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We present a numerical method for the variable coefficient Poisson equation in three-
dimensional irregular domains and with interfacial discontinuities. The discretization
embeds the domain and interface into a uniform Cartesian grid augmented with virtual
degrees of freedom to provide accurate treatment of jump and boundary conditions. The
matrix associated with the discretization is symmetric positive definite and equal to the
standard 7-point finite difference Poisson stencil away from embedded interfaces and
boundaries. Numerical evidence suggests second order accuracy in the L1-norm. Our
approach improves the treatment of Dirichlet and jump constraints in the recent work of
Bedrossian et al. [1] and introduces innovations necessary in three dimensions. Specifically,
we construct new constraint-based Lagrange multiplier spaces that significantly improve
the conditioning of the associated linear system of equations; we provide a method for
cell-local polyhedral approximation to the zero isocontour surface of a level set needed
for three-dimensional embedding; and we show that the new Lagrange multiplier spaces
naturally lead to a class of easy-to-implement multigrid methods that achieve near optimal
efficiency, as shown by numerical examples. For the specific case of a continuous Poisson
coefficient in interface problems, we provide an expansive treatment of the construction of
a particular solution that satisfies the value jump and flux jump constraints. As in [1], this
is used in a discontinuity removal technique that yields the standard 7-point stencil across
the interface and only requires a modification to the right-hand side of the linear system.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Elliptic interface problems such as
�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X n C; ð1Þ
½u� ¼ aðxÞ; x 2 C; ð2Þ
½bru � n̂� ¼ bðxÞ; x 2 C; ð3Þ
u ¼ pðxÞ; x 2 @Xd; ð4Þ
bru � n̂ ¼ qðxÞ; x 2 @Xn; ð5Þ
. All rights reserved.
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have a wide variety of applications in physics and engineering, and naturally arise when two dissimilar materials interact
across a thin interface. Common examples include immiscible, incompressible fluids in contact and phase change problems.
The interface C is generally a co-dimension one closed curve (dimension 2) or surface (dimension 3) that divides the domain
into an interior region X� and an exterior region X+ such that X ¼ X� tXþ t C � Rd (d = 2 or 3, typically). The scalar coef-
ficient field b and the source term f can exhibit discontinuities across C, but have smooth restrictions br, fr to Xr, r 2 {�, +}.
We let n̂ðxÞ denote the outward unit normal, whether to X� at a point x 2 C or to X at a point x 2 oX; and define
½v �ðxÞ :¼ vþðxÞ � v�ðxÞ :¼ lim�!0þv xþ �n̂ðxÞð Þ � lim�!0þv x� �n̂ðxÞð Þ as the jump of the quantity v across the interface C.
The relevant physics generally determine the jumps in the solution (2) and in the flux (3), as well as the boundary conditions
on oX. Unless stated otherwise, we assume the surfaces C, oX are smooth.

Due to irregular geometry of the boundary and/or interface in many physical phenomena, a natural approach to the
numerical approximation is the finite element method (FEM) with unstructured meshes that conform to the geometry of C
and oX [2–9]. However, meshing complex interface geometries can prove difficult and time-consuming when the interface
frequently changes shape, especially in 3 dimensions. Also, many numerical methods, such as geometric multigrid methods,
do not naturally apply to unstructured meshes. These concerns are largely circumvented with the use of embedded (or im-
mersed) methods that approximate solutions to (1)–(3) on Cartesian grids or structured meshes that do not conform to the
interface. Despite advances in this direction, embedded methods that retain higher order accuracy in L1 often are limited to
2 dimensions and introduce relatively difficult linear algebra problems and complex implementations that sometimes re-
quire significant effort to adapt to general applications.

Recently, however, Bedrossian et al. [1] introduced a second order virtual node method for solving the elliptic interface
problem (1)–(5) in 2 dimensions. The discretization presented in [1] is easy to implement and yields a symmetric positive
definite sparse linear system for both interface problems and boundary value problems on irregular domains. In summary,
this virtual node method employs a uniform Cartesian grid with duplicated Cartesian bilinear elements along the interface.
These duplicated elements introduce additional virtual nodes or degrees of freedom to accurately capture the lack of regu-
larity in the solution. The method is variational to define stencils symmetrically, and a different discretization is used
depending on proximity to embedded features, allowing for the retention of the standard 5-point finite difference stencil
away from embedded boundaries and interfaces. Langrange multipliers are used to enforce embedded Dirichlet conditions
(4) and embedded jump conditions (2), and the choice of Lagrange multiplier space admits a symmetric positive definite dis-
cretization. In the special case when b is smooth, a discontinuity removal technique allows the use of the standard 5-point
Poisson stencil even across the embedded interface.

The feature set of this virtual node approach is very powerful. In the present work, we improve many aspects of [1] and
provide key modifications necessary to extend the method to 3 dimensions. Within the context of embedded Dirichlet and
embedded interface discretizations, we present a novel and flexible algorithm to define the discrete Lagrange multiplier
space. This algorithm gives more control on the conditioning of the resulting linear system and specifically addresses
the conditioning issues (see Appendix C) we found in the straightforward extension of [1] to 3 dimensions. We also give
an expanded treatment of the discontinuity removal technique, detailing an algorithm for the construction of a scalar func-
tion satisfying the jump conditions (2) and (3). Specific to the 3-dimensional implementation, we describe an algorithm for
creating a polyhedral representation of cell-local interface/boundary geometry and quadrature rules suitable for these poly-
hedral surfaces. Finally, we present a family of multigrid algorithms that solve (1)–(5) with near-optimal multigrid
efficiency.

The remainder of the paper proceeds as follows. We review existing embedded methods and related multigrid algorithms
in Section 2. Section 3 presents our numerical discretizations for embedded Neumann (Section 3.2), embedded Dirichlet
(Section 3.3), and embedded interface problems (Section 3.4). We outline our new constraint aggregation algorithm as it ap-
plies to our embedded Dirichlet discretization in Section 3.3.2, and detail the special case in embedded interface problems of
smooth b in Section 3.4.1. Section 4 explains the components of our multigrid algorithms for all discretization types. We use
numerical examples to demonstrate the accuracy of our discretization and the performance of our multigrid solvers in Sec-
tion 5, and we conclude with a short summary and discussion in Section 6. We include an appendix with some additional
miscellaneous details.
2. Existing methods

The Immersed Interfaced Method (IIM) is perhaps the most popular finite difference method for approximating (1)–(3) to
second order accuracy. LeVeque and Li first proposed the IIM for approximating elliptic interface problems in [10] and the
term now applies to a widely researched and extensively applied class of finite difference methods [11–17]. See [18] and
the references therein for a complete exposition of the method and its numerous applications, and [19] for justification of
the general IIM approach. Using generalized Taylor expansions, the original IIM adaptively modifies the stencil to obtain
OðhÞ truncation error along the interface. For smooth b, this reduces to the standard 5-point or 7-point finite difference
stencil, but otherwise results in an asymmetric discretization that follows from locally solving constrained optimization
problems that enforce a discrete maximum principle [20]. The IIM also generally requires the evaluation of higher order
jump conditions and surface derivatives along the interface. This can lead to difficulty in implementation, especially in 3
dimensions [21,18,15,17]. Chen and Strain described a new approach to the IIM, called the Piecewise-polynomial Interface
Please cite this article in press as: J.L. Hellrung Jr. et al., A second order virtual node method for elliptic problems with interfaces and irreg-
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Method (PIM), in [22] that does not require the derivation of additional jump conditions and accurately treats complex inter-
faces. Various other attempts have been made [23–28,18] to improve the efficiency and reduce the complexity of the IIM.

Extrapolation-based finite difference schemes such as [29–34] introduce fictitious points along coordinate axes and use
the known jump conditions to determine their values. The Ghost Fluid Method (GFM), such as that presented by Liu et al. in
[29], exemplifies such methods. For 2- and 3-dimensional interface problems, the GFM neglects the tangential flux terms
½bru � ŝ� when determining fictitious values, yielding a symmetric positive definite system and a resulting method which
is first order accurate [29,35]. However, the GFM is capable of achieving up to fourth order accuracy for irregular domain
problems [30,31]. The GFM is similar to our approach in spirit. We also incorporate similar ideas from the Virtual Node Algo-
rithm (VNA) [36–38]. Various other approaches attain higher order accuracy by accounting for the tangential flux in other
ways, often sacrificing simplicity and symmetry of discretization in the process. For instance, the Coupling Interface Method
(CIM) [34] extends the GFM to higher order by using a second order extension at most grid points but reverting to a first
order method at grid points where the second order extension cannot be applied. The method couples jump conditions in
different directions to express the tangential derivatives, and the use of one-sided differences results in an asymmetric dis-
cretization. Similarly, the Matched Interface and Boundary (MIB) method [33] uses higher order extrapolations of the solution
matched with higher order one-sided discretizations of the jump conditions to determine the values at fictitious points. The
MIB method accounts for non-zero ½bru � ŝ� by differentiating the given jump conditions using one-sided interpolations. This
widens the stencil in several directions that depend on the local geometry, and results in an asymmetric discretization. The
work of [39] extended the MIB method to handle high curvature geometry, the work of [40] provide a 3-dimensional version,
and more recent progress is given in [41]. Pan et al. in [42] derived symmetric finite difference formulas (in 1 and 2 dimen-
sions) within the MIB framework. In [43,44] Hou et al. also use techniques seemingly inspired by the analysis of the original
GFM approach done in [29,35]. They develop a second order variational GFM by altering finite element interpolating func-
tions to capture the jump conditions in the solution. Their approach is remarkably robust to non-smooth interface geometry
(especially [44]), but results in an asymmetric discretization in the general case. The recent works of [45,46] treated the cases
of Robin and Neumann boundary conditions by altering the 5-point stencil along the boundary using a finite volume-like
approach. This results in a symmetric positive definite system.

Ideas similar to the extrapolation-based finite difference schemes have also seen extensive use in the FEM community, for
instance in fictitious domain methods [47–50], the Discontinuous Galerkin (DG) method [51,52], the eXtended Finite Element
Method (XFEM) [53–61] and [62],1 and other non-conforming finite element methods [64–76]. Fictitious domain methods han-
dle embedded features by including every element that intersects the feature into the discretization. This naturally introduces
‘‘virtual nodes’’ or ‘‘ghost nodes’’ into the resulting discretization. The XFEM enriches the standard finite element basis with
additional discontinuous basis functions, thereby introducing new degrees of freedom. These basis functions exist only at
the nodes of elements that intersect the embedded interface and usually are the standard basis elements multiplied by a gen-
eralized Heaviside function. The methods of [65,67,68,37,72,76] introduce a related virtual node concept to provide the addi-
tional degrees of freedom required to represent the discontinuities. The most straightforward implementation of this virtual
node concept [67,68,72] yields a representation equivalent to the standard Heaviside enrichment of the XFEM. However, this
approach generalizes to the slightly richer representations of [36,38,76] that attain more geometric detail, particularly when
dealing with coarse grids and non-smooth interfaces. Moreover, virtual node representations are considered more geometrically
intuitive and easier to incorporate into existing FEM code [68,72,76] than traditional Heaviside enrichment.

The solution spaces of these FEM approaches generally do not satisfy the embedded boundary or interface conditions.
Thus, these methods impose linear constraints with either penalty methods or Lagrange multipliers to enforce the conditions
in some weak sense. For example, see [47,69,72,49,61] and the references therein. When using Lagrange multipliers, the
Ladyzhenskaya–Babus̆ka-Brezzi inf-sup conditions place stringent limitations on the types of constraints that will retain
optimal convergence rates of the approximation spaces [77–79,59,69,51]. Such inf-sup restrictions generally limit the
strength of the Lagrange multiplier space relative to the solution approximation space. For certain elements, designing
the proper approximation spaces is a non-trivial task [57,59]. Moreover, the use of Lagrange multipliers requires the solution
of an indefinite saddle point system that can potentially introduce significant cost. Applying stabilization through a consis-
tent penalty method, such as Nitsche’s method, presents an alternative approach [67,69,70,72,73,75]. However, these can
have adverse effects on conditioning and require the determination of the stabilization parameters. Instead of using Lagrange
multipliers or stabilization, the methods of [66,43,58,80,71,44,74] alter the basis functions to either satisfy the constraints
directly, or simplify the process of doing so. In this regard, such methods represent the finite element analogues of the IIM.

The method of [81] offers a finite volume approach to embedded domain problems. Like some fictitious domain methods,
XFEM, and our virtual node method, this method uses partially empty cells along the boundary. However, the one-sided
quadratic interpolations used to compute the fluxes along the boundary yield an asymmetric system. See [82,83] for a more
recent 3-dimensional version applied to Poisson’s equation and the heat equation. In [84], Oevermann and Klein proposed a
second order finite volume method for interface problems, and simplified and extended their method to 3-dimensions
in [85]. In an approach similar to ours, any Cartesian cell that intersects the interface yields a distinct multilinear
representation of the solution. The jump conditions are then built into the difference stencil by locally solving constrained
1 See [63] for corrections to IIM convergence estimates.
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overdetermined systems. An asymptotic technique resolves the problem of vanishing cell volumes, though it requires
specific treatment for each possible cell geometry. The resulting system is asymmetric for the general case of [b] – 0.

