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Fig. 1. Demonstration of motion control in an anatomical simulation of a juggling task, actuated by volumetric muscles. Active muscles are shown in pink.

We propose a framework for simulation and control of the human muscu-
loskeletal system, capable of reproducing realistic animations of dexterous
activities with high-level coordination. We present the first controllable
system in this class that incorporates volumetric muscle actuators, tightly
coupled with the motion controller, in enhancement of line-segment ap-
proximations that prior art is overwhelmingly restricted to. The theoretical
framework put forth by our methodology computes all the necessary Ja-
cobians for control, even with the drastically increased dimensionality of
the state descriptors associated with three-dimensional, volumetric muscles.
The direct coupling of volumetric actuators in the controller allows us to
model muscular deficiencies that manifest in shape and geometry, in ways
that cannot be captured with line-segment approximations. Our controller
is coupled with a trajectory optimization framework, and its efficacy is
demonstrated in complex motion tasks such as juggling, and weightlifting
sequences with variable anatomic parameters and interaction constraints.
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1 INTRODUCTION
Complex movement of a human body emerges from the geometrical
structure of the musculoskeletal system and its mechanical charac-
teristics. The skeleton supports the body, and themuscles contract to
induce motion of the attached bones. The human brain coordinates
the activations of the muscles in harmonious synergy, to create
intended bulk motion or maintain kinematic balance. In Computer
Graphics, there is a strong research trail of methods for reproducing
natural human motion by incorporating the true mechanics of the
musculoskeletal system. However, common modeling assumptions
such as the near-ubiquitous adoption of line-segment primitives for
the actuation of such systems raise a number of important ques-
tions: First, it is not well understood what impact such simplifying
assumptions may have on the accuracy and biomechanical fidelity
of the simulations thus produced. Second, it is unclear if we could
forego such simplification by just accepting an increase in the com-
putational cost, or whether current control formulations would be
challenged to accommodate more complex, volumetric actuators.
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Finally, it is reasonable to question whether the incorporation of
volumetric muscle primitives with control techniques can cope with
the complexity of regenerating highly coordinated dexterous skills.
The Hill-type muscle model [Thelen et al. 2003; Zajac 1989] has

been broadly adopted to encode the nonlinear contraction dynamics
of muscle in fields such as ergonomics, computer graphics, and
robotics. However, almost every prior attempt at tightly coupled
simulation and control of the musculoskeletal system has resorted
to simplifying muscles into sequences of line segments (some of
which are capable of active contraction), consciously neglecting the
geometrical structure of volumetric muscles (e.g. cross-sectional
geometry and active fiber field distribution). In addition, various
physical parameters such as pennation angle, maximum force, and
way-points in the Hill-typemusclemodel have to be tuned according
to the actual muscles, in order to empirically match the physiological
behavior of observed human motion.

Prior work has progressed towards tightly integrated volumetric
musculature simulation and control, but has stopped just short
of achieving this goal. Lee et al. [2009] demonstrated a volumetric
musculoskeletal simulation, but derived bone kinematics andmuscle
activations from a separate line-segment simulation and controller.
In the work of Si et al. [2014], a volumetric simulation is primarily
used for visualization and to mediate force transfer from an aquatic
environment to the skeleton, while the controller still uses line-
segment muscles. The work of Fan et al. [2014] demonstrates the
impressive accomplishment of stable articulation of the skeleton
based on the action of volumetric primitives; nevertheless, control is
consciously left outside the scope of this work. Volumetric muscles
have been used in tight integration with control in the realm of facial
animation [Sifakis et al. 2005], but without directly articulating the
mandible, nor including any other skeletal bones. We claim that
this paper presents the first work in musculoskeletal simulation
in the domain of computer graphics that successfully incorporates
volumetric muscles in tight integration with a motion controller.

The Finite Element Method (FEM) has been used in a large seg-
ment of prior work on anatomical simulation, and it affords a broad
spectrum of constitutive models to convey the mechanics of bioma-
terials. In our work, however, we use a Corotated Elasticity formu-
lation for the background isotropic elasticity of muscle tissue (in
line with prior approaches by Teran et al. [2005b] and Saito et al.
[2015]), which allows us to employ Projective Dynamics [Bouaziz
et al. 2014] for improved robustness and performance. In addition,
we contribute a novel formulation by which the active Hill-type
muscle force can be accurately added to the Projective Dynamics
framework, while retaining the robustness and efficiency of the
method. We demonstrate how Jacobians of muscle forces, required
for optimization-based motion controllers, can be analytically com-
puted via a quasistatic assumption of the muscle deformation. The
simulation framework is combined with a two-level trajectory opti-
mization approach, motivated by the formulation of Lee et al. [2014]
and adapted to the intricacies of our volumetric actuators.

2 RELATED WORK
Muscle-based anatomy modeling. Muscle-based anatomical simu-

lation has been popular both in academic research and production

[Damsgaard et al. 2006; Delp et al. 2007]. A thorough survey of
muscle-oriented techniques in animation tasks has also been ex-
plored [Cruz Ruiz et al. 2017]. Over the past two decades, Computer
Graphics research has pursued higher biomechanical accuracy in
anatomymodeling, using Finite Element Method simulations [Teran
et al. 2003] and models derived from medical imaging [Teran et al.
2005a]. The emphasis on visual plausibility instead of absolute bio-
physical accuracy has allowed Graphics research to be more aggres-
sive in the pursuit of full-body soft tissue simulations, especially
when volumetric simulation is involved, compared to the inclination
of biomechanics literature towards localized parts of anatomy (e.g.
thigh mechanics [Stelletta et al. 2017]). Simplified line-segment mus-
cle models have allowed anatomical modeling to address inverse
problems and motion control scenarios, on which volumetric simu-
lation is often layered as a visual embellishment [Lee et al. 2009; Si
et al. 2014].
In the domain of facial animation, volumetric descriptions of

facial muscles is used to infer activations that move the face sur-
face in accordance with a motion-captured target [Sifakis et al.
2005]. Ichim et al. [2017] optimize shape and contractile properties
of facial tissues, starting from a template, as to reproduce input
blendshape-based animations, yielding facial models that can be
actuated into new animation sequences. the concept of blendshapes
to material properties is extended, allowing simulated facial anima-
tions to reproduce motion effects attributable to temporally variable
constitutive properties [Kozlov et al. 2017]. A coupled Eulerian-on-
Lagrangian formulation is utilized in elastic tendon strands with
a control strategy to simulate hand articulation [Sachdeva et al.
2015]. The Eulerian-On-Lagrangian framework has been applied
to the human upper extremity [Fan et al. 2014], demonstrating the
ability of the framework to handle muscle contact, and coupling to
an articulated skeleton. Separate from issues related to simulation
methods, the authoring of simulation-ready subject-specific models
is a great challenge, even if a small number of geometric templates
exist (which however do not provide strict specifications of ma-
terial properties, and are not subject-specific). Skeletal geometry
and kinematics are jointly inferred from a temporal deformation of
only the outer skin surface [Zhu et al. 2015]. The way of generating
a spectrum of human body types with various degrees of muscle
growth is proposed, evolving from a standard template using phys-
ical processes [Saito et al. 2015]. Surface scan data from various
subjects and body poses is also used to reconstruct personalized
anatomical muscle models [Kadleček et al. 2016].

