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Abstract. The growth of the internet provides opportunities for coop-
erative computation, it also requires development of protocols that can
accomplish this task among mutually untrusting parties. The aim is to
develop methods which ensure both the correct evaluation of the func-
tion and privacy of individual inputs. Multiparty Computation protocols
help to achieve the aim without using a trusted third party.

In this paper we consider the problem of context-free language recog-
nition in a two-party setting. Alice has the description of a context-free
language L while Bob has a secret string whose membership in L is to be
checked. Neither Alice nor Bob is ready to disclose his/her input to the
other. Here we propose a protocol which accomplishes secure two party
context-free language recognition. The novelty of this paper lies in the
use of formal languages based approach for multiparty computations.

1 Introduction

The development of computer networks and consequently the Internet has
opened the wide area of distributed computation. Internet allows computers
from far off places to interact and opens possibilities that were unknown before.
A scenario is conceivable where some parties want to compute a function over
data which is distributed among the parties, but none of the parties want to dis-
close their private data. A naive solution would be to send the data to a trusted
party who performs the computation and returns the results to respective par-
ties. However a trusted agency may not be available or affordable. In such a case
we can use cryptographic techniques of Secure Multiparty Computation.
Secure multi-party computation (MPC) was introduced by Yao in [I]. It deals
with the problem of securely computing an arbitrary function f over the private
inputs of n players. Here security means guaranteeing the correctness of the
output as well as the privacy of the player’s inputs, even when some players
cheat. Assuming we have inputs x1, x2, . ..x, where player i knows z;, we want
to compute f(x1,xa,...Tn) = (Y1,Y2,---Yn) such that player i is guaranteed to
learn y;, but can get no more information. A number of cooperative computation
problems have been shown to be plausible, in a secure way, using multi party
computational techniques [2,[5]. Generic solutions have been developed [3L8] and
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much effort has been directed towards reducing the communication complexity
[7] and round complexity [6] of these solutions.

In this paper we are concerned with Context Free Language Recognition
(CFLR) in a two-party setting. In a traditional setting the problem of CFLR is
to determine the membership of a string w in a context free language L. In the
two party setting the problem remains the same but the inputs are distributed
among two different parties, Alice and Bob. Now Alice has a private context free
grammar G while Bob has a private string w. Bob wants to check the mem-
bership of w in L(G), the language generated by G. Also neither of the two is
willing to disclose his/her private input to the other.

CFLR is an interesting problem and has various applications. For instance,
the problem of checking the syntactic correctness of a program can be posed as
CFLR. Also pattern matching and recognition queries can be posed as CFLR.
Numerous other decision problems can be solved using CFLR. The basic method-
ology is to describe some class of objects using a context free grammar G. When
a new object is encountered, we determine it’s membership in L(G). This tells
us whether the new object belongs to the same class or not. A solution for the
two-party version of CFLR can be used to solve the above problems in a secure
two-party manner.

It is the first time that a formal language based approach has been used
for solving multiparty computation problems. The completeness of multiparty
protocols has been shown in [2]. The solution given in [2] can be used to solve the
membership question for recursive languages, i.e. the languages recognized by
a turing machine. Since context free languages are a proper subset of recursive
languages, CFLR can also be solved using such a method. However, the protocol
that we present here generates a more efficient solution of membership question
for context free languages than promised by the generic approach. This is because
our solution utilizes the specific properties of context free grammars, used in
description of a context free language.

2 Preliminaries

In this section we give the notation and definitions of the terms used in this
paper. Most of the content of this section from basic formal language theory.
We have endeavored to use standard notations throughout. A superscript on a
vector, such as S™, denotes the m'" bit of it. Also |V| represents the size of
set V.

