
Fold removal in CT Colonography: A
Physics-Based Method

Padmavathi Sundaram1,2??, David S. Paik1, Eftychios Sifakis3, Christopher F.
Beaulieu1, and Sandy Napel1

1 Department of Radiology, Stanford University, Stanford, CA 94305
2 Department of Electrical Engineering, Stanford University, Stanford, CA 94305

3 Department of Computer Science, Stanford University, Stanford, CA 94305

Abstract. Computed Tomographic Colonography (CTC) produces 2-d
and 3-d images of the colon using computed tomography (CT). The main
goal of CTC is to detect small lumps on the colon surface called polyps,
which are known to be precursors to colon cancer. Radiologists are there-
fore interested in exploring the inner surface of the colon to detect polyps.
Polyps may be detected by visual inspection of colon CT images and also
by using computer-aided detection. The colon surface is abundant with
folds that occlude polyps during visual inspection and also contribute
to false positives in computer-aided polyp detection. Removal of folds
should therefore improve visualization and could also improve polyp de-
tection sensitivity. In this paper, we present a physics-based method to
unfold the colon surface. The output of our algorithm is a surface in
3-d, with the folds flattened out, leaving only polyps behind. Prelimi-
nary tests of our method in mathematical phantoms and actual patient
data show reductions in fold height and curvature ranging from 54.4% to
70.3%, and 36.3% to 86.1% respectively. Polyp size and curvature were
reduced by only 0 to 16%, and 0 to 20%, respectively. Our method, thus,
demonstrates potential for improving both visual and computer-aided
detection of colonic polyps from CTC examinations.

1 Introduction

Colon cancer is the second leading cause of cancer deaths in the United States,
with over 100, 000 new cases and over 55, 000 deaths expected in 2005[1]. Tradi-
tionally, the colon surface is examined using colonoscopy, which involves the use
of a lit, flexible fiberoptic or video endoscope to detect small lumps on the colon
surface called polyps. Polyps are known to be precursors to colon cancer[2, 3].

Computed Tomographic Colonography (CTC), under development as a less
invasive alternative to colonoscopy, produces 2-d and 3-d images of the colon
using CT[4]. In CTC, radiologists examine hundreds of 2-d images and/or 3-d
computer graphics renditions of the colonic surface to detect polyps.

Three dimensional surface images rendered from an internal perspective (“vir-
tual fly-through” or “virtual colonoscopy”) appear similar to those produced
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Fig. 1. Virtual dissection view of the colon. The colon surface is mathematically cut
and flattened, enabling comprehensive inspection. Note the abundance of vertically-
oriented haustral folds.

by conventional colonoscopy. However, navigation through a tortuous, complex
structure like the colon is challenging and, frequently, portions of the colonic
surface may be missed, leading to incomplete examinations. Cylindrical and pla-
nar map projections have been proposed to increase the viewable surface during
fly-through, but the presentation format is unfamiliar and the physician may
still not have a complete view[5, 6].

An alternative approach is to mathematically cut the tubular colon surface
and lay it out flat for a comprehensive inspection, as shown in figure 1. In order
to do this, planar cross-sections are computed orthogonal to the central path
of the colon. The surface is then unfolded using a polar-to-Cartesian coordinate
transformation[7, 8]. However, in high curvature portions of the path, the surface
may either be under- or over-sampled, causing surface features to either appear
multiple times or be missed completely. Various methods have been proposed
to correct for problems caused by non-uniform sampling[9–11]. But, no matter
which method is used, the output is abundant in haustral folds, which occlude
polyps and make it difficult for both, visual and computer-aided detection of
polyps.

In this paper, we present a method to straighten the colon and flatten it. Our
output is a 3-d surface that can be displayed in a single image. In order to flatten
the colonic surface, we simulate stretching of the surface using a quasistatic finite
element model. Since the folds are highly directional, stretching the surface in
a direction normal to the direction of the folds, results in attenuating the folds,
leaving only largely undistorted polyps. The key contribution of our work is
that, unlike the other approaches, the flattened view generated by our algorithm
does not contain folds. This physics-based manipulation of the colonic surface
to attenuate folds, while preserving polyps, is a novel paradigm, and has the
potential to change the way colon CT data is visualized and interpreted.

The rest of this paper is organized as follows. Section 2 has 3 parts. We
begin by describing the finite element model in section 2.1. In section 2.2, we



describe the setup of our simulation system. Section 2.3 describes the quasistatic
assumption made in the simulation. This implies that inertial effects were ne-
glected, ie. the system simulated had zero acceleration, resulting in a zero mass
effect. This assumption is important to ensure a spatially invariant response to
the stretching forces. In section 3, we describe experiments that we performed
in simulated and actual patient data and report results quantifying the behavior
of our method. Section 4 discusses the limitations of this work, possible future
research, and conclusions.