Simulation of nonlinear volumetric solids. Simulation performance,
which has been a significant obstacle in early efforts, has been im-
proved by virtue of stable implicit time integration schemes [Teran
et al. 2005b], accelerated deformers based on regular lattices [Patter-
son et al. 2012], improved contact handling mechanisms [Mitchell
et al. 2015a], and improved interactivity with Projective Dynamics
schemes [Bouaziz et al. 2014]. Lattice-based deformers make sim-
ulator accommodate nontrivial topological features (e.g. surgical
incisions), while safeguarding the regularity of the underlying data
structures and the benefits of parallelism [Mitchell et al. 2015b].
Hierarchies of embedded discretizations are proposed to selectively
infuse dynamic degrees of freedom where artists suggest additional
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deformation detail is desired [Malgat et al. 2015]. Data-driven frame-
works enable creating dynamic deformations of flesh and tissue
on articulated characters [Kim et al. 2017; Pons-Moll et al. 2015].
A layered dynamic simulation of flesh is used, superimposed on a
kinematic skeleton, to synthesize detailed skin deformation [Murai
et al. 2017]. One-way or two-way coupled simulation of skeleton
and flesh enables interactive, skeleton-driven animation of mus-
culoskeleton [Capell et al. 2002; Liu et al. 2013]. Real-time flesh
simulation is also available reducing its high dimensionality in rig
space [Xu and Barbič 2016]. Multi-body simulation systems have
been developed to deal with rigid bodies, soft bodies and their cou-
pling in a uniform manner [Faure et al. 2012; Lloyd et al. 2012].

Motion control. Controllable musculoskeletal models have over-
whelmingly relied on line-segment approximations of Hill-type
models to actuate an articulated character skeleton. Taking the effi-
cacy of such a system, human bipedal locomotion is demonstrated,
producing optimized control patterns in a variety of gait patterns
and styles [Lee et al. 2014]. Objectives involved in the crafting of
realistic locomotion controllers include the optimization of effort
[Lee et al. 2015; Wang et al. 2012]. Geijtenbeek et al. [2013] proceed
to further optimize muscle geometry and routing (still within the
realm of simplified actuators) to produce motions for a range of
non-human bipedal creatures. Hand manipulation presents a unique
set of challenges, especially when grasping constraints are needed
for stability of the crafted activity [Liu 2008]. Sueda et al. [2008]
introduced strand dynamics and sliding/surface constraints for hand
simulation and control with emphasis on tendon dynamics. Balanc-
ing the head with neck muscles has been studied, coordinating their
activations by feed forward and feed back rules [Lee and Terzopou-
los 2006]. Muscle activation levels in tongue can be estimated by
solving quadratic programming [Stavness et al. 2010]. Approaches
based on deep learning have also been leveraged to craft control
strategies in bipedal locomotion [Peng et al. 2017] and flapping flight
[Won et al. 2017]. In addition to musculoskeletal systems, where
the action of deformable simulation components chiefly manifests
in skeletal articulation, control formulations have been applied to
scenarios where the volumetric deformation itself is the primary
output being optimized [Coros et al. 2012], or where locomotion is
caused by deformation rather than skeletal articulation [Tan et al.
2012].

3 HUMAN MODEL
Our model focuses on the upper body musculoskeletal system. We
use an articulated skeleton with 19 degrees of freedom, and 130
motor units (i.e. independently activated contractile regions within
muscles), as illustrated in Figure 2(left). The skeleton is actuated as
a result of muscle excitation, which is respectively governed by non-
linear internal dynamics. We simulate volumetric muscle volumes,
discretized into individual tetrahedral meshes, with constitutive
properties following a Hill-type model [Zajac 1989]. Sections 3.1
and 3.2 detail the volumetric muscle model discretization and sim-
ulation, Section 3.3 describes our modeling of the skeletal system,
while coupling between the two is detailed in Section 3.4.

Fig. 2. (Left) The simulated muscles and skeletal components. (Middle)
Low-resolution and high-resolution simulation meshes. (Right) Idealized
Hill-type actuator.

3.1 FEM simulation
We assume tetrahedral meshes of muscles provided as input. Since
we individually simulate each muscle volume (which might how-
ever contain several independently controllable contractile regions),
consider any individual one of these meshes with k discrete vertices.
The state of this muscle model is represented in the nodal positions
xn ∈ R3k and velocities vn ∈ R3k , where the subscript indicates a
time instance tn in the dynamic evolution of this model. Integrat-
ing the equations of motion in accordance with a Backward Euler
scheme, provides the following update rule:

xn+1 = xn + hvn+1
vn+1 = vn + hM−1(fint(xn+1) + fext) (1)

where h denotes the length of the time step, M ∈ R3k×3k is the
mass matrix, and fint(x) = −∇xE(x) are internal forces computed
from an elastic strain energy E(x), and fext is the external force. We
note that, in principle, the internal forces could also be dependent
on the nodal velocities (v) as well; this could be the case if explicit
damping was incorporated into our methodology, or when material
properties are allowed to vary as a function of velocity. We do not
include explicit damping in our simulation, but there are velocity-
dependent material properties stemming from the force-velocity
relationship of Hill-type muscles as discussed in Section 3.2. In
order to simplify our evolution, we use the velocity computed at
the end of the previous time step (vn ) whenever this appears in
the expression of equation (1), essentially rendering it a constant
for the purposes of the evolution from time tn to tn+1; hence, for
simplicity we retain the notation fint(xn+1) for the forces in the
update equation, indicating that only the positions xn+1 are to be
solved for.
In general, the Backward Euler update is solved by using a Tay-

lor expansion to approximate the nonlinear force as f(xn+1) ≃
f(xn )+ ∂f

∂x

���
xn
(xn+1 − xn ). This approximation yields the following

linear system, which we alternate between solving and updating
the linearization, until convergence:[

