
Conceptual-Model-Based Data Extraction from
Multiple-Record Web Pages

D.W. Embley∗, D.M. Campbell, Y.S. Jiang, S.W. Liddle†,
D.W. Lonsdale, Y.-K. Ng, R.D. Smith

Data Extraction Group

Brigham Young University, Provo, Utah 84602, U.S.A.

{embley,campbell,jiang,ng,smithr}@cs.byu.edu; {liddle,lonz}@byu.edu

Abstract

Electronically available data on the Web is exploding at an ever increasing pace.
Much of this data is unstructured, which makes searching hard and traditional
database querying impossible. Many Web documents, however, contain an abun-
dance of recognizable constants that together describe the essence of a document’s
content. For these kinds of data-rich, multiple-record documents (e.g. advertisements,
movie reviews, weather reports, travel information, sports summaries, financial state-
ments, obituaries, and many others) we can apply a conceptual-modeling approach to
extract and structure data automatically. The approach is based on an ontology—a
conceptual model instance—that describes the data of interest, including relation-
ships, lexical appearance, and context keywords. By parsing the ontology, we can au-
tomatically produce a database scheme and recognizers for constants and keywords,
and then invoke routines to recognize and extract data from unstructured documents
and structure it according to the generated database scheme. Experiments show that
it is possible to achieve good recall and precision ratios for documents that are rich
in recognizable constants and narrow in ontological breadth. Our approach is less
labor-intensive than other approaches that manually or semiautomatically generate
wrappers, and it is generally insensitive to changes in Web-page format.

Keywords: data extraction, data structuring, unstructured data, data-rich doc-
ument, World-Wide Web, ontology, ontological conceptual modeling, obituaries.

1 Introduction

The amount of data available on the Web has been growing explosively during the past few

years. Users commonly retrieve this data by browsing and keyword searching, which are

∗Research funded in part by Novell, Inc.
†Research funded in part by Faneuil Research Group

1

intuitive, but present severe limitations [4]. Browsing is not suitable for locating particular

items of data because following links is tedious, and it is easy to get lost. Furthermore,

browsing is not cost-effective as users have to read the documents to find desired data.

Keyword searching is sometimes more efficient than browsing but often returns vast amounts

of data, far beyond what the user can handle.

To retrieve data more efficiently from the Web, some researchers have resorted to ideas

taken from database techniques. Databases, however, require structured data. Yet most

Web data is unstructured and cannot be queried using traditional query languages. To

attack this problem, various approaches for querying the Web have been suggested. These

techniques basically fall into one of two categories: querying the Web with Web query

languages (e.g. [5]) and generating wrappers for Web pages (e.g. [6]).

In this paper, we discuss a novel approach to extracting and structuring data from

documents posted on the Web. Our data extraction method is based on conceptual model-

ing, and, as such, this approach also represents a new direction for research in conceptual

modeling.

Our approach specifically focuses on unstructured documents that are data rich, narrow

in ontological breadth, and contain multiple records of information for the ontology. A

document is data rich if it has a number of identifiable constants such as dates, names,

account numbers, ID numbers, part numbers, times, currency values, and so forth. A

document is narrow in ontological breadth if we can describe its application domain with a

relatively small ontology. A document contains multiple records for an ontology if there is

a sequence of chunks of information about the main entity in an ontology. None of these

definitions is exact, but they express the idea that the kinds of Web documents we are

considering have many constant values, are narrow in the domain they cover, and contain

descriptions for several object instances that satisfy the ontology.

The unstructured documents we have chosen for illustration in this paper are obituaries.

Figure 1 shows an example. An obituary is data rich, typically including several constants

such as name, age, death date, and birth date of the decedent; a funeral date, time, and

address; viewing and interment dates, times, and addresses; names of related people and

family relationships. The information in an obituary is also narrow in ontological breadth,

having data within a narrow domain of genealogical knowledge that can be described by a

small ontological model instance. Obituaries generally appear in groups, being listed one

2

Brian Fielding Frost

Our beloved Brian Fielding Frost,

age 41, passed away Saturdaymorning,
March 7, 1998, due to injuries sustained

in an automobile accident. He was born
August 4, 1956 in Salt Lake City, to
Donald Fielding and Helen Glade Frost.
He married Susan Fox on June 1, 1981.

He is survived by Susan; sons Jor-

dan (9), Travis (8), Bryce (6); parents,
three brothers, Donald Glade (Lynne),

Kenneth Wesley (Ellen), Alex Reed,
and two sisters, Anne (Dale) Elkins and

Sally (Kent) Britton. A son, Michael
Brian Frost, preceded him in death.

Funeral services will be held at 12

noon Friday, March 13, 1998 in the
Howard Stake Center, 350 South 1600

East. Friends may call 5-7 p.m. Thurs-
day at Wasatch Lawn Mortuary, 3401

S. Highland Drive, and at the Stake
Center from 10:45-11:45 a.m. Friday.

Interment at Wasatch Lawn Memorial
Park.

Figure 1: A sample obituary.

after another on a single page.

Specifically, our approach consists of the following five steps. (1) We develop an onto-

logical model instance over an area of interest. (2) We parse this ontology to generate a

database scheme and to generate rules for matching constants and keywords. (3) To obtain

data from the Web, we invoke a record extractor that divides an unstructured Web docu-

ment into individual record-size chunks, cleans them by removing markup-language tags,

and presents them as individual unstructured record documents for further processing. (4)

We invoke recognizers that use the matching rules generated by the parser to extract from

the cleaned individual unstructured documents the objects expected to populate the model

instance. (5) Finally, we populate the generated database scheme by using heuristics to

determine which constants populate which records in the database scheme. These heuris-

tics correlate extracted keywords with extracted constants and use relationship sets and

cardinality constraints in the ontology to determine how to construct records and insert

them into the database scheme. Once the data is extracted, we can query the structure

using a standard database query language.

