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Abstract

Feldman et al. (IEEE Trans. Inform. Theory, Mar. 2005) showed that linear programming
(LP) can be used to decode linear error correcting codes. The bit-error-rate performance of LP
decoding is comparable to state-of-the-art BP decoders, but has significantly stronger theoret-
ical guarantees. However, LP decoding when implemented with standard LP solvers does not
easily scale to the block lengths of modern error correcting codes. In this paper we draw on
decomposition methods from optimization theory to develop efficient distributed algorithms for
LP decoding. The key enabling technical result is a nearly linear time algorithm for two-norm
projection onto the parity polytope. This allows us to use LP decoding, with all its theoretical
guarantees, to decode large-scale error correcting codes efficiently.

1 Introduction

Feldman et al. in [4] proposed a novel decoding algorithm for low density parity check (LDPC)
codes based on linear programming (LP). They thereby pose the decoding problem in the framework
of convex optimization. They show that the bit-error-rate performance of this LP-based decoder
is comparable to iterative decoding and can correct a constant number of errors. The performance
of this decoding algorithm can accurately be established using pseudo-codewords. Upon success
the algorithm provides a certificate of correctness (ML certificate). Standard LP solvers can be
employed to solve the underlying decoding program in poly-time but do not immediately have a
distributed nature. In contrast, decoding algorithms that follow the belief propagation framework
do not have strong theoretical convergence guarantees but do posses a distributed nature. This is
a desirable trait as it leads to scalability via parallel implementations. In this work we exploit the
rich structure inherent to the LP formulation to develop efficient distributed algorithms for solving
the decoding problem. The result is a theoretically strong method for efficiently decoding modern
error correcting codes with large block lengths.

Over the years there has been significant work on decomposition methods and scalable al-
gorithms in the optimization community. One established technique is the alternating direction
method of multipliers (ADMM) (see Boyd et al. [1] and the references therein). ADMM is well
suited for distributed convex optimization. Strong convergence guarantees have been established
for ADMM. ADMM is a robust method that has successfully been applied to a number of large-scale
problems in machine learning and statistics. In this paper we apply ADMM to develop an efficient
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decoupled decoding algorithm. The feasible region of the decoding LP is stated using the so-called
parity polytope. In the ADMM framework projecting onto the parity polytope is a non-trivial step.
We develop a new characterization of the parity polytope and based on that develop a fast – nearly
linear time – projection algorithm, which allows us to solve the decoding LP via ADMM.

2 Background and Related Work

In this paper we consider a binary linear LDPC code C of length N defined by a M × N parity-
check matrix H. Each of M parity checks, indexed by J = {1, 2, . . . ,M}, corresponds to a row
in the parity check matrix H. Codeword symbols are indexed by the set I = {1, 2, . . . , N}. The
neighborhood of a check j, denoted by Nc(j), is the set of indices i ∈ I that participate in the jth
parity check, i.e., Nc(j) = {i | Hj,i = 1}. Similarly for a component i ∈ I, Nv(i) = {j | Hj,i = 1}.
Given a vector x ∈ {0, 1}N , the jth parity-check is said to be satisfied if

∑
i∈Nc(j) xi is even. In

other words, the bits assigned to xi for i ∈ Nc(j) have even parity. We say that a length-n binary
vector x is a codeword, x ∈ C, if and only if (iff) all parity checks are satisfied. In a regular
LDPC code there is a fixed constant d, such that for all checks j ∈ J , |Nc(j)| = d. Also for all
components i ∈ I, |Nv(i)| is a fixed constant. We focus on regular LDPC codes but our techniques
and results extend to general LDPC codes. Let Pj be the binary d×N matrix that selects out the
d components of x that participate in the jth check. For example, say the neighborhood of the jth
check, Nc(j) = {i1, i2, . . . id}, where i1 < i2 < . . . < id. Then, for all k ∈ [d] the (k, ik)th entry of
Pj is one, the remaining entries are zero. For any codeword x ∈ C, Pjx is an even parity vector of
dimension d for all j.

We begin by describing maximum likelihood decoding and the LP relaxation proposed by Feld-
man et al. Say vector x̃ is received over a binary symmetric channel (BSC), with cross over prob-
ability p. Maximum likelihood (ML) decoding selects a codeword x ∈ C that maximizes p(x̃ | x),
the probability that x̃ was received given that x was sent. For the channel at hand we have
p(x̃ | x) =

∏
i∈I p(x̃i | xi). Equivalently, we select a codeword that maximizes

∑
i∈I log p(x̃i | xi).

Let γi be the negative log-likelihood ratio, γi := log
(
p(x̃i|0)
p(x̃i|1)

)
. Then, γi = log

(
p

1−p
)

if x̃i = 1 and

γi = log
(

1−p
p

)
if x̃i = 0. Since log p(x̃i | xi) = −γixi + log p(x̃i | 0), ML decoding reduces to

determining an x ∈ C that minimizes
∑

i γixi. Thus, ML decoding requires minimizing a linear
function over the set of codewords.

