
On the Complexity of Privacy-Preserving Complex Event
Processing

Yeye He
University of

Wisconsin-Madison
heyeye@cs.wisc.edu

Siddharth Barman
University of

Wisconsin-Madison
sid@cs.wisc.edu

Di Wang
Worcester Polytechnic Institute

diwang@cs.wpi.edu

Jeffrey Naughton
University of

Wisconsin-Madison
naughton@cs.wisc.edu

ABSTRACT
Complex Event Processing (CEP) Systems are stream processing
systems that monitor incoming event streams in search of user-
specified event patterns. While CEP systems have been adopted in
a variety of applications, the privacy implications of event pattern
reporting mechanisms have yet to be studied — a stark contrast to
the significant amount of attention that has been devoted to privacy
for relational systems. In this paper we present a privacy problem
that arises when the system must support desired patterns (those
that should be reported if detected) and private patterns (those that
should not be revealed). We formalize this problem, which we term
privacy-preserving, utility maximizing CEP (PP-CEP), and analyze
its complexity under various assumptions. Our results show that
this is a rich problem to study and shed some light on the difficulty
of developing algorithms that preserve utility without compromis-
ing privacy.

1. INTRODUCTION
Complex Event Processing (CEP) is a stream event processing

paradigm that has received increasing attention from the data man-
agement research community [4, 5, 7, 17, 21, 22] and also from
industry [1, 2, 3]. In the CEP model, the data is a stream of events,
which is monitored and queried in search of some user-defined
event patterns. When a pattern of interest is detected, it is reported
by the CEP system. Such CEP systems have demonstrated utility
in a variety of applications including financial trading, credit-card
fraud detection, and security monitoring. However, to our knowl-
edge the problem of privacy in such systems has not yet been ad-
dressed.

In a nutshell, the problem we consider is this: consider two kinds
of patterns, those that should be detected and reported (which we
term “public” patterns), and those that should be eliminated and not
reported (which we term “private” patterns). The decision of what
is public and what is private is made by a user or administrator and
is input to the system. Then the task is to “destroy” any private

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

patterns that occur by deleting some events from the stream; how-
ever, we wish to do so in such a way that maximizes the number
of public patterns that remain to be detected. The challenge of the
problem arises from the number of options as to what should be
retained or deleted.

We begin with a motivating example inspired by a health care
monitoring system, HyReminder [20]. HyReminder, currently be-
ing deployed in the University of Massachusetts Memorial Hos-
pital, is a hospital infection control system powered by CEP tech-
nologies that aims to track, monitor and remind health-care workers
with respect to hygiene compliance. In this hospital setting, each
health care worker wears an RFID tag that can be read by sensors
installed throughout the hospital. As the worker walks around the
hospital, the RFID tags they wear are detected by the sensors, gen-
erating “event” data, which is transfered to a monitoring central
CEP engine. As an example of such a pattern, a doctor who exits
a patient room (represented by an “exit” event), cleanses his hands
(indicated by a “sanitize” event), and finally enters an ICU (an “en-
ter” event), generates an event pattern SEQ(exit, sanitize,
enter), showing an instance of hygiene regulations compliance.
Conversely, an instance of hygiene violation in which the doctor
exits the patient room, does not cleanse his hands before enter-
ing an ICU, would correspond to an event sequence SEQ(exit,
!sanitize, enter) where “!sanitize” indicates the absence
of the “sanitize” event. Both the hygiene compliance and violation
instances should be captured and reported by the CEP system.

While the benefit of such CEP systems is apparent, the implica-
tions of this CEP querying model for privacy are somewhat subtle.
Intuitively, while it is clear that a CEP system may reveal useful
event patterns, it may also reveal patterns that the individuals being
monitored would prefer to keep hidden. Using the hospital example
again, a doctor who visits a patient then immediately enters a psy-
chiatrist’s office might serve as an indication that this patient is ex-
periencing psychiatric problems. While a system like HyReminder
will not directly monitor and report such private event patterns, the
occurrences of hygiene violations it does report may be used by an
adversary to infer such private patterns.

In this paper we study an abstract problem inspired by privacy-
preserving, utility maximizing CEP. We classify patterns of interest
into two categories: the query patterns, which should be detected
and reported; and the private patterns, which should be suppressed.
The goal of privacy-preserving CEP is to maximize the reporting of
query patterns without disclosing any private patterns. To be more
concrete, in this paper we explore filtering or dropping events to
eliminate the occurrence of private patterns; the “trick” is to do so

intelligently, so as to avoid dropping events as much as possible
while eliminating the occurrence of query patterns.

This abstract problem has many interesting variants. We begin
by studying two of the most straightforward variants: the windowed
variant, in which, when deciding which events to drop, we consider
the events that arrived in a specified window preceding the current
event; and the oblivious variant, where prior events are not taken
into consideration. Both variants are interesting to study: while the
windowed variant can potentially better preserve utility, it is also
intuitively more computationally expensive.

To our knowledge, no previous studies — practical or theoretical
— have investigated PP-CEP. We observe that the problem has a
simple but rich structure, and point out an interesting array of com-
plexity results. Specifically, the general problem of PP-CEP is NP-
hard and hard to approximate (namely, it is ∣Σ∣1−�-inapproximable
for utility gain by constructing a reduction from independent set,
where ∣Σ∣ is the size of the events, and ln(∣P∣)-inapproximable for
utility loss by constructing a reduction from set cover, where ∣P∣
is the number of private patterns). However, we explore various
combinations of the input parameters and show that there are a va-
riety of scenarios in which the complexity can be reduced. For
instance, the oblivious PP-CEP problem can be formulated as an
integer program that is polynomially solvable when the sum of the
number of private patterns and query patterns is some fixed con-
stant, or when the sum of the number of the event types and query
patterns is some fixed constant. In addition, exploiting the submod-
ularity of the utility loss function we prove that the oblivious PP-
CEP problem is lp-approximable where lp is the maximum length
of the private patterns. We also show that in the special case where
the window size is some fixed constant the windowed PP-CEP is
also lp-approximable.

These complexity results shed some light on the difficulty of de-
veloping PP-CEP solutions in practice, but more importantly also
leave open many more possible avenues for future research. We
hope that our first step towards understanding the PP-CEP problem
will serve as a springboard for future work tackling the theoretic
and practical issues that arise from the problem of PP-CEP.

2. A SEQUENCE-BASED CEP MODEL

2.1 The data/query model
We adopt the following event sequence-based model to repre-

sent continuously arriving events. Let the domain of possible event
types be the alphabet Σ = {ei}, where ei represents a type of
event. We model a stream of events as follows.

DEFINITION 1. A time-stamped event sequence is a sequence
S = (c1, c2, ...cn), where each event cj is associated with a par-
ticular event type ei ∈ Σ, and has a unique time stamp tj . The
sequence S is temporally ordered, that is tj < tk for all j < k.

While logically we consider only one temporally ordered event
sequence, in practice events can come from multiple data sources.
A common complication that can arise is that events from multiple
sources may arrive out of order. In this work we make the simplify-
ing assumption that events in the sequence are in strictly increasing
time order, and there are no out-of-order events in the sequence.
This assumption helps us to better focus our discussions on the pri-
vacy aspect of CEP systems, and is consistent with the state-of-
the-art CEP literature [4, 5, 17, 22]. In practice, existing work that
use buffer-based techniques for out-of-order event streams process-
ing [7, 16] can be similarly applied to handle out-of-order events in
our problem.