When [b] – 0 the majority of these second order methods do not retain a symmetric positive definite system. While the
FEM approaches that use stabilization do retain a symmetric positive definite system [72], generally the finite element
methods that use Lagrange multipliers, such as [54], result in a symmetric indefinite system. Although we use Lagrange mul-
tipliers, we present a simple method of reducing the indefinite system to a symmetric positive definite system using a null
space method. On the other hand, when the coefficient b is smooth across the interface, methods such as the original IIM
achieve second order accuracy by only altering the right-hand side of the system. For this case, we present a method that
uses the virtual node framework that also retains the original left-hand side.

Several of the above works employ multigrid methods to solve the resulting linear systems. Black-box multigrid solvers,
either of a purely algebraic variety [21,84,34,85] or of a more geometric variety [20], are often efficient alternatives to, or
may be combined with, Krylov solvers [22,86]. However, less general multigrid algorithms specially tuned to the particular
discretization method may outperform a black-box multigrid solver; see, for example, [28,86]. Some methods lend them-
selves to using relatively straightforward extensions of standard geometric multigrid techniques, including both mortar fi-
nite element methods [7,9] and embedded methods [48,81–83], usually with special attention being paid near irregular
features. Many of the works describing IIM-based discretizations [26–28,22] utilize a multigrid solver with a grid hierarchy
defined geometrically but incorporate algebraic techniques in the remaining components (coarse-grid operators and grid
transfer operators). In [87] Wan and Liu discuss the transfer operators near embedded features in a geometric multigrid
method for irregular domain discretizations in general. In contrast to the multigrid approaches in many of the preceding
works on embedded discretizations, our multigrid algorithms define the grid hierarchy, coarse-grid operators, and grid
transfer operators geometrically, hence allow for efficient implementations that have lower memory requirements and
increased parallelizability.

3. Discretization

Our numerical discretizations for Neumann, Dirichlet, and interface problems make use of an embedding of the domain or
interface within a uniform Cartesian grid. We thus first outline this embedding procedure and the associated notation. We
subsequently describe our embedded Neumann discretization, and we will then see how an alteration of our treatment of
the boundary conditions in embedded Neumann problems yields our discretization for embedded Dirichlet problems.
Finally, we will show how a natural combination of our embedded Neumann and embedded Dirichlet discretizations allows
us to deal with interfacial discontinuities.

3.1. Domain and interface embedding and integration

Let us first consider the treatment of the domain X for embedded Neumann and embedded Dirichlet problems. We
embed the domain X into a non-conforming, uniform Cartesian grid Gh with grid-spacing (Dx,Dy,Dz). (Note that to simplify
the convergence analysis, our numerical examples assume Dx = Dy = Dz ¼: h.) We include all Cartesian grid cells ci that inter-
sect X in the discretization, and refer to this set Ch ¼ fci 2 Gh : ci \X – ;g as the computational domain (see Fig. 1). Also, we
define the set of all cells that intersect the boundary as Ch

@X ¼ fci 2 Ch : ci \ @X – ;g and refer to these as boundary (grid) cells.
Note that a boundary cell may be regarded as partially empty, since only a portion of the cell lies within X. We refer to this
region of a boundary cell ci that lies in the domain X, ci \X, as the material region of the cell, and use the terms material node
and virtual node to describe the Cartesian grid vertices lying inside and outside X, respectively. We refer to the set of grid
vertices spanned by the computation domain as N h, and specifically the material nodes as N h

m and the virtual nodes as
N h

v . See Fig. 1 for a diagram labeling the grid vertices along a typical boundary. For embedded Neumann and embedded
Dirichlet problems, we identify each grid vertex, material or virtual, as a degree of freedom.

In the course of the discretization, for each boundary cell ci 2 Ch
@X, we will need to evaluate integrals over the following

domains:

� the material volume within a cell, ci \X;
� the boundary of the material volume within a cell, @(ci \X); and
� the boundary of X within a cell, ci \ oX (which is contained within @(ci \X)).

In all cases, the integrand is polynomial (or locally approximated by a polynomial). We evaluate these integrals using
polyhedral representations Pci and Pci

@X approximating @(ci \X) and ci \ oX, respectively. We use the term polyhedral repre-
sentation to convey an analogous meaning as polygonalizing a curve in 2 dimensions, but we essentially regard Pci and Pci

@X

simply as collections of polygons. For implementation purposes, to maximize data structure reuse, it is convenient for
Pci
@X � Pci , i.e., all polygons in Pci

@X are also members of Pci . See Fig. 2.
We employ the divergence theorem to transform volume integrals over ci \X into surface integrals over @(ci \X) (cf.

[88]). Such transformations are non-unique, but constructing a simple one is straightforward given the polynomial nature
of the integrand. For example,
Please
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(a) Embedding in 2 dimensions (b) Embedding in 3 dimensions

Fig. 1. Example domain embeddings for Neumann and Dirichlet problems. Subfigure (a) shows an example in 2 dimensions to clearly depict the various
classes of grid cells and vertices: shaded grid cells comprise the computational domain ðChÞ, with lighter-shaded grid cells on the boundary (Ch

@X); grid
vertices surrounded by gray circles represent virtual degrees of freedom ðN h

v Þ; grid vertices surrounded by black circles represent material degrees of
freedom ðN h

mÞ incident to a boundary grid cell; and grid vertices surrounded by squares represent material degrees of freedom ðN h
mÞ incident only to non-

boundary grid cells. Subfigure (b) shows an example in 3 dimensions.

Fig. 2. A grid cell ci with an example boundary dividing it. The left half of the cell in (b) corresponds to ci \X, the material region of the cell. (b) Shows the
polyhedralization Pci of the material region of the cell, where the shaded triangles highlight Pci

@X � Pci , the polyhedralization just of the portion of @X
passing through ci.
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Please
ular d
Z
ci\X

xpyqzrdx ¼
Z

ci\X

1
pþ 1

r � xpþ1yqzr; 0;0
� �

dx ¼
Z
@ðci\XÞ

1
pþ 1

xpþ1yqzr;0;0
� �

� n̂ðxÞdSðxÞ:
We decompose surface integrals over @(ci \X) and ci \ oX into a sum of integrals over the component polygons of Pci and
Pci
@X, respectively. For example, given a vector-valued function h(x),
Z
@ðci\XÞ

hðxÞ � n̂ðxÞdSðxÞ ¼
X

g2Pci

Z
g

hðxÞ � n̂gdSðxÞ:
Note that over each polygon g 2 Pci , the unit normal n̂g is constant, hence hðxÞ � n̂g restricted to g is a polynomial in x (assum-
ing that the components of h are polynomials to begin with). To evaluate these polygon-local surface integrals, one could
make a change of variables into a localized coordinate system and again apply the divergence theorem. However, the poly-
nomial integrand may have degree as high as 5, and this change of variables requires a computationally intensive expansion
cite this article in press as: J.L. Hellrung Jr. et al., A second order virtual node method for elliptic problems with interfaces and irreg-
omains in three dimensions, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.11.023
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of a composition of the integrand with the coordinate transformation. We found it simpler to triangulate each polygon and
use a Gaussian quadrature rule over each component triangle. As the polygons in our implementation are limited to triangles
and convex quadrilaterals (see Section 3.1.1 below), such a triangulation is trivial. To maximize efficiency while ensuring the
quadrature is exact, we use a quadrature rule of order equal to the degree of the polynomial integrand. For specific quadra-
ture rules up to order 5, we refer the reader to Appendix A.

For embedded interface problems, we embed the interface C into Gh in a completely analogous way as for the domain
boundary oX in embedded Neumann and embedded Dirichlet problems. We likewise use the notation Ch

C ¼ fci 2 Gh :

ci \ C – ;g and the term interfacial (grid) cells to refer to the set of cells through which the interface passes. As we will
see in Section 3.4, our interface discretization is based on an embedded domain discretization, as described above, in each
of X� and X+. This naturally introduces an interior computational domain Ch;� and exterior computational domain Ch;þ, where
Ch;r ¼ fci 2 Gh : ci \Xr – ;g. Note that Ch;� and Ch;þ are disjoint save for Ch

C, where each Cartesian grid cell and the associated
degrees of freedom, material and virtual, are duplicated. See Fig. 3.

We will often speak generically about both our interface discretization and our Dirichlet and/or Neumann discretizations.
Due to the similarities in the embedding of oX (for Neumann and Dirichlet problems) and of C (for interface problems) into
the background grid Gh, and to avoid cluttering the exposition with too many ‘‘boundary/interface’’ terms, we will occasion-
ally simply use the term embedded feature to refer both to the embedded domain boundary oX in Neumann and Dirichlet
problems and to the embedded interface C in interface problems.
3.1.1. Embedded feature polyhedralization
We define all of the embedded domain boundaries oX and embedded interfaces C in the numerical examples in Section 5

analytically and implicitly as the zero isocontour of a level set function. This Eulerian representation ensures that we can
always resolve embedded features to a resolution comparable to the background grid Gh. Note that the embedding procedure
and integration techniques described above require an explicit polyhedral representation of the embedding within each
boundary/interfacial grid cell. Thus, one must create some polyhedral approximation, per boundary/interfacial grid cell, of
the implicitly defined embedding. Since it is relatively easy to divide a tetrahedron along a plane approximating the level
set surface given the level set function values at the tetrahedron’s vertices, we symmetrically partition each boundary/inter-
facial grid cell into 24 congruent tetrahedra and accordingly divide each tetrahedron. The union of these dividing surfaces
(triangles and quadrilaterals) within each tetrahedron compose the polyhedral representation of the embedded boundary
or embedded interface. In 2 dimensions, the analogous procedure would be to partition each square grid cell into 4 triangles
and divide each triangle by a line according to the level set function values at the triangle’s vertices. This polyhedralization
procedure is similar to that described in [88]. See Fig. 4.

The procedure described above may produce a sliver polyhedron (a polyhedron with large aspect ratio) when dividing a
given tetrahedron; likewise, the polygonal representation of the embedded surface may contain some sliver polygons. We
note that the aspect ratio of such primitives has no direct bearing on the conditioning of the discretization. The quantities
Fig. 3. An example interface embedding in 2 dimensions, showing the separate domain embeddings for X� and X+. Grid cells and grid vertices are labelled
as in Fig. 1: shaded grid cells comprise the interior (X�, (a)) and exterior (X+, (b)) computational domains, with the lighter-shaded grid cells on the
interface; grid vertices surrounded by gray circles represent virtual degrees of freedom; grid vertices surrounded by black circles represent material degrees
of freedom incident to an interfacial grid cell; and grid vertices surrounded by squares represent material degrees of freedom incident only to non-
interfacial grid cells. Notice how all interfacial grid cells and circled grid vertices are effectively duplicated between the grids embedding the interior and
exterior domains. Also note that each grid vertex on an interfacial grid cell is duplicated into precisely one material degree of freedom and one virtual
degree of freedom.
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Fig. 4. We approximate an embedded boundary or embedded interface implicitly defined by a level set function with a polyhedral representation
computed by partitioning each boundary/interfacial grid cell into 24 congruent tetrahedra, as in (a) and (b); and subsequently dividing each tetrahedron
according to the level set function values at its vertices, e.g., as in (c). The union of the dividing triangles and quadrilaterals within each divided tetrahedron
compose the polyhedral representation of the embedded boundary or embedded interface. In 2 dimensions, the analogous procedure would be to partition
each square grid cell into 4 triangles, as in (d), and divide each triangle according to the level set values at its vertices, as in (e). The union of the dividing
segments within each triangle compose the polygonal representation of the embedded boundary or interface, as in (f).
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of actual relevance to conditioning are the measures of the material volume and the embedded surface within a boundary/
interfacial grid cell. Unlike the conditioning issues associated with sliver elements in a conforming mesh, however, our
method allows conditioning issues caused by vanishing material volume measures within a grid cell to be addressed via Ja-
cobi preconditioning, as we discuss at the end of Section 3.2. Further, our constraint aggregation method described in Section
3.3.2 fully alleviates any conditioning issues caused by vanishing embedded surface measures within a grid cell (which are
only relevant within the context of discretizing the Dirichlet boundary conditions (4) and the value jump interface condi-
tions (2)). See also [51] for a more detailed discussion on the advantages, with respect to conditioning, of using embedded
domain methods over conforming mesh methods such as locally boundary-fitting remeshing schemes.

3.2. Embedded Neumann

Our discretization of embedded Neumann problems is a generalization of the 2-dimensional method given by Bedrossian
et al. [1], and is similar to some XFEM approaches, e.g. [54], as well as the early work of Almgren et al. in [48]. We discretize
the embedded Neumann problem,
Please
ular d
�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X;

bðxÞruðxÞ � n̂ ¼ qðxÞ; x 2 @X;
ð6Þ
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using the energy minimization form of (6):

over all u 2 H1(X), minimize

Z
1

Z Z
Please
ular d
EðuÞ :¼ eðuÞ � ðf ;uÞX � ðq; uÞ@X :¼
X 2
ru � brudx�

X
fudx�

@X
qudSðxÞ: ð7Þ
We choose to discretize the energy minimization problem because this straightforwardly yields a symmetric system; it nat-
urally incorporates the Neumann boundary conditions into the right-hand side of the system; and it provides the necessary
setting to ensure accuracy of the discretization near the boundary. We define the solution space Vh � H1(X) as the space of
continuous functions that are trilinear over the material region of each cell ck 2 Ch. For uh 2 Vh, we write uhðxÞ ¼

Pn
i¼1uiNiðxÞ

for~u ¼ ðu1; . . . ;unÞt 2 Rn. Here Ni(x) is the standard piecewise trilinear interpolation basis function associated with grid ver-
tex i; and n denotes the number of degrees of freedom in the discretization, equal to the number of grid vertices that com-
pose the cells of Ch.