The feasible region in the decoding LP is described using the parity polytope, PPd = conv({e ∈
{0, 1}d | ‖e‖1 is even}), the convex hull of all d-dimensional binary vectors with an even number of
1s. Note that for all j, Pjx is a vertex of PPd. The relaxation proposed by Feldman et al. enforces
that for all checks j ∈ J , Pjx ∈ PPd instead of being a vertex. Putting these ingredients together
yields the LP:

minimize γTx s.t. Pjx ∈ PPd ∀j ∈ J (1)

The underlying structure of the formulation was used by Vontobel and Koetter in [10] to develop
distributed message-passing type algorithms to solve the decoding LP. Their algorithms are based
on the coordinate-ascent method which, when matched with the appropriate scheduling determined
by Burshtein in [2], converge to the optimal solution. In Yedida et al [12] “difference-map BP” is
developed, a simple distributed algorithm which seems to recover the performance of LP decoding,
but dose not have convergence guarantees.
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In this paper we frame the LP decoding problem in the template of an ADMM problem. ADMM
is distributed, has strong convergence guarantees and, in general, is more robust than coordinate
ascent. We give the general formulation of ADMM problems and specialize it to the LP decoding
problem in Sec. 3. When developing the ADMM update steps we find that one of the steps require
projecting onto the parity polytope. Thus, in Sec. 4 we develop the efficient projection algorithm
required. We present numerical results in Sec. 5.

3 Decoupled relaxation and optimization algorithms

In this section we present the ADMM formulation of the LP decoding problem and summarize our
contributions. In Sec, 3.1 we introduce the general ADMM template. We specialize the template
to our problem in Sec. 3.2. We state the algorithm in Sec. 3.3.

3.1 ADMM formulation

To make the LP (1) fit into the ADMM template we relax x to lie in the hypercube, x ∈ [0, 1]N ,
and add the auxiliary “replica” variables zj ∈ Rd for all j ∈ J . We work with the following
parameterization of the decoding LP.

minimize γTx

subject to Pjx = zj ∀j ∈ J
zj ∈ PPd ∀j ∈ J
x ∈ [0, 1]N (2)

The alternating direction method of multiplies works with an augmented Lagrangian which, for
this problem, is

Lµ(x, z, λ) := γTx+
∑
j∈J

λTj (Pjx− zj) +
µ

2

∑
j∈J
‖Pjx− zj‖22.

Here λj ∈ Rd for j ∈ J are the Lagrange multipliers and µ > 0 is a fixed penalty parameter.
We use λ and z to succinctly represent the collection of λjs and zjs respectively. Note that the
augmented Lagrangian is obtained by adding the two norm term of the residual to the Lagrangian.
Say X and Z are the feasible regions for variables x and z respectively (induced by [0, 1]N and the
PPd), ADMM consists of the following iterations:

xk+1 := argminx∈X Lµ(x, zk, λk)

zk+1 := argminz∈Z Lµ(xk+1, z, λk)

λk+1
j := λkj + µ

(
Pjx

k+1 − zk+1
j

)
The ADMM update steps involve fixing one variable and minimizing the other. In particular, xk

and zk are the kth iterate and the updates to the x and z variable are performed in an alternating
fashion. We use this framework to solve the LP relaxation proposed by Feldman et al. and hence
develop a distributed decoding algorithm.
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3.2 ADMM Update Steps

The x-update corresponds to fixing z and λ (obtained from the previous iteration or initialized at
the beginning) and minimizing Lµ(x, z, λ) subject to x ∈ [0, 1]N . For the augmented Lagrangian
at hand the x-update simplifies to

x = Π[0,1]N

P−1 ×

∑
j

P Tj

(
zj −

1
µ
λj

)
− 1
µ
γ

 .

Here P =
∑

j P
T
j Pj and Π[0,1]N (·) corresponds to projecting onto the hypercube [0, 1]N . The latter

can easily be accomplished by independently projecting the components onto [0, 1]. Note that
for any j, P Tj Pj is a N × N diagonal binary matrix with non-zero entries at (i, i) iff i ∈ Nc(j).
This implies that

∑
j P

T
j Pj is a diagonal matrix with the (i, i)th entry equal to |Nv(i)|. Hence

P−1 = (
∑

j P
T
j Pj)

−1 is a diagonal matrix with 1/|Nv(i)| as the ith diagonal entry.
Component-wise, the update rule corresponds to taking the average of the corresponding replica

values, zj , adjusted by the the scaled dual variable, λj/µ, and taking a step in the negative log-
likelihood direction. For any j ∈ Nv(i) let z(i)

j denote the component of zj that corresponds to

the ith component of x, in other words the ith component of P Tj zj . Similarly let λ(i)
j be the ith

component of P Tj λj . With this notation the update rule for the ith component of x is

xi = Π[0,1]

 1
|Nv(i)|

 ∑
j∈Nv(i)

(
z

(i)
j −

1
µ
λ

(i)
j

)
− 1
µ
γi

 .

Component-wise the x-update reduces to a type of averaging, each of which can be done in parallel.
The z-update corresponds to fixing x and λ and minimizing Lµ(x, λ, z) subject to zj ∈ PPd

for all j ∈ J . The relevant observation here is that the augmented Lagrangian is separable with
respect to zjs and hence the minimization step splits into |J | separate problems that can each be
solved independently. This decouples the underlying algorithm making it scalable.

For each j ∈ J the update is to find the zj that minimizes

µ

2
‖Pjx− zj‖22 − λTj zj s.t. zj ∈ PPd.

Since the values of x and λ are fixed so are Pjx and λj/µ. Setting v = Pjx+ λj/µ and completing
the square we get that the desired update z∗j is

z∗j = argminz̃∈PPd ‖v − z̃‖
2
2.