We further define subsequence which is an ordered subpart of a
given sequence.

DEFINITION 2. A subsequence S′ of the event sequence S =
(c1, c2, ...cn) is a sequence (ci1 , ci2 , ...cim) such that 1 ≤ i1 ≤
i2... ≤ im ≤ n, where m ≤ n.

Note that subsequence preserves the temporal order of the orig-
inal sequence. Also observe that unlike substrings, a subsequence
does not have to be a consecutive subcomponent of the sequence.
As a result, there are a total of 2n possible subsequences.

We next define queries over event sequences. Unlike relational
data processing, where the queries are typically ad-hoc and dynam-
ically composed at query time, queries in the CEP model are stand-
ing queries, which are submitted ahead of time and are static. Let
the set of queries beQ = {Qi}, where each queryQi is a sequence
query defined as follows.

DEFINITION 3. A sequence query pattern Qi is of the form
Qi = (qi1, q

i
2, ...q

i
n), with qik ∈ Σ being event types. In addition,

for each query Qi there is a specified window of size T (Qi) ∈ ℝ+

over which Qi will be evaluated.

A sequence query looks for the conjunction of the occurrences of
events of certain types in specified order within a given time win-
dow. This sequence query is essentially the “SEQ” query construct
in the CEP query language used by most existing systems [10, 17,
22]. While negation of an event can also be included in “SEQ”
queries to indicate the absence of event occurrences, we in this
work only consider positive event occurrences and leave negation
of events as future work.

DEFINITION 4. A sequence query pattern Qi = (qi1, q
i
2, ...q

i
n)

with window size T (Qi) produces an instance of query pattern
match over an event sequence S, if there exists a subsequence
S′ = (cj1 , cj2 , ... cjn) of S, such that cjl is of type qil for all
l ∈ [1, n], and tjn − tj1 ≤ T (Qi). We say the sequence of events
S′ is an instance of match of Qi. We denote M(Qi, S) as the
multi-set of all instances of matches produced for queryQi over S.

We use the following example to illustrate event sequences and
query matches in our CEP model.

EXAMPLE 1. Suppose there are five event types denoted by the
five characters Σ = {A,B,C,D,E}. Each character represents a
certain type of event (for example, A could stand for doctors enter-
ing the ICU, B denotes doctors washing hands at the sanitization
desks, and so forth).

Let the stream of arriving events be S = (A1, B2, A3, C4, D5, D6,
C7, A8, D9, E10) where each character is an instance of a particu-
lar type of event arriving at time stamp ti given subscript i. Assume
in this example that events arrive at fixed intervals t for simplicity.
In other words, A1 arrives at t1 = t, B2 arrives at t2 = 2t, so on
and so forth.

Suppose there are two query patterns: Q1 = (A,B) with the as-
sociated window size T (Q1) = t, andQ2 = (C,D) with T (Q2) =
2t. To give some interpretation for the queries, if A stands for doc-
tors entering the ICU, B for doctors washing hands, then Q1 is
looking for such patterns where doctors wash hands immediately
after entering the ICU, and the time interval between the two events
is within the window size T (Q1) = t.

Over the event sequence S, there is only one subsequence (A1, B2)
that matches Q1. Note that the subsequence (B2, A3) does not
match Q1, because by definition a subsequence that matches for

Q1 has to maintain that an event of type A arrives before an event
of type B.

There are three matches ofQ2, namely (C4, D5), (C4, D6), and
(C7, D9). Observe that the subsequence (C4, D9) does not match
Q2 because the time interval between C4 and D9 is 9t− 4t = 5t,
which is larger than T (Q2) = 2t.

DEFINITION 5. A CEP system is a function that takes as input
an event sequence S, a set of query patterns Q = {Qi}, and out-
puts a multi-setℳ =

∪
Qi∈QM(Qi, S), where M(Qi, S) is the

multi-set of all query matches of Qi over S.

In this work we focus on the CEP that only accept sequence
query patterns. While in practice CEP systems may also include
support for query language extensions like negation [10] and Kleene
closure [10], among other features, we in this work limit the query
language to allow only conjunctions of positive event occurrences
and study the complexity of different variants based on this core
language subset. Investigating the privacy implication of CEP on
this restricted language subset already presents us with a rich prob-
lem to study. Expanding the query language to a more expressive
one and exploring its impact on complexity is an interesting direc-
tion for future work.

2.2 Private patterns
We now turn to introduce the notion of private patterns. Intu-

itively, private patterns are just like query patterns. The fundamen-
tal difference, however, is that as many query patterns as possible
should be detected, whereas there is a strict requirement that no
private patterns should be reported.

There are multiple ways in which an adversary could compro-
mise privacy in search of private patterns. The most intrusive way
is to break into the CEP system and monitor the arriving event
streams. Preventing this type of adversary involves addressing se-
curity aspects of the CEP system and is out of the scope of our
work. Accordlingly, we assume the CEP system is secure and fo-
cus on adversaries who observe the reported matches for the query
patterns, and only infer the occurrences of the private patterns from
the externally observable event sequence, which is a “union” of all
the events reported in the query results. We first define externally
observable event sequences.

DEFINITION 6. Let S be a time-stamped event sequence. Let
M = {Mi} be the multi-set of matches in S produced by a CEP
system with respect to the query set Q, that is, ∀i,Mi is a match
of some query in Q. The sequence of events obtained by unioning
the events inM is called the externally observable event sequence.
We denote the externally observable event sequence of the original
sequence S with respect to the query setQ as S = O(S,Q).

The semantics for matches of private patterns P over a given
event sequence S are similar to matches of query patterns Q, but
they are defined over the external observable event sequence S =
O(S,Q), instead of the original event sequence S. Specifically, let
the set of private patterns be P = {Pi}, 1 ≤ i ≤ ∣P∣. Each private
pattern is defined as follows.

DEFINITION 7. A sequence private pattern Pi is of the form
(pi1, p

i
2, ...p

i
n), with pik ∈ Σ being event types in the alphabet.

Let T (Pi) ∈ ℝ+ be the window size for each query Pi. There
is an instance of private pattern match of Pi over a given event se-
quence S, if there exists a sequence S

′
= (cj1 , cj2 , ...cjn), that is

the subsequence of the externally observable event sequence S =
O(S,Q), such that cjl = pil for all l ∈ [1, n], and tjn − tj1 ≤
T (Pi). We say the sequence S

′
is an instance of match of Pi.

Clearly any match of private pattern over the externally observ-
able event sequence constitutes a breach of privacy and should be
disallowed. We use the following example to illustrate matches of
private patterns.

EXAMPLE 2. Given the event sequence S and the query pat-
terns Q1 and Q2 in Example 1, suppose there are also two pri-
vate patterns P1 = (B,C) with T (P1) = 2t, P2 = (D,E) with
T (P2) = t.

Recall that in Example 1, four instances of the query matches
are reported, namely (A1, B2), (C4, D5), (C4, D6) and (C7, D9).
Using the time-stamps associated with each event, an adversary ob-
serving the set of query results will be able to reconstruct the exter-
nally observable event sequence in temporal order S = (A1, B2,
C4, D5, D6, C7, D9), which is a subsequence of the original event
sequence S = (A1, B2, A3, C4, D5, D6, C7, A8, D9, E10).