M − h2 ∂f
∂x

]
vn+1 = Mvn + h(fint(xn ) + fext) (2)
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In order to reduce the computation cost and improve the robust-
ness of the Newton approach, we adopt the Projective Dynamics
formulation of [Bouaziz et al. 2014], who solve an equivalent prob-
lem by alternating an efficient and parallelizable local update rule,
with a global purely quadratic problem, which can be accelerated by
pre-factorizing its Hessian as a one-time cost. The Projective Dynam-
ics formulation is centered on the premise that certain elastic strain
energies can be written as the sum E(x) = ∑

i Ei (x), where each
term Ei (x) (conceptually associated with an individual constraint)
has the form:

Ei (x) = min
pi ∈Ci

k

2
∥Aix − pi ∥2 (3)

Here, Ci is a manifold associated with each individual constraint,
and pi is the “projection” of the quantity Aix onto this manifold,
which makes this energy match the expression of the original strain
energy, once the solution has been reached. The definition of Ai and
the process for computing the projection pi is problem-dependent;
for details we refer to the original work of [Bouaziz et al. 2014]. The
local step amounts to updating all pi values by projecting Aix onto
each respectiveCi , and in the global step we solve the pure quadratic
system in equation (3) by assuming all pi to be held constant to their
computed projections. For our problem, this global step amounts to
the solution of the equation:

(M + h2L)xn+1 = M(xn + hvn + h2M−1fext) + Jd (4)

where L =
∑
i AT

i Ai , J =
∑
i AT

i Si , d =
∑
i STi pi , and Si are selector

matrices, such that pi = Sid.
Since the matrix of this system is constant we use Cholesky de-

composition to factorize it as a pre-processing step. Furthermore we
adopted a quasistatic assumption which is fast and robust, by taking
the limit of this equation as h → ∞. Although this simplification
eschews dynamic effects (e.g., jiggling), we found it to have mini-
mal impact on our controller, partially due to the fact that muscles
are attached to the bones tightly, reducing the effect of the inertial
motion on simulation. Under the quasistatic hypothesis, equation
(4) simplifies to:

Lxn+1 = fext + Jd (5)

3.2 Muscle Model
In contraction dynamics of Hill-type muscles, the muscles are di-
vided into three parts according to their role, as seen in Figure
2(right). Those three parts are: the Passive Element (PE) modeling
the background elasticity of themuscle, the Contractile Element (CE)
generating the force when the muscle excites, and the Serial Element
(SE) modeling the tendon which transfers the muscle-generated
force to the skeleton. We discuss how each component is accounted
for in our simulation framework.

Passive Element. We use a simple Corotational Elastic energy for
modeling the background isotropic elasticity of each muscle:

ΨPE(F) =
1
2
µ∥F − R∥2 (6)

where µ is the Young’s modulus , F = UΣVT is the deformation gra-
dient for the element, and R = UVT . This is the exact constitutive
model that the Projective Dynamics formulation of Bouaziz et al.

[2014] is centered around. Equation (6) provides the energy for each
tetrahedral element, and each such tetrahedron gives rise to one
constraint Ci in the Projective Dynamics formulation, where Ai is
the linear operator that maps nodal positions x to the deformation
gradient Fi of the i-th element, and the projection operation maps
Fi = UΣVT to its rotational component pi = R = UVT . Incorpo-
rating volume preservation into the formulation is mathematically
involved. We refer to their paper [Bouaziz et al. 2014] for volume
preservation and details on the relevant algebra.

Contractile Element. Physiologically, when the excitation signal is
delivered to the muscle, actin and myosin fibers pull each other and
contract the muscle. In accordance with the approach in prior Finite
Element muscle modeling approaches [Lee et al. 2009; Teran et al.
2005a], wemodel the anisotropic action of the contractile element by
an additive contribution to the strain energy Ψm (l), which is taken
to be dependent only on the fiber stretch factor l = ∥Fd∥, where F
is the deformation gradient and d is a unit vector in the direction
of the muscle fiber. An explicit expression for Ψm (l) is typically
never referenced or pursued, as only the gradient and Hessian of
this energy will ever be used in an FEM simulation. The derivative
of this quantity, however, is the fiber tension which is given by the
well-known Hill-curve ∂Ψm/∂l := fhill (l , Ûl ,a) and this expression
is the one actually used in simulation, where a is the level of muscle
activation. An application of the chain rule provides the following
formula for the Piola-Kirchhoff stress:

Pm :=
∂Ψm
∂F
=
∂Ψm
∂l
· ∂l
∂F
= fhill (l , Ûl ,a) ·

1
l

FddT (7)

fromwhich nodal forces can be readily computed (Sifakis and Barbic
[2012] provide the relevant details for tetrahedral meshes).
It is well understood that the Projective Dynamics formulation

of [Bouaziz et al. 2014] supports a specific and somewhat narrow
scope of materials within its core formulation, due to the require-
ment that the energy being minimized must be expressible in the
form of equation (3). This narrow scopemotivated the later approach
of Liu et al. [2017] that provided the opportunity to accommodate a
broader gamut of materials, with some modest compromises in the
robustness and efficiency of the prior formulation of Bouaziz et al.
[2014] (e.g., the need to incorporate a line search for stability).

We introduce a novel approach to incorporate the Hill-type mus-
cle force into the exact formulation mandated by the Projective
Dynamics framework of Bouaziz et al. [2014]. We do so by defin-
ing the following energy associated with each muscle, in the exact
fashion of equation (3):

ΨCE(F) =
1
2
k ∥Fd − p(l , Ûl ,a)∥2 (8)

where k is a stiffness coefficient. In the local step of Projective
Dynamics, the vector p(l , Ûl ,a) is chosen in the subspace of vectors
parallel to Fd, with the specific scale factor in the expression below:

p(l , Ûl ,a) =
[
1 − fhill (l , Ûl ,a)

k · l

]
Fd (9)

In the provided Appendix, we demonstrate that with the selection of
this special value of p, the Piola-Kirchhoff stress ∂ΨCE/∂F computed
by this expression matches exactly the value of Pm in equation (7)
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corresponding to the standard active muscle stress of prior FEM ap-
proaches; thus, at equilibrium this Projective Dynamics formulation
reproduces exactly the Hill-type muscle force that prior FEMmuscle
simulation formulations employed. With p = p(l , Ûl ,a) taken to be
constant (in the global step), the expression ΨCE (x) becomes a pure
quadratic (F is a linear function of nodal positions x, as mentioned in
the treatment of the corotated energy), and the Projective Dynamics
formulation becomes fully applicable. We ultimately compute nodal
forces via the Piola-Kirchhoff stress in equation (7), and distribute
them to the forces of each simulated tetrahedron as described by
Sifakis and Barbic [2012]. Note that the choice of the coefficient k
in equation (8) is arbitrary; however, for adequately large values of
k , the provided expression for p(l , Ûl ,a) most closely approximates a
true Euclidean projection in the vector subspace spanned by Fd. We
found that a value of k = 107 (compare with µ = 5 · 106) generated
robust convergence in our examples.