Formal Language Basics. A grammar G = (V,T, S, P) is said to be context-
free if all its productions are of the form A — x where A € V and z € (VUT)*.
Here V is the set of variables, T is the set of terminals, S is the starting symbol
and P are the production/rewrite rules. A language L is said to be context-free
if and only if there exists a context-free grammar G, such that L = L(G). Here
L(G) denotes the set of strings that can be produced by the grammar. This can
also be written as “L = {w € T*|S =* w}?” where the symbol ‘=*’ stands for
‘derives’.
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Given a context grammar G and a string w the problem of CFLR is to de-
termine the answer to the following question "Does w € L(G)?”. We now give a
definition for the two-party version of CFLR.

Secure Two-Party Context Free Language Recognition Protocol. Alice
and Bob, determine whether Bob’s secret string w is present in Alice’s secret
Context Free Language L(G). At the end of the protocol the following properties
must hold.

— Bob knows whether we L(G)

— Alice gains no information about w

— Bob gains only as much information about L(G) as can be determined from
the output, i.e. whether w is accepted by L(G) or not.

Solving Context Free Language Recognition: The CYK Membership
Algorithm. There are many existing algorithms for solving CFLR. One of the
standard methods is the CYK membership algorithm [I1]. It’s time complexity is
cubic in the size of the input. There exist some efficient (linear time) membership
algorithms that can solve some restricted versions of CFLR. We selected CYK
for it’s generality. The CYK algorithm requires the context free grammar to be
converted to chomsky normal form. A context free grammar G = (V,T, S, P)
is in chomsky normal form if all it’s productions are of the form A — BC
or A — a where A,B,C € V and a € T. Any context-free grammar can be
written in chomsky normal form following a straightforward set of rules [IT].
The CYK algorithm first converts a given grammar in CNF and then utilizes it
to determine membership. We now describe the CYK algorithm.

Assume that we have a grammar G = (V, T, S, P) in Chomsky Normal Form
and a string w = wyws...w,. We define sub-string w;; = w;...w; and subsets
of V, S;; = {A €V : A =" w;}. Clearly w € L if and only if S € Si,.
To compute S;;, observe that A € S;; if and only if G contains a production
A — w;. Therefore S;; can be computed for all 1 < i < n by inspection of w and
the productions of the grammar. To continue notice that for j > 4, A derives w;;
if and only if there is a production A — BC, with B =* w;;, and C =" wi41;
for some k with ¢« < k < j. In other words

Sij = U {A: A— BC, with B € Sy,,C € Spy1;} (1)

ke{ii+1,....5—1}

An inspection of indices show that the above equation can be used to compute
all the S;;s if we proceed in the sequence

1. Compute 5117522,...,Snn
2. Compute 5127523,...,Sn_1n
3. Compute 5137 5247 ceey Sn,Qn

and so on.
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Cryptographic Assumptions and Oblivious Transfers. The security of
our protocol is based on oblivious transfers. Oblivious Transfers are a basic
cryptographic primitive that has proved necessary for many of the protocols [10].
It allows multiple parties to get individual secrets from a single seller. There are
different definitions of oblivious transfers [4[12]. In it’s most primitive form, the
sender has an input (by,bs, ..., b;) and the receiver has an input ¢ € {1,2, ..., k}.
The goal is to transfer the i*" bit to the receiver without letting the receiver
obtain knowledge of any other bit and without letting the sender obtain the
knowledge of the identity of the bit required by the receiver. Assuming the
existence of trapdoor permutation, a protocol for the above functionality can be
constructed as given in [I2]. The above version of Oblivious transfer functionality
is a main ingredient of our construction. The existence of trapdoor permutation
[12] is the only assumption we make for security of our protocol.

3 The Protocol

Our protocol is a secure two-party version of the CYK Algorithm. Observe that
if we can securely compute S;; for 1 < i < n and provide a secure protocol to
compute Si; given Sj, and Sk41; where ¢ < k < j we can use them to carry out
CYK in a two party setting.