Thus, the z-update corresponds to projecting onto the parity polytope.
Recall that the parity polytope PPd is the the convex hull of all d-dimensional binary vectors

with even Hamming weight. In [6] Jeroslow gives an explicit representation of the parity polytope.
Later, in [11] Yannakakis improves this to provide a quadratic (in terms of the dimension d)
representation, i.e., the total number of involved constraints in the decoding LP is quadratic in d
(see [4]). While this LP can be solved with standard solvers in polynomial time, the quadratic size
of the LP might be prohibitive in real-time or embedded decoding applications.
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In Sec. 4 we develop a new characterization of the parity polytope. We show that for all vectors
u ∈ PPd there exists an even integer r < d such that u can be expressed as a convex combination
of d-dimensional binary vectors of Hamming weight r or r + 2. Of course, any vector in the parity
polytope is a convex combination of binary vectors of even Hamming weight. Our characterization
shows that, in fact, vectors of only two weights are required. We term the lower weight, r, the
“constituent” parity of the vector. The constituent parity is trivially solved for. Based on this
representation we develop a near-linear time projection algorithm.

Roughly, our approach is as follows. Given a vector v ∈ Rd we first compute r, the constituent
parity of its projection. Let PPrd (PPr+2

d ) denote the convex hull of all d-dimensional binary vectors
of Hamming weight r (r+2). Given our characterization, projecting onto the polytope is equivalent
to determining an α ∈ [0, 1], a vector a ∈ PPrd, and a vector b ∈ PPr+2

d such that the `2 norm of
v−αa− (1−α)b is minimized. We develop an algorithm in Sec. 4.4) that, for a fixed α, determines
the optimal a ∈ PPrd and b ∈ PPr+2

d . The function mina∈PPrd, b∈PPr+2
d
‖v − αa− (1− α)b‖22 is convex

in α. Hence we can perform perform a one-dimensional line search (using, for example, the secant
method) to determine the optimal value for α and thence the desired projection. The algorithm
that, for a given α, solves for the optimal a and b, first projects the given vector onto αPPrd and
then projects the residual onto (1−α)PPr+2

d ; αPPrd is a scaled version of PPrd. Projection onto αPPrd
(cf. Sec. 4.4) can be performed in O(d log d) time using a type of reverse waterfilling algorithm.
Thus, our approach gives an efficient method for projecting onto the parity polytope.

3.3 ADMM Decoding Algorithm

The complete ADMM-based algorithm is specified below. We declare convergence when the replicas
differ form the optimal x variable by less than some tolerance ε > 0.

Algorithm 1 Given a binary N -dimensional vector x̃ ∈ {0, 1}N , parity check matrix H, and
parameters µ and ε, solve the decoding LP specified in (2)
1: Construct the negative log-likelihood vector γ based on received word x̃.
2: Construct the d×N matrix Pj for all j ∈ J .
3: Initialize zj and λj as the all zeros vector for all j ∈ J .
4: repeat
5: Update xi←

∏
[0,1]

(
1

|Nv(i)|
(∑

j∈Nv(i)

(
z

(i)
j −

1
µλ

(i)
j

)
−1
µγi

))
for all i ∈ I.

6: for all j ∈ J do
7: Set vj = Pjx+ λj/µ.
8: Update zj ← ΠPPd(vj) where ΠPPd(·) means project onto the parity polytope.
9: Update λj ← λj + µ (Pjx− zj).

10: end for
11: until maxj ‖Pjx− zj‖∞ < ε return x.

4 Projecting onto the Parity Polytope

In this section we develop our efficient projection algorithm. We set notation in Sec. 4.1. We
develop our “two-slice” representation of any point in PPd in Sec. 4.2. Given any u ∈ Rd, in
Sec. 4.3 we connect the weight of the projection of u onto PPd to the (easily computed) constituent
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parity of the projection of u onto the unit hypercube. Finally, in Sec. 4.4 we develop the projection
algorithm.

4.1 Notation

Let Pd =
{
e ∈ {0, 1}d | ‖e‖1 is even

}
. The parity polytope PPd = conv(Pd), the convex hull of

Pd. Note that v ∈ PPd iff there exist ei ∈ Pd such that v =
∑

i αiei where
∑

i αi = 1 and αi ≥ 0.
We denote the set of d-dimensional binary vectors with parity r as Prd = {e ∈ {0, 1}d | ‖e‖1 = r}
and define PPrd = conv(Prd). Given a ∈ R+ by daeeven we denote the smallest even integer greater
than or equal to a and by baceven the largest even integer less than or equal to a. We denote the
projection of a vector v onto a convex set Ω by ΠΩ(v).

4.2 Structural Characterization

Let v and w be d-vectors sorted in decreasing order. The vector w is said to majorize v if

q∑
k=1

vk ≤
q∑

k=1

wk ∀ 1 ≤ q < d,

d∑
k=1

vk =
d∑

k=1

wk .

We make use of the following Theorem (see [7] and references therein).

Theorem 1. Suppose v and w are d-vectors sorted in decreasing order. Then v is in the convex
hull of all permutations of w if and only if w majorizes v.

From this theorem we conclude that a sorted vector v ∈ [0, 1]d is in the PPsd iff

q∑
k=1

vk ≤ min(q, s) ∀ 1 ≤ q < d, (3)

d∑
k=1

vk = s. (4)

The relations follow by noting the first sum is less than q and the second sum must equal s for v
to be in PPsd.