In this example, one instance of matches for P1 can be produced
over S, namely (B2, C4), which results in a breach of privacy.
However, there is no match for P2 = (D,E) with T (P2) = t
over S, even though in the real event stream S that passes through
the CEP engine there is an instance of match (D9, E10) for P2.
Because we assume that the adversary is only able to observe the
reported query results to construct S, and has no direct knowledge
of S, or more specifically the existence of E10, no matches for P2

can be produced by the adversary.

Since we restrict queries to be simple conjunction of event oc-
currences, certain events that participate in private patterns have to
be suppressed in order to ensure that no private patterns are dis-
closed. While alternative strategies are possible with an extended
query language (inserting fake events, for instance, may be used
to prevent private patterns when the private pattern includes nega-
tion), in this work we only consider the strategy in which events are
suppressed.

DEFINITION 8. For fixed query and private sets, Q and P re-
spectively, a PP-CEP system is a function which, for any event se-
quence S, produces a subsequence S′ of S such that no matches of
private pattern in P can be produced over the externally observ-
able sequence S = O(S′,Q)

Apparently there are various kinds of PP-CEP in which different
events can be suppressed to ensure privacy. For instance, in Exam-
ple 1, given that there is a match of private patterns P1 = (B,C),
the intuitive way to suppress such match is to drop either of the
events B or C. In order to measure the relative merits of differ-
ent strategies and to ultimately determine a preferable strategy, we
define a utility function.

2.3 The utility function
We quantify utility based on the number of instances of query

matches reported. In addition, because each query pattern may
have different real-world importance, we differentiate between queries
using a weight function w(Qi), which measures the importance of
reporting an instance of matching Qi. We define the query utility
as follows.

DEFINITION 9. Let C(Qi, S) be the number of distinct matches
for query Qi in S. The utility generated for query pattern Qi is

U(Qi, S) = w(Qi) ⋅ C(Qi, S) (1)

The sum of the utility generated overQ = {Qi} is

U(Q, S) =
∑
Qi∈Q

U(Qi, S). (2)

As we have discussed, there are multiple ways in which events
can be suppressed to prevent private pattern matches. The utility
metric can be used to choose the strategy that preserves the most
utility. We will illustrate the concept of utility in Example 3.

EXAMPLE 3. We continue to use the event stream and query/private
patterns of the Example 2. To measure utility, assume for simplic-
ity that the weight associated with query Q1 and Q2 is one. Given
that there is one instance of match forQ1 and three matches forQ2,
the total utility gain over S = (A1, B2, A3, C4, D5, D6, C7, A8,
D9, E10) without privacy consideration is thus 1 + 1× 3 = 4.

As we have mentioned, in order to suppress the one match pro-
duced for P1 = (B,C) over S = (A1, B2, C4, D5, D6, C7, D9)
(namely, (B2, C4)), there are two possible event dropping strate-
gies: we could either drop B2, or drop event C4. If B2 is dropped,
we will derive S1 = (A1, C4, D5, D6, C7, D9). With that sup-
pression there are a total of three matches for Q2 left (the match
(A1, B2) forQ1 is dropped due to the suppression ofB2), yielding
a utility of 3.

Alternatively, the event C4 can be dropped. This gives us S2 =
(A1, B2, D5, D6, C7, D9). With this suppression strategy there
is one match of Q1 ((A1, B2)) and one match of Q2 ((C7, D9))
retained, thus the utility for this strategy is 1 + 1 = 2.

Apparently, while both strategie suppress matches for private
patterns, dropping B2 is the better strategy as measured by the
amount of utility it preserves.

Ultimately, the choice of dropping event B or C in the previ-
ous example depends on the characteristics of the arriving events
in general, or alternatively the distribution of the event types. In-
tuitively, if C arrives much more frequently than B, and is more
likely to produce query match for Q2 = (C,D), then it may be a
good idea to drop B instead of C, as the utility preserved for Q2

can outweigh the loss of Q1.
In order to quantify the “expected” query matches to estimate

expected utility, we need statistical information about the arriving
events. In this work we make the simplifying assumption that the
arrival of each type of event is an independent Poisson process,
which is typical statistical assumption and is used to model event
arrival in performance modeling literature [14]. Furthermore, we
assume that the arrival rate �i of each Poisson process is known to
us. In practice, such an arrival rate can be estimated by sampling
the arriving events.

Further, let ∣Σ∣ be the number of event types, ∣Q∣ and ∣P∣ num-
ber of query patterns and private patterns, respectively. Denote by
lq and lp the maximum length of query patterns and private pat-
terns, respectively, and finally dq and dp the maximum number of
query patterns/private patterns in which any type of event ei ∈ Σ
participates. We summarize the symbols used in this paper in Ta-
ble 1.

The end goal of PP-CEP is to find an event suppression strategy
such that utility can be maintained as much as possible without
compromising privacy. In the following we will discuss in detail
two variants that arise from the general formulation.

3. THE OBLIVIOUS PP-CEP
The first variant of privacy-preserving CEP we discuss is the

oblivious PP-CEP.

DEFINITION 10. Let P = {Pi} be the set of private patterns,
with Pi = (pi1, p

i
2, ...p

i
n). An oblivious PP-CEP is a PP-CEP that

suppresses all events of type ei ∈ D, D ⊆ Σ, while preserving
events in K = Σ ∖D, such that for all private pattern Pi, at least
one participating event pij is suppressed, or pij ∈ D.

Σ The set of all possible event types
ei Event of type i
�i The arrival rate of ei
Q The set of query patterns
Qi Query pattern i

T (Qi) The time window associated with Qi
w(Qi) The utility weight associated with Qi
qik The k-th participating event in query pattern Qi
P The set of private patterns
Pi Private pattern i

T (Pi) The time window associated with Pi
w(Pi) The utility weight associated with Pi
pik The k-th participating event in private pattern Pi
lq The maximum length of any query patterns
lp The maximum length of any private patterns
dq The maximum number of query patterns that any

event participates
dp The maximum number of private patterns that any

event participates

Table 1: Summary of the symbols used

An oblivious suppression decision drops at least one participat-
ing event type from the private patterns. This is a sufficient con-
dition for privacy — if all instances of some event type that par-
ticipates the private pattern are dropped, no matches for that pri-
vate pattern can be produced. Oblivious suppression is a global
approach that preserves privacy irrespective of the event sequence
that may occur, that is, regardless of what has just arrived and what
may arrive in the future. The notion of obliviousness is in contrast
to the windowed PP-CEP that we will discuss in the next section,
which also takes into consideration the events that have just arrived
in the local window to devise an event suppression strategy. We first
use the following example to demonstrate the concept of oblivious
PP-CEP.

EXAMPLE 4. Continuing with Example 3, we illustrate oblivi-
ous PP-CEP using the private pattern P1 = (B,C). Recall that
an oblivious PP-CEP decision suppresses at least one participat-
ing event type in each private pattern. In this case it could either
drop event type B or C.