Using the above representation of uh 2 Vh, we define a discrete energy Eh(uh) approximating E(uh). Although we could
discretize the energy directly from the piecewise trilinear representation of uh, this would result in a 27-point stencil every-
where, even away from the boundary. To retain the standard second order 7-point stencil away from the boundary we use
different discretizations of the energy over Ch n Ch

@X and over Ch
@X,
EhðuhÞ :¼
X

ck2ChnCh
@X

eckðuhÞ

0
@

1
Aþ X

ck2Ch
@X

~eck ðuhÞ

0
@

1
A� X

ck2Ch

ðf ;uhÞck
X

0
@

1
A� X

ck2Ch
@X

ðq;uhÞck
@X

0
@

1
A; ð8Þ
where the superscripts denote restriction to cell ck. For cells ck 2 Ch n Ch
@X that do not intersect the boundary, we define eck ðuhÞ

as
eck ðuhÞ :¼ 1
2

�bDxDyDz ðDxuhÞ2 þ ðDyuhÞ2 þ ðDzuhÞ2
� �

:

Here �b denotes a cell average of b; and (Dxuh)2 denotes the average of the squared finite difference approximations of @xu
h

over the 4 x-oriented edges in the cell:
ðDxuhÞ2 :¼ 1
4

X
s;t2f0;1g

uiþ1;jþs;kþt � ui;jþs;kþt

Dx

� �2
;

where {up,q,r} denote the degrees of freedom at the 8 corners of the cell. (Dyuh)2 and (Dzu
h)2 likewise denote approximations

to (@yuh)2 and (@zu
h)2, respectively. On the other hand, for cells ck 2 Ch

@X that do intersect the boundary, we use the Cartesian
trilinear representation of uh to define ~eck ðuhÞ. If we letN h

ck
denote the indices of the 8 vertices at the corners of the cell ck, and

let fNi : i 2 N h
ck
g denote the corresponding trilinear basis functions, then this yields the discretization
~eck ðuhÞ :¼ 1
2

X
i;j2N h

ck

�b
Z

ck\X
rNi � rNjdx

 !
uiuj: ð9Þ
Note that rNi � rNj is a 4th-degree polynomial, hence we can evaluate these integrals as described in Section 3.1. Like the
integrals, the cell average of b; �b, is computed only over the material region of the cell, ck \X.

We discretize the remaining forms cell-wise, as:
ðf ;uhÞck
X :¼

X
i2N h

ck

�f
Z

ck\X
Nidx

 !
ui;

ðq;uhÞck
@X :¼

X
i2N h

ck

�q
Z

ck\@X
NidSðxÞ

 !
ui:
Similar to �b; �f is the average source over ck \X, and �q is the average normal flux over ck \ oX. Again, all integrals above have
polynomial integrands, hence we can evaluate these integrals as described in Section 3.1. See Appendix B for details on how
we computed �b; �f , and �q for the numerical examples in Section 5.

Lastly, we minimize the discrete energy (8) by solving the linear system
A~u ¼~f ;

Aij :¼ @2

@ui@uj
EhðuhÞ;

fi :¼ @

@ui
ðf ;uhÞX þ ðq;uhÞ@X
� �

ð10Þ
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for the vector~u. We use the standard FEM term stiffness matrix to refer to the matrix A, and it is clear from the derivation that
A is symmetric and positive semi-definite. Indeed, its null space is spanned by the vector ~u ¼ ð1;1; . . . ;1Þt corresponding to
uh � 1.

With this approach, our definition of the energy (9) results in a slightly denser stencil near the boundary, as all 8 degrees
of freedom in a cell couple together if oX passes through that cell. See Fig. 5 for a graphical depiction of the stencil definitions
and the sparsity pattern of the stiffness matrix.

The symmetric system (10) readily lends itself to black-box solvers such as (preconditioned) conjugate gradient. How-
ever, conditioning of the stiffness matrix may deteriorate when a cell has a very small material volume measure, as we first
mentioned in Section 3.1.1. This arises from the increasing irrelevance of virtual nodes far from the boundary (see, for exam-
ple, the (4,12) grid vertex in Fig. 5). The respective row and column in A and the corresponding entry in~f all approach zero
simultaneously. We found that simple Jacobi preconditioning (and, in extreme cases, outright elimination of degrees of free-
dom; see Section 5 for explanation) mitigates these conditioning issues as in [1]. Note however that our multigrid solver de-
scribed in Section 4 naturally suffers no such adverse effects from A’s conditioning.

3.3. Embedded Dirichlet

Following the progression in [1], we extend our embedded Neumann approach to solve embedded Dirichlet problems,
Fig. 5.
nonzero
Poisson
(7). Circ
dimens

Please
ular d
�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X;

uðxÞ ¼ pðxÞ; x 2 @X;
ð11Þ
within our virtual node framework. We will show how a further extension will naturally yield a discretization for embedded
interface problems, resulting in a method that encapsulates all types of boundary conditions in a unified framework.

For the embedded Dirichlet case, we use the constrained minimization problem:

over all u 2 H1(X), minimize
EðuÞ :¼ eðuÞ � ðf ;uÞX such that; ð12Þ
ðu;lÞ@X ¼ ðp;lÞ@X 8l 2 H�1=2ð@XÞ: ð13Þ
where e(�), (�, �)X, and (�, �)oX are as in (7).
We discretize the energy (12) exactly as in the Neumann case, so the only difference comes in discretizing the constraints

(13). We proceed by selecting a finite-dimensional subspace (the discrete Lagrange multiplier space) Kh � H�1/2(@X), and
enforce (13) for all lh 2Kh. Not all plausible choices of Kh will yield an acceptably accurate approximation, as, in general,
(Kh,Vh) must satisfy an inf-sup stability criterion to retain the optimal convergence rates of the approximation spaces
[78]. One possible choice for Kh, which we shall refer to as Kh

1 and is used in, for instance, [62,69] defines lh as piecewise
constant over each Cartesian grid cell ci intersecting the boundary @X (see Fig. 6). In other words, we define lh 2 Kh

1 as
Illustration in 2 dimensions of the stiffness matrix (A) stencils for various grid vertices. The stencil for a degree of freedom indicates where the
(NZ) entries are of the row (or column) in A corresponding to the degree of freedom. Squared grid vertices have the standard finite difference

stencil (a 5-point stencil in 2 dimensions; a 7-point stencil in 3 dimensions), which naturally arises through the use of eck to discretize the energy
led grid vertices (both black and gray) will generally have a denser stencil (up to a 9-point stencil in 2 dimensions; up to a 27-point stencil in 3

ions), due to the use of ~eck .
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Fig. 6. Schematics of two discretizations Kh of the Lagrange multiplier space H�1/2(@X) in 2 dimensions used in (13). (a) Shows a schematic of functions in
Kh

1, which are piecewise constant over Ch
@X \ @X. (b) Shows a schematic of functions in Kh

2, which are piecewise constant over C2h
@X \ @X (using the doubly-

coarse grid G2h). Note that the center grid vertex (highlighted) in each doubly-coarse boundary grid cell is an independent degree of freedom with respect to
C2, the constraints induced by Kh

2. That is, the center grid vertex in a doubly-coarse boundary grid cell participates only in the constraint corresponding to
that cell.
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lhðxÞ :¼
X

ci2Ch
@X

livci\@XðxÞ;
where the characteristic functions vci\@X are given by
vci\@XðxÞ :¼
1; x 2 ci \ @X;
0; x R ci \ @X;

�
: ð14Þ
With this choice of discrete Langrange multiplier space, satisfying (13) for all lh 2 Kh ¼ Kh
1 yields a system of sparse linear

constraints B~u ¼~p on the coefficient vector ~u of the approximate solution uh. Each row of the matrix B corresponds to a cell
ci 2 Ch

@X and enforces the condition
Z
ci\@X

uhðxÞdSðxÞ ¼
Z

ci\@X
pðxÞdSðxÞ: ð15Þ
Therefore, if Ch
@X ¼ fc1; . . . c; cmg and ~u 2 Rn, then ~p 2 Rm; B 2 Rm�n, and
Bij :¼
Z

ci\@X
NjðxÞdSðxÞ ð16Þ
for each Cartesian trilinear basis function Nj(x). Since only 8 of these basis functions are supported over a given ci \ oX, each
row of B contains precisely 8 nonzero entries. The corresponding entry in ~p is
pi :¼
Z

ci\@X
pðxÞdSðxÞ: ð17Þ
As before, we evaluate these integrals as described in Section 3.1 (using a suitable polynomial approximation for p(x) in each
grid cell or a suitable quadrature rule to evaluate (17)). Discretizing (12) and (13) thus gives rise to the quadratic program:
minimize over ~u 2 Rn

EhðuhÞ :¼ eðuhÞ � ðf ;uhÞX :¼ 1
2
~utA~u�~f t~u

subject to B~u ¼~p:

ð18Þ
The matrix A is exactly as for the embedded Neumann case described in Section 3.2, as is the vector~f excepting the contri-
bution of the Neumann constraint q (see (10)). This minimization problem may equivalently be expressed as a saddle point
system, introducing a Lagrange multiplier~k:
A Bt

B 0

 !
~u
~k

� �
¼

~f
~p

 !
: ð19Þ
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3.3.1. Null space method and fundamental basis of constraint system
As is done in [1], we solve (18)/(19) using a null space method, which efficiently transforms our problem into a symmetric

positive definite linear system. This affords us a wide variety of solution techniques, including black-box solvers such as (pre-
conditioned) conjugate gradient; and a large class of preconditioners, such as incomplete Cholesky (which we use for many
of the numerical examples in Section 5). This derived symmetric positive definite system also readily lends itself as a basis
for a multigrid smoother such as Gauss–Seidel (as presented in Section 4). For these reasons, our null space approach has
significant advantages over alternative approaches such as Schur’s complement reduction, direct methods applied to the
saddle point system (19), stationary methods such as Uzawa’s method, penalty methods, or Krylov methods applied to
(19). Those aforementioned approaches which are iterative typically require solving a linear system at each iteration and/
or have slow convergence properties. Direct methods tend to be too computationally expensive and memory intensive when
applied to large systems. Preconditioning saddle point systems such as (19) is much less well-developed than precondition-
ing symmetric positive definite systems; hence, applying a Krylov method to (19) is much less appealing than applying a
Krylov method to an equivalent symmetric positive definite system. For a more complete survey of the advantages and dis-
advantages of these and other approaches, see [89].

The null space method requires the construction of a matrix Z whose columns span the null space of B and a vector~c 2 Rn

satisfying the discretized constraints (i.e., B~c ¼~p). Our solution ~u to (18) or (19) may then be expressed as ~u ¼~c þ Z~v for
some ~v , and substituting this expression for u into (19) (and eliminating ~k via left multiplication by Zt) yields the system
ZtAZ~v ¼ Ztð~f � A~cÞ for~v . As noted in Section 3.2, the null space of A is spanned by the vector ð1;1; . . . ;1Þt 2 Rn, and the entries
of B are all non-negative, so kerðAÞ \ kerðBÞ ¼ f~0g. Therefore, ZtAZ is non-singular and, specifically, symmetric positive def-
inite. We have thus transformed (18)/(19) into a symmetric positive definite system for ~v . We obtain~u by setting~u ¼~c þ Z~v .

We now address the determination of Z. Obtaining Z through a QR factorization or a SVD is likely to be computationally
expensive and, moreover, produce a dense Z. A fundamental basis presents an alternative to numerical factorization [89]. The
matrix B is full rank if and only if an ordering of the degrees of freedom exists so that B may be expressed as B = (BmjBn�m) for
some m �m non-singular matrix Bm. Any such ordering gives the corresponding fundamental basis
Please
ular d
Z ¼ �B�1
m Bn�m

In�m

 !
: ð20Þ

� �

Clearly, BZ = 0 and the vector~c ¼ B�1

m
~p

0
satisfies B~c ¼~p. Therefore, if we can solve systems of the form
Bm~x ¼~d; ð21Þ
efficiently, we can store the factors Bm, Bn�m, and A sparsely and compute the action of ZtAZ readily (e.g., for use in conjugate
gradient). Note that, regardless of the choice of Bm, the symmetric positive definite stencil defined by ZtAZ coincides with the
standard 7-point stencil for all degrees of freedom sufficiently far from the boundary.

3.3.2. Aggregation of single-wide constraints
Unfortunately, as discussed in [1], the choice of Kh

1 (the space of functions that are piecewise constant over each boundary
grid cell) as the discrete Lagrange multiplier space approximating H�1/2(oX) makes it difficult (if not impossible) to deter-
mine an ordering of the degrees of freedom that gives a well-conditioned and easily invertible Bm. Bedrossian et al. [1] gives
an ordering of the degrees of freedom and of the constraints that yields an upper-triangular Bm; however, although the
resulting system (21) can theoretically be efficiently solved by back-substitution, in practice such a solution procedure intro-
duces prohibitively large numerical errors for anything but the smallest grids.

