOPT(e¢). Note that the num-

Lemma 7 The total number of external mistakes made by ber of non-singleton clusters iOPT(e) is less thanl.

Cautious are less than the external mistakes made®y’.

Proof: From theorem 3, it follows thaZ cannot contain
any vertexv in someC.. Thus,Z C S. Now, any exter-

Let cOFT ... CPFT denote the non-singleton clusters of
OPT(e) and letC ;" denote the set of points which corre-

spond to singleton clusters.

nal mistakes made by Cautious are positive edges adjacen 1 A pTAS doubly-exponential in1/e

to vertices inZ. These edges are also mistakeORT’
since they are incident on singleton verticesSin Hence
the lemma follows. B

Now consider the internal mistakes df Notice that

If we are willing to have a run time that is doubly-
exponential inl /e, we can do this by reducing our problem
to the General Partitioning problem of [13]. The idea is as

these could be many more than the internal mistakes offollows.

OPT’'. However, we can at this point apply Lemma 1
on the graph induced by’ = U;A4;. In particular, the

LetG* denote the graph of only the edges inG. Then,
notice that we can express the quality@PT(¢) in terms

bound on internal mistakes follows easily by observing that of just the sizes of the clusters, and the number of edges in



G between and inside each 6P"",... . CPF". In par- Firstly note that if C2P" | < en, then if we only consider
ticular, if s; = [CP""| ande; ; = 67 (COPT,CPPT), then  the agreementsin the graph\C})", it affects the solution
the number of agreements@P T (e) is: by at most:n?. For now, we will assume tha€ 2" | < en

and will present the algorithm and analysis based on this

k Skt assumption. Later we will discuss the changes required to
Zem + ( 9 ) — Gkl | T Z(Sisj —eij)| - deal with the other case.
i=1 i#j In the following algorithme is a performance param-

o eter to be specified later. Let = 8831_x040(10g1 + 2),
The General Partitioning property tester of [13] allows us 1 ) ¢

3 .

to specify values for the; ande;;, and if a partition of3* ko= cande = g Letp; dggote the density of
exists satisfying these constraints, will produce a partit p_osmve edg(_as inside the clustef’ andT""f theotz)eTn—
that satisfies these approximately. We obtain a partitiah th sity of negative edges between clus('fo%P andC; ™.
has at leasDPT(e) — en? agreements. The property tester That is, p; = dT(COFT,cPPT)/ (1%, ) and ny; =
runs in time exponential inl)¥*+! and polynomial im. 5= (COPT,COPT) /(ICPTTICOPT).

Thus if we can guess the values of these sizes and num- We begin by defining a measure of goodness of a clus-
ber of edges accurately, we would be done. It suffices, intering{U;; } of some selU; with respect to{I; }, that will
fact, to only guess the values up to an additieén forthe ~ enable us to pick the right clustering of the &t
si, and up to an additivece®n? for the e; ;, because this
introduces an additional error of at maste). So, at most ~ Definition 2 Uiy, ..., Ujks1) IS €-good  wrt
O((1/€3)1/62) calls to the property tester need to be made. Wh,...,Wiyr if it satisfies the following for all
Our algorithm proceeds by finding a partition for each pos- 1<jl<k
sible value ofs; ande; ; and returns the partition with the oW ' 9
maximum number of ggreements. We get the following re- (1) 6% (U3, Wy) 2 95 2 )~ 18€'m
sult: (2) 6 (Uij, Wi) > 1| W, ||Wi| — 6¢'m?

Theorem 11 The General Partitioning algorithm returns a and, for at leas{1 — ¢')n of the vertices: andV j,

clustering of graphG which has more tha®®PT — en?

agreements with probability at least— 4. It runs in time (3) 0% (Uij, z) € 07 (W), ) + 2€'m.

exponential in(1)'/¢ and polynomial im and 1. o
Our algorithm is as follows:

4.2 A singly-exponential PTAS
Algorithm Divide& Choose:

We will now describe an algorithm that is based on the
same basic idea of random sampling used by the General
Partitioning algorithm. The idea behind our algorithm is 2. For all partitiond¥y, ..., Wy, of W do
as follows: Notice that if we knew the density of positive

1. Pick arandom subs& C V of sizem.

edges between a vertex and all the clusters, we could put @ Letp, = oWy, w)/("), and mi; =

in the cluster that has the most positive edges to it. How- 6~ (Wi, W;5) [|W3[|W5].