Specifically, given the sequence S = (A1, B2, C4, D5, D6, C7,
D9), one could either drop all events of type B, or drop all events
of type C. Observe that either oblivious decision is sufficient for
privacy — if all instances of B (similarly, C) are dropped, the pri-
vate pattern P1 = (B,C) will not be disclosed. However oblivious
event suppression is not necessary for privacy. In particular, if we
decide to drop events of type C, C7 does not have to be dropped
from S = (A1, B2, C4, D5, D6, C7, D9), because based on the
events that have arrived at time-stamp t7 it is clear that preserving
C7 will not compromise privacy (this is because there is no event of
type B that arrives between t5 to t7, or T (P1) = 2t prior to C7).
As a matter of fact, not dropping C7 allows us to produce one more
query match (C7, D9) and improves utility.

This example illustrates the key idea of oblivious suppression.
Oblivious PP-CEP devise an event suppression strategy that is suf-
ficient, but not always necessary, to preserve privacy. Precisely due
to the simplicity in its obliviousness, in practice we expect it to
have lower added computation overhead to an existing CEP sys-
tem than a more sophisticated PP-CEP system (for example, the
windowed PP-CEP that we will discuss in Section 4). This prop-
erty may be especially desired for the CEP model, which typically

requires real-time query processing and low computational over-
head [5, 10, 17, 22]. However, as we will show, even this oblivious
PP-CEP problem is very difficult in terms of computational com-
plexity. This problem of utility-maximizing oblivious PP-CEP is
formally defined as follows.

DEFINITION 11. Let Σ = {ei} be the domain of event types
where each type of event ei arrives following an independent Pois-
son process with arrival rate �i. Let the set of query patterns and
private patterns be Q = {Qj} and P = {Pk}, respectively. The
utility of an oblivious PP-CEP that preserves events K ⊆ Σ is
denoted as G(Q,K, S) = U(Q,ΠK(S)), where S is the given
event sequence, and ΠK(S) is the projection of S which only pre-
serves events in K and none other. The problem of utility gain
maximizing oblivious PP-CEP given an event sequence S is to
find the oblivious PP-CEP with the maximum utility G(Q,K, S).
Similarly we can define utility loss minimizing oblivious PP-CEP
as the one that minimizes the utility loss ℒ(Q,K, S) = U(Q, S)−
U(Q,ΠK(S)).

Given an event sequence S we can choose over the space of all
possible oblivious suppression decisions to find the optimal one
with respect to utility. Observe that in Definition 11 we deliberately
introduce two utility metrics to optimize, the utility gain metric G
and the utility loss metric ℒ. While they are essentially equivalent
to each other and reach the optimal point at the same time, their
approximability results are different as we will discuss in detail.
We will see that it is easier to approximate the utility loss function
than to approximate the utility gain function.

It is worth noting that the event sequence S we consider is the
most likely sequence constructed based on the event arrival rate �i,
and we optimize the utility only based on the expected count of
query matches over this most likely event sequence rather than the
analysis of the space of all possible event sequence. This technique
of using expected counts of random variables to produce simple
estimates is used in [12], although more sophisticated and complex
techniques like stochastic programming [12] can be used to account
for the random variables more accurately.

Our reason for using expected counts over stochastic program-
ming is twofold. First, since the arrival rate is already an estimate
produced by sampling, over-complicating the problem formulation
by using stochastic programming for extra accuracy seems to be
overkill. Furthermore, recall that our goal is to explore the diffi-
culty of the PP-CEP problem rather than to produce an accurate
utility estimate. And as we will see, using the simple expected
count to estimate utility for each query already renders the problem
hard in general.

In the following we will first analyze the complexity of the gen-
eral oblivious PP-CEP and show inapproximability results in Sec-
tion 3.1. We will then descend into a number of special cases with
assumptions on various parameters, and show that for each case
how the complexity of the problem can be reduced.

3.1 A general complexity analysis
We study in this section the complexity of the general version

of the oblivious PP-CEP problem. Again, rather than considering
the stochastic event sequence, we in this work only investigate the
complexity of the PP-CEP problem over the expected, or the most
likely event sequence that may arise given the arrival rates. As
we will see in the following, even with this simplification we can
already obtain a number of negative complexity results for the gen-
eral version of the problem.

THEOREM 1. The problem of utility gain maximizing oblivious
PP-CEP is NP-hard.

Proof Sketch. We use a reduction from the independent set problem
to prove the hardness result. Recall that a set of vertices V ′ ⊆ V
in a graph G = (V,E) is said to be an independent set if no two
vertices in V ′ are adjacent in the graph G (or ∀u, v ∈ V ′, (u, v) /∈
E). The maximum independent set is the independent set with the
largest size.

Given an instance of the independent set problem over a graph
G = (V,E), we construct an instance of oblivious PP-CEP as fol-
lows. We set the symbol set Σ to be the vertex set V , that is we
place a symbol corresponding to each vertex in the graph. In ad-
dition we set the event sequence S as a list of all symbols in the
alphabet in any order, to correspond to all the vertices in the graph.
For each edge (u, v) in E we add a private pattern Pi = (u, v)
(and (v, u)) into the set of private patterns P . Finally let all ver-
tices v ∈ V be a query pattern Qj = (v) in the set of query pat-
ternsQ. Let all query patternsQj ∈ Q have the unit utility weight,
w(Qj) = 1 for all j, so that each instance of query match will
produce unit utility 1.

Say a solution with utility k or more for the constructed oblivious
PP-CEP involves dropping events D ⊆ Σ while keeping events
K = Σ ∖D. Note that the feasibility of D ensures that no private
pattern is disclosed. Then the vertex set VK that corresponds to
the set of events K must be an independent set of size k (recall
that there is a one-to-one mapping between the event types in the
PP-CEP problem we construct and the vertices in the graph).

Overall if droppingD, equivalently reporting all ofK, preserves
privacy, then no private pattern is a subsequence of K. If this is not
the case then there is a pair of vertices u, v ∈ VK such that (u, v) ∈
E, which means that both the events corresponding to u and v are
kept in the event set K. Since P = (u, v) is a private pattern, this
would have violated the privacy constraints, contradicting the fact
that keeping K is privacy preserving. Since the solution achieves a
utility of k or more, this implies ∣K∣ is at least k. This follows from
the fact that each alphabet is a query pattern with unit utility. In the
other direction if the original graph has an independent set I of size
k the we can drop the symbols of the alphabet corresponding to
vertices in V ∖ I to obtain a privacy preserving solution of utility k.

Hence the constructed oblivious PP-CEP instance has a solution
achieving utility of k or more if and only if the original graph has
an independent set of size k or more. This shows that the oblivious
PP-CEP is NP -hard.

Note that although in our proof, oblivious PP-CEP algorithms
consider the whole expected event sequence as input, they are not
really off-line algorithms, which only produce solutions when the
whole input event sequence is seen. Instead, the input event se-
quence from which suppression strategies are derived is the ex-
pected input that can be known a prior based on event arrival rate.
Oblivious PP-CEP algorithms simply operate based on the strate-
gies so produced independent of the real input seen in a particular
random experiment, and are thus on-line algorithms. This is con-
sistent with the real-time event processing requirement essential to
CEP.

We further show some inapproximability results for both the util-
ity gain maximization problem and the utility loss minimization
problem of oblivious PP-CEP.