As in [1], we remedy this by using an alternative approximation to H�1/2(oX) that induces a different set of linear con-
straints. To motivate our approach, suppose we define a set of m linear constraints (other than those induced by Kh

1) such
that each constraint contains an independent degree of freedom, a degree of freedom which participates only in that one con-
straint. Observe, then, that ordering these m independent degrees of freedom first, in matching order with their associated
constraints, yields a diagonal Bm, which is trivial to invert. As the constraints induced by Kh

1 generally have an insufficient
number of independent degrees of freedom, we thus aim to manufacture an alternative discrete Lagrange multiplier space
such that the induced set of constraints admits such a set of independent degrees of freedom that gives a diagonal Bm. For
example, Bedrossian et al. [1] uses K2h

1 ¼: Kh
2 (the set of scalar piecewise constant functions over the cells of the doubly-

coarse grid G2h; see Fig. 6) as an approximation to H�1/2(oX), leading to what may be described as double-wide constraints.
Each double-wide constraint encompasses a 2 � 2 (in 2 dimensions) or 2 � 2 � 2 (in 3 dimensions) block of cells. The center
vertex in such a block of cells always participates only in that one constraint, hence these center vertices correspond to
independent degrees of freedom. Double-wide constraints are acceptable for problems in 2 dimensions, as investigated
by Bedrossian et al. [1]; however, the structural rigidity of Kh

2 presents conditioning issues in 3 dimensions (see Appendix
C for a specific example). One of our major contributions is a more general, flexible approach toward constructing constraints
which gives greater control on conditioning, and for which the double-wide constraints induced by Kh

2 will be a special case.
The key idea is that rather than first defining the set of constraints and then selecting an independent degree of freedom

from each constraint, we will first select the set of independent degrees of freedom and then subsequently build a single
constraint equation around each independent degree of freedom. To this end, let C1 denote the set of single-wide constraints
(15) induced by Kh

1, as described above; and let G denote the adjacency graph induced by C1, as depicted in Fig. 7(a). That is,
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two degrees of freedom are adjacent in G if they simultaneously participate in some single-wide constraint; or, in more geo-
metric terms, two grid vertices are adjacent in G if they share a common incident boundary grid cell. Choose ma < m degrees
of freedom which constitute an independent set I with respect to G. In other words, no two degrees of freedom in I will
simultaneously participate in the same single-wide constraint. An example of such an independent set is given in
Fig. 7(b). Now associate each of the m single-wide constraints in C1 to one of these independent degrees of freedom in I ,
with the provision that, if a constraint contains an independent degree of freedom, it must be associated with that indepen-
dent degree of freedom. (This latter requirement is conflict-free, as any single-wide constraint in C1 will contain at most one
independent degree of freedom, by construction.) Thus, for those single-wide constraints containing an independent degree
of freedom, this association is precisely determined. However, some single-wide constraints will contain no independent
degree of freedom, so some additional heuristic must be used to determine this association. See Figs. 7(c) and (d) for an
example association of each single-wide constraint to an independent degree of freedom.

Let I ¼ fd1; . . . c; dmag denote the independent set of degrees of freedom; and let Cdi
� C1 denote the set of single-wide

constraints associated with independent degree of freedom di, such that
F

iCdi
¼ C1. We then form the following ma aggregate

constraint equations:
Please
ular d
Fig. 7. Illustrated progression of the constraint aggregation described in Section 3.3.2.
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X
ck2Cdi

Z
ck

uhðxÞdSðxÞ ¼
X

ck2Cdi

Z
ck

pðxÞdSðxÞ; ð22Þ
where ck 2 Cdi
denotes that cell ck corresponds to a single-wide constraint associated with independent degree of freedom di.

Effectively, the single-wide constraint equations in C1 associated to a given independent degree of freedom are summed into
a single aggregate constraint equation. Likewise, the corresponding discrete Lagrange multiplier space Kh

a is spanned by sums
of the basis functions vck\@X of Kh

1 from (14):
lhðxÞ :¼
X
di2I

li

X
ck2Cdi

vck\@X:
Now let B and ~p denote the matrix and right-hand side of the system of aggregate constraints (22):
Bij :¼
X

ck2Cdi

Z
ck\@X

NjðxÞdSðxÞ; pi :¼
X

ck2Cdi

Z
ck\@X

pðxÞdSðxÞ: ð23Þ
Clearly, by construction, this set of aggregate constraints admits an ordering of the degrees of freedom to give a diagonal Bma :
just order the independent degrees of freedom first.

In summary, the above procedure aggregates the single-wide constraints C1 to yield an alternative set of constraints Ca

which admits an ordering of the degrees of freedom to give a diagonal Bma . We have thus far described this constraint aggre-
gation in very general terms, and there indeed remains a great deal of flexibility, particularly in how one chooses the set of
independent degrees of freedom. For example, selecting all degrees of freedom which exist in the doubly-coarse grid G2h as
independent degrees of freedom leads to the double-wide constraints C2 mentioned earlier. For simplicity, in the following
discussion, we consider only strategies which select independent degrees of freedom one at a time and greedily, noting that
alternative approaches could very well yield equal or superior results. Such a constraint aggregation implementation may be
described by the following parameters.

� One should decide how the degrees of freedom should be ordered or prioritized for consideration for inclusion in the
independent set.
� We need some condition on which to terminate the further selection of independent degrees of freedom.
� Once we have selected the set of independent degrees of freedom, we must associate an independent degree of freedom

to each otherwise unassociated single-wide constraint (a constraint containing no independent degree of freedom).

For purposes of selecting independent degrees of freedom, we found that weighting degrees of freedom by the sum of the
their coefficients across all single-wide constraints (i.e., the weight of the jth degree of freedom is

P
iBij) gives good results.

Thus, in each iteration, we select, for inclusion in the independent set, the degree of freedom with the largest weight, taking
care to exclude degrees of freedom adjacent to previously selected independent degrees of freedom. The motivation for usingP

iBij as the weight for the jth degree of freedom is an attempt to maximize the diagonal entries in Bma and ultimately im-
prove the conditioning of the ZtAZ system. An alternative weighting that seemed to give acceptable results was maxiBij. We
found that additionally limiting the independent degrees of freedom to only virtual degrees of freedom resulted in a vastly
more efficient boundary smoother in our multigrid algorithm; see Section 4.

Now, given a degree of freedom weighting scheme like above, one may freeze the independent set once all remaining
eligible degrees of freedom (those not adjacent to previously selected independent degrees of freedom) have a weight below
some threshold. Alternatively, one may freeze the independent set once all the subsequently induced aggregate constraints
(given the current set of independent degrees of freedom and some grid-cell-to-independent-degree-of-freedom association
heuristic) satisfy some geometric bound. For example, one may terminate the further selection of independent degrees of
freedom once the current set of independent degrees of freedom induces a set of aggregate constraints which each lie within
a 4 � 4 � 4 block of grid cells centered on the corresponding independent degree of freedom.

Finally, to minimize the geometric extent of the aggregate constraints, we associate an otherwise unassociated single-
wide constraint to the geometrically closest independent degree of freedom, breaking ties by preferring higher-weighted de-
grees of freedom.

Algorithm 1 outlines an example implementation of the constraint aggregation algorithm described above. We followed
this specific implementation of the constraint aggregation algorithm for the numerical examples given in Section 5.3. In this
implementation, we select an independent set of virtual degrees of freedom prioritized by the sum of their associated coef-
ficients over all single-wide constraints; and we terminate the further selection of independent degrees of freedom once all
boundary grid cells are within some 4 � 4 � 4 block of grid cells centered on an independent degree of freedom (Fig. 8 ex-
plains this termination condition graphically). Together with the rule associating single-wide constraints to the geometri-
cally closest independent degree of freedom, this termination condition ensures that all aggregate constraints fit within a
4 � 4 � 4 block of grid cells centered on an independent degree of freedom, thus limiting the geometric extent of an aggre-
gate constraint.
cite this article in press as: J.L. Hellrung Jr. et al., A second order virtual node method for elliptic problems with interfaces and irreg-
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Fig. 8. A graphical representation (in 2 dimensions) of a plausible state of Algorithm 1 after the selection of 6 independent degrees of freedom (highlighted).
Some degrees of freedom have been removed to indicate their ineligibility as subsequently selected independent degrees of freedom: material degrees of
freedom, by definition of Algorithm 1, are never selected as independent degrees of freedom (this vastly improved the performance of our boundary
smoother in our multigrid algorithm; see Section 4); and those virtual degrees of freedom adjacent to one of the 6 previously selected independent degrees
cannot now be selected as independent degrees of freedom, simply by the definition of independence. Further, we distinguish between covered boundary
grid cells, which lie within some 4 � 4 block of cells (shown as the dark gray outlined squares) around an independent degree of freedom; and the
remaining uncovered boundary grid cells (denoted by cross-hatching). Once all boundary grid cells are covered, Algorithm 1 terminates further selection of
independent degrees of freedom.
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P
u

Algorithm 1. Constraint aggregration algorithm for embedded Dirichlet discretizations.

Reorder the degrees of freedom such that virtual degrees of freedom (VDOFs) are enumerated first and w1 > w2 > . . . m,
where wj ¼

P
iBij for VDOF j and Bij is as in (16).

let I  ; {I denotes the set of independent degrees of freedom (IDOFs)}
{only iterate over VDOFs}
for j = 1, 2, . . . , do

{Use an acceleration structure (e.g., an explicit set or bit set data structure) to make the following query efficient.}
if VDOF j is adjacent to some IDOF in I then

continue
end if
I  I t fjg {add VDOF j to the set of IDOFs}
{Use an acceleration structure (e.g., an associative array data structure) to make the following query efficient.}
if each boundary grid cell is within some 4 � 4 � 4 block of grid cells centered on an IDOF in I (see Fig. 8)
then

break
end if

end for
Associate each boundary grid cell to the geometrically closest IDOF in I , breaking ties by preferring IDOFs with
higher weights (wj). Let Cj denote the set of boundary grid cells associated to IDOF j.
for all j 2 I do

Sum the single-wide constraint equations associated with the boundary grid cells in Cj to form a new aggregate
constraint equation.

end for
We conclude this section with some remarks regarding the discrete Lagrange multiplier space Kh. Generally speaking,
using a richer discrete Lagrange multiplier space (one that better approximates H�1/2(oX)) results in a smaller error in
the approximate solution uh. Within the context of single-wide constraint aggregation, roughly speaking, one can increase
the richness of Kh

a (the discrete Lagrange multiplier space associated with the aggregate constraints) by choosing more inde-
pendent degrees of freedom. In some sense, then, the discrete Lagrange multiplier space Kh

2 associated with the double-wide
constraints represents the richest possible discrete Lagrange multiplier space one may obtain within this constraint
aggregation framework, as its set of independent degrees of freedom is maximal. However, as shown in Appendix C, use
of double-wide constraints leads to a relatively poorly conditioned ZTAZ system in 3 dimensions, and this behavior is
lease cite this article in press as: J.L. Hellrung Jr. et al., A second order virtual node method for elliptic problems with interfaces and irreg-
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characteristic of selecting too many independent degrees of freedom, some of which may be poorly supported and lead to
poor conditioning. We feel that our criterion in Algorithm 1 to terminate further selection of independent degrees of freedom
strikes a balance between maintaining second order accuracy and ensuring reasonable conditioning in the ZTAZ system.

In addition to the relationship among the richness of Kh, the error in the approximate solution uh, and (for Kh
a in partic-

ular) the conditioning of the ZTAZ system, it is also necessary, in order to obtain optimal convergence rates, for Kh and the
approximation space to H1(X), Vh, to satisfy an inf-sup stability condition uniformly in grid resolution [78]. This ultimately
has the effect of limiting the richness of Kh. Fortunately, based primarily on numerical evidence (see, for example [62,69]), it

is generally accepted that the pairing Vh;Kh
1

� �
satisfies an inf-sup stability condition, where we use the discrete Lagrange

multiplier space Kh
1 associated with the single-wide constraints. More explicitly, we assume the existence of c0, h0 > 0 such

that, for all h 2 (0,h0],
Please
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inf
lh2Kh

1

sup
vh2Vh

aðlh;vhÞP c0;
where a : H�1=2ð@XÞ �H1ðXÞ ! R is
aðlh;vhÞ :¼ ðlh; TvhÞ@X
klhk�1=2;@Xkvhk1;X
and T : H1(X) ? L2(oX) is the trace operator on X. Now if Kh
a is the discrete Lagrange multiplier space associated with any set

of aggregate constraints, then Kh
a is a subspace of Kh

1, hence
inf
lh2Kh

a

sup
vh2Vh

aðlh; vhÞP inf
lh2Kh

1

sup
vh2Vh

aðlh;vhÞP c0;
and we see that Vh;Kh
a

� �
satisfies an inf-sup stability condition as well. (The same argument is used in [1] to show that,

specifically, Vh;Kh
2

� �
is inf-sup stable.) Generally speaking, if (Vh,Kh) satisfies an inf-sup stability condition, then pairing

Vh with any coarsening (i.e., subspace) of Kh will be inf-sup stable as well.