ever, trying all possible values of the densities requioes t (b) Letq = 2 — 1. Consider a random partition of
much time. Instead we adopt the following approach: We VAW into Ui, ...,U,, suchthavi, |U;| = m.

select a small random sub3&t of vertices and cluster them

correctly into{W;} with W; c O; Vi, by enumerating all (c) Foralli do:

possible clusterings d . Since this subset is picked ran- Consider all (k¢ + 1)-partitions of U; and
domly, with a high probability, for all vertices, the density let Ui,...,Uix+1) be the partition that is
of positive edges betweanand1¥; will be approximately ¢-good wrt Wy,..., Wiy, (by definition 2
equal to the density of positive edges betweeand O;. above). |If there is no such partition, choose
So we can decide which cluster to puinto, based on this Ui, -, Uie41) arbitrarily.

information. However this is not sufficient to account for (d) Let4; = U;Uy; for all i. Leta({W;}) be the
edges between two verticeg andw,, both of which do not number of agreements of this clustering.
belong tol¥’. So, we consider subséts of sizem at a time

and try out all possible clusterind®/;;} of them, picking 3. Let {W;} be the partition of W that maximizes
the one that maximizes agreements with respediip}. a({W;}). Return the cluster$A;}, {z}.ca,,, COr-
This gives us the PTAS. responding to this partition df/.



We will concentrate on the "right” partition of df given
by W; = W nCPPT, Vi. We will show that the number of
agreements of the clusterindy, ..., Ax+; corresponding
to this partition{W;} is at leastOPT(¢) — 2en?. Since we
pick the best clustering, this gives us a PTAS.

We will begin by showing that with a high probability,
for most values of, the partition ofU;s corresponding to
the optimal partition is good with respect {&V;}. Thus
the algorithm will find at least one such partition. Next we
will show that if the algorithm finds good partitions for most
U;, then it achieves at leaGtPT — O(¢)n? agreements.

We will need the following results from probability the-
ory. Please refer to [2] for a proof.

Factl: LetH (n,m,l)bethe hypergeometricdistribution
with parameters:, m and! (choosing! samples fromn
points without replacement with the random variable tak-
ing a value of 1 on exactlyn out of then points). Let
0<e<1. Then

Fact2: Let X, Xs,..., X,, be mutually independentr.v.s
such thai X; — E[X;]| < mforalli. LetS = """ | X;,
then ,

Pr[|S — E[S]| > a] < 2¢"mn?

We will also need the following lemma:

Lemma 12 LetY and.S be arbitrary disjoint sets and be
a set picked fron$ at random. Then we have the following:

Pr(|§* (Y, 2) - ZL5+(v,5) > ¢|V]|Z]) < 2=7.

Proof: §7 (Y, Z) is a sum of Z| random variables™ (Y v)
(v € Z), each bounded above by | and having expected
value%.

Thus applying Fact 2, we get

Pr{|o*(Y.Z) — | Z]6*7(Y,9)/IS|| > €|Z||Y]]
< 2e—PIAPIYER1ZIY P < gp—e?121/2

Now notice that since we picked’ uniformly at ran-
dom fromV, with a high probability the sizes d¥/;s are
in proportion to|CPPT|. The following lemma formalizes
this.

Lemma 13 With probability at leastl — 2ke < em/2 v,
Wil € (1) |CPTT

Proof: For a given i, using Fact 1 and since
COVT] < en, Pr|[Wi| — 2ICPTT| > € mICPPT] <

2e—¢ mICPT /2 < 9e—€*em/2 Taking union bound over
thek values ofi we get the result. B

Using Lemma 13, we show that the computed valueg; of
andnj; are close to the true valugs andn;; respectively.
This gives us the following two lemmés

Lemmal4lf W; c CPP" and W; c CPPT, then
with probability at leastl — 4e <" cm/4, (W, W;) €
mE T (COPT,COPT) + 3e'm?.

Proof Sketch:We can apply lemma 12 in two steps -
first to boundy™* (W;,CP7T) in terms ofé* (CPPT, CPPT)
by considering the process of pickimt; from C°F™, and
second to bound™ (W;, W;) in terms ofs ™ (W;, COP™T) by
fixing W; and considering the process of pickifg from
CPPT. Then using lemma 13, we combine the two and get
the lemma. B

Lemma 15 With probability at least — F%e*“'g””/“. pi >
pi — 9¢'

Proof SketchNote that we cannot use an argument simi-
lar to the previous lemma directly here since we are dealing
with edges inside the same set. We use the following trick:
consider the partition of "™ into £ subsets of size'n’
each, where' = |CPPT|. The idea is to bound the number
of positive edges between every pair of subsety 8t us-
ing argument in the previous lemma and adding these up to
gettheresult. B

Now letU;; = U; N C]QPT. The following lemma shows
that for alli, with a high probability all;;s aree’-good wrt
{W;}. So we will be able to find’-good partitions for most
U;s.