THEOREM 2. There is a fixed constant � ≥ 0 such that if there
is a ∣Σ∣1−� factor approximation algorithm for utility gain maxi-
mizing oblivious PP-CEP problem, then P = NP .

Proof Sketch. We note that the reduction in Theorem 1 is approxi-
mation preserving. In particular, the reduction from an independent
set problem over graph G of n vertices produces an instance with

∣Σ∣ = n. Also, the value of optimal solution of the PP-CEP in-
stance is no less than the size of the maximum independent set of
G and a privacy preserving solution with utility of k implies an in-
dependent set of size at least k. This proves that PP-CEP is as hard
as independent set, as an � factor approximation algorithm for PP-
CEP gives an � factor approximation for independent set. Using
the inapproximability of independent set [19] we get the desired
result.

In addition to the ∣Σ∣1−�-inapproximability, we have an alter-
native inapproximability result based on the parameters lq, dp and
dq .

THEOREM 3. There is a fixed constant � ≥ 0 such that if there
is a (1− �)(lqdqdp− 2) factor approximation algorithm for utility
gain maximizing oblivious PP-CEP problem, then P = NP .

Proof Sketch. This second inapproximability result is based on
lq (the maximum length of the query patterns), dq and dp (the
maximum number of query/private patterns that any event partici-
pates). This result follows from the inapproximability result shown
in [19], which states that for independent set, the approximation
factor cannot be better than (d− 2), where d is the edge degree of
the graph. We show the inapproximability of (1− �)(lqdqdp − 2)
by contradiction. If there is an algorithm that has approximation
factor of (1 − �)(lqdqdp − 2), using the approximation preserv-
ing reduction from independent set the corresponding independent
set problem instance would also have an approximation factor of
(1− �)(lqdqdp − 2). Given that dq = 1, lq = 1, and dp being the
degree of the graph in our reduction construction, we would have
an approximation factor better than d − 2. This contradicts [19].
We cannot approximate beyond the factor of (lqdqdp − 2) as a re-
sult.

THEOREM 4. For any constant � > 0, if there is a (1 − �) ×
ln(∣P∣) factor approximation algorithm for utility loss minimizing
oblivious PP-CEP problem then NP ⊆ DTIME(nO(log logn)).

Proof Sketch. We provide a approximation preserving reduction
from set cover. The claim then follows from the inapproximability
of set cover [8].

Given a universe U of n elements and a collection of m sub-
sets of U , C = {Si}mi=1, the cardinality set cover problem is to
determine if C contains k or fewer subsets such that their union
covers all the elements. The reduction to utility loss minimiz-
ing oblivious PP-CEP is as follows: we construct an alphabet set
Σ of size m, with an alphabet symbol ei for each set Si in the
collection. A private pattern Pj corresponding to each element
j ∈ U is introduced. Say element j is contained in p distinct sets:
Si1 , Si2 , . . . , Sip with i1 < i2 < . . . < ip, we set private pat-
tern Pj to be (ei1 , ei2 , . . . eip) with unbounded time window. The
query patterns are simply the m alphabets of Σ with unit utility
and unbounded time window. Finally the sequence S is set to be
(e1, e2, . . . , em).

First note that if the set cover instance has a solution of size k′

or less then we can achieve a solution for the PP-CEP problem
with utility loss of k′. In particular, say K ⊆ C is a collection of
subsets covering U . Then we can drop the symbols of the alphabet
corresponding to sets in K to achieve a privacy preserving solution
with utility loss of ∣K∣. This follows from the fact that if we drop
∣K∣ = k′ alphabet symbols then the loss in utility is exactly k′,
as each query pattern is an alphabet symbol with utility of one.
Each element j is covered by at least one subset in K, say Sa,

which implies that dropping alphabet symbol ea would preserve
the privacy of pattern Pj . This overall implies that the generated
solution is privacy preserving.

In the other direction, a privacy preserving solution for the PP-
CEP instance with a utility loss of k′ implies a set cover of size
k′. Say we drop all the alphabet symbols in D. Then the utility
loss is exactly ∣D∣. The relevant observation is that the sets cor-
responding to alphabet symbols in D form a cover of U . For any
private pattern Pj , there is an alphabet symbol, say ea, which is in
D (else D would not be privacy preserving). This implies that set
Sa contains element j, thereby proving that the collection of sub-
sets corresponding to subsets in D forms a cover and the size of
this cover is exactly ∣D∣.

The above approximation preserving reduction shows that utility
loss minimizing oblivious PP-CEP problem is at least as hard as set
cover, thereby proving the stated claim.

While the problem of oblivious PP-CEP is in general NP-hard,
there are scenarios where certain parameters are small constants,
in which cases the complexity of the problem can be different. In
the following sections we carve out two special cases and show
complexity results under alternative problem formulations.

3.2 A polynomially solvable special case
In this section we formulate the problem as an integer program-

ming problem as follows. Let xi ∈ {0, 1} be the decision variables
to keep/drop events of type ei ∈ Σ in order to ensure privacy, with
xi = 1 being the decision of keeping event ei, and xi = 0 drop-
ping event ei. Further let yj ∈ {0, 1} to be the variable to denote
whether query Qj can be reported. The set of queries that can
be reported depends on decision variables, in other words yjs are
completely dependent on xis.

We determine the expected utility produced by query patterns
using arrival rates of event types. Recall that �i is the arrival rate
of event type ei. Given a query Qj and its associated time window
T (Qj), we can first compute for each event type inQj the expected
number of event occurrences in the time window T (Qj) using the
event arrival rate. Then using the expected count of each event
that participates Qj we can compute the expected number of query
matches for Qj in the time window T (Qj). In this section we will
just use F (Qj , �⃗) to denote the expected query matches for Qj so
computed, with �⃗ ∈ ℝ∣Σ∣+ being the vector with arrival rate �i as
components. For details of the computation of F (Qj , �⃗) please see
the explanation in Appendix A.

Using F (Qj , �⃗), the expected utility produced by query pattern
Qj over its associated time window T (Qj) can be written as

E(Qj) = w(Qj)× F (Qj , �⃗) (3)

The expected utility gain per unit time of Qj , E(Qj), can be
obtained by normalizing E(Qj)

E(Qj) =
E(Qj)

T (Qj)
(4)

Hence expected total utility gain per unit time, denoted as G(X),
where X = {xi} being the vector of event dropping decisions, can
be expressed as

G(X) =
∑
Qj∈Q

E(Qj) ⋅ yj (5)

Similarly the utility loss function L(X) can be defined as

L(X) =
∑
Qj∈Q

E(Qj) ⋅ (1− yj) (6)

As we mentioned, here we use the expected value of query matches
to quantify the utility for each query E(Qi). Using this simple
technique to estimate utility allows us to explore the intrinsic diffi-
culty in the structure of the problem unencumbered.

The oblivious PP-CEP can then be viewed as the problem of
maximizing G(X) (or, equivalently, minimizing L(X)) under the
constraint that no private patterns are disclosed, which means that
for each private pattern, at least one of the events that participate the
private pattern should be dropped to ensure that no matches for the
private patterns will ever be produced. Formally, for each Pi ∈ P ,
the privacy-preserving constraints can be written as:∑

pij∈Pi

xj < ∣Pi∣ (7)

Furthermore, whether or not query patternQi can be reported (yi
variables) can be expressed using the variables denoting whether
events have been dropped (as represented by xi) using the follow-
ing linear constraints. For all Qi ∈ Q

yi ≤
1

∣Qi∣
∑
qij∈Qi

xi (8)

Intuitively, this is to say that Qi can be reported (yi = 1) if and
only if all participating events are not dropped.