Serial Element. The Serial Element models the tendons on either
side of the contractile segment of the muscle, and transmits the
force to the bone insertion. Physiologically, the tendon is very stiff
compared to the muscle and sustains very minimal elongation even
under full muscle activation. Therefore, it was our design decision
to model the tendon as a taut, inextensible wire that provides the
boundary condition for the volumetric muscle simulation, by fol-
lowing the path of the conventional piecewise line-segment muscle
primitive, from the insertion and through any way-points, until
its reference length has been traversed. The endpoint of the ten-
don thus routed provides the Dirichlet boundary condition for our
volumetric muscle simulation.

We also use this idealization of the tendon as an inextensible
wire, which is routed through the muscle way-points to transmit
the force generated by the volumetric muscle to the attached bones.
We do so by rigidly transforming (i.e. rotation) the force along the
way-points. Focusing on the way-points of origin of ith muscle, the
axis of wire between (j − 1)th and jth way-point can be defined as
uj =

pj−1−pj
∥pj−1−pj ∥ (See Figure 3). Starting from the Dirichlet boundary,

j = 0, · · · , s − 1 is an index of the way-points, s is the number of the
way-points on the origin side and pj is position of jth way-point.
The force at the Dirichlet boundary f̃ is transmitted to the end of
wire, applying tension forces to the way-points:

f−j = ∥f̃ ∥uj , f+j = −f−(j+1)

where f−j is the tension force of jth way-point, and f+j is a reaction
to the force f−(j+1), resulting in conservation of total momentum.

forigin = (fT0 , f
T
1 , · · · , f

T
(s−1))

T

where fj = f−j + f+j . We apply the same procedure to the way-points
on the insertion side and lump the forces into single vector f .
A single muscle volume may contain multiple individually ac-

tivated motor units. Our model captures this ability by attaching
multiple serial elements to individual Dirichlet nodes of a muscle
mesh, and modeling several distinct contractile elements within a
single simulation volume. For example, the Biceps consist of two
motor units (Figure 3), one originating from the long head, the other

Fig. 3. Transmission of muscle force to bone. A rigid transformation is
applied such that a vector in the direction of the central (contractile) line
segment will be rotated parallel to the line segment adjacent to the insertion.

Fig. 4. The overview of our simulation and control framework: Rigid body
states set Dirichlet boundaries for muscle force computation. Our hierarchi-
cal controller takes both rigid and soft body states as input and optimizes
joint trajectories and muscle activation levels.

from the short head. Our upper body model incorporates a total of
130 motor units.

3.3 Skeleton model
The Euler-Lagrange equations for the dynamics using generalized
coordinates can be represented as follows:

M(q)q + c(q, q) = JTmfm (a) + JTextfext (10)

where q is the vector of joint angles, M(q) is the generalized mass
matrix, c(q, q) represents the Coriolis and gravitational forces, fm =
(fT(0), f

T
(1), · · · , f

T
(r−1))

T are themuscle forces with the number of mus-
cles r , f(i) is the force acting on ith muscle and its way-points, fext
is the external force, Jm and Jext are Jacobians which map general-
ized coordinates to Cartesian coordinates, and a = (a0,a1, ...,ar−1)
are the muscle activation levels, where ai corresponds to the ith
motor unit. Internally, Jm includes all the information of the muscle
attachment points.

3.4 Coupling
Forward simulation for the musculoskeletal model proceeds by
synchronous evolution of the FEM simulator and the rigid body
simulator. At time tn , for a given skeletal pose the boundary con-
ditions for the volumetric muscle simulation are computed via the
Serial Elements, as mentioned earlier in this section. The FEM sim-
ulator solves for the equilibrium shape of the muscle volume, in
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accordance with equation (5). Muscle forces are transmitted from
the Dirichlet nodes of simulated meshes to the bones via the Serial
Element, and finally the dynamic state of the skeleton is advanced
using the equations of motion, as summarized in Algorithm 1.

Algorithm 1: Forward Simulation
Data: a(t) : muscle activation levels.

1 begin
2 x0 : initial positions of the soft body.
3 q0, Ûq0 : initial positions and velocities of rigid body.
4 for t = t0, t1, · · · , do
5 B ←− SetBoundaryConditions(qi )
6 f̃ ←− SolveQuasiStatics(B, xi , a(ti ))
7 fm ←− TransferForces(f̃)
8 qi+1, Ûqi+1 ←− ForwardDynamics(qi , Ûqi , fm , fext)
9 end

10 end

4 CONTROL
We animate the musculoskeletal model by proposing a two-level
hierarchical controller. The low-level controller tracks the desired
motion on a per-frame basis and the high-level controller optimizes
the motion given a specific task, such as juggling. Combining the
robustness of the low-level controller and the generality of the high-
level controller, our model can generate a diverse range of desired
motion patterns under dynamic situations.
The main objective of the low-level controller is to find optimal

activation levels for all muscles, tracking a given reference mo-
tion at each frame. To achieve this, we adapt the QP-based control
method [Lee et al. 2009, 2014] to our model with volumetric muscles.
We explain how the muscle Jacobians are computed by leverag-
ing the quasistatic simulation assumption for muscle volumes, and
how precomputed factors in the Projective Dynamics formulation
can accelerate their computation. Using the low-level control, our
high-level controller constructs the reference motion by solving an
optimization problem at each frame. Our controller can flexibly gen-
erate desired motion patterns using parameterized curves without
the need for any motion capture or key framing data.

4.1 Low-level controller
The goal of the low-level controller is to compute muscle activa-
tions for tracking the desired motion on a per-frame basis. A slight
complication is that our musculoskeletal model is under-determined
because the number of degrees of freedom for the skeleton is smaller
than that for the muscle activations. Thus, there are many solutions
for the same pose, and among them our system must choose one. As
detailed below, we compute the solution minimizing three objectives
(tracking, effort, and smoothness) through the optimization.