By definition, any v ∈ PPd can be expressed as a convex combination of the vertices of PPd.
Using e(s)

i to denote the ith vertex of parity s and γ
(s)
i the corresponding non-negative weighting,

we write v =
∑d

s even

∑
i γ

(s)
i e

(s)
i . Defining µs =

∑
i γ

(s)
i we have∑

s even

µs = 1, µ ≥ 0. (5)

Summing the first q coordinates of v and defining e(s)
i,k to be the kth component of e(s)

i , we apply (3)
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to get

q∑
k=1

vk =
d∑

s even

µs

q∑
k=1

∑
i

γ
(s)
i

µs
e

(s)
i,k

≤
d∑

s even

µs min(q, s) ∀ 1 ≤ q < d. (6)

In addition, since the e(s)
i are all of weight s, when we sum over all coordinates we get

d∑
k=1

vk =
d∑

s even

µss. (7)

Lemma 1. (“Two-slice” lemma) Suppose v ∈ PPd and r is the even integer satisfying r ≤∑d
k=1 vk ≤ r + 2, then v can be expressed as a convex combination of vectors of parity r and

r + 2.

Let α, 0 ≤ α ≤ 1 be such that ‖v‖1 = αr+ (1−α)(r+ 2) = r+ 2(1−α). In the following proof
α plays the role of µr and (1− α) plays the role of µr+2. To show Lemma 1 what we need to show
is that there is a representation of any v ∈ PPd such that µs = 0 for all s except r and r + 2.

Proof. Given the definition of α and the identifications µr = α and µr+2 = (1 − α), (6) and (7)
simplify to

q∑
k=1

vk ≤ αmin(q, r) + (1− α) min(q, r + 2)

∀ 1 ≤ q < d, (8)
d∑

k=1

vk = αr + (1− α)(r + 2). (9)

By the definition of α, (9) is satisfied. In (8) the cases q ≤ r and q ≥ r+2 are rather straightforward.
For any q < r, since there are only q terms in (8) and vk ≤ 1 for all k then, e.g., min{q, r} = q
and (8) must hold. For any q ≥ r+2 we use (9) to write

∑q
k=1 vk = αr+(1−α)(r+2)−

∑d
q+1 vk ≤

αr + (1− α)(r + 2) since vk ≥ 0.
So to prove containment in PPd, it remains to verify only one more inequality in (8). Namely,

we need to show that
r+1∑
k=1

vk ≤ αr + (1− α)(r + 1) = r + (1− α).

By assumption, v and µ satisfy (5) and (6). Thus

r+1∑
k=1

vk ≤
∑
s even

µs min(s, r + 1) (10)
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must hold. We now show that the largest value attainable for the right hand side is precisely
r + 1− α. To see this, consider the linear program

maximize
∑

s even µs min(s, r + 1)
subject to

∑
s even µss = r + 2(1− α)∑
s even µs = 1

µs ≥ 0.

The dual program is

minimize (r + 2− 2α)u1 + u2

subject to u1s+ u2 ≥ min(s, r + 1) ∀ s even.

Setting µr = α, µr+2 = (1 − α), u1 = 1/2, u2 = r/2, and all other primal variables to zero satis-
fies the Karush-Kuhn-Tucker (KKT) conditions for this primal/dual pair of LPs. The associated
optimal cost is r + 1 − α. Thus, the right hand side of (10) is at least r + 1 − α, completing the
proof.

Another useful consequence of Theorem 1 is the following corollary.

Corollary 1. Let v be a vector in [0, 1]d. If
∑d

i=1 vi is an even integer then v ∈ PPd.

Proof. Let
∑

i vi = s. Since v is majorized by a sorted binary vector of parity s then, by Theorem 1,
v ∈ PPsd which, in turn, implies v ∈ PPd.

We call the even integer b‖v‖1ceven the constituent parity of vector v.

4.3 Constituent Parity of the Projection

In this section we prove a useful bound on the `1 norm of the projection of any u ∈ Rd. This will
provides us the constituent parity of the projection.

Lemma 2. For any vector u ∈ Rd, denote by ω the projection of u onto [0, 1]d and denote by π the
projection of u onto the parity polytope. The following bound holds:

b‖ω‖1ceven ≤ ‖π‖1 ≤ d‖ω‖1eeven.

Proof. Let ρU = d‖ω‖1eeven and ρL = b‖ω‖1ceven. We prove the following fact: given any y′ ∈ PPd
with ‖y′‖1 > ρU there exits a vector y ∈ [0, 1]d such that ‖y‖1 = ρU , y ∈ PPd, and ‖u − y‖22 <
‖u− y′‖22. The implication of this fact will be that any vector in the parity polytope with `1 norm
strictly greater that ρU cannot be the projection of u. Similarly we can also show that any vector
with `1 norm strictly less than ρL cannot be the projection on the parity polytope.

First we construct the vector y based on y′ and w. Define the set of “high” values to be the
coordinates on which y′i is greater than wi, i.e., H := {i ∈ [d] | y′i > ωi}. Since by assumption
‖y′‖1 > ρU ≥ ‖ω‖1 we know that |H| ≥ 1. Consider the test vector t defined component-wise as

ti =

{
ωi if i ∈ H
y′i else
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Note that ‖t‖1 ≤ ‖ω‖1 ≤ ρU < ‖y′‖1. The vector t differs from y′ only in H, thus by changing
(reducing) components of y′ in the set H we can obtain a vector y such that ‖y‖1 = ρU . In
particular there exists a vector y with ‖y‖1 = ρU such that for i ∈ H : y′i ≥ yi ≥ ωi and for i /∈ H :
yi = y′i. Since the `1 norm of y is even and is in [0, 1]d we have by Corollary 1 that y ∈ PPd.