3.4. Embedded interface

To handle the full elliptic interface problem (1)–(3), we combine our embedded Neumann and embedded Dirichlet ap-
proaches in a straightforward way. We consider the equivalent minimization form of the problem (1)–(3):
over all u 2 V :¼ fu : u	 2 H1ðX	Þg; minimize

EðuÞ :¼ eðuÞ � ðf ;uÞX � ðb; �uÞC :¼
Z

XþtX�

1
2
ru � brudx�

Z
X

fudx�
Z

C
b�udSðxÞ; ð24Þ

such that ½u�;lð ÞC ¼ ða;lÞC 8l 2 H�1=2ðCÞ: ð25Þ
Here �uðxÞjC ¼ ðuþ þ u�Þ=2. As before, we define discretizations of V and H�1/2(C) and then construct the resulting discrete
saddle point problem. To define Vh � V, we separately discretize H1(X+) and H1(X�) using the same virtual node represen-
tation used to discretize the embedded Neumann and embedded Dirichlet problems, employing the duplicated grid de-
scribed in Section 3.1 and depicted in Fig. 3. This discretization yields the block diagonal stiffness matrix for the interface
problem,
A ¼ Aþ 0
0 A�

 !
; ð26Þ
where A+ is the stiffness matrix associated with the embedded Neumann problem on X+ and A� is the stiffness matrix asso-
ciated with the embedded Neumann problem on X�, as described in Section 3.2.

As for the embedded Dirichlet problem, we first discretize the continuous constraint equations (25) via Kh
1 into single-

wide constraint equations,
Z
ck\C
½uh�dSðxÞ ¼

Z
ck\C

adSðxÞ; ð27Þ
and then aggregate these single-wide constraints (27), as described in Section 3.3.2:
X
ck2Cdi

Z
ck\C
½uh�dSðxÞ ¼

X
ck2Cdi

Z
ck\C

adSðxÞ: ð28Þ
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Note that we described the constraint aggregation procedure in Section 3.3.2 with Dirichlet constraints in mind, but aggre-
gating single-wide interface constraints is completely analogous. Regarding the specific implementation in Algorithm 1, one
would use the weights wj ¼

P
iBij

		 		 to account for negative single-wide constraint coefficients for interior degrees of freedom.
Using the aggregate constraints in (28) results in the block interface constraint matrix B = (B+j � B�), where B+,B� are,

respectively, the constraint matrices associated with the embedded Dirichlet problems on the exterior and interior of the
interface. In other words,
Please
ular d
Bij ¼ signðjÞ
X

ck2Cdi

Z
ck\C

NjdSðxÞ; ð29Þ
where sign(j) :¼ + 1 if the jth degree of freedom is associated with uh,+ and sign(j) :¼ �1 if the jth degree of freedom is asso-
ciated with uh,�. These discretization choices give the saddle point problem
Aþ 0 ðBþÞt

0 A� ð�B�Þt

Bþ �B� 0

0
B@

1
CA

~uþ

~u�

~k

0
B@

1
CA ¼

~fþ

~f�

~a

0
B@

1
CA; ð30Þ
where~uþ contains the degrees of freedom associated with the exterior discretization and~u� contains the degrees of freedom
associated with the interior discretization. We once again solve this saddle point system using the null space method de-
scribed in Section 3.3.1 by ordering the independent degrees of freedom first to obtain a diagonal Bma . Observe that we
may restrict independent degrees of freedom to only virtual degrees of freedom, as every material degree of freedom has
a geometrically co-located virtual degree of freedom that is indistiguishable as far as adjacency and weight (up to a sign
change) is concerned. We have found that such a restriction results in a better-conditioned system. Contrast this observation
with the Dirichlet case, where each material degree of freedom does not have an equivalent (as far as the constraint system is
concerned) virtual degree of freedom, and hence the decision to allow or disallow the selection of material degrees of free-
dom as independent degrees of freedom has a much bigger impact on the final set of aggregate constraints.

3.4.1. Discontinuity removal
In general, our proposed method requires the solution of the symmetric positive definite system ZtAZ. However, if the

coefficient b is smooth, the IIM and similar methods achieve uniform second order accuracy without altering the standard
Poisson finite difference stencil (the 5-point stencil in 2 dimensions or the 7-point stencil in 3 dimensions). In this section,
we demonstrate how the virtual node framework similarly allows the use of the standard Poisson stencil when b is smooth.

Suppose d(x) 2 V is constructed to satisfy the jump conditions (2), (3) and u(x) is the exact solution. Then since [b] = 0, the
difference w(x):¼u(x) � d(x) satisfies b½rw � n̂� ¼ ½brw � n̂� ¼ 0 and [w] = 0. Since w satisfies homogeneous jump conditions
½rw � n̂� ¼ 0 and [w] = 0, we do not require virtual degrees of freedom to capture any discontinuities across C. In this manner,
solving for w presents an appealing alternative as the presence of virtual nodes no longer adversely affects the subsequent
linear algebra problem. Therefore, when [b] = 0 we recover an approximation to (2) and (3) by separately discretizing w and d
and then setting u = w + d.

We discretize w over the unduplicated grid Gh using H1(X) Cartesian piecewise trilinear elements. Consequently, if the
grid Gh contains r material degrees of freedom, then ~w 2 Rr contains the coefficients in terms of the trilinear basis. We
discretize u and d using the full virtual node basis Vh as they possess lower regularity across C. With these choices, we
can represent the coefficient vector ~u 2 Rn (n > r) of the approximate solution uh in the basis of Vh as ~u ¼~dþ T~w, where
the matrix T 2 Rn�r is an embedding of the trilinear basis into the virtual node basis. We define this transformation by a sim-
ple identification of virtual and material nodes, as a function vh 2 Vh satisfies homogeneous jump conditions if and only if the
value of the function vh at a virtual node equals its value at the geometrically co-located material node. Thus, T maps the
value at a given vertex in the unduplicated grid to each of its copies, material or virtual, in the duplicated grid. To be a little
more explicit, assume that we order the degrees of freedom such that
~u ¼ u1;u2; . . . c;us;usþ1;usþ2; . . . c;u2s;u2sþ1; . . . c;unð Þt:
Here, fukgs
k¼1 represent the s:¼n � r coefficients of the virtual degrees of freedom; fusþkgs

k¼1 represent the coefficients of the
material degrees of freedom respectively co-located with fukgs

k¼1; and the remaining coefficients fukgn
k¼2sþ1 correspond to

degrees of freedom lying outside any interfacial grid cells. See Fig. 9 for an illustration of this ordering. Then T would take
the form
T ¼
Is 0
Is 0
0 In�2s

0
B@

1
CA: ð31Þ
Regardless of the ordering of the degrees of freedom, each column of T corresponds to a material node in the grid and each
row of T corresponds to either a material node or a virtual node. The column of T corresponding to material node j has a 1 in
the row corresponding to material node j; a 1 in the row corresponding to j’s geometrically co-located virtual node, if it exists
(e.g., one of the first s columns in (31) above); and zeros everywhere else.
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(a) Interior discretization (b) Exterior discretization

Fig. 9. Example enumeration of the interfacial degrees of freedom (circled) such that T has the representation (31). Only the indices of a few select
interfacial degrees of freedom are shown. Here, we enumerate the s = 112 virtual degrees of freedom lexicographically, beginning with the interior
discretization. The interior discretization has 60 virtual degrees of freedom (indexed 1–60) and 52 interfacial material degrees of freedom (indexed
173–224); likewise, the exterior discretization has 52 virtual degrees of freedom (indexed 61–112) and 60 interfacial material degrees of freedom (indexed
113–172). Notice how the index to an interfacial material degree of freedom is offset from the index of its co-located virtual degree of freedom by exactly
s = 112. The remaining non-interfacial degrees of freedom (squared) are enumerated starting with index 2s + 1 = 225.
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Determining ~w now proceeds in a manner analogous to the null space method used to solve (18): we wish to minimize
the energy over all vectors of the form~u ¼~dþ T~w. For the sake of discussion, suppose we discretize the energy (24) using the
Cartesian trilinear representation everywhere in the domain. Then substituting the expression ~u ¼~dþ T~w into the energy
(24) gives
Please
ular d
Ehð~uÞ :¼ 1
2
~utA~u�~f t~u ¼ 1

2
~wtTtAT~w�~f tT~wþ ~wtTtA~dþ 1

2
~dtA~d�~f t~d;
which, in turn, implicitly defines an energy over only the material degrees of freedom ~w 2 Rr . Differentiation with respect to
wi thus leads to the linear system
TtAT~w ¼ Tt ~f � A~d
� �

; ~u ¼~dþ T~w:
It is not hard to show that the matrix TtAT is a straightforward, trilinear discretization over the material degrees of freedom,
i.e., a 27-point second order approximation to the (variable coefficient) Laplacian. Thus, we may replace the TtAT operator
with the standard 7-point Poisson stencil Dh

b , only introducing a second order deviation in ~w:
Dh
b
~w ¼ Tt ~f � A~d

� �
; ~u ¼~dþ T~w: ð32Þ
This approach allows the application of efficient black-box solvers for Dh
b, and the discontinuity along the interface only en-

ters into the right-hand side of (32).
We now discuss the approximation of d, the particular solution satisfying the jump conditions (2) and (3). Observe that,

without loss of generality, we may assume that d is supported only near the interface, as the jump constraints are localized to
the interface. Further, we may assume that d vanishes entirely on, say, the exterior region X+, as the jump constraints only
involve differences between exterior and interior values. This latter assumption allows us to express the jump constraints on
d as direct constraints on d�:
�d� ¼ ½d� ¼ a; �brd� � n̂ ¼ b½rd � n̂� ¼ b:
The corresponding discretized single-wide constraints on dh, the Vh-approximation to d, are thus
Z
ci\C

dh;�dSðxÞ ¼ �
Z

ci\C
adSðxÞ;

Z
ci\C

brdh;� � n̂dSðxÞ ¼ �
Z

ci\C
bdSðxÞ
for each grid cell ci 2 Ch
C intersecting the interface C; and dh,+ � 0. This gives a sparse linear system for the coefficient vector~d

of dh where only interior interfacial degrees of freedom participate:
X
j2N h;�

ci

Z
ci\C

NjdSðxÞ
 !

dj ¼ �
Z

ci\C
adSðxÞ; ð33Þ
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Please
ular d
X
j2N h;�

ci

Z
ci\C

brNj � n̂dSðxÞ
 !

dj ¼ �
Z

ci\C
bdSðxÞ; ð34Þ
whereN h;�
ci

denotes the indices of the 8 interior degrees of freedom geometrically located at the corners of cell ci. This system
has 2m rows, where m ¼ jCh

Cj is the number of interfacial grid cells; and it has one column for each interior interfacial degree
of freedom. Thus, unfortunately, this system will not only be asymmetric, but will generally be overdetermined as well.
Hence, one should take some care when computing an approximate solution.

Algorithm 2 gives one approach to constructing~d which we found works well. The algorithm locally constructs a trilinear
function v which approximately satisfies the constraints (33), (34) within a 3 � 3 � 3-cell neighborhood centered on an
interfacial grid cell ci 2 Ch

C. We then evaluate v at the grid vertices of ci to obtain values for the corresponding entries in
~d. This procedure may give an interfacial degree of freedom multiple values, from more than one local construction; we aver-
age these values together, as explained below.

We alert the reader to two subtle but important details of Algorithm 2. First, most, if not all, of these local constructions
amount to a least-squares solution to a small overdetermined system of linear equations. In order to achieve second order
convergence in u, we found it necessary to scale the constraints (34) on r dh,� by h1+c (for some c between 0 and 1), which
places more emphasis on satisfying the constraints on dh,� than on satisfying the constraints on rdh,� in the least-squares
solves. We found c = 1/3 gave the best convergence rate for Example 5.5 over the range of tested resolutions. We suggest
further research is necessary to determine the optimal scaling of the r dh,�-constraints in general, both theoretically and
empirically.

Second, as mentioned above, more than one local construction may yield a value for~d at a given interfacial degree of free-
dom; indeed, the number of such local constructions around a degree of freedom equals the number of incident interfacial grid
cells. We compute a final value for~d at this degree of freedom by taking a weighted average of the values yielded by the various
local constructions, with weights equal to the surface area of C within the interface grid cell around which the local construc-
tion is based. Other weightings of the various local construction contributions could very well give equal or better results.

Algorithm 2. Construct an approximate d satisfying (2) and (3)

{I and J below denote multi-indices, i.e., triples of linear indices, over the unduplicated grid Gh.}
~c ~0
wJ 0 for each interior grid vertex J incident to an interfacial grid cell {the weight sum for degree of freedom J}
for all cI 2 Ch

C do

let S :¼ cJ 2 Ch
C : kI � Jk1 6 1

n o
assert (jSj 6 27andcI 2 S)
Construct a trilinear function v (i.e., solve for 8 coefficients) satisfying the constraints (33), (34) on dh,� and r dh,�

defined over the cells in S (2 constraints per cell). If 2jSj < 8, choose v to have minimum 2-norm (for some
appropriate 2-norm on the trilinear coefficients); if 2jSj > 8, choose v to minimize the 2-norm of the residual of
the constraint equations after scaling the rdh,�-constraint equations by h1+c.
let w :¼

R
cI\C dSðxÞ {the local weight for the degrees of freedom at the corners of cI}

for i = 1, . . . ,8 do
let J denote the index of the ith grid vertex incident to cI (say, lexicographically)
d�J  d�J þw � v xJ

� �
{xJ denotes the spacial coordinates of grid vertex J}

wJ wJ + w
end for

end for
for all interfacial grid vertex indices J do

d�J  d�J =wJ

{average the multiple contributions to the value of d�J }
end for

Note that the computational cost of computing~d in the above fashion is proportional to the number of interfacial degrees
of freedom, hence contributes negligibly to the overall cost of computing ~u.