Tracking. To track the given motion qd , we compute the desired
acceleration Üqd based on PD (Proportional Derivative) control and

penalize the difference between the actual joint acceleration Üq pro-
duced by muscle actuation.

Etracking = wtracking∥ Üqd − Üq∥2,
Üqd = kp (qd − q) + kv (Ûqd − Ûq)

(11)

where kp ,kv are gains for PD control.

Effort. Humans move so as to minimize the required effort [Ral-
ston 1976]. Thus, we introduce an objective function that penalizes
effort by minimizing the required muscle activations.

Eeffort = weffort∥a∥2 (12)

Smoothness. Physiologically, in activation dynamics, there are
processes that convert neural signals to muscle activations [Zajac
1989]. This prevents sudden changes in activation levels. Thus, we
penalize the variation of current muscle activations.

Esmooth = wsmooth∥ Ûa∥2 (13)

Using the three objectives described above, our low-level con-
troller can be formulated as the following quadratic program:

min
Üq,a

Etracking + Eeffort + Esmooth

subject to M(q)Üq + c(q, Ûq) = JTmfm (a) + JTextfext
0 ≤ ai ≤ 1 for i = 0, 1, · · · r − 1

(14)

where the equality constraints keep the equations of motion of the
skeleton, and the inequality constraints enforce all muscle activa-
tions in the range of [0, 1].
It is important to appreciate that equation (14) is nonlinear on

the activations {ai }, due to the nonlinearity of the muscle force
fm (a). The reason for this nonlinearity is subtle, and can be best
elucidated by considering the line-segment idealization of the Hill-
type primitive (e.g. [Lee et al. 2014]). In accordance with this model,
for a given muscle length, the muscle force is an affine function of the
activation. However, when the aggregate length of themusculotendon
is held constant, e.g. for a given skeletal pose, activation of the
contractile element will alter the lengths of the muscle and tendon
individually, even if their sum is held constant. This variation of
the muscle length infuses an additional nonlinearity in the muscle
force as a consequence of activation, rendering the muscle force no
longer an affine function of activation.

This nonlinearity is often consciously overlooked [Lee et al. 2014],
by making an assumption that the muscle length variation is min-
imal; there would in fact be no error in this approximation if the
tendon was infinitely stiff. With volumetric muscles, however, this
approximation would be inexact even if the tendons were fully in-
extensible, as the volumetric contractile muscle has the potential to
alter its geometry via non-uniform deformation that can certainly
alter the muscle force produced, even if the longitudinal length
of the muscle remained constant. An accurate linearization of the
constraint equation (14) needs to employ a proper first-order Taylor
exansion fm (a) ≃ fm (a∗) + ∂fm

∂a (a − a∗), for which the Jacobian
J = ∂fm/∂a needs to be evaluated.
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4.2 Jacobian Computation
Notably, no closed-form expression of the force fm (a) exists, since it
incorporates the solution of nonlinear quasistatic equilibrium prob-
lem. It is, however, possible to compute its Jacobian analytically via
careful differentiation of the quasistatic equilibrium condition. For
any given value of the Dirichlet conditions applied at the endpoints
of the muscle volume, denote by x the free nodes of the simulation
mesh (excluding Dirichlet boundaries). Let us denote by x∗(a) the
equilibrium positions of these nodes, under applied activations a.
Inserting these values in the expression of the total (passive and ac-
tive) force f(x, a) satisfies, by definition, the quasistatic equilibrium
condition f(x∗(a), a) = 0. Differentiating with respect to a yields:

∂

∂a
f(x∗(a), a) = ∂f

∂a
+
∂f
∂x
∂x∗

∂a
= 0 (15)

where all partial derivatives of forces are evaluated at x = x∗(a).
This allows us to compute the Jacobian of the muscle force under
constant quasistatic equilibrium conditions, as follows:

J =
∂fm (x∗(a), a)

∂a
=
∂fm
∂a
+
∂fm
∂x
∂x∗

∂a
(16)

Closed form expressions of ∂fm/∂x and ∂fm/∂a are readily avail-
able, while the derivative of the quasistatic solution ∂x∗/∂a is com-
puted by solving the linear system (15). Incidentally, the coefficient
matrix of this system (i.e. the stiffness matrix ∂f/∂x) has already
been factorized for the needs of the Projective Dynamics simulation.

4.3 High-level Controller
The high-level controller adjusts the reference motion of the upper
body model in order to control it in a delicate fashion. We adopted
the optimal control technique to solve this finite horizon problem

min
qd (t )

J (s(t), qd (t))

subject to qlower ≤ qd (t) ≤ qupper
Ûs(t) = g(s(t), qd (t), t) for 0 ≤ t ≤ tf

given s(0) = s0

(17)

where qd (t) is the trajectory to be optimized, s(t) are the states
of the system which contain positions and velocities of the rigid
bodies, and the positions of all soft bodies, qlower and qupper are
joint limits, g(s(t), qd (t), t) governs the dynamics of the system, and
J (s(t), qd (t)) is an objective function which describes the high-level
tasks. To convert this infinite-dimensional problem into a finite-
dimensional optimization, we parametrize the joint trajectory qd (t)
with a Cubic Bézier spline as follows:

qd (t) =
3∑
i=0

Bi (t)ci (18)

where Bi (t) is the basis of Bézier spline, and ci are the control
points. By parameterizing qd (t), the original problem is changed to
the finite-dimensional problem of optimizing the control points ci .
Once the optimal ci values have been found, the reference trajectory
qd , Ûqd is readily computed through the basis functions of the spline.
Specifically, in the juggling problem, our optimization problem is

(a) Input geometry mesh (b) Tetrahedralization

(c) Deformed geometry mesh (d) FEM simulation

Fig. 5. Muscle modeling and rendering

described as follows:

min
c0,c1,c2,c3

wp ∥pdesired − pball∥2 +wv ∥vdesired − vball∥2

subject to qlower ≤ ci ≤ qupper
Ûs(t) = g(s(t), qd (t), t) for t0 ≤ t ≤ tf

given s(t0) = s0

(19)

Since the Bézier spline satisfies the convex hull property, just by
applying bounds to the control points ci , we can produce a trajectory
qd (t) that is bounded above and below. The first term of the objective
function penalizes the difference between the ball position and the
desired position at the end of the swing phase. The second term
penalizes the difference in velocity. A single evaluation of the energy
requires simulations through the entire time interval t0 ≤ t ≤ tf ;
thus this is a performance-sensitive optimization operation.