Let the context free grammar with Alice be G = {V,T,S, P} where V =
", Vo, .. Viy}, T = {11, Tz, ... Tiz|}, S is the starting symbol and P is the
set of rewrite rules in chomsky normal form. The sets S;;, as defined in (1),
are maintained as a |V length 0/1 vector I'j; where I = 1 if and only if
Vi € S;j. Note that here (and in the remainder of the paper) a superscript m
denotes the m*" bit of the corresponding vector. These vectors are shared by a
simple xor scheme such that if A;; is Alice’s share and B;; is Bob’s share, then
Aij ® Bij = Iyj. The I'ys in the first step are constructed using a l-out-of-n
Oblivious Transfer protocol as shown next.

Alice builds up a vector S; for each of the terminal ¢. S{™ is 1 if and only if
Vi — t. She also chooses a random 0/1 vector A;; for each 1 < ¢ < n which
forms her share of Ij;. A;; when xored with the S; for each t € T, yield a set
of vectors By; = {B%, B2, ... B;"'}. Bob is allowed to select B from this set
(depending upon his character w;) using 1-out-of-|T| oblivious transfer protocol.
This forms his share of I7;;. Thus Si1, S22, ..., Spyn are shared between Alice and
Bob.

The protocol now proceeds in phases and after each phase the new I5;, as
given in the sequence for CYK, are computed. Shares of I3; can be computed
provided I, and I, for all kK € 4,74 1,..5 — 1 have already been shared. For
each production of the form Vx — V3 Vz Alice and Bob co-operatively update
the z'" bit of shares A;; and Bj;. Let the new shares be called Afj”ew and

B, Then the z'" bit of the updated share can be written as

B = ([(A}, ® Bjj) A Ay @ Biyyy)) VAT @ BE)) @ r? (2)
A‘IATLE'UJ

e = 7%, where 7 is chosen randomly by Alice (3)
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Equations (2) and (3) are the same as (1), except for the notations. (A%, & B})
gives whether V,, € Sj; while (47 ; ® B, ;) gives whether V, € Sy11;. If both
the above expressions evaluate to true I;; must be one and otherwise it should
remain as it is, as is emphasized by oring the above expression with [A;”] @ BZ"”]]
Finally, we xor it with a random term r# chosen by Alice, which forms her
private share(Aj;) for I7.

Equations (2) and (3) can be calculated using the general circuit evaluation
protocol [3]. Finally, Alice and Bob check out whether I'j,, contains the starting

symbol S or not.

3.1 Initialization Step

1. Alice prepares vectors S; for each ¢ € T such that Sf = 1 if and only if
Vi — t.

2. Alice prepares random |V| length vectors A;; for each 1 < i < n. These form
her share of ;.

3. Alice constructs a set of vectors BJ = {B;;-7 B;} ..
j€{1,2,..,n} where B}: = S;, @ Ajj.

4. For each j € {1,n}, Bob selects a vector B;U]:j from B7 using oblivious transfer
protocol. This forms his share Bj;.

5. Thus Alice and Bob share the initial I'j; as A;; and Bj; for j € {1,n}. This
completes the initialization step.

tiT)
B} for all

3.2 Computing I},

We now describe the crux of the protocol, the computation of I',,. We give the
description in pseudocode as it is easier to understand and more expressive this
way.

1. for d=1 to n-1 do

2. fori=1ton-ddo

3. j=itd

4. fork=1itoj-1do

5. for each Production z — yz with Alice do

6. Alice chooses a random bit 74

7. Alice and Bob use secure circuit evaluation protocol to compute
B = ([(Af, ® BR) A (Af 1, ® Biyyy)l VAL @ BE)) @t (4)

A;:jnew — 7,,A (5)
8. endfor
9. endfor
10. endfor

11. endfor
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3.3 Final Step

Using the initialization step and then computing each of I';; as above, Alice and
Bob obtain the shares for I,. At this point Alice sends her share of the bit
corresponding to the starting symbol S from Ay, to Bob. Bob xors it with the
corresponding bit in his share. The result tells Bob whether S € S3,, and hence
whether w is generated by Alice’s grammar or not.