The problem of utility maximization G(X) is then a integer lin-
ear programming problem subject to the constraints in Equation (7)
and Equation (8). With this formulation, using Lenstra’s algo-
rithm [15], we have the following theorem:

THEOREM 5. The oblivious PP-CEP problem is polynomially
solvable if the total size of the alphabet and query patterns, ∣Σ∣ +
∣Q∣, or the total number of query and private patterns, ∣P∣ + ∣Q∣
is some fixed constant.

The proof of this Theorem follows directly from Lenstra’s al-
gorithm [15], which shows that the ILP problem is polynomially
solvable if the number of variables, or the number of constraints is
no more than a small constant. In our ILP formulation, we have a
total of ∣Σ∣ x variables, and ∣Q∣ y variables, with a total of ∣P∣+∣Q∣
constraints. Given Lenstra’s algorithm, the optimal utility gain (and
similarly utility loss) is solvable if either of these two is no greater
than a small constant, thus the Theorem 5.

3.3 An approximable special case
Alternatively, we could formulate the oblivious PP-CEP problem

as as follows. Let xi ∈ {0, 1} be the reverse of the decision vari-
able xi defined before. In other words, it is the decision variables
to drop/keep events of type ei ∈ Σ, with xi = 1 being the decision
of dropping event ei, and xi = 0 keeping event ei (the reverse of
the meaning of xi). Instead of introducing variables yi, we express
the expected overall utility using xi directly. Specifically, given the
expected utilityE(Qi) produced for each query patternQi per unit
time in Equation 5, the expected total utility gain per unit of time
can be expressed as

G′(X) =
∑
Qi∈Q

E(Qi) ⋅ r(Qi) (9)

where r(Qi) denotes whether Qi can be reported based on the de-
cisions of dropping events xi: query Qi can be reported only if no
participating events are dropped.

r(Qi) =
∏
qij∈Qi

(1− xi) (10)

Similarly the utility loss function L′(X) can be defined using xi as

L′(X) =
∑
Qi∈Q

E(Qi) ⋅ (1− r(Qi)) (11)

Like the previous ILP formulation, the privacy constraint in this
formulation is that for each private pattern, at least one of the events
that participate the private pattern should be dropped. For each
Pi ∈ P , we need to have: ∑

pij∈Pi

xj ≥ 1 (12)

Note that instead of the packing constraints as specified in Equa-
tion (7) and Equation (8) for the ILP formulation, here with the use
of variables xi we instead get a set of covering constraints.

Now we have a new optimization problem with (non-linear) ob-
jective function in Equation (9) and Equation (11), and the linear
constraints in Equation (12). While we cannot leverage the results
established for ILPs, we observe that the new objective function
have the nice property of being sub-modular.

Submodularity [9] is an important function property that has
been studied in the theoretical computer science for its use in opti-
mization algorithms. It can be formally defined as follows.

DEFINITION 12. [9] Let V be a set of cardinality n. A real-
valued functions f over subsets of X , f : 2V → ℝ is submodular
if it satisfies

f(X + e)− f(X) ≥ f(Y + e)− f(Y), for all X ⊂ Y ⊆ V

The intuitive interpretation of submodularity is that as the input
set grows, the incremental gain in f will decrease for the same
addition in input (the e). This property is sometimes also known as
diminishing returns.

LEMMA 1. The utility loss function L′(X) in Equation (11) is
a submodular function.

We can intuitively see why L′(X) is submodular. The utility
for a given query pattern Qi will be lost the first time a constituent
event gets dropped. Any additional events being dropped for the
same queryQi will not yield any increase in the utility loss L′(X).
In other words, the decisions of dropping one additional event given
a larger set of events have been dropped will produce less increment
in utility loss than that of case when the additional event is dropped
given a smaller set of events have been dropped, a classical defini-
tion of diminishing returns.

Based on the submodular property, we can show a good approx-
imation ratio for L′(X) in the problem of oblivious PP-CEP pro-
cessing in Theorem 6.

THEOREM 6. Let lp be the maximum length of any private pat-
tern that is no greater than some small constant. The utility loss
functionL′(X) in oblivious PP-CEP processing is lp-approximable.

The proof of Theorem 6 is built on the results in [11]. Specif-
ically, observe that the integer program we have is lp row sparse,
with covering constraints (in Equation (12)), and a submodular ob-
jective function (Lemma 1). It has been shown in [11] that such an
integer program is lp approximable, thus our result in Theorem 6.

This approximability result for L′(X), however, does not extend
in a similar manner to the utility gain function G′(X). Specifi-
cally, while the approximation ratio for L′(X), lp, is essentially
the column sparsity of the coefficient matrix of the constraints, we
cannot obtain a similar row sparsity approximation ratio for the util-
ity gain function G′(X). The reason is because for utility gain it

becomes a supermodular function maximization with packing con-
straints, which is known to be hard to approximate. We in the fol-
lowing construct an algorithm and show that utility gain is lqdqdp
approximable. This is almost tight as it is also (lqdqdp−2)(1−�)-
inapproximable as described in Theorem 3.

THEOREM 7. The maximization of the utility gain functionG′(X)
in the oblivious PP-CEP is lqdqdp-approximable.

Proof Sketch. We show the lqdqdp-approximation factor by con-
structing an algorithm that has no less than 1

lqdqdp
utility gain of

the optimal utility gain. The algorithm works as follows. First we
pre-process the query set by removing queries that can never be
satisfied due to the presence of the private patterns (for example,
those queries that are subsequences of some private pattern). We
then sort all remaining feasible queries Qi in Q by utility weight
W (Qi). We pick in Q the query Qs1 that has the largest weight.
Let the set of events that participate Qs1 be Es1 . For each event
ei ∈ Es1 , denote the set of private patterns that contain ei as Pei .
Randomly select an event eji in each patternP j ∈ Pei and suppress
it. This would affect all queries that contain event eji , denoted as
Q
e
j
i
, because these queries would never be reported due to the sup-

pression of eji . Removes all such affected queries Q
e
j
i

from Q. In
the remaining queries that are not affected, again find the Qs2 with
the highest utility weight and proceed as above. The claim is that
this algorithm is lqdqdp-approximate.

We get lqdqdp approximation ratio because each query Qsk we
pick has at most lq events. For each such event ei there are no
more than dp private patterns that contain it. Since we suppress one
event for each such private pattern, the total number of suppressed
events cannot be more than lqdp. In addition, each suppressed event
participates no more than dq query patterns, that will affect at most
dpdqlq queries. That means in each iteration, keeping the query
with the highest weight entails removing at most dpdqlq queries,
all of which with less utility weight than the one we keep. As a
result, we can keep at least 1

dpdqlq
utility out of maximum possible

utility (the utility sum of all queries), which has to be no less than
the optimal oblivious PP-CEP utility, thus the approximation ratio
in Theorem 7.

3.4 A robustness analysis
The approximation analysis conducted in Section 3.2 and Sec-

tion 3.3 are based on the assumption that events arrive exactly as
expected as specified by the arrival rate �i of the Poisson process.
In reality the actual arrival process can deviate from the expecta-
tions. In this section we give a robustness analysis to show the
utility bound in such cases.