Lemma 16 For a giveni, letU;; = U; N CPYT, then with
probability at leastl — 32k Ly~ /4, Vj < k, {U;;} are
e'-good wrt{WW; }.

Proof SketchThe first and second conditions of Defini-
tion 2 can be obtained by applying an argument similar to
lemmas 15 and 14 respectively.

In order to obtain the third condition, we consider
6t (z,U;;) as a sum ofn {0,1} random variables (corre-
sponding to pickind/; from V), each of which igl iff the
picked vertex lies i’"" and is adjacent to. Then an ap-
plication of Chernoff bound followed by union bound gives
us the condition. B

Now we can bound the total number of agreements of
Ar, .o A {T}ee A, interms ofOPT:

3please refer to [5] for full proofs of the lemmas.



Theorem 17 If [CPF)"| < en, thenA > OPT — 3en? with The algorithm can fail in four situations: more thaf2
probability at leastl — e. U;s do not have an’-good partition with probability at
moste/2, lemma 13 does not hold for sorig; with prob-
ability at most2ke—¢~¢m/2 lemma 15 does not hold for
somei with probability at mostf,—’;e*ﬁ'gﬁm/4 or lemma 14
does not hold for some pair j with probability at most
4k2e=<"em/4 The latter three quantities are at me&2 by

In the following calculation of the number of agree- our choice ofm. So, the algorithm succeeds with probabil-

ments, we assume that we are able to find good partition§ty greatertharl —c. W

of all U;s. We will only need to subtract at most?/2 Now we need to argue for the case Wﬁéﬁfﬂ > en.

from this value to obtain the actual number of agreements, Notice that in this case, using an argument similar to lemma
since eacl; can effect the number of agreements by at 13 e can show thaty,1| > < with a very high prob-
1 © - 2

mostmn. _ _ability. This is good because, now with a high probability,
We start by calculating the number of positive Us(rs1) Will also bee'-good wrtW,; for most values of

Proof: From lemma 16, the probability that we were not
able to find a’-good partition ofU; wrt Wy, ---, W, is at
most326],—26*"3‘m/4. By our choice ofm, this is at most
€2/4. So, with probability at least — ¢/2, at moste/2 of
theU;s do not have a#-good partition.

edges inside a clusterd;. ~ These are given by ; ‘we can now count the number of negative edges from
>0 2aea; 0 (Uaj, x). Using the fact thal/,; is good Wit hese vertices and incorporate them in the proof of Theo-
{Wi} (condition (3)), rem 17 just as we did for the othérclusters. So in this
T+ case, we can modify algorithivide&Chooseo consider
ZzeAj d (an”")

, , ¢’-goodness of thék + 1)th partitions as well. This gives us
2 ZzGAi'(ﬁ(Wj’ z) - 2/6 m) — € n,|U‘”" the same guarantee as in Theorem 17. Thus our strategy will
= 20 (WJ; Upj) — 2€'m|A;| — €'n|Us;] be to run AlgorithmDivide&Chooseonce assuming that
> Y, {5 5 — 18¢'m2} — 2¢'m|A;| — €'n|U,| CPPT| > en and then again assuming thaPl| < en,
and picking the better of the two outputs. One of the two
cases will correspond to reality and will give us the desired
approximation tdOPT.
Sven, 0 Uagsa) > SufZrp;(1— )2 (el ‘Now eachU; hasO(k™) different partitions. Each iter-
—18¢'m?2} — 2e'm|A;| — e'n|Us;| auop_takes()(nm) time. _There arez/m Uis, so for gach
o 1 [COPTP? . partition of W, the algorithm takes tim&(n2k™). Since
> Zpil(l —€) I 18¢'mn there aré:™ different partitions o#¥, the total running time
—2¢'m|A;j| = €'n|Us;] of the algorithm isO (n2k2™) = O(n2e®( 0 108 () This
Thus we boundy, 6 (4;,U,;) as Y., 6+ (4;,Us;) > gives us the following theorem:

The last follows from the fact thdl,; is good wrt{WW;}
(condition (1)). From Lemma 13,

. . ‘COPT‘Q ;9 ,
pi(1—€)?=i— — 18€¢'n* — 3€e'n|4,]|. . s .
Now using Lemma 15, the total number of agreements is at | "c0rem 18 Foranyd € [0, 1], usinge = 5, Algorithm
least Divide&Choose runs in timé) (n2e° (710 1°6 (5))) and with
, |COPT|2 ‘ ‘ probability at Ieastlfg produces a clustering with number
YA (1—€)?=5—} — 18n’k — 3¢'n® of agreements at lea§iPT — dn?.
OPT 2
> {(p; — 9¢)(1 — )2 5Ly —18¢n%k — 3¢'n?