We next show that for all i ∈ H, |ui − yi| ≤ |ui − y′i|. The inequality will be strict for at least
one i yielding ‖u− y‖22 < ‖u− y′‖22 and thereby proving the claim.

We start by noting that y′ ∈ PPd so y′i ∈ [0, 1] for all i. Hence, if for some i, ωi < y′i we must
also have ωi < 1, in which case ui ≤ ωi since ωi is the projection of ui onto [0, 1]. In summary,
ωi < 1 iff ui < 1 and when ωi < 1 then ui ≤ ωi. Combining with the fact that y′i ∈ [0, 1] we have
that if y′i > ωi then ωi ≥ ui. Thus for all i ∈ H we get y′i ≥ yi ≥ ωi ≥ ui where the first inequality
is strict for at least one i. Since yi = y′i for i /∈ H this means that |ui − yi| ≤ |ui − y′i| for all i
where the inequality is strict for at least one value of i. Overall then, ‖u − y‖22 < ‖u − y′‖22 and
both y ∈ PPd (by construction) and y′ ∈ PPd (by assumption). Thus, y′ cannot be the projection
of u onto PPd. Thus the `1 norm of the projection of u, ‖π‖1 ≤ ρU . A similar argument shows that
‖π‖1 ≥ ρL and so ‖π‖1 must lie in [ρL, ρU ]

4.4 Projection Algorithm

In this section we develop the projection algorithm. Given a vector v ∈ Rd denote by ω the
projection of v on [0, 1]d and set r = b‖ω‖1ceven. From Lemma 2 we know that the constituent
parity of the projection of v onto PPd is r.

In order to determine the projection using the representation of Sec. 4.2 we need to solve the
following quadratic program

min
α∈[0,1]

min
t∈PPr+2

d

min
s∈PPrd

‖v − αs− (1− α)t‖22

= min
α∈[0,1]

min
t∈(1−α)PPr+2

d

min
s∈αPPrd

‖v − s− t‖22, (11)

where αPPrd = {αy | y ∈ PPrd}. In other words αPPrd is the convex hull of the set {e ∈ {0, α}d |
‖e‖0 = r}.
Projecting onto PPrd: To develop our projection onto PPrd we note that, for any α ∈ [0, 1], a
vector y ∈ αPPrd if and only if

0 ≤ yi ≤ α ∀ i and
d∑
i=1

yi = αr.

The problem of projecting v onto αPPrd is thus:

min
y

1
2
‖v − y‖22

subject to 0 ≤ yi ≤ α ∀ i∑
i

yi = αr. (12)

This problem is equivalent to projecting onto the surface of a `1 ball of radius αr with box
constraints. We develop an algorithm similar to the one in [5] to accomplish this task. The key
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difference between projecting onto αPPrd and the problem considered in [5] is that the `1 norm
constraint is enforced as an inequality in [5] whereas we wish to impose an equality, i.e., we need to
determine a vector with `1 norm exactly equal to αr. Recalling that ΠΩ(v) denotes the projection
of v onto Ω in the following we use ΠαPPrd(·) and Π(1−α)PPr+2

d
(·) for conciseness.

To develop intuition for the quadratic program (12) we write down the KKT conditions. Since
the objective function and the inequality constraints are convex and the equality constraint is affine
the KKT conditions are not only necessary but are also sufficient.

We associate dual variables γi, µi and θ with the constraints and write the corresponding
Lagrangian as

L(y, µ, γ, θ) =
∑
i

1
2

(vi − yi)2 − θ

(
rα−

∑
i

yi

)
−
∑
i

µi (α− yi)−
∑
i

γiyi.

The KKT conditions state that an optimal solution, y∗ = ΠαPPrd(v), satisfies ∇L(y∗i ) = 0 which,
for the above Lagrangian, implies that for all i

vi − y∗i = θ∗ + µ∗i − γ∗i . (13)

Furthermore
∑

i µ
∗
i (α − y∗i ) = 0 and

∑
i γ
∗
i y
∗
i = 0. Hence for all i such that 0 < y∗i < α we must

have µ∗i = 0 and γ∗i = 0. In other words, for all i such that y∗i 6= 0 and y∗i 6= α, the difference vi−y∗i
is exactly the same: vi − y∗i = θ∗.

We defer the details of the algorithm along with a proof of correctness and an analysis of its
time complexity to the appendix. The algorithm guarantees that the constructed vector satisfies
the KKT conditions. The sufficiency of KKT conditions implies that the constructed vector is
optimal. The algorithm is a reverse waterfilling type algorithm consisting of two passes.

The algorithm works with three sets: the “clipped” set C := {i | y∗i = α}, the “active” set
A := {i | 0 < y∗i < α} and the “zero” set Z = {i | y∗i = 0}. Using the KKT conditions we now
argue that the largest components of v belong to C, the smallest to Z and the rest to A. First,
consider any i ∈ C and j ∈ A. We show that vi > vj . By the KKT conditions, for any i ∈ C we
can express vi as vi = θ∗+µ∗i + y∗i = θ∗+µ∗i +α where γ∗i = 0. In addition, for any j ∈ A we have
already noted that vj = θ∗ + y∗j . Then, since y∗j < α because j ∈ A and since µ∗i ≥ 0, we know
that vi > vj . Next, for any index k ∈ Z by the KKT conditions we can write vk = θ∗− γ∗i so, since
γ∗i ≥ 0 we see that vj > vk.