Recall that the overall utility gain is defined in Equation (2) as∑
Qi∈Q w(Qi) ⋅ C(Qi, S), where C(Qi, S) denotes the number of

matches for Qi over the event sequence S. In our analysis we use
the arrival rates �i for each type of event to compute the expected
count of matches CE(Qi, S). Suppose the actual count of matches
CA(Qi, S) deviates from the expected value by a ratio of l, or al-
ternatively

1

l
≤ CE(Qi, S)

CA(Qi, S)
≤ l (13)

Since we estimate the arrival rate �i by sampling of the arriving
events which may not perfectly predict the arriving events in the
future, we quantify the robustness of the approximation ratio given
the inaccurate statistics in the following proposition.

PROPOSITION 1. If algorithm A is a k-approximate algorithm
for utility gain maximization (or utility loss minimization) PP-CEP,
for any real event sequence whose true count of query matches de-
viates from the expected count by no more than a ratio of l, the
approximation ratio of A must be better than l2k.

This robust approximation ratio applies to previous results in
Theorem 6 and Theorem 7. We show the approximation ratio l2k
for utility maximization problem and the ratio for utility loss min-
imization are similar. Let UA be the actual utility using algorithm
A, and UE be the expected utility using A. Given the deviation
ratio of at most l, we know that UA ⋅ l ≥ UE . We know that A
has approximation ratio k, so the expected utility UE ⋅ k ≥ UOPTE .
Furthermore the actual optimal utility cannot be off from the ex-
pected optimal by a ratio of l or UOPTE ⋅ l ≥ UOPTA . Summarizing
the three inequalities we obtain UA ⋅ l2k ≥ UOPTA , meaning the
utility of usingA on the actual event sequence is at most off by l2k
from the optimal utility on the actual event sequence.

4. THE WINDOWED PP-CEP
In this section we explore a different variant of the problem,

which we term the windowed version of PP-CEP. While the obliv-
ious PP-CEP suppresses events in a global manner independent of
events just arrived, the windowed version takes into account the
events that have just arrived in the window Δ of size ∣Δ∣ to de-
vise suppression decisions. Here Δ is a window over the event
sequence, ∣Δ∣ is the number of events present in the window, and
T (Δ) is its length in time.

DEFINITION 13. A windowed PP-CEP is a PP-CEP, that sup-
presses events based on a suppression function R : (Σ ∪ Φ)∣Δ∣ ×
Σ→ {0, 1}, where the first input, (Σ∪Φ)∣Δ∣ represents the events
that have arrived in the window Δ immediately prior to the current
arriving event, and the second input, Σ, stands for the current ar-
riving event e. A suppression decision has to be made for e, with 1
representing suppressing the current event e and 0 keeping it. Here
Φ represents the absence of an event when there is less than ∣Δ∣
events in the window.

In order to ensure privacy of the CEP system, the size of the
window ∣Δ∣ has to be sufficiently large to accommodates all possi-
ble events that may arrive in maxPi∈P(T (Pi)), for otherwise the
suppression decisions devised may not be aware of the events that
previously arrived and are outside of the window Δ. Such events
coupled with the presence of certain events in the current window,
can produce matches of private patterns and compromise privacy.

We use the following example to illustrate the windowed PP-
CEP.

EXAMPLE 5. We continue with Example 4, and consider the
private pattern P1 = (B,C). Let the window size ∣Δ∣ = 2.

Informally, use the shorthand notation ∗ to denote zero or more
occurrences of any event. Among the space of all possible win-
dowed PP-CEP, we consider two strategies, RB(∗, B) = 1 or in-
tuitively the one that suppresses B; and RC(∗B∗, C) = 1 or the
one that suppresses C.

GivenRB , and the original event sequence S = (A1, B2, A3, C4,
D5, D6, C7, A8, D9, E10), at time t2, B2 will be suppressed to
produce SB = (A1, A3, C4, D5, D6, C7, A8, D9, E10), over which
the query set will be executed. Note that this particular strategy ,
RB(∗, B) = 1, suppresses B irrespective of the window Δ, and is
equivalent to the oblivious PP-CEP that suppresses B obliviously.
In this example it produces the same suppression result as the one
in Example 4.

Now we consider the RC suppression function. At t4 the event
C4 will be suppressed because at that point, window Δ has the
sequence (B2, A3), which leads to the suppression of C4 as spec-
ified by RC . In contrast, at t7, given the window Δ = (D5, D6),
C7 will be preserved as RC outputs 0. This is possible because at
t7, given the window Δ, it is clear that revealing C7 will not com-
promise privacy due to the absence of B in Δ. This produces the
suppressed event sequence SC = (A1, B2, A3, D5, D6, C7, A8,
D9, E10). Note that this is different from the oblivious PP-CEP in
Example 4 that suppresses all events of type C, which includes C7

that does not have to be suppressed.

While it is apparent that it is necessary that any arriving event
that can produce an match for some private pattern needs to be sup-
pressed to ensure privacy, a utility maximizing suppression func-
tion R does not necessarily suppress the arriving event only when
the arriving event can cause some private patterns to be matched
(or equivalently, only suppressing the last event of each private
pattern). As an intuitive example if there is one private pattern
P = (A,B,C), in which the event B rarely happens and has little
contribution to the expected utility, while C arrives much more fre-
quently and contributes to many query patterns, it may be a better
choice to suppress B whenever it is seen and with A in the win-
dow Δ, instead of waiting until the last moment to suppress C.
In general the whole space of all windowed PP-CEP suppression
functions have to be considered.

The hardness results in Section 3.1 obtained for the oblivious PP-
CEP, including the NP-hardness and the inapproximability results
(Theorem 2, Theorem 3 and Theorem 4) still hold in the windowed
PP-CEP. To see this, the set cover problem and the independence
set problem can be reduced to the windowed PP-CEP in the same
fashion as previously shown if the time windows of private patterns
are set to infinite.

We consider the special case where the window size ∣Δ∣ is no
more than some fixed constant (or the window Δ of size ∣Δ∣ can
always accommodate all events that arrive within the time window
maxPi∈P(T (Pi))). This can in some sense be viewed as the spe-
cial case where among the input parameters listed in Table 1, both
T (Pi) and �i are small. Essentially, this allows us to consider all
possible subsequences that may appear in the window. In this spe-
cial scenario we show an approximability result for utility loss min-
imization as follows.

THEOREM 8. Let lp, the maximum length of any private pat-
tern, and ∣Δ∣, the window size, be fixed constant. Then there ex-
ists a polynomial time approximation algorithm that achieves a lp-
approximation factor for utility loss function in windowed PP-CEP
processing.

Proof Sketch. We sketch the proof of this theorem, which is similar
to that of Theorem 6. First we enumerate all possible event combi-
nations in the window of size ∣Δ∣. This is possible given that ∣Δ∣
is some fixed constant. Let pi be the probability variable of each
possible window Γi, and xji be suppression variables given Γi and
the arriving event of type ej (which is essentially the suppression
function xji = R(Γi, ej)). We can build a system of equations that
represents the transition of the probabilities between possible win-
dows Γi, using the suppression variables xji and event arrival rate
�k. That is, we set up a system of equations with xji and pi as un-
knowns for all windows Γi and event types ej . Solving this system
of equations allows us to represent the probabilities of seeing each
window Γi using xji and event arrival rate �k. Given the probabili-
ties of each window as a function of xji and �k, and the suppression

variables xji , we can write the expected utility loss L(X) as a func-
tion of �k and xji .