2 Method

In order to simulate stretching of the colon surface, a physics-based model must
first be selected. We chose between mass spring models and finite element models
(FEM). In section 2.1, we explain our model choice.

2.1 Choice of a physics-based model

We start by creating a triangulated isosurface at the air-mucosa boundary from
the CT image data. Our algorithm is independent of the triangulation, so any
desired meshing scheme may be used. The meshes used in this work were created
using the scheme described in [12], but applied to triangle meshes.

In order to physically manipulate the mesh, a physics-based model must be
imparted to it. We chose between mass spring models and FEMs, which have
been both used for deformable modeling in graphics[13, 14]. Mass spring models
are easy to formulate but setting the spring constants correctly can be extremely
difficult. Also, the global mechanical properties are dependent on mesh topology,
which may, in turn, generate undesired anisotropy. Since our algorithm requires
imparting global material properties to the surface, we chose the finite element
model over the mass spring system.

The main difference between the mass spring system and the FEM is the
manner in which the nodal forces are calculated. In the FEM, we write out
constitutive equations for the material describing the relationship between the
strain (deformation measure) and the stress (internal forces). The forces at the
mesh nodes are then computed using a discretized version of the constitutive
equations.

In selecting a constitutive model, we were looking for a specific qualitative
material behavior. The exact quantitative model was less important. In order
to flatten folds but not polyps, it is desirable for the material to be soft under
very small strains, but become very stiff under large strain conditions. We used
a neo-hookean elasticity model for the surface being stretched[15]. A nonlinear
elasticity model was preferred over a linear elasticity one since we are dealing
with large deformations.

The two important material properties that needed to be set were Young’s
modulus and Poisson’s ratio. Young’s modulus is the ratio of longitudinal stress
to longitudinal strain (with the force applied in the longitudinal direction), and



represents the stiffness of the material and was set to a high value (50, 000).
Basically, the material was stiff enough to allow the fold to flatten while the
polyps remained undistorted. Poisson’s ratio is the ratio of the axial strain to
the longitudinal strain in response to a longitudinal stretching force which, in all
common materials, causes them to become narrower in cross-section while being
stretched. We wanted to minimize this contraction, and so we set the Poisson’s
ratio to a very small positive number (1× 10−10).

These material properties were selected so as to result in a desired behavior
when the stretching forces were applied. It must be emphasized that the goal
here was not to create a realistic simulation of the behavior of actual mucosal
tissue when stretched. Rather it was to selectively flatten colonic folds while
leaving polyps undistorted using a physical system to evolve the surface.

In order to simulate stretching of the surface, (external) forces are applied to
the ends. We then need to compute for the positions of the mesh nodes at each
time step of the simulation. The new positions are a function of the internal
forces, which are computed using the constitutive equations and the surface
deformation. In the next section, we describe our simulation system.

2.2 System Description

Our simulation system treats the triangulated colon surface as a particle sys-
tem[16]. Each node in the mesh is a particle having mass, position, velocity, zero
spatial extent and responding to forces.

The motion of a single particle is described by Newton’s second law using

f = ma.

Since a = v̇ and v = ẋ, this second order equation may be broken down into
two first order equations:

ẋ = v

v̇ =
f
m

,

where x, v and f are 3-vectors and denote the position, velocity and the force
at a single node in the mesh.

To describe the evolution of the complete deformable surface, we concatenate
the positions, velocities and the aggregate forces of all the nodes in the mesh
into single n-vectors, where n is the number of nodes in the mesh. Thus we get,

ẋ = v

v̇ = M−1f(t,x,v)

where M represents the diagonal mass matrix.
The force f at each node is the sum of the internal and external forces acting

on that node. The external forces are the user-supplied time varying input to
the system. In our case, the external forces are the pulling forces applied to the



ends of the surface being stretched. Internal forces represent the resistance of
the material to the external forces applied.

So far, we have discussed the simulation system and the computation of in-
ternal forces as a function of deformation and the material constitutive model.
Ideally, the response to the stretching forces should be spatially invariant. Other-
wise, polyps located at different spatial locations will be distorted (stretched) by
different amounts. In order to achieve this, we assume that the mesh is zero mass,
thus giving rise to zero acceleration. This assumption is called the quasistatic
assumption, since it neglects inertial effects and solves for static equilibrium at
each time step. We describe this in more detail in the next section.