What the above tells us is that we should sort the input vector v component-wise in non-
increasing order at the beginning of the algorithm. If we do this the indices in C will be strictly
smaller than the indices in A, and the indices in A will be strictly smaller that the indices in Z.

However, we still need to determine the change points between sets. To see how to determine
these refer to Fig. 1. There is a lower waterfilling level θ∗ and an upper level θ∗+α. Components of
v larger than the upper level are in C and components of v smaller than the lower level are in Z. The
total waterfilling budget is consumed by the |C| terms in C and the contribution of the terms in A.
This is equal to the total areas of the shaded bars in the figure at levels θ∗ and θ∗+α. Conceptually,
our algorithm starts with θ∗ high and lowers it until the relation α|C| +

∑
i∈A(vi − θ∗) = αr is

satisfied, which follows from the fact that
∑

i y
∗
i = αr. Numerically we can test all possible sets

of break-points. As there are only 2d choices this is a linear search. Once the sets have been
determined we use the same relation α|C| +

∑
i∈A(vi − θ∗) = αr to solve for θ∗. With the index

sets and θ∗ at hand we can directly determine individual components of the projection y∗. The
algorithmic complexity is dominated by the initial sort, hence it is O(d log d).
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Figure 1: Water-filling Algorithm for determining ΠαPPrd(v)

Projecting onto PPd: We now develop an efficient algorithm to solve the quadratic program
in (11), i.e., to project a vector v ∈ Rd onto PPd. The algorithm executes a binary search over α,
for each first projecting the v onto αPPrd and then projecting the residual onto (1− α)PPr+2

d .
Let Ωα = αPPrd + (1− α)PPr+2

d , in other words, Ωα denotes the following convex set: {w+w′ |
w ∈ αPPrd, w′ ∈ (1 − α)PPr+2

d }. For a given α ∈ [0, 1] let yα = ΠΩα(v), i.e., the program stated
in (11) with α fixed. We show that Algorithm 2, below, determines yα. Finally, ΠPPd(v) =
argmin{yα}α∈[0,1]

‖v − yα‖22 gives the desired result.

Algorithm 2 Given v ∈ Rd and α ∈ [0, 1] determine ΠΩα(v)
1: Set s′ ← ΠαPPrd(v).
2: Set t′ ← Π(1−α)PPr+2

d
(v − s′).

3: Return s′ + t′.

First we make a comment on the computational complexity of the algorithm. Using the water-
filling approach the projections in the first two steps of the algorithm can be performed in O(d log d)
time. Since there are only two projections, Algorithm 2 executes in O(d log d) time.

To prove the correctness of the algorithm we begin by proving a useful fact about t′, where t′

is determined in the second step of the algorithm.

Lemma 3. For any vector t ∈ (1− α)PPr+2
d we have (v − s′ − t′)T (t− t′) ≤ 0.

Proof. Since t′ is the projection of v − s′ on (1 − α)PPr+2
d we get the desired inequality by the

projection theorem.

Next we show that for any s ∈ αPPrd we have (v− s′− t′)T (s− s′) ≤ 0. Combining this with the
previous lemma we get that (v−s′− t′)T (s+ t−s′− t′) ≤ 0 for any s ∈ αPPrd and t ∈ (1−α)PPr+2

d .

11



Hence for any u ∈ Ωα we have (v− s′− t′)T (u− s′− t′) ≤ 0. And again, by the projection theorem,
we get that s′ + t′ = ΠΩα(v).

Lemma 4. For any vector s ∈ αPPrd we have (v − s′ − t′)T (s− s′) ≤ 0.

Proof. We show that s′ = ΠαPPrd(v− t
′), that is s′ is the projection of v− t′ on αPPrd, which in turn

gives us the required inequality.
When we project v onto αPPrd we get that, for some θ1, the following conditions hold:

s′ =


0 if vi ≤ θ1

α if vi − α ≥ θ1

vi − θ1 if vi − α < θ1 < vi

. (14)

These conditions are derived from the KKT conditions of the corresponding quadratic program as
in (13) (cf. Section 4.1 in [5] for a general discussion).

The relations in (14) imply that the index set {1, 2, . . . , d} is partitioned into three parts: U ,M
and L. In the first s′i = α, in the second 0 < s′i < α, and in the third s′i = 0. This is diagrammed
in Fig. 2. Defining ∆ = v − s′, the above conditions imply that ∆i ≥ θ1 for all i ∈ U ; ∆i = θ1 for
all i ∈M and ∆i ≤ θ1 for i ∈ L.

v

s′ s′
i

= α s′
i
∈ (0, α) s′

i
= 0

≤ θ1∆ = v − s′ ≥ θ1 = θ1

U M L

Figure 2: KKT Conditions

Note that t′ = Π(1−α)PPr+2
d

(∆). Defining ρ = v−s′− t′, we have that for all indices i, j ∈M the
following equality holds: t′i = t′j . Hence, there exists λ ∈ R such that for all i ∈ M ρi = λ. This
follows from writing conditions similar to (14) for t′ and input vector ∆. In particular, for some θ2

we have the following conditions on t′.

t′ =


0 if ∆i ≤ θ2

1− α if ∆i − (1− α) ≥ θ2

∆i − θ2 if ∆i − (1− α) < θ2 < ∆i

. (15)

A useful consequence is that ρ = ∆− t′ is component-wise sorted in the same order as ∆. That is,
for ∆1 ≥ ∆2 ≥ . . . ≥ ∆d we have ρ1 ≥ ρ2 ≥ . . . ≥ ρd.

