This site contains C++ codes for training nonlinear SVMs via stochastic approximation methods described in
| -algo [number] | |
| 4: Batch mode, strongly convex | |
| 5: Batch mode, general convex | |
| 6: Online mode, strongly convex | |
| 7: Online mode, general convex | |
| -b | :Use bias term or not {0,1} (default: 0) | 
| -lambda | :Regularization parameter (default: 0.001) | 
| -iter | : Number of maximal iterations to run (default: 1/lambda) | 
| -g | : RBF kernel bandwidth exp(-g||x-y||^2) (default: 1.0) | 
| -rank | : Rank of kernel approximation (default: 512) | 
| -sol_eps | : Kernel expansion coefficient threshold (default: 1e-12) | 
| -target_err | : Target test error to stop algorithms |