4. Multigrid

One of our primary contributions is a collection of geometric multigrid algorithms to solve the linear systems arising from
the discretizations of the Neumann, Dirichlet, and interface Poisson problems described in Section 3. Multigrid methods are
well-known to be more efficient than standard iterative Krylov solvers (such as conjugate gradient), as a multigrid solver can
cite this article in press as: J.L. Hellrung Jr. et al., A second order virtual node method for elliptic problems with interfaces and irreg-
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Fig. 10. Partitioning the degrees of freedom according to their grid-distance from the embedded boundary or embedded interface.

Fig. 11. for Example Section 5.1: geometry of @X at N = 32, convergence plot of the errors, and z-slices of uh at N = 32. The black wireframe box in (c)-(e) is
{(x,y) 2 [�1, + 1]2} � [�1, + 1].
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often operate in Oð# of degrees of freedomÞ time (or nearly so). Additionally, our multigrid solvers are geometric in nature,
hence allow implementations with low memory requirements and scalable parallelizability.

We will begin the exposition with a discussion of the grid hierarchy, followed by details regarding the smoothing and
transfer operators. Since our multigrid algorithms for the Neumann, Dirichlet, and interface discretizations share the same
general principles, we will discuss our multigrid algorithms within the context of all three discretizations simultaneously,
noting important differences as they arise. We emphasize that the constraint aggregation described in Section 3.3.2 plays
Please cite this article in press as: J.L. Hellrung Jr. et al., A second order virtual node method for elliptic problems with interfaces and irreg-
ular domains in three dimensions, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.11.023



Fig. 12. for Example Section 5.2: geometry of @Xn at N = 64, convergence plot of the errors, and z-slices of uh at N = 64. The black wireframe box in (c)–(f) is
{(x,y) 2 [�1/2, + 1/2]2} � [�1/2, + 1/2].
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an integral role in our multigrid algorithms for embedded Dirichlet and embedded interface problems, as we base our
boundary/interface-local smoother on the ZtAZ symmetric positive definite system.

We note that we follow standard geometric multigrid principles away from embedded features, and thus our primary
focus is the nontrivial treatment of the multigrid components around the embedded features of the discretization. In order
to minimize peripheral complexity, we assume that b (for Neumann and Dirichlet problems) or b+, b� (interface problems)
are constant.
4.1. Discretization

As is characteristic of geometric multigrid methods, we discretize our problem (as desribed in Section 3) within each of a
hierarchy of Cartesian grids Gh;G2h; . . . c, with the cell resolutions between successive grids in the hierarchy differing by a
factor of 2. Thus, with each level in the hierarchy, we associate

� Cartesian grids Gh;G2h; . . . ;, with the domain embedded as described in Section 3.1;
� Poisson operators Ah, A2h, . . . , (10)/(26); and
� solution and right-hand side vectors ~uh;~u2h; . . . c and~f h;~f 2h; . . . c.

For Dirichlet and interface problems, we also associate the aggregated constraint matrices Bh, B2h, . . . ,c (23)/ (29). To sim-
plify the discretization, we assume the constraint aggregation on a given level is independent of the aggregation on other
levels. That is, we make no attempt to ensure coherency or geometric consistency between the sets of constraints on suc-
cessive levels. However, as a result, the constructions of the multigrid components near embedded features require special
consideration, as will be explained below. Note that the presence of the aggregate constraints on each level allows one to
easily form the ZtAZ system as described in Section 3.3, and, as we will see, it is this system that we base our smoothing oper-
ator on.
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We emphasize that, in spirit, for Dirichlet and interface problems, we are applying multigrid to the saddle point system
(19) or (30). In theory, then, we should additionally associate a Lagrange multiplier vector~kh;~k2h; . . . ; at each level of the hier-
archy. However, we have designed our multigrid algorithms in such a way that, in practice, it is unnecessary (and, indeed,
impractical) to explicitly operate on and store these Lagrange multiplier vectors. Instead, we ensure the (aggregate) con-
straint equations at each level are always satisfied, hence there is no need to restrict~k-residuals or prolongate~k-corrections;
and our smoothing operator is based on the ZtAZ system, which means we can smooth the error in ~u without making any
explicit reference to ~k.

4.2. Smoothing operator

In describing our smoothing operator, it will be useful to distinguish between non-boundary/non-interfacial and bound-
ary/interfacial degrees of freedom. The former are squared and the latter are circled in Figs. 1 and 3. Non-boundary/non-
interfacial degrees of freedom possess the standard 7-point stencil, as depicted in Fig. 5, even within the ZtAZ systems arising
from Dirichlet and interface problems. Thus, on these degrees of freedom, one may apply standard smoothers appropriate for
symmetric positive definite systems, such as weighted Jacobi, Gauss–Seidel, Red–Black Gauss–Seidel, etc.

Although the boundary discretization for Neumann problems produces a denser stencil than the standard 7-point stencil,
it is still (at least) semidefinite, hence one may still apply standard smoothers to these degrees of freedom as well. However,
the embedded boundary/interface discretization for Dirichlet and interface problems is indefinite (recall that we are, in spir-
it, operating on the saddle point system (19) or (30)), so the standard smoothers mentioned above are not options. Alterna-
tive smoothers might work, such as Kaczmarz or box smoothers, but they will generally be slower, and they require the use of

the Lagrange multiplier~k. We choose instead to apply a standard smoother, such as Gauss–Seidel, on the symmetric positive
definite ZtAZ system (which coincides with the Poisson operator away from embedded features). Note that the ZtAZ system
operates on all the degrees of freedom except the independent degrees of freedom. In effect, we have eliminated the indepen-
dent degrees of freedom from the system, such that each update of a boundary/interfacial non-independent degree of free-
dom in the ZtAZ system during, say, a Gauss–Seidel step induces an update of one or more (eliminated) independent degrees
of freedom to ensure the solution remains in the null space of the constraint system. Thus, if our initial guess at the finest

level satisfies the constraints (e.g.,~c ¼ B�1
ma
~p

� �t
0

� �t

), then future corrections via smoothing will keep the approximation in

the solution space of the constraint system.
As we will see, to avoid complexity, we do not use specialized transfer operators near embedded features, as is done in

[26–28,22,87]. However, the incoherency between the feature embeddings and constraint aggregations within successive
discretization levels, as well as the absence of the~k vectors, precludes the successful use of standard transfer operators near
these embedded features. We address this by devoting extra smoothing effort around embedded features to drive the cor-
responding residuals close to zero and propagate non-boundary/non-interface corrections toward embedded features. Thus,
a full smoothing sweep will generally consist of a few boundary/interface-local Gauss–Seidel sweeps, followed by a single
Gauss–Seidel sweep over all degrees of freedom, and ending with a few more boundary/interface-local Gauss–Seidel sweeps.
One can use numerical experimentation to determine exactly how many boundary/interface-local sweeps are necessary, and
our experiments indicate that Neumann and Dirichlet problems need only a half dozen or fewer additional boundary/inter-
face-local smoothing sweeps on either side of the smoothing sweep over all degrees of freedom; interface problems seem to
need somewhat more additional boundary/interface-local smoothing sweeps. Fortunately, for large resolutions, the single
smoothing sweep over all degrees of freedom will dominate the work expended on these boundary/interface-local smooth-
ing sweeps. For complete results, we refer the reader to Section 5.6.

4.3. Transfer operators

Our multigrid algorithms use standard prolongation and restriction operators away from embedded features. We prolon-
gate a coarse-grid correction~u2h to the fine-grid solution~uh via trilinear interpolation:~uh  ~uh þ P~u2h. We restrict a fine-grid
residual in ~uh to the coarse-grid right-hand side via the scaled adjoint operator R :¼ 8Pt.

Often, in the presence of embedded features, one considers introducing specialized transfer operators near these features
[26–28,22,87]. As stated above, we have opted to avoid this complexity. However, we cannot rely on the standard transfer
operators by themselves to correctly restrict fine-grid residuals and prolongate coarse-grid corrections near embedded fea-
tures. Thus, we expend extra smoothing effort to ensure the fine-grid residuals near embedded features are close to zero prior
to restriction. Indeed, for Dirichlet and interface problems, we restrict identically zero residuals from all fine-grid equations
corresponding to boundary/interfacial degrees of freedom, which correspond to precisely those rows in the saddle point sys-
tem involving~k. We additionally only restrict to a strict subset of the coarse-grid equations (e.g. only those corresponding to
material degrees of freedom, or only those corresponding to non-boundary/non-interfacial degrees of freedom). Further, we
prolongate zero values from virtual degrees of freedom in the coarse-grid correction, and again expend extra smoothing effort
to propagate toward embedded features the more reliable coarse-grid corrections away from the embedded features.

For Dirichlet and interface problems, recall again that, in spirit, we are applying our multigrid algorithms on the saddle
point systems, hence obstensibly we should be restricting residuals from the constraint equations as well. However, by
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smoothing via the ZtAZ system and (implicitly) propagating all updates to the independent degrees of freedom, we ensure
the constraint equations are always satisfied exactly, i.e., have zero residual.

4.4. Details

The preceding sections gave an overview of the general strategy for our multigrid algorithms, and here we only provide
some additional details of our implementation of these ideas. Our primary goal is not necessarily to develop the most effi-
cient implementation, but rather to provide a simple reference implementation which can provide a baseline for future
research.

We use lexicographically ordered Gauss–Seidel iterations in all phases of our smoothers. The empirical convergence rates
we obtain in our numerical examples in Section 5.6 indicate that the Gauss–Seidel method is a sufficiently good smoother
away from embedded features. Technically, the pre-restriction and post-prolongation smoothing sweeps serve difference
purposes, so one could tailor the details of each to perform optimally for their respective purpose. For simplicity, however,
we use identical pre-restriction and post-prolongation smoothing sweeps. Furthermore, we always buttress the Gauss–Sei-
del sweep over all degrees of freedom with equal numbers of boundary/interface-local Gauss–Seidel sweeps on either side.
We refer to this number at the finest level as the number of boundary smoothing sweeps (NBSS; Neumann, Dirichlet) and num-
ber of interface smoothing sweeps (NISS; interface). At each successively coarser level, we increase the number of boundary/
interface smoothing sweeps by a factor of 2 (see Algorithms 3 and 4). Since the number of degrees of freedom in a neigh-
borhood of an embedded feature scales as N2 for a grid resolution of, say, N � N � N, this increase in the number of bound-
ary/interface smoothing sweeps at coarser levels does not change the overall complexity of our algorithms. Furthermore, we
found it significantly improved our v-cycle convergence rates with negligible additional cost per v-cycle.

For the boundary/interface-local Gauss–Seidel sweeps, we iterate over all degrees of freedom within a fixed L1-grid-dis-
tance of a boundary/interfacial degree of freedom. See Fig. 10 for an example assignment to all degrees of freedom of the
(discrete) signed grid-distance to the embedded boundary or embedded interface. We use the terms boundary smoothing re-
gion width (BSRW; Neumann, Dirichlet) and interface smoothing region width (ISRW; interface) to refer to this distance defin-
ing the boundary/interface-local region we apply extra Gauss–Seidel sweeps to. Thus, a BSRW/ISRW of 1 refers to all
boundary/interfacial degrees of freedom, while a BSRW/ISRW of 2 refers to all degrees of freedom within an L1-grid-distance
of 1 from a boundary/interfacial degree of freedom.

Within an interface-local Gauss–Seidel sweep, we found it necessary to relax co-located interior and exterior degrees of
freedom consecutively. In other words, co-located pairs of degrees of freedom resulting from a single grid vertex duplication
should be relaxed one after the other. To be clear, an interface-local Gauss–Seidel sweep which iterates over only all interior
degrees of freedom followed by only all exterior degrees of freedom (or vice versa) fails to reduce the residuals around the
interface within a reasonable number of iterations.

For completeness, we provide pseudocode for a multigrid v-cycle for Neumann problems (Algorithm 3) and Dirichlet
problems (Algorithm 4) (the pseudocode for interface problems would be nearly identical to that for Dirichlet problems,
so we omit it). In these algorithm listings, L denotes the number of levels, with the finest level indexed as 1; and we index
all variables associated with a given level with the level index (as opposed to h,2h, . . . , as we had been doing above).