Finally we prove that s′ satisfies the KKT condition of the following quadratic program with
input vector w = v − t′. That is s′ is the optimal solution of

minimize
1
2
‖w − y‖22

subject to 0 ≤ yi ≤ α ∀ i∑
i

yi = αr.
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Note that ρ = w− s′. For all i ∈M we have by definition that s′i ∈ (0, α) and, as stated above,
ρi = λ. Since ρ is sorted component-wise we have that for all i ∈ U , ρi ≥ λ. Along similar lines,
for all i ∈ L, ρi ≤ λ. Hence s′ satisfies the KKT conditions for the above quadratic program, in
particular (13) with θ∗ = λ. Overall this implies that s′ = ΠαPPrd(w). Hence for all s ∈ αPPrd we
have (w − s′)T (s− s′) ≤ 0, which proves the lemma.

We establish the correctness of Algorithm 2 in the following lemma.

Lemma 5. Given vector v ∈ Rd and scalar α ∈ [0, 1] let s′ and t′ be the projections determined by
Algorithm 2. Then s′ + t′ = ΠΩα(v).

Proof. By definition for any u ∈ Ωα there exists s ∈ αPPrd and t ∈ (1−α)PPr+2
d such that u = s+ t.

Applying the previous two lemmas we get that (v − s′ − t′)T (s+ t− s′ − t′) ≤ 0 for any s ∈ αPPrd
and t ∈ (1− α)PPr+2

d . Therefore for any u ∈ Ωα we have (v − s′ − t′)T (u− s′ − t′) ≤ 0. Hence by
the projection theorem we get that s′ + t′ = ΠΩα(v).

We note that, for a fixed vector v, the function f(α) = ‖v −ΠΩα(v)‖22 is convex, and hence we
can perform binary search over α ∈ [0, 1] with Algorithm 2 as a subroutine and in accordance with
the level of accuracy determine ΠPPd(v). This implies the following theorem.

Theorem 2. Given vector v ∈ Rd we can determine ΠPPd(v) with δ ∈ [0, 1] precision in time
O(d log d log(1/δ)).

5 Numerical Results

In this section, we present simulation results for our ADMM decoding algorithm on two different
codes. The first code is the (155,64) LDPC code designed by Tanner et al [9]. The other code is a
(1057,244) LDPC code studied by Yedidia et al. in [12].

In Fig. 3 we plot the the error performance of ADMM decoding for the (155,64) code. The
parameters used in this simulation are: µ = 1.5, ε = 1e-4, Tmax = 200 and δ = 1e-6. For
comparison we plot the WER performance of LP decoding using the simplex method, implemented
with “adaptive” LP decoding [8], results drawn from [3]. The performance of the two decoders
matches closely.

In Fig. 4 we plot results for the (1057,244) code. We again simulated the binary symmetric
channel but, to facilitate comparison with [12], we plot the WER performance as a function of the
equivalent signal-to-noise ratio (SNR) γ. This is the SNR of a binary-modulated signal transmitted
over the additive white Gaussian noise (AWGN) channel coupled with hard-decision decoding. The
relationship between crossover probability p and γ is p = Q(

√
2γ), where Q(·) is the Q-function.

The results from [12] are labeled “E-BP-LP”, which is the decoder developed in [12] to get estimates
of LP decoding at very low WERs. See [12] for details.

In this set of simulations we investigated the convergence rate of the algorithm by testing
performance under different maximum number of iterations: Tmax = 50, Tmax = 100 and Tmax =
300. The other system parameters are µ = 2, ε = 1e-4 and δ = 1e-6. We also investigated the error
performance under different values of the µ parameter. The error performance when µ = 10 and
Tmax = 300 is very close to the performance found in [12]. Note also that in both simulations, we
accumulate more than 200 decoding errors for each data point.
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Figure 3: Error performance comparison between ADMM decoding and LP decoding for the
(155,64) LDPC code. The WER is plotted as a function of crossover probability.
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Figure 4: Error performance comparison between ADMM decoding and LP decoding for the
(1057,244) LDPC code. The WER is plotted as a function of SNR.
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We would like to emphasize two important implementational aspects of our ADMM decoder.
First, the one dimensional searching method used to optimize α has a significant impact on the
overall efficiency of the decoder. We compared the golden section search with the secant method
and results show that the secant method can be three-to-four times faster than the golden section
search. This makes the secant method our choice for the simulations. Second, parameters in the
algorithm play an important role in the decoder. These parameters include termination precision
δ used in the secant method, µ and ε in Algorithm 1 and the maximum number of iterations
Tmax allowed for ADMM. Tuning these parameters can affect both error performance and program
efficiency. We have not fully optimized all of these parameters, and our experimental results might
be further improved after careful tuning. We defer this tuning and experiments on denser codes
for future work.