Similar to the argument made in Lemma 1, the utility loss func-
tion L(X) in the windowed PP-CEP is also submodular due to the
“diminishing gain” in utility loss when additional events of some
window are suppressed.

The privacy constraints can also be expressed using a covering
constrains of lp row-sparsity. Specifically, for each query Pi =
(pi1, p

i
2, . . . , p

i
n), let the event types of pik be eimk ∈ Σ, privacy

will be breached if the sequence, with mn events of types eimk , for
all such k in [1, n], has none of themn events dropped. This can be
expressed as a constraint, which is the sum ofR(Γwj , ej) can be no
less than 1, where Γwj is any possible window immediately prior to
event of type ej , or

∑
ej∈Pi R(Γwj , ej) ≥ 1, which is a covering

constraint. Also observe that R(Γwj , ej) are just the x variables
used in the utility function. While there are many possible windows
((∣Σ∣ + 1)Δ) prior to each event ej , and consequently many such
constraints, in each constraint the total number of variables are at
most n, the length of the private patterns. Given that n is no more
than lp, the row sparsity of the constrain matrix cannot be greater
than lp.

It is thus a submodular minimization problem with covering con-
straints. Using the framework of Iwata et al. [11] we can obtain a
factor lp approximation for minimizing utility loss.

5. CONCLUSIONS AND FUTURE WORK
There are a number of interesting ways in which this work can be

further extended. First, in this work we restrict the CEP query lan-
guage to be simple conjunctions of occurrences of events. Extend-
ing the complexity analysis to more expressive query languages is
of practical and theoretical interest. Furthermore, in addition to the
oblivious and the windowed PP-CEP, alternative strategies, like de-
laying the decision of dropping events for a delay window instead
of making real-time decision, may offer opportunities to further en-
hance utility. Understanding the complexity of such a quasi-real-
time approach and the utility/responsiveness trade-offs would be
interesting. In addition, in this work the event arrival process is
assumed to be an independent Poisson process. Modeling the de-
pendence of the arriving events using models like Markov chains is
also an interesting direction for future research.

6. REFERENCES
[1] Coral8: www.coral8.com.
[2] Streambase: www.streambase.com.
[3] Streaminsight:

http://www.microsoft.com/sqlserver/2008/en/us/r2-complex-
event.aspx.

[4] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In SIGMOD,
2008.

[5] M. H. Ali and C. G. et al. Microsoft cep server and online
behavioral targeting. In VLDB, 2009.

[6] N. Bansal, N. Korula, V. Nagarajan, and A. Srinivasan. On
k-column sparse packing programs. CoRR, 0908.2256, 2009.

[7] R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent
streaming through time: A vision for event stream
processing. 2007.

[8] U. Feige. A threshold of ln n for approximating set cover.
Journal of the ACM, 45 (4), 1998.

[9] S. Fujishige. Submodular functions and optimization. 2005.

[10] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and
G. Anderson. SASE: Complex event processing over
streams. In CIDR, 2007.

[11] S. Iwata and K. Nagano. Submodular function minimization
under covering constraints. In FOCS, 2009.

[12] P. Kall and S. W. Wallace. Stochastic Programming. Wiley,
1994.

[13] C. Koufogiannakis and N. E. Young. Greedy
$Δ$-approximation algorithm for covering with arbitrary
constraints and submodular cost. In Proceedings of the 36th
International Colloquium on Automata, Languages and
Programming: Part I, pages 634–652, Berlin, Heidelberg,
2009. Springer-Verlag.

[14] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik. Quantitative System Performance. Prentice Hall,
1984.

[15] H. W. Lenstra. Integer programming with a fixed number of
variables. Mathematics of Operation Research, 1983.

[16] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and
K. Claypool. Sequence pattern query processing over
out-of-order event streams. In ICDE, 2009.

[17] Y. Mei and S. Madden. Zstream: A cost-based query
processor for adaptively detecting composite events. In
SIGMOD, 2009.

[18] D. Pritchard and D. Chakrabarty. Approximability of sparse
integer programs. CoRR, 0904.0859, 2009.

[19] L. Trevisan. Inapproximability of combinatorial optimization
problems. Technical report, University of California
Berkeley, 2004.

[20] D. Wang, E. Rundensteiner, and R. Ellison. Active complex
event processing for realtime health care. In VLDB, 2010.

[21] W. White, M. Riedewald, J. Gehrke, and A. Demers. What is
“next” in event processing? In PODS, 2007.

[22] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD, 2006.

APPENDIX
A. EXPECTED QUERY UTILITY

In this section we describe how the expected query matches for
Qj over the time window T (Qj), denoted as F (Qj , �⃗), can be
estimated using arrival rates of event types, where �i is the arrival
rate of event type ei.

We first compute for each event type in Qj the expected num-
ber of event occurrences in the time window T (Qj). Specifically,
for each event type ei, the expected number of ei occurrences in
T (Qj), denoted as li, can be computed as li = �iT (Qj). Fur-
ther denote �(Qj) as the set of the types of the events that are part
of Qj , ∣Qj ∣ as the total number of events in Qj , and let n(ei) be
the number of occurrences of event type ei in Qj (for example, a
query Q = (A,A,B) would have �(Q) = {A,B}, n(A) = 2,
n(B) = 1, and ∣Q∣ = 3). Denote L =

∑
ei∈�(Qj)

li be the to-
tal number of occurrences of events relevant to Qj in time window
T (Qj).

We can then estimate the expected number of query matches for
Qj in T (Qj) as

F (Qj , �) =
(
L
∣Qj ∣

)∏ei∈�(Qj)

∏n(ei)
k=0 (li − k)∏∣Qj ∣

r=0 (L− r)
(14)

The reasoning of F (Qj , �) works as follows. Given a total of L
event occurrences in T (Qj), we only pick a total ∣Qj ∣ events to

form a query match. Let us pick the first ∣Qj ∣ events to form ran-
dom permutations and compute the probability that the first ∣Qj ∣
events produces a match. Let the first position of Qj be an event
of type ep1 . The probability of actually seeing the event that type

is
lep1
L

. For the second event in Qj , if it is also of type ep1 , the

probability of seeing that event that type is
lep1
−1

L−1
, otherwise it

is
lep1
L−1

, so on and so forth. In the end this gives us the term∏
ei∈�(Qj)

∏n(ei)
k=0

(li−k)∏∣Qj ∣
r=0 (L−r)

. Given that there are a total of
(
L
∣Qj ∣

)
such

possible positions out of L event occurrences and each of which is
symmetric, the expected count of query matches can be expressed
as the product of the two, thus the Equation (14).

	Introduction
	A sequence-based CEP model
	The data/query model
	Private patterns
	The utility function

	The oblivious PP-CEP
	A general complexity analysis
	A polynomially solvable special case
	An approximable special case
	A robustness analysis

	The Windowed PP-CEP
	Conclusions and Future Work
	References
	Expected query utility