Algorithm 3. Multigrid v-cycle algorithm for Neumann problems.

initialize Poisson operators A1, . . . ,AL at all levels as described in Section 3.2; allocate space for solution vectors~u1; . . . ;~uL

and right-hand side vectors~f 1; . . . ;~f L

set~f 1  ~f from (10)
set ~u1 as some convenient initial guess satisfying any (grid-aligned) Dirichlet conditions
for ‘ = 1, . . . ,L � 1 do

perform a full smoothing sweep on A‘~u‘ ¼~f ‘ {Section 4.2, with 2‘�1 NBSS boundary-local Gauss–Seidel sweeps on
each side of a Gauss–Seidel sweep over all degrees of freedom}

restrict the fine-grid residual~r‘ :¼~f ‘ � A‘~u‘ to the coarse-grid right-hand side:~f ‘þ1  R‘~r‘ {Section 4.3; only restrict
to coarse-grid material equations}

set ~u‘þ1  ~0
end for

solve AL~uL ¼~f L exactly {using a sufficient number of Gauss–Seidel iterations, for example}
for ‘ = L � 1, . . . ,1 do

prolongate the coarse-grid correction ~u‘þ1 to the fine-grid solution: ~u‘  ~u‘ þ P‘þ1~u‘þ1 {Section 4.3; prolongate zeros
at coarse-grid virtual degrees of freedom}

perform a full smoothing sweep on A‘~u‘ ¼~f ‘ {Section 4.2, with 2‘�1NBSS boundary-local Gauss–Seidel sweeps on
each side of a Gauss–Seidel sweep over all degrees of freedom}

end for
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Algorithm 4. Multigrid v-cycle algorithm for Dirichlet problems.

initialize Poisson operators A1, . . . ,AL and aggregated constraint matrices B1, . . . ,BL (and/or fundamental basis
matrices Z1, . . . ,ZL) at all levels as described in Section 3.3; allocate space for solution vectors ~u1; . . . ;~uL and right-hand

side vectors~f 1; . . . ;~f L

set~f 1  ~f from (10) (without the q contribution, of course)

let~c :¼ B�1
ma
~p

0

� �
{~c satisfies the embedded Dirichlet constraints}

set~f 1  Zt ~f 1 � A1~c
� �

(note: we implicitly identify the domains and codomains of Z and Zt)

set ~u1 as some convenient initial guess satisfying any grid-aligned Dirichlet conditions
for ‘ = 1, . . . ,L � 1 do

perform a full smoothing sweep on Z‘
� �t

A‘Z‘~u‘ ¼~f ‘ {Section 4.2, with 2‘�1 NBSS boundary-local Gauss–Seidel sweeps

on each side of a Gauss–Seidel sweep over all degrees of freedom; be sure to update independent degrees of
freedom as necessary to maintain ~u‘ in the null space of the embedded Dirichlet constraints}

restrict the fine-grid residual~r‘ :¼~f ‘ � ðZ‘ÞtA‘Z‘~u‘ to the coarse-grid right-hand side:~f ‘þ1  R‘~r‘ {Section 4.3; restrict
zero values from fine-grid boundary degrees of freedom, and only restrict to coarse-grid non-boundary equations}

set ~u‘þ1  ~0
end for

solve ZL
� �t

ALZL~uL ¼~f L exactly {using a sufficient number of Gauss–Seidel iterations, for example}

for ‘ = L � 1, . . . ,1 do

prolongate the coarse-grid correction ~u‘þ1 to the fine-grid solution: ~u‘  ~u‘ þ P‘þ1~u‘þ1 {Section 4.3; prolongate zeros
at coarse-grid virtual degrees of freedom}

perform a full smoothing sweep on ðZ‘ÞtA‘Z‘~u‘ ¼~f ‘ {Section 4.2, with 2‘�1 NBSS boundary-local Gauss–Seidel sweeps
on each side of a Gauss–Seidel sweep over all degrees of freedom; be sure to update independent degrees of
freedom as necessary to maintain ~u‘ in the null space of the embedded Dirichlet constraints}

end for
set ~u1  ~c þ Z~u1 (note: we implicitly identify the domains and codomains of Z and Zt)
5. Numerical examples

We now present some numerical examples demonstrating the second order accuracy of our methods for embedded
Neumann, embedded Dirichlet, and embedded interface problems, including an example utilizing discontinuity removal
for an interface problem with smooth b across the interface. We will additionally present some examples demonstrating
the efficiency of our geometric multigrid algorithms.

We discretized our examples on a variety of N � N � N-cell grids (up to 4163 for Neumann, Dirichlet, and interface
problems with smooth b; up to 3203 for interface problems with discontinuous b) within the box [�1,+1]3. For each
example below, we give a graphic depicting the embedded boundary or interface; a few plots showing typical slices of
the discrete approximation uh, e.g., plots of uh(x,y,z0) against (x,y) with z = z0 fixed; and log–log plots of the errors in
the discrete approximation ku � uhk1 and the gradient of the discrete approximation kru �ruhk1 against the resolution
N, which demonstrate second order convergence in u and first order convergence in ru. We compute ku � uhk1 as the
maximum absolute difference between the analytic solution u and the discrete approximation uh over all material degrees
of freedom. We compute kru �ruhk1 as the maximum L1-norm between ru and ruh over, again, all material degrees
of freedom. Note that, strictly speaking, ruh is discontinuous across grid cell faces, and specifically around grid vertices.
Thus, we evaluate ruh at a grid vertex by averaging its limits when approached from each of the (up to 8) non-boundary/
non-interface incident grid cells (using the trilinear representation of uh within each incident grid cell). We restrict this
averaging to only non-boundary/non-interfacial grid cells to ensure we use only material degrees of freedom in the eval-
uation of r uh.

Occasionally, at higher resolutions, a degree of freedom is so poorly supported that catastrophic cancellation and/or
round-off error dominates in the integration calculations (Section 3.1) associated with the degree of freedom. For all the
examples below, we eliminate a virtual degree of freedom i from the linear system whenever Aii 6 1 � 10�12maxjAjj, i.e.,
when its corresponding diagonal entry in the striffness matrix is vanishingly small. We found this elimination to be occa-
sionally necessary to improve the solve times and/or reduce the error in the approximate solution. An alternative solution
to this problem of poorly supported degrees of freedom is to perturb the boundary or interface away from grid vertices lying
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too close (via a perturbation of the level set function values), thus attempting to give sufficient support to all degrees of
freedom.

5.1. Embedded Neumann Example 1

Our first two examples apply our method to the embedded Neumann problem:
Please
ular d
�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X;

bru � n̂ ¼ qðxÞ; x 2 @Xn:
This first example uses b(x,y,z) = 2 + y2 + xz and sets f and q according to the exact solution u(x,y,z) = xcosy + y2 sinz. The do-
main is given by X = {x : 0.4 < kxk2 and kxk1 < 1}, with Neumann conditions applied to the embedded portion of the bound-
ary oXn = {x : kxk2 = 0.4} and Dirichlet conditions applied to the grid-aligned portion of the boundary oXd = {x : kxk1 = 1}.
Fig. 11 depicts the geometry at resolution N = 32, a convergence plot of the errors, and several z-slices of uh at N = 32. A
least-squares linear regression on the error data yields a convergence order of 1.893 for u and 1.002 for ru.

5.2. Embedded Neumann Example 2

Our second example is also an embedded Neumann problem, with b(x,y,z) = 3 + xcosz + ysinz and f and q set according to
the exact solution u(x,y,z) = zcos(x2 � y2). The domain X is bounded by the 24-point star level set given in Algorithm 5 with
parameters rmin = 0.6 and rmax = 0.9. Additionally, we rotate the star surface described in Algorithm 5 by �0.3 radians about
the +x-axis (to introduce some asymmetry). See Fig. 12 for a graphic of the star level set at resolution N = 64.

Algorithm 5. Level set function for the 24-point star surface in Example Section 5.2.

{input: x 2 R3}
{parameters: 0 < rmin < rmax}
let i :¼ argmaxijxij
if xi = 0 then

return �rmin

end if
let j1, j2 2 {1,2,3} be the other 2 indices other than i
let sk :¼ xjk

=jxij, for k = 1, 2
{s1,s2 are local coordinates on the face of the [�1,+1]3 cube intersected by the ray from 0 through x}
assert (�1 6 sk 6 + 1), for k = 1, 2
sk  1

2 sk þ sin p
2 sk

� �
{apply a slight distortion to give better spacing to the star’s points}

let h :¼ (1 � cos2ps1)(1 � cos2ps2)
return jxj � (rmin + (rmax � rmin)h)

We apply Neumann boundary conditions over the entire star surface (oX = oX), hence the solution u is only determined
n

up to a constant shift. We accounted for this both during during the linear solves (the stiffness matrix is indefinite) and in the
evaluation of the error. Fig. 12 shows the convergence plot of the errors and some typical z-slices of uh at N = 64. We obtain
convergence orders of 1.775 and 0.875 for u and ru, respectively.

5.3. Embedded Dirichlet example

We next demonstrate our method on the embedded Dirichlet problem:
�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X;

u ¼ pðxÞ; x 2 @Xd:
This example uses b(x,y,z) = 7 + x + 2y + 3z and sets f and p according to the exact solution uðx; y; zÞ ¼ xey þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
ez. The

domain X is bounded by a torus centered at 0 with major radius 0.6, minor radius 0.3, and axis along (0,�sin0.75,cos0.75)
(the k̂ vector rotated �0.75 radians with respect to the +x-axis; again, to introduce some asymmetry). We apply Dirichlet
boundary conditions over all of oX, i.e., oXd = oX. Fig. 13 depicts a graphic of the torus surface at resolution N = 64, a con-
vergence plot of the errors, and a few x-slices of uh at N = 64 (that is, we plot uh(x0,y,z) against (y,z) for fixed x = x0). We cal-
culated convergence orders of 1.864 and 0.977 for u and ru, respectively.

5.4. Embedded interface examples

We now apply our method to the embedded interface problem:
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Fig. 13. for Example embedded Section 5.3: geometry of @Xd at N = 64, convergence plot of the errors, and x-slices of uh at N = 64. The black wireframe box
in (c)–(e) is {(y,z) 2 [�1, + 1]2} � [1,3].
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Please
ular d
�r � bðxÞruðxÞð Þ ¼ f ðxÞ; x 2 X;

½u� ¼ aðxÞ; x 2 C;

½bru � n̂� ¼ bðxÞ; x 2 C:
We take b�(x,y,z) = a�(10 + sin(xy + z)) and b+(x,y,z) = a+(10 + cos(x + yz)), where a� and a+ are constants. We will vary
the ratio a�/a+ between 1/100 and 100 to demonstrate the behavior of our method with respect to the contrast in b. We
set a and b according to the exact solution u�ðx; y; zÞ ¼ x2 þ y2 þ z2; uþðx; y; zÞ ¼ ðxþ zÞ2

ffiffiffiffiffiffiffiffiffiffiffiffi
2þ y

p
. The interface C is the surface

of a thickened trefoil knot, with major radius rmajor = 0.8 and minor radius rminor = 0.23. To be precise, let ctrefoil denote the
trefoil knot curve parameterized as
ctrefoil :¼ rmajor

3
ð2þ cos 3tÞ cos 2t; ð2þ cos 3tÞ sin 2t; sin 3tð Þ : 0 6 t < 2p

n o
:

We then take
X� :¼ x 2 R3 : min
y2ctrefoil

kx� yk2 < rminor

� �
;

with C = oX� and X+ = (�1,+1)3n(X� t C). See Fig. 14 for a graphic of the trefoil knot surface at resolution N = 64, a few z-
slices of uh with (a�,a+) = (2,1) at N = 64, and convergence plots of the errors for various combinations of a� and a+. For all
tested combinations of a� and a+ we obtained an estimated convergence order of P1.794 and P0.923 for u and ru,
respectively.
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Fig. 14. for Example Section 5.4: geometry of C, z-slices of uh with (a�,a+) = (2,1) at N = 64, and convergence plots of the errors at various combinations of
a� and a+. The black wireframe box in (b)–(d) is {(x,y) 2 [�1, + 1]2} � [0,2].

Table 1
Condition numbers (as estimated by PETSc) and number of (preconditioned) conjugate gradient ((P) CG) iterations for the linear systems resulting from
discretizing Example Section 5.4 at resolution N = 256 for various combinations of (a�,a+). For the preconditioning, we used PETSc’s incomplete Cholesky (ICC)
preconditioner. We also include statistics for the standard 7-pt Laplacian matrix for reference.

Test case Cond. # (no ICC) Cond. # (w/ICC) # of CG iter. (no ICC) # of PCG iter. (w/ICC)

(2,1) 4.0 � 105 5.6 � 103 5148 616
(10,1) 1.4 � 106 6.5 � 105 8421 5856
(100,1) 1.3 � 107 6.1 � 106 12855 8817
(1,2) 3.3 � 105 5.5 � 103 5168 630
(1,10) 4.7 � 105 2.3 � 105 6450 4529
(1,100) 6.6 � 105 3.1 � 105 7709 5350
7-pt Laplacian, b� 2.7 � 104 2.7 � 103 1190 395
7-pt Laplacian, b+ 2.7 � 104 2.7 � 103 1194 427
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Table 1 shows the effect of the b contrast on the conditioning of the linear systems and the number of (preconditioned)
conjugate gradient iterations. We compare the various combinations of a� and a+ together with, for reference, the standard
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7-pt variable coefficient Laplacian with no interface. For the 7-pt Laplacian system, we show the results from using each of
b� :¼ 10 + sin(xy + z) and b+ :¼ 10 + cos(x + yz) as the Laplacian coefficient throughout the whole domain. All tests are at a
resolution of N = 256. We normalized the linear systems to have constant diagonal (Jacobi preconditioning) and solved
them via PETSc’s [90–92] conjugate gradient function to a relative residual norm of 2.3 � 10�13 of the Jacobi precondi-
tioned system. We configured PETSc to estimate the extreme singular values of the system upon completion of a solve
and computed the condition number as the ratio of these extreme singular values. In each test case, we also demonstrate
the effects of preconditioning (using PETSc’s incomplete Cholesky (ICC) preconditioner, applicable since the ZtAZ system is
symmetric positive definite) on the conditioning of the system and the number of conjugate gradient iterations. We ob-
serve that high b constrasts could moderately increase solve times over low b constrasts and the standard 7-pt Laplacian
matrix.
5.5. Discontinuity removal

Recall from Section 3.4.1 that if b is smooth across the interface C, our method reduces to solving a standard 7-point Pois-
son system. We demonstrate the applicability of this procedure in this example. We take bðx; y; zÞ ¼ e1þx2þz2 þ x sin 4y and set
a and b according to the exact solution u�(x,y,z) = (cos4x) log (1 + y2 + z2), u+(x,y,z) = x y2 + 3yz2 + 7zx2. The interface C is the
surface of a dumbbell, described by the level set function in Algorithm 6. In this example, the balls of the dumbbell are cen-
tered at x0 = (�0.4,�0.4,�0.4) and x1 = (0.4,0.4,0.4) with radii rball = 0.5; the neck of the dumbbell has radius rneck = 0.2. See
Fig. 15. for Example Section 5.5: geometry of C, convergence plot of the errors, and z-slices of uh at N = 64. The black wireframe box in (c)–(e) is
{(x,y) 2 [�1, + 1]2} � [�4,4].
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Fig. 16. Multigrid v-cycle convergence plots for embedded Neumann Examples 5.1 and 5.2 with b � 1. The grid resolution is N = 384 and the boundary
smoothing region width is 1. The top plot in each subfigure shows the residual norm k~f � A~uk1 after each v-cycle iteration for various numbers of boundary
smoothing sweeps (NBSS). The bottom plots shows the ratio of successive residual norms. The estimated rate given in each bottom plot is the average ratio
of successive residual norms over the final 10 iterations.
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Fig. 15 for a graphic of the dumbbell level set at N = 64, a convergence plot of the errors, and a few z-slices of uh at N = 64. We
calculated convergence orders of 1.969 and 0.984 for u and ru, respectively.

