This site contains C++ codes for training nonlinear SVMs via stochastic approximation methods described in
-algo [number] | |
4: Batch mode, strongly convex | |
5: Batch mode, general convex | |
6: Online mode, strongly convex | |
7: Online mode, general convex | |
-b | :Use bias term or not {0,1} (default: 0) |
-lambda | :Regularization parameter (default: 0.001) |
-iter | : Number of maximal iterations to run (default: 1/lambda) |
-g | : RBF kernel bandwidth exp(-g||x-y||^2) (default: 1.0) |
-rank | : Rank of kernel approximation (default: 512) |
-sol_eps | : Kernel expansion coefficient threshold (default: 1e-12) |
-target_err | : Target test error to stop algorithms |