5 EXPERIMENTS AND RESULTS
We implemented ourmuscle-driven control system in C++. The open
source library DART was used for articulated body simulation [Lee
et al. 2018]. Our upperbody musculoskeletal model includes 8 joints:
two wrists, two elbows, two shoulders, two collar bones, and one
torso. The wrist, the shoulder, and the torso are 3-DOF ball-and-
socket joints and all the others are 1-DOF revolute. The model
includes 72 muscles that affect the actuation of arm joints.

We used IPOPT [Wachter and Biegler 2006] to solve our per-frame
optimization in equation (14). The control optimization and FEM
simulation are updated at the rate of 200 Hz, while the articulated
body dynamics is integrated at the rate of 1000 Hz. We used the
gradient descent method for trajectory optimization with numerical
differentiation of the objective function. Trajectory optimization
requires 10 to 20 gradient descent iterations to converge and usually
takes 10 to 15 minutes per iteration on an Intel i7-6700K 4.0GHz
CPU.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 57. Publication date: August 2018.



57:8 • Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee Lee

Fig. 6. Force-length-velocity curves. (Left) Maximal contractile force at the
origin of the Biceps short head when it lengthens and shortens periodically
at two different speeds. (Right) The Biceps generates larger force when it
lengthens quickly.

5.1 Muscle Geometry and Tetrahedralization
Starting with high-resolution geometric meshes of bones and mus-
cles (Figure 5(a)), we annotated the origin and insertion of upper-
body muscles in 3D geometry and tetrahedralized each individual
muscle. The resolution of tetrahedralization is determined so that
geometric features, such as bifurcating heads of the Biceps, are
expressed clearly (Figure 5(b)). In our model, Biceps, Triceps, and
Deltoids have about one thousand tetrahedra for each and all the
others are simpler. The tetrahedral mesh undergoes deformation
via FEM simulation (Figure 5(d)). We deform the original geometry
mesh accordingly for the visualization of muscle contraction (Fig-
ure 5(c)). To transfer the deformation of the tetrahedral mesh to the
geometric mesh, The 3D vertex location in the geometric mesh is
expressed by the barycentric coordinates in its enclosing tetrahe-
dra. Most of the vertices are enclosed by the tetrahedra and only
small outliers fall outside the tetrahedral mesh. Each outlier vertex
is mapped to the closest tetrahedron and its barycentric coordinates
would have negative values.

Although high-resolution tetrahedral meshes are ideal for the ac-
curacy of FEM simulation, low-resolution, hand-crafted meshes are
also useful for the efficiency of simulating dexterous tasks. We used
high-resolution meshes to examine the functionality and strength of
each individual muscle under various conditions, and low-resolution
meshes to simulate and control two-hand manipulation tasks.
The volumetric muscles driven by FEM simulation inherit the

contraction dynamics of the Hill-type model. Each volumetric mus-
cle generates its maximal contractile force when it is at its rest
length and becomes weaker when it lengthens or shortens. The
elasticity of the deformable material prevents it from lengthen-
ing excessively. The force-length-velocity curve in Figure 6 shows
velocity-dependent contraction dynamics. The muscle generates its
maximal force when it lengthens, which is called eccentric contrac-
tion.

5.2 Juggling
Juggling is a sophisticated performance with two hands for enter-
tainment, art, or sports. A juggler usually manipulates more than
three balls at the same time, while all of them are dynamic. The balls
are repeatedly thrown by one hand, floating in the air, and finally
captured by the other hand.

Fig. 7. Siteswap patterns of (up) 333 and (down) 423 juggling.

Mathematical expressions for juggling can be explained by the
Siteswap value. LetT be the time per beat, D be the ratio of holding
time that the ball spends in the hand per beat, andV be the Siteswap
value which defines the pattern of juggling [Polster 2003]. For each
beat, the ball should be thrown such that it lands on the other hand
after V beats. For example, if the sequence of V is 3, 3, 3, · · · , the
first ball thrown by the left hand will land on the right hand after 3
beats. While the first ball is still in the air, the right hand pitches the
second ball after one beat. Figure 7 illustrates Siteswap patterns.
The maximum height of the ball is proportional to its Siteswap

valueV . Provided thatT , D, and the sequence ofV are given, we can
determine the time of flight of individual balls, tflight = T (V − 2D).
Note that we multiply D by two because one round trip of the ball
takes two swing phases. If the motion of the ball is parabolic in the
Y-axis, we can determine the initial velocity vy = 1

2дtflight, where
д = 9.8m/s2 is the gravitational acceleration.

Our controller generates hand trajectories based on a finite state
machine, where each state specifies either swing or catch tasks
(Figure 8). For each beat, catch action moves the hand toward the
landing position by solving inverse kinematics of the hand. Once
the ball lands into the hand, a zero-DOF, welded joint is used to
attach the ball to the hand. Swing (pitch) action requires trajectory
optimization to match the desired position and velocity at the end
of the swing phase.

Juggling Patterns. A Cascade is the simplest juggling pattern that
pitches the balls to the same height. There are many juggling pat-
terns other than Cascade patterns, varying the height of the balls,
the symmetry/asymmetry of patterns, the shape of the projectiles,
and the number of jugglers. We first demonstrate cascade patterns
starting from 3 balls and adding balls one-by-one to end up with 5
balls (Figure 9(a)). With more balls, the juggler has to pitch them
higher to maintain the cascade pattern. Our control system can
seamlessly adapt to the addition/removal of balls and the switch-
ing between juggling patterns. Our muscle-driven control system
can also simulate non-cascade juggling patterns. 423 juggling is a
non-cascade pattern using three balls. The juggler pitches two balls
higher than the third (Figure 9(b)). 64 juggling exhibits an asymmet-
ric pattern with five balls. The right hand juggles with three balls,
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Fig. 8. A finite state machine for juggling and simulation parameters.

while the left hand independently juggles with the other two (Fig-
ure 9(c)). Our controller adaptively optimizes the swing trajectory
to pitch the balls toward the desired direction at the desired speed,
starting from the same initial configuration and parameter settings.

External Perturbation. We tested our controller under external
pushes. Random forces of magnitude 300N and duration 0.5s are
exerted on the torso, shoulder and elbow joints. Our solver re-
optimizes the disturbed swing trajectory to adapt to the pushes.
Using the original trajectory as initial guess, re-optimizing the tra-
jectory takes only a few iterations to converge. The controller can
endure large pushes on the torso and the shoulder, while even small
perturbations at the extremities could be critical for dexterous ma-
nipulation such as juggling.