Algorithm 6. Signed distance function for the dumbbell surface in Example Section 5.5

{input: x 2 R3}
{parameters: 0 < rneck 6 rball; x0;x1 2 R3}
let y :¼ x� 1

2 ðx0 þ x1Þ
{(a,b) are the local coordinates of x projected onto the plane defined by x0, x1, x where (0,0) corresponds to
1
2 x0 þ x1ð Þ and ð	~a;0Þ corresponds to xi}

let a :¼ y � x1�x0
kx1�x0k2

; ðb :¼ y � a x1�x0
kx1�x0k2

��� ���
let ~a :¼ 1

2 kx1 � x0k2; ~b :¼ ~a2� rball�rneckð Þ2
2 rball�rneckð Þ

if ~b 6 0 or jaj~a þ
b
~b
P 1 then

let d0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~aþ aÞ2 þ b2

q
{distance from x to x0}

let d1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a� að Þ2 þ b2

q
{distance from x to x1}

assert (di = kx � xik) for i = 1,2
return min{d0,d1} � rball

else

return ~b� rneck

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ~b� b

� �2
r

end if
5.6. Multigrid

We described a collection of multigrid algorithms in Section 4 to solve embedded Neumann and embedded Dirichlet
problems with b constant (i.e., b � 1) and embedded interface problems with b+ and b� constant (i.e., b is constant over
X� and X+ but still discontinuous along C). We demonstrate the efficacy of these algorithms in this section. For each of
the following examples, we study the convergence behavior of iteratively applying the multigrid v-cycle described in Section
4. We vary the number of pre-restriction and post-prolongation additional boundary/interface smoothing sweeps together
with the width of the boundary/interface smoothing region, and show what kind of parameters might be typically necessary
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Fig. 17. Multigrid v-cycle convergence plots for embedded Dirichlet Example Section 5.3 with b � 1 for a boundary smoothing region width (BSRW) of 2
and 3. The grid resolution is N = 384. The top plot in each subfigure shows the residual norm k~f � A~uk1 after each v-cycle iteration for various numbers of
boundary smoothing sweeps (NBSS). The bottom plots shows the ratio of successive residual norms. The estimated rate given in each bottom plot is the
average ratio of successive residual norms over the final 10 iterations.
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to achieve good v-cycle convergence. We note that, generally speaking, for the class of smoothers we are using (straightfor-
ward Gauss–Seidel or variants thereof), embedded Neumann and embedded Dirichlet problems require relatively little addi-
tional smoothing effort along the boundary. Embedded interface problems, on the other hand, may require significantly
more work along the interface, depending highly on the contrast in b.

We first present the results of applying our multigrid algorithm to the embedded Neumann examples in Section 5.1 and
Section 5.2, but with b � 1. Fig. 16 shows plots of the residual norm k~f � A~uk1 and the ratio of successive residual norms
versus the v-cycle iteration number at resolution N = 384 = 3 � 27. For both examples, we were able to obtain a v-cycle con-
vergence rate of about 0.25 with a boundary smoothing region width of only 1 (i.e., only expending extra smoothing effort on
boundary degrees of freedom) and relatively few additional boundary smoothing sweeps.

Fig. 17 shows the results of applying our multigrid algorithm to the embedded Dirichlet example in Section 5.3 (except,
again, with b � 1). For this example, we found it necessary to extend the boundary smoothing region out to a width of 2 or 3
to obtain good v-cycle convergence, encompassing all degrees of freedom incident to a grid cell with an L1-distance from a
boundary grid cell of at most 1 or 2, respectively. In each case, we needed only 3 or 4 additional boundary smoothing sweeps
to achieve a stable v-cycle convergence rate. Additional boundary smoothing sweeps above 3 or 4 did not significantly im-
prove the convergence rate. Unsurprisingly, a boundary smoothing region width of 3 gives a better convergence rate (again,
about 0.25) than a boundary smoothing region width of 2 (where the convergence rate is, at best, about 0.39). The former,
however, requires non-negligibly more effort for smaller resolutions.

Lastly, we demonstrate our multigrid algorithm on the embedded interface example in Section 5.4 with b� � a� and
b+ � a+. See Fig. 18 for the results. Here, we vary a�/a+ only between 1/10 and 10. As for the embedded Dirichlet case, an
interface smoothing region width of 2 or 3 is sufficient to obtain a v-cycle convergence rate of about 0.40 or 0.25, respec-
tively. We found that we also needed significantly more additional interface smoothing sweeps than for the embedded Neu-
mann and embedded Dirichlet cases, especially at more extreme b contrasts (e.g., 1/100 or 100).
6. Discussion and conclusion

We presented a virtual node method to solve embedded Neumann, Dirichlet, and interface problems (1)–(5) (cf. [1])
which uses Lagrange multipliers to enforce the Dirichlet condition (4) and the jump condition (2) weakly. We described a
general algorithm to define the Lagrange multiplier space that ultimately yields a symmetric positive definite system with
better conditioning than that yielded when using the double-wide constraints described in [1]. The geometric intuitiveness
of our method makes it relatively easy to implement, and the numerical examples in Section 5 demonstrate its second order
accuracy in L1. Although simpler embedded domain discretizations exist (see, for example, [30,45]), we believe one distinct
advantage of our embedded domain discretizations is that they naturally extend to our embedded interface discretization.
Thus, it takes relatively little machinery to understand and implement all three methods.

We described a collection of multigrid algorithms in Section 4 to solve our embedded Neumann, Dirichlet, and interface
problems. The results given in Section 5.6 demonstrate that simple v-cycle iteration built around our multigrid algorithms
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Fig. 18. Multigrid v-cycle convergence plots for embedded interface Example Section 5.4 with b� � a�, b+ � a+ for a interface smoothing region width
(ISRW) of 2 and 3 and various combinations of a�,a+. The grid resolution is N = 256. The top plot in each subfigure shows the residual norm k~f � A~uk1 after
each v-cycle iteration for various numbers of interface smoothing sweeps (NISS). The bottom plots shows the ratio of successive residual norms. The
estimated rate given in each bottom plot is the average ratio of successive residual norms over the final 10 iterations.
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yields an efficient solver for embedded Neumann and embedded Dirichlet problems at almost any resolution. Using simple
v-cycle iteration to solve embedded interface problems requires a significant amount of interface-local smoothing, so it
would likely be most effective at higher resolutions. One avenue of research would be to investigate alternative grid-transfer
operators or smoothers around the embedded interface with the hopes of reducing the amount of interface-local smoothing.
We would also expect that far fewer interface-local (and boundary-local) smoothing sweeps would be necessary when using
a single multigrid v-cycle as a preconditioner to a Krylov method, such as is done in [86].
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Appendix A. Quadrature

For convenience, we reproduce the triangle Gaussian quadrature rules of various orders we used from [93] in Table A.2.
For the quadrature points with multiplicity 3, the coordinates should be permuted to give 3 total symmetrically distributed
quadrature points, all with the same given quadrature weight. For example, to integrate a cubic polynomial pðxÞ : R3 ! R

over a triangle T with vertices fx1;x2;x3g � R3, one would use the order 3 quadrature rule from Table A.2, which manifests
itself as
Table C
Conditi
ZTA Z sy
problem

Test

Diric

Inter

Diric

Inter

Table A
Triangle

Orde

1
2

3

4

5

Please
ular d
Z
T

pðxÞdx ¼ areaðTÞ �27
48

~p
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;
1
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1
3

� �
þ 25
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~p

1
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where ~pða1;a2;a3Þ ¼ pða1x1 þ a2x2 þ a3x3Þ. Note how the multiplicity 3 quadrature point with barycentric coordinates (1/
5,1/5,3/5) in Table A.2 represents all of the latter 3 quadrature points in (35) via permutation of the coordinates.
Appendix B. Cell averages

The discretizations described in Section 3 require computing cell averages �b; �f , and �q of b, f, and q, respectively. One can
use any of a variety of techniques to compute these averages, and one’s choice would likely depend upon whether one has b,
f, and q immediately defined pointwise at grid vertices; pointwise at grid edge, face, or cell centers; or analytically through-
out the domain, domain boundary, or interface.

We used evaluations of b and f at grid vertices to compute their cell averages. For non-boundary/non-interfacial grid cells,
the cell average amounts to a straightforward, equal-weighted average of the values at the eight grid vertices of the cell. For
boundary/interfacial grid cells, we used trilinear interpolation to compute the cell average. For example, in the embedded
Neumann and embedded Dirichlet discretizations, we compute the cell average of b over grid cell ck 2 Ch

@X as
�b :¼
R

ck\X
bdxR

ck\X
dx



P
i2N h

ck

bi

R
ck\X

NidxR
ck\X

dx
;

where, as introduced in Section 3.2, fNi : i 2 N h
ck
g denotes the set of trilinear basis functions associated to the 8 grid vertices

of ck. Note that all integrands remaining in the right-most expression are polynomials, hence the integrals may be evaluated
as described in Section 3.1. We compute �f , as well as cell averages in embedded interface discretizations, in a completely
analogous fashion.
.3
on numbers and (preconditioned) conjugate gradient ((P) CG) solve iterations, both with and without incomplete Cholesky (ICC) preconditioning, for the
stem arising from the discretization of a Dirichlet and from the discretization of an interface problem at grid resolution 32 � 32 � 32. The Dirichlet
has X = {x : jxj 6 0.8} and b � 1; the interface problem has C = {x:jxj = 0.8} and (b�,b+) � (1,2).

case Cond. # (no ICC) Cond. # (w/ICC) # of CG iter. (no ICC) # of PCG iter. (w/ICC)

hlet, Kh ¼ Kh
2

3.7 � 1012 1.1 � 1012 59,846 61,568

face, Kh ¼ Kh
2

4.4 � 1012 1.4 � 1013 97,061 80,225

hlet, Kh ¼ Kh
a

9.3 � 102 2.3 � 101 200 44

face, Kh ¼ Kh
a

3.9 � 103 4.1 � 101 494 61

.2
Gaussian quadrature rules of order 1–5, as given in [93].

r Mult. Weight Barycentric coordinates

1 1 (1/3,1/3,1/3)
3 1/3 (1/6,1/6,2/3)
1 �27/48 (1/3,1/3,1/3)
3 25/48 (1/5,1/5,3/5)
3 0.109951743655322 (0.091576213509771,0.091576213509771,0.816847572980459)
3 0.223381589678011 (0.108103018168070,0.445948490915965,0.445948490915965)
1 9/40 (1/3,1/3,1/3)
3 0.125939180544827 (0.101286507323456,0.101286507323456,0.797426985353087)
3 0.132394152788506 (0.059715871789770,0.470142064105115, 0.470142064105115)
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For embedded Neumann discretizations, to simplify implementation, we assume that q � bru � n̂ is available everywhere
along the polyhedral representation of oX. We use the second order quadrature rule from Table A.2 in Appendix A over each
polygon of Pck

@X (where ck 2 Ch
@X) to approximate �q:
Please
ular d
�q :¼
R

ck\@X
qdSðxÞR

ck\@X
dSðxÞ 
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R
g qdSðxÞP
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areaðgÞ :
Appendix C. Double-wide constraint conditioning

As mentioned in Section 3.3.2, we found that the double-wide constraints introduced in [1] present significant condition-
ing issues in 3 dimensions that do not exist in 2 dimensions. Table C.3 shows the condition numbers and the number of con-
jugate gradient solve iterations for the ZTAZ matrices resulting from the discretization of a simple Dirichlet problem and from
the discretization of a similarly simple interface problem using each of two alternate discretizations Kh of the Lagrange mul-
tiplier space K : Kh

2, which corresponds to the double-wide constraints; and Kh
a , which corresponds to the aggregate con-

straints constructed via the algorithm described in Section 3.3.2. We calculated these statistics using PETSc in exactly the
same way as for Table 1. This includes applying Jacobi preconditioning and then solving with (incomplete Cholesky precon-
ditioned) conjugate gradient to a relative residual norm of 2.3 � 10�13 of the Jacobi preconditioned system. Clearly, the con-
ditioning of the ZTAZ system arising from the double-wide constraints is several orders of magnitude worse than that arising
from the constraint aggregation algorithm described in Section 3.3.2.
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