6 Conclusion

In this paper we apply the ADMM template to the LP decoding problem introduced in [4]. A
main technical hurdle was the development of an efficient method of projecting a vector onto the
parity polytope. We accomplished this in three steps. We first introduced a new representation
of points in the parity polytope. We then used the representation to show that projection can be
done in a two-step manner. Finally we showed that each step consists of an efficient waterfilling-
type algorithm. We demonstrate the effectiveness of our decoding technique on two codes, on the
(155, 64) LDPC code introduced in [9], the second a (1057, 244) LDPC code studied in [12]. In those
papers the LP decoding performance of these codes was found using the simplex method as the LP
solver. We reproduced those results using our ADMM based method. In contrast to simplex-based
methods our ADMM-based method is distributed in nature and scales to larger block lengths.
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A Algorithm for projecting onto PPrd
In this appendix we show that the water-filling algorithm executes in O(d log d) time provide a
proof of correctness.

Lemma 6. Given v ∈ Rd, Algorithm 3 determines ΠαPPrd(v) in O(d log d) time.

Proof. Initially we sort v component-wise. This takesO(d log d) time. We next iteratively determine
the index sets C, A and Z. Every iteration either increments the cardinality of C or decrements
the cardinality of Z or both. The total number of iterations can be no more than 2d. Hence the
algorithm executes in time O(d log d).

To prove the correctness of the algorithm we show that the vector determined by the algorithm
satisfies the KKT conditions (13). As stated in the discussion of the projection onto PPrd in Sec. 4.4,
if we know the sets C, A and Z then computing θ∗ amounts to solving the linear equation: α|C|+∑

i∈A(vi − θ∗) = αr. Knowing the sets and θ∗ we determine the components of the projection as

y∗i =


α if i ∈ C
vi − θ∗ if i ∈ A
0 if i ∈ Z

.

This is exactly how the algorithm sets the components, and hence to prove correctness we establish
that the algorithm correctly determines the index sets.

The KKT conditions imply that for any i ∈ C we have vi−α = θ∗+µ∗i for µ∗i ≥ 0. Hence vi−α
is a lower bound on θ∗. Also for k ∈ Z we have vk ≤ θ∗. We maintain these lower bounds for θ∗ as
the variable θ in the algorithm. Given candidate sets C, A and Z and lower bound θ we compute
T , the largest `1 norm that a vector satisfying these index sets can achieve. If T < αr then we
need more components to be non-zero to meet the waterfilling budget with equality and hence we
increase the `1 norm of the tentative projection.

Note that for i ∈ C and k ∈ Z we must have vi − α ≥ vk. Say at some point c is the highest
index of the components in C and z is the lowest index of the components in Z. Then, the fact
that vector v is sorted component-wise implies argmini∈C vi = c and argmaxk∈Z vk = vz. We test
whether vc − α ≥ vk and update the sets so as to maintain the inequality and increase T .

The relevant observation is that if we fix C, A and Z and enforce all KKT conditions except
for the norm constraint then the `1 norm of the projection is a linear function of θ. Moreover the
`1 norm increases continuously as C, A and Z are updated one index at a time. This implies that
once T goes above αr we know that we have overshot, should exit the loop, revert the last update,
and compute θ∗. The resulting vector y satisfies the required KKT conditions and hence it is the
required projection.
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Algorithm 3 Given v ∈ Rd and α ∈ [0, 1] determine its projection on αPPrd
1: Sort components of v in decreasing order, such that v1 ≥ v2 ≥ . . . ≥ vd
2: Initialize clipped, active and zero index: c = 0, a = 1 and z = 2 {We maintain the invariant

that the clipped set C contains indices 1 through c, initially it is φ, active set A contains c+ 1
to z − 1 and the zero set Z contains z to d}

3: Initialize active sum S = v1 {We enforce S =
∑

i∈A vi }
4: Initialize θ = v1 {We maintain a lower bound for θ∗}
5: repeat
6: if z ≤ d then
7: if vc+1 − α > vz then
8: Update c← c+ 1 and S ← S − vc {This corresponds to adding an index to the clipped

set C and hence decrementing the active set}
9: Set θ = vc − α

10: else if vc+1 − α < vz then
11: Update z ← z + 1 and S ← S + vz−1 {This corresponds to removing an index from Z}
12: Set θ = vz−1

13: else
14: Update z ← z + 1, c← c+ 1 and S ← S − vc + vz−1 {We update both C and Z}
15: Set θ = vz−1

16: end if
17: else
18: Update c← c+ 1 and S ← S − vc
19: Set θ = vc − α
20: end if
21: Set total sum T = αc+ S − θmax{z − c− 1, 0}
22: until T < αr

{We revert the last change to bring down the sum T}
23: if the last update incremented c then
24: Update S ← S + vc and c← c− 1
25: else if the last update incremented z then
26: Update S ← S − vz−1 and z ← z − 1
27: else if both c and z were incremented in the last update then
28: Update S ← S + vc − vz−1, c← c− 1 and z ← z − 1
29: end if
30: if z > c+ 1 then
31: Set θ∗ = αc+S−αr

z−c−1 {With non-empty active set we can compute θ∗}
32: Assign components yi = α for 1 ≤ i ≤ c, yj = vj − θ∗ for c < j < z and yk = 0 for z ≤ k ≤ d
33: else if z = c+ 1 then
34: Assign yi = α for 1 ≤ i ≤ c and yk = 0 for z ≤ k ≤ d
35: end if
36: Return y
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