Mass Variations. This example shows the Cascade pattern with
three balls of different mass (0.1kg, 0.5kg and 2kg). All three are
thrown to the same height regardless of their mass difference and
consequently their flight duration is the same. Having the flight
time fixed, the response to different mass necessarily leads to the
modulation of the swing duration. We regulate the release timing
tf of the ball in response to the loading mass.

tf = c1mball + c2 (20)

where c1 and c2 are scalar coefficients and mball is the mass of
the ball. The hand pulls back further with the heavy ball to absorb
impact and travels longer to compensate for the mass. Our controller
also accounts for the physiological property of the muscles, which
can generate larger force when they are in eccentric contraction.
Eccentric contraction of major agonistic muscles occurs when the
swing arm pulls backward.

5.3 Muscle Disorder
There are many types of muscle diseases with different causes and
outcome. With muscle models simplified to line segments, we do
not have many options to formulate the symptoms of muscular
disorders into computational models. The most popular approach
is to manipulate the force-length and force-velocity curves of the
Hill-type model, which governs the muscle contraction dynamics.
The Hill-type model is an analytic function based on in vitro mea-
surement of muscle deformation and material properties. Therefore,
manipulating the Hill-type model is an indirect approach based on

approximations. The use of volumetric muscles opens up new pos-
sibilities in this regard, since the geometry and material properties
of volumetric cells can be specified and manipulated directly.

Atrophy and Hypertrophy. Atrophy indicates the loss of mass
and strength of muscles, which can cause disability or difficulty
of actions. Conversely, hypertrophy is the increase of muscle vol-
ume and enhanced muscle strength. The symptoms of atrophy and
hypertrophy can be simulated by changing the geometry of the
tetrahedral mesh. As suggested by Kadlecek et al. [2016], we scaled
the cross-section of the tetrahedral mesh by a factor of 0.5 (atrophy)
and 1.5 (hypertrophy) to observe the weakening and strengthening
of muscle capacity (Figure 10).

Deficiency and Paralysis. Since the material property of our volu-
metric muscles is derived from the Hill-type model, we can use the
curve trick to simulate muscle deficiencies (Figure 11). The force-
length curve indicates the strength of the muscle. In our simulation,
scaling the magnitude of the force-length graph by a factor of 0.5,
0.2, and 0.05 resulted in the progressive weakness of the muscle. We
can observe the increased activation of the nearby muscles which
compensate for the weakness. The effect of such graph scaling al-
ways affects the entire muscle if the model is simplified to a line
segment. Our volumetric model offers the flexibility to edit the ma-
terial property of individual cells. Figure 12 demonstrates the effect
of paralysis spreading progressively over the Biceps and Brachialis.
The deactivated cells shown in dark brown do not generate any
contractile force since the muscle-length curve is set to zero at all
lengths.

Contracture. Contracture is the shortening or stiffening of mus-
cles, that results in decreased movements and range of motion (Fig-
ure 13(middle)). The symptoms of contracture can be simulated by
manipulating either the force-length curve or the volumetric mesh.
With the Hill-type model, muscle shortening is described by its
passive element that engages earlier than the normal force-length
curve. Alternatively, our volumetric muscles offer a simpler, more
intuitive approach. Shrinking the rest shape of the tetrahedral mesh
results in increased tension between the origin and insertion of the
contracted muscle.

Orthopedic Surgery Simulation. Contracture occurs frequently
in patients with cerebral palsy. The treatments include orthopedic
surgery, which either lengthens musculotendons or reduces the
tension by displacing the insertion of the muscle. A muscle that is a
flexor at one joint may also be a flexor or extensor at another. These
are called two-joint muscles, which span across two joints. Displacing
the insertion across a joint by surgery can turn a two-joint muscle
into one-joint. This type of surgery not only reduces muscle tension,
but has the side-effect of changing the functionality of the muscle.
Therefore, being able to evaluate the effects and side-effects of the
surgery is of practical importance. We implemented a simple user
interface system to simulate orthopedic surgery (Figure 13). The user
interface shows an atlas of bone texture maps and allows the user
to specify a new insertion point on the atlas. Our simulation system
updates the muscle geometry instantly and reflects the update to the
musculoskeletal simulation, visualizing the effects of the surgery.
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(a) 345 juggling

(b) 423 juggling

(c) 64 juggling

(d) Two person juggling

Fig. 9. Juggling patterns.
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Fig. 10. Atrophy and Hypertropy of Biceps and Brachialis in the right arm.
(Left) The crossectional area is scaled down by a factor of 0.5. (Right) The
crossectional area is scaled up by a factor of 1.5. Muscle hypertrophy allows
the weight (10 kg) to be lifted easily at low muscle activation levels.

Fig. 11. Muscle weakness simulation. The weight of the dumbbell is 5kg.
(Left) The muscles in the right arm shown in dark brown are weaker than
normal ability. (Right) The scaling of the force-length curve determines the
level of weakness.

Fig. 12. Progressive paralysis of Biceps and Brachialis in the right arm. (From
left to right) As dark cells spread, Biceps and Brachialis become weaker and
therefore the nearby muscles in the forearm and the shoulder activate more
to compensate for the weakness.

5.4 Limitations and Failure Cases
Even though successful applications of volumetric muscles have
been demonstrated so far, we have also faced failure cases. First, the
shoulder range of motion of our model is narrower than normal,
making it difficult to raise the arm over the head. The range of
joint motion is influenced by many factors including the geometric
configuration of muscle origins, insertions, and their way-points,
muscle strength, the discretization of simulation meshes, and the
choice of a contraction dynamics model. Furthermore, parameters

Fig. 13. Muscle contracture and orthopedic surgery simulation. (Left) A 2D
point on the texture atlas maps to a 3D point on the bones. The user can
easily specify the new insertion of the muscle on the texture atlas. (Middle)
The increased tension of the contracted Biceps results in the flexed elbow
at the relaxed arm. (Right) The surgery simulation displaces the insertion
of the Biceps from the top of the Radius to the bottom of the Humerus. As a
result, the Biceps becomes a one-joint muscle. Since the surgery increases
the range of motion, the elbow becomes fully extended at the relaxed arm.
The simulation also confirms the side-effect that the maximum torque at
the elbow becomes weaker with the displaced muscle insertion.

of Hill-type curves affect the stability of dynamics simulation, as
discussed by Sachdeva et al. [2015]. The negative slope of the force-
length curve could incur numerical instability and consequently
restrict the range of motion. We found it non-trivial to hand-tune
parame.ters to achieve a desired range of motion. Optimization-
based automatic parameter tuning is highly desirable in future study.
Secondly, the generated motion looks stiffer than we expected.