2.3 Quasistatic assumption

In order to preserve polyps while flattening folds, it is essential that the response
to the stretching forces be spatially invariant. Otherwise, structures closer to the
edges being pulled will be more distorted than those farther away. In order to
achieve this, we neglect inertial effects. This implies that the system has zero
acceleration and zero mass, giving,

f(t,x,v) = 0. (1)

The quasistatic assumption[17] satisfies equation 1 by enforcing force equi-
librium at every time step, implying

f(xk+1) = f(xk +4xk) = 0.

Therefore at every time step, a linear system must be solved; for this we used
the Newton-Raphson solver,

f(xk +4xk) ≈ f(xk) +4xk
∂f
∂x

∣∣∣∣
xk

= 0.

We then compute the new nodal positions xk+1 = xk +4xk, by computing 4xk

from,

−4xk
∂f
∂x

∣∣∣∣
xk

= f(xk).

Note that at every time step, we need to invert the global stiffness matrix, ∂f
∂x ,

which is constructed from the contributions of the element stiffness matrices that
account for contributions from individual triangles.

To tie the stiffness matrix ∂f
∂x , to the constitutive model of the material, note

that the constitutive model, which typically relates stress to strain, can also be
expressed as a relationship between force and strain energy. So,

f = −∂ψ

∂x

where ψ denotes the strain energy.



To summarize, we have described our simulation framework and discussed the
physics-based model used. In the next section we present results quantifying the
behavior of our method. We also present an example illustrating the importance
of using the quasistatic assumption.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Results from phantom and actual patient experiments: Each row shows steps
in the deformation of a phantom or actual patient data. Figures (a), (b) and (c) show
a phantom with a polyp on a flat portion in addition to one on top of a fold, while
figures (d), (e) and (f) show a polyp on a flat portion, as well as one on the side of the
fold. Figures (g), (h) and (i) show a subvolume of actual patient data being stretched.
In all cases, folds were attenuated and relatively undistorted polyps remained.

3 Results

3.1 Results from phantom data

We created mathematical phantoms using MATLAB 7.0.1, with folds and polyps
modeled as half sine functions and hemispheres, respectively. Figures 2(a) and



(a)

(b)

Fig. 3. Illustration of what can go wrong if quasistatic assumption is not made. Com-
paring single time points in the simulated stretching of a phantom with polyps and
folds, with inertial effects neglected in (a), but not in (b). In (b), polyps at different
spatial locations were distorted by different amounts. This is undesirable.

2(d) show two of the phantoms we created, illustrating folds, polyps on flat
regions and polyps on folds. We measured the curvature and size of polyps
(diameters) and folds (height) before and after simulated stretching.

For the phantom in figure 2(a), the height and curvature of the fold were
reduced by 70% and 86.1%, respectively. The polyp on top of the fold was dis-
torted in the stretch direction causing an increase in its maximum width by 16%,
and a decrease of 20.2% in its maximum curvature. The size and the curvature
of the polyp on the surface remained unchanged.

The phantom in figure 2(d) has a polyp on the surface and on the side of the
fold. The height and curvature of the fold were reduced by 70.3% and 73.5%,
respectively. The sizes and curvatures of both polyps remained unchanged.

Finally, figure 3 illustrates the importance of the quasistatic assumption. If
inertial effects are not neglected, polyps at different spatial locations will be
distorted by different amounts, as shown in the figure 3(b).

3.2 Results from patient data

Figure 2(g) shows stretching of a subvolume of actual patient data, acquired
under our IRB during a research CTC scan at our institution, containing a 6.9
mm polyp. The height and curvature of the fold were attenuated by 54.4% and
36.3%, respectively. The polyp was distorted in the stretch direction causing an
increase of 10% in its maximum width, and a decrease of 10% in its maximum
curvature.

4 Discussion

There are several aspects of the current algorithm that need further work. The
stopping criterion for the simulation is currently not automated. We are working



on incorporating a strain-based stop criterion into the algorithm. Also, all the
examples shown have folds that extended along the entire width of the surface.
Individual haustral folds typically subtend about 1

3 of the luminal circumference.
We are working on modifying our algorithm to handle these cases.

In conclusion, we presented a method to straighten and flatten the colonic
surface as acquired using cross-sectional imaging using a physics-based approach
employing a quasistatic finite element model. The output of the algorithm is a 3-
d surface with the surface folds flattened and with polyps relatively undistorted.
Removal of folds not only reduces clutter in visualization but can also reduce false
positives in computer-aided polyp detection. The results of this preliminary work
give a proof of concept; further studies on real patient data sets are required.
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