. . . 4
HenceA* > OPT* — 11¢/kn? — 21emk > OPT* 5 Minimizing disagreements in [—1,1]

39¢'n2k weighted graphs
Similarly, consider the negative edgesAn Using lemma
14 to estimateé — (U,i, Up;), we get, In section 3, we developed an algorithm for minimizing
disagreements in a graph withl and—1 weighted edges.
S0 (Ui, Uy) > 0 (COPT, cOPT) Now we consider the situation in which edge weights lie in

the interval—1, 1].
To address this setting, we need to define a cost model —
Summing over all < j, we getthe total number of negative the penalty for placing an edge inside or between clusters.

—9¢'n? — 2¢'n| A;| — €'n| 4]

agreements is at lea®P T~ — 12¢'k?n2. One natural model is a linear cost function. Specifically,
So we haveA > OPT — 44€'k*n® = OPT — en?/2. given a clustering, we assign a costaf* if an edge of
However, since we lose:? /2 for not findinge’-good parti-  weighta is within a cluster and a cost et~ if it is placed
tions of everyU; (as argued beforeyn? due toC’F;", and  between two clusters. For example, an edge weighing
en? /2 for usingk = % we obtaind > OPT — 3en?. incurs a cost 0f).25 if it lies inside a cluster and.75 oth-



erwise. A0—weight edge, on the other hand, incurs a cost and that the only reason this clustering does not appear per-

of 1/2 no matter what.

fectis that our functiorf (A, B) used to label the edges has

It turns out that any algorithm that finds a good cluster- some error, then it is natural to consider the case that the th

ing in a{-1,1}—graph also works well in thg-1, 1] case
under a linear cost function.

Theorem 19 Let A be an algorithm that produces a clus-
tering on a{—1,1}—graph with approximation ratiop.
Then, we can construct an algorithdf that achieves an
approximation ratio of2p + 1) on a[—1, 1]—graph, with
the linear cost function.

Proof: Let G be a[-1,1]—graph, and letG’ be the
{-1, 1} —graph obtained when we assign a weightlab
all positive edges &7 and—1 to all the negative edges (
cost edges are weighted arbitrarily). L@PT be the opti-
mal clustering ort? andOPT' the optimal clustering o06'.
Also, letm' be the measure of cost (@¥) in the {—1,1}
penalty model and: in the new|[—1, 1] penalty model.

Then,mypr < mopp < 2mopt. The latter is because
OPT incurs a greater penalty afin m' as compared te

errors are random. That is, there is some constant noise rate
v < 1/2 and each edge, independently, is mislabeled with
respect tdAPT with probabilityr. In the machine learning
context, this is called the problem of learning with random
noise. As can be expected, this is much easier to handle
than the worst-case problem. In fact, with very simple al-
gorithms one can (whp) produce a clustering that is quite
close toOPT, much closer than the number of disagree-
ments betwee®@PT and f. The analysis is fairly standard
(much like the generic transformation of Kearns [16] in the
machine learning context, and even closer to the analysis
of Condon and Karp for graph partitioning [11]). In fact,
this problem nearly matches a special case of the planted-
partition problem of McSherry [18]. We present our analy-
sis anyway since the algorithms are so simple.

One-sided noise: As an easier special case, let us con-

only when a positive edge is between clusters or a negativegjyq, only one-sided noise in which each trug"edge is

edge inside a cluster. In both these situatidbB;T incurs
a cost of at least/2 in m and at most in m'. This gives
us the above equation.

Our algorithm A’ simply runsA on the graphG’ and
outputs the resulting clusterind. So, we havemn/, <
pmopr < 2pmopr.