The main cause of stiffness is large PD gains, which are necessary
for accurate control. Juggling in particular requires precise aiming
and timing of the balls. There is a trade-off between control accuracy
and motion stiffness. Even though the total sum of muscle activation
is minimized during trajectory optimization, the influence of large
PD gains still remains to a certain extent. A potential remedy is
the use of variable PD gains over the trajectory. Large gains are
necessary only when it throws a ball with precision aiming at the
end of arm swing. Small gains are preferred in the middle of arm
swing for motion compliance. Variable PD gains optimized together
with arm trajectory would alleviate stiffness without sacrificing
accuracy.

6 DISCUSSION
Our attempt to transition the composition of an active simulated
musculoskeletal system from the established practice of line-segment
approximations to volumetric primitives represents a significant
step towards the ultimate goal of a true biomemetic digital replica
of the human anatomy and its complexity. Nevertheless, our cur-
rent framework still consciously submits to a number of limitations,
both in its scope of applicability, as well as biomechanical accuracy
and computational capability. A number of these limitations stem
from the computational cost of incorporating a system with a large
number of dynamic degrees of freedom inside a full control loop;
we expect that the continually increasing computational capabilities
of current platforms provide an encouraging roadmap for address-
ing such performance-oriented challenges. Secondly, the degree of
biomechanical accuracy that our system can afford is restricted by
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the limited availability of highly detailed digital models of anatomy,
not only in terms of geometrical shapes, but also in terms of the gov-
erning laws (material constitutive models, fiber fields of anisotropic
contractile muscles, mechanical response models of fascia and vis-
coelastic tissues). We aspire that the foundation we have laid will
allow us to leverage better models and governing laws, as those
crystallize and become validated in relevant literature.

A number of technical considerations that complicate our pursuit
of biomechanical accuracy result from the fact that the very na-
ture of the line-segment simplification conceals certain challenges
that are inherently present in real volumetric musculature. A line
segment muscle primitive is constrained, by definition, to retain
the shape of a straight line between any two successive via-points
(or in its entirety, if the muscle primitive is not segmented). As a
consequence, when the skeleton is articulated in a way that would
cause the aggregate length of the musculotendon to shrink from
its rest length, there is no ambiguity as to what the resulting shape
of the primitive would be: it remains a piecewise linear curve. If a
true volumetric muscle was modeled in complete isolation from its
surrounding passive/connecting tissue and adjoining muscles (in
direct analogy to how line-segment primitives are), there would be
ambiguity in its resulting equilibrium shape, as there is a multitude
of directions in which the geometry of the muscle could be laterally
deflected, buckled or bent (in the case of tendons). This incurs a
degree of ambiguity in the muscle forces that a compressed volu-
metric muscle produces as a result of skeleton-induced reduction of
the length of the medial axis of the musculotendon (this is allevi-
ated, in part, in scenarios where muscle activation incurs tension
in the muscle). This behavior is stabilized, in reality, by the contact
and collision between the muscle and its surrounding tissue, which
helps resolve the resulting equilibrium shape. However, in our ini-
tial exploration presented in this work, we have not incorporated
explicit contact and collision handling between muscle volumes and
their surrounding tissues. As a consequence, our simulated muscles
may experience bending or buckling modes under compression that
are not fully representative of the biophysical behavior. From the
standpoint of numerics, this also induces a practical limitation in
the minimum thickness we can allow the tendon regions to assume,
as excessively thin tendons would both increase this modeling error,
and aggrevate the presence of inaccurate buckling modes. We expect
this deficiency to be cured in future work by the incorporation of
careful contact and collision processing between a fully-coupled set
of muscles and passive/connective tissue.

In the real human body, individual muscle volumes are mechani-
cally correlated via their contact coupling. For example, it is possible
for the insertions of a given muscle to exert tension to the skele-
ton even if the muscle is fully inactive, at a kinematic state where
the line-segment approximation would yield no tension at all; this
would be possible if the contraction of a neighboring muscle, cou-
pled via connective tissue and contact handling, causes a volumetric
deformation in the inactive muscle to be deformed as a side-effect,
producing tension (and forces at the insertions) that would not be
possible with fully-independent line-segment muscle primitives. We
must highlight that our current formulation only partially captures
this real-world behavior, on volumetric muscle primitives with mul-
tiple independently-activated contractile regions modeled in the

same volumetric simulation mesh; on the other hand, we do not
currently capture this coupling by means of contact processing be-
tween distinct muscle volumes, which are simulated independently.
Our mathematical formulation for computing force Jacobians is
able to capture this dependency on muscles with several contractile
regions. Extending this capability (and the Jacobian computation)
to contact-coupled muscles will be more challenging, and possibly
restrict our options for contact handling (e.g. creating a preference
for coupling via “penalty” contact forces, instead of impulse-based
corrections mediating momentum exchange [Bridson et al. 2003]).
Finally, the simplicity of the line-segment muscle primitives re-

duces the complexity of modeling individual muscles to a specifi-
cation of the muscle path, the muscle/tendon ratio (without any
need for localization), and parameters governing its maximum
force-generating potential. Volumetric muscle primitives have much
broader modeling flexibility, and as a consequence many more op-
portunities for less-than-accurate geometry or material parameter
specifications to create deviations from the ground truth. In a sense,
the increased flexibility of volumetric models to approach reality
comes at the cost of increased opportunities for modeling errors
to create deviations from it. As an example, the cross-sectional ge-
ometry of tendons can have a significant effect on the resulting
geometry of the muscle volume (if the Young’s modulus is set to
a near-constant value, as biophysically expected). Line-segment
models can mask such parameter tuning choices behind an individ-
ualized setting of the tendon stiffness on a muscle-by-muscle basis,
making the parameter space easier to tune (even if such parameters
have a very loose connection to the underlying first principles). Our
existing model consciously focuses on upper body motion; future
work should explore extensions to a full-body humanmodel, capable
of resolving more diverse motion.
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APPENDIX: CONTRACTILE ELEMENT TREATMENT
We seek an expression for p(l , Ûl ,a) in equation (8) which allows
the Piola stress PCE = ∂ΨCE/∂F to match the expression of Pm in
equation (7) associated with the conventional active stress induced
by Hill-type muscles. The differentiation is written as follows:

∂ΨCE
∂F

=
∂

∂F

{
k

2
(Fd − p)T (Fd − p)

}
= k(FddT − pdT )
= k(1 − γ )FddT (21)

where equation (21) incorporates the assumption that p = γFd is
taken among the multiples of the deformed fiber direction Fd. The
expression for p in equation (9) results from equating the right hand
sides of equations (21) and (7).
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