4 Security

We prove the security of our protocol in the semihonest model with passive
adversary. Such a protocol can be compiled into a protocol secure against a
dishonest party and in presence of malicious adversary [9] using verifiable secret
sharing and zero-knowledge proofs [2]. It is a standard procedure to construct a
secure protocol in semihonest model and then convert it to a secure protocol in
malicious model. However such a conversion increases the communication and
computation cost of the protocol. Below we give an informal proof of security
for the proposed protocol.

The protocol consists of three distinct phases the initialization step, the up-
dation step and the final step. Without loss of generality we can consider the
case where the language L(G) consists of only two alphabets 0 and 1. In the
initialization step, Alice prepares B;)j and lej for j € {1,2,...,n}. One of this
is selected by Bob based on his input w; using 1-out-of-2 oblivious transfer pro-
tocol. If oblivious transfers were carried out correctly, there is no information
gain for Alice as she doesn’t know whether Bob has chosen Bj; or B};. Also Bob
remains ignorant of the variables in S;; as Bj; has been xored with a random
vector A;; which forms Alice’s share. Hence there is no gain of information for
either parties in the initialization step.

The updation step is based on the secure circuit evaluation protocol. During
the computation of the circuit no information is revealed to either party. Finally
the result of the evaluation BJ;"“" is revealed only to Bob. But this is xored
with a random bit 4, known only to Alice. Hence the information content in
B is nil for Bob.

In the final step Alice sends the bit corresponding to S (starting symbol) in
her share Ay, to Bob. This transfer doesn’t increase her information in any way.
Bob then xors this bit with the corresponding bit in his share to obtain one bit
of information namely whether w € L(G). Hence during whole of the protocol
the information gained by Bob is one bit.

Other Security Issues. One can say that after the protocol, Alice knows the
length of Bob’s string while Bob knows the exact number of variables, produc-
tions in Alice’s automaton. This gives them some idea of the complexity of the
other’s input. However such information can easily be hidden. Alice can add
some dubious variables and productions in G that do not affect the language
L(G) generated by G. Bob can also add some random symbols after/before his
actual input string. In such an instant Alice allows Bob to choose one of the bits
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corresponding to S in A;; for all 1 <4, j < n using 1-out-of-N oblivious transfer
protocol. Bob will choose the bit in A;;, w;; being his actual string.

5 Analysis

The number of communication rounds required is O(|w|?) for each of S;;. Also
for the calculation of each S;; the communication required is O(|P|) where |P|
gives the number of productions in the grammar. Each round requires O(|V])
communication for carrying out 1-out-of-|V| oblivious transfers. Hence the total
communication complexity of the protocol is O(|w|?| P||V|). Thus the multiparty
version of CYK is slower by a factor of O(|V]).

In an implementation over a data network, instead of running the protocol in
a step by step manner, we can run steps 4 to 9 at once. Hence all the updates
are made to the vectors concurrently. We can parallelize these steps because
they are independent from each other and can be carried in any order we please.
Taking network latency into account, this gives performance benefits over a
network as sending chunks of data is more efficient than sending it bit by bit.
The round complexity of the protocol is reduced to O(|w|) without affecting
the communication complexity. Thus the actual running time of the protocol is
reduced.

6 Applications

A two-party CFLR, as discussed in this paper, can be used for providing web
services over internet. It can also help in protecting intellectual property for
both the parties. Consider a case where Alice has discovered the context free
grammar that can accurately describe a disease. Using the protocol she can keep
the discovery to herself while making it available for use through a web service.
The interesting part of such a service would be that the patient can be diagnosed
without revealing his syndromes. Also the result of the diagnosis would be known
only to him. Such a protocol can be useful in a social scenario.

Another use for the protocol can be for providing a compilation service over
the network where a user can submit his program to get it syntax checked. Our
protocol is stricter than required for this case. In such a case the CFG is public
and it is only the input that needs to be hidden.
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