Now we need to bounth 4 in terms ofm/,. Notice that,
if a positive edge lies between two clustersdnor a neg-
ative edge lies inside a cluster, then the cost incurred by
for these edges im’ is 1 while it is at mostl in m. So, the
total cost due to such mistakes is at masf. On the other

hand, if we consider cost due to positive edges inside clus-

ters, and negative edges between clusters, e also

flipped to “—" with probability v. In that case, if: andv are

in different clusters oOPT, then|N*(u) N N*(v)| = 0

for certain. But, ifu andv are in the same cluster, then
every other node in the cluster independently has proba-
bility (1 — v)? of being a neighbor to both. So, if the
cluster is large, the*(u) and N*(v) will have a non-
empty intersection with high probability. So, considerszlu
tering greedily: pick an arbitrary node produce a cluster

Cy = {u : |[NT(u) N N*(v)] > 0}, and then repeat on

V — C,. With high probability we will correctly clusteall
nodes whose clusters @PT are of sizev(logn). The re-
maining nodes might be placed in clusters that are too small,
but overall the number of edge-mistakes is ofllf).

incurs at least this cost on those edges (because cost due to
these edges can only increase if they are clustered differ-

ently). So cost due to these mistakes is at magpb .
So we have,

m'y + mopr < 2pmopt + MopT
(2p + l)mopT

ma

I IA

Another natural cost model is one in which an edge of

weightz incurs a cost ofz| when it is clustered improperly
(inside a cluster ift < 0 or between clusters af > 0) and

a cost of) when it is correct. We do not know of any good

approximation in this case (see Section 7).

6 Random noise

Going back to our original motivation, if we imagine
there is some true correct clusterio® T of our n items,

Two-sided noise: For the two-sided case, it is technically
easier to consider the symmetric differenceMof (u) and
N*(v). If wandv are in the same cluster 6iPT, then
every nodev ¢ {u,v} has probability exactlgv (1 — v) of
belonging to this symmetric difference. Butifandv are

in different clusters, then all nodasin OPT (u) UOPT(v)
have probability1 —»)% +v% = 1—2v(1-v) of belonging

to the symmetric difference. (Far ¢ OPT(u) U OPT(v),

the probability remaingr(1 — v).) Since2v(1 —v) is a
constant less thaih/2, this means we can confidently de-
tect thatu andv belong to different clusters so long as
|OPT(u) U OPT(v)] = w(v/nlogn). Furthermore, us-
ing just |N*(v)|, we can approximately sort the vertices
by cluster sizes. Combining these two facts, we can whp
correctly cluster all vertices in large clusters, and thest |
place each of the others into a cluster by itself, making a
total of O(n?/?) edge mistakes.



7 Open Problems and Concluding Remarks

In this paper, we have presented a constant-factor ap- 2]
proximation for minimizing disagreements, and a PTAS for
maximizing agreements, for the problem of clustering ver-

tices in a fully-connected gragh with {+, — } edge labels.

In Section 5 we extended some of our results to the case of

real-valued labels, under a linear cost metric.

One interesting open question is to find good approxi-

mations for the case when edge weights arg-inl, 0, +1}
(equivalently, edges are labelgdor — but G is not nec-

essarily fully-connected) without considering the 0-esige
as “half a mistake”. In that context it is still easy to clus-
ter if a perfect clustering exists: the same simple strategy
works of removing the- edges and producing each con-
nected component of the resulting graph as a cluster. The [7
random case is also easy if defined appropriately. However,
our approximation techniques do not appear to go through.
We do not know how to achieve a constant-factor, or even

logarithmic factor, approximation for minimizing disagre
ments. Note that we can still use oDivide & Choose
algorithm to achieve an additive approximationeaf to

the number of agreements. However, this does not imply a

PTAS for maximizing agreements beca@3BT might be
o(n?) in this variant.

A further generalization of the problem is to consider un-

bounded edge weights (lying [pr-co, +0oc]). For example,

the edge weights might correspond to the log odds of two [11]
documents belonging to the same cluster. Here the num-
ber of disagreements could be defined as the total weight of
positive edges between clusters and negative edges insidé!
clusters, and agreements defined analogously. Again, we
do not know of any good algorithm for approximating the
number of disagreements in this case. We believe the prob-
lem of maximizing agreements should be APX-hard for this
generalization, but have not been able to prove it. We can[i4]

show, however, that a PTAS would give ah approxima-
tion algorithm fork-coloring, for any constark.* The in-

complete{ 1,0, +1} graph model seems to be as hard as [15]

this problem.
For the original problem on a fully connectde-, —}

graph, another question is whether one can approximate th
correlation the number of agreements minus the number

of disagreements. Itis easy to show that OPT mus$tbe

for this measure, but we do not know of any good approx-
imation. It would also be good to improve our (currently

fairly large) constant for approximating disagreements.
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