To make our approach general, we fix the ontology parser, Web record extractor, key-

word and constant recognizer, and database record generator; we change only the ontology

3

as we move from one application domain to another. A significant contribution of our

approach is that we only perform the manual step, ontology development, once for a par-

ticular domain. This ontology covers all Web pages for that domain, and is insensitive to

changes in Web-page format. Other approaches that rely on HTML structure or the order of

data within an unstructured record must specify multiple wrappers (one for each structure

pattern), and when a Web page undergoes a format change (a common occurrence), such

wrappers must be rewritten to accommodate the new format [20]. Our system generally

does not rely on the order of data or the specific nature of a particular Web-page layout.

In an earlier paper [16], we presented some of these ideas for extracting and structuring

data from unstructured documents. We also presented results of experiments we conducted

on two different types of unstructured documents taken from the Web, namely, car ads and

job ads. In those experiments, our approach attained recall ratios in the range of 90% and

precision ratios near 98%. These results were encouraging; however, the ontology we used

was very narrow, and was limited to a relatively flat database structure.

In this paper we enrich the ontology—the conceptual model—and we choose an ap-

plication that demands more attention to this richer ontology. For example, our earlier

model supported only binary relationship sets, but our current approach supports n-ary

relationship sets. Furthermore, we enhance the ontology in two significant ways. (1) We

adopt “data frames” as a way to encapsulate the concept of a data item with all of its

essential properties. (2) We include lexicons to enrich our ability to recognize constants

that are difficult to describe as simple patterns, such as names of people. Together, data

frames and lexicons enrich the expressiveness of an ontological model instance. This paper

also extends our earlier work by adding an automated tool for detecting and extracting

unstructured records from HTML Web documents. We are thus able to fully automate the

extraction process once we have identified a Web document from which we wish to extract

data. Further enhancements are still needed to locate documents of interest with respect to

the ontology and to handle sets of related documents that together provide the data for a

given ontology. Nevertheless, the extensions we do add in this paper significantly enhance

the approach presented earlier [16]. Some of these enhancements were discussed in [17], but

the present paper gives a more comprehensive elaboration.

We present the details of our approach as follows. We first provide a context for our

research in Section 2 by showing how it aligns with the work of other researchers. In Sec-

4

tion 3, we discuss each of the component parts of our approach and show, for any given

application ontology, how they work together to process data-rich, unstructured documents

such as obituaries. In Section 4, we report results as recall and precision ratios for re-

trieved data for the experiment we conducted on obituaries; we also present experimental

data supporting our claims of the generality of our approach. In Section 5, we state our

conclusions.

2 Related Work

With the explosion of textual information available in electronic form, a large research effort

has sprung up in the database community around finding ways to make Web querying more

powerful than keyword search and browsing. Recent efforts have taken several directions

including virtual database technology, Web data modeling, wrapper generation, natural-

language processing, semistructured data, and Web queries.

Junglee coined the phrase “virtual database technology” [20]. Just as “virtual memory”

makes the disk an extension of main memory, “virtual database technology” makes external

data an extension of the database. Junglee developed a sophisticated proprietary system

to extract information from Web pages; one part of their system uses hints provided by

HTML tags. In contrast, we extract information from Web pages using hints provided by

an ontology. We only use HTML tags in our record-boundary detection phase, not in the

actual data extraction.

“Structured maps” are another technique to model Web-based information sources [12].

Similar to our ontological model instance, a semantic model provides a schema over a

domain of interest. The schema is populated with information elements from the Web. [7]

introduces a data model to describe the schema for a user view over information on the Web

along with a set of languages for synthesizing the schema for the particular application and

to manage and restructure data with respect to the schema. We have not yet gone beyond

populating a database with extracted values and tuples. Our work differs from those that

populate databases by hand, because in our approach the same ontology can be used to

extract data from multiple Web pages requiring minimal changes (if any at all), even for

Web pages authored in different styles.

The most common way to extract information from the Web is by generating a wrapper,

which parses unstructured data and then maps it into a structured or semistructured form.

5

If the mapped form is structured, then standard query languages such as SQL are used

to query the extracted information. If the mapped form is semistructured, then special

semistructured query languages are used [1, 2, 9]. Wrappers can be written by hand, as

they were in the TSIMMIS project [10] (whose main thrust was information integration).

Wrappers can also be written semiautomatically. Approaches to semiautomatic wrapper

generation include generators using (i) hand-coded specialized grammars [1], (ii) formatting

information [6, 21], (iii) page grammars [7], and (iv) concept definition frames [29]; these

approaches are all similar. Wrappers have been written either fully manually [8, 20, 21],

or with some degree of automation [3, 6, 13, 23, 30]. Hand generation and semiautomatic

generation have two disadvantages: (i) the amount of work to create the initial wrapper,

and (ii) the amount of work required to update the wrapper when a source document

changes. Although we also produce wrappers in our work, our approach differs fundamen-

tally; our work uses conceptual modeling to control the information-extraction process. In

our approach, wrapper generation is fully automatic once the conceptual-model instance

representing the application ontology has been written.

Natural-language processing (NLP) systems (particularly in the information-extraction

subfield as described in [11]) find relevant information in natural-language documents while

ignoring irrelevant information. To find relevant information, NLP systems apply such

techniques as filtering, part-of-speech tagging, parsing, lexical semantic tagging, building

relationships among phrasal and sentential elements, and producing a grammatically co-

herent framework. In the NLP approach, natural language is the dominant guide; in our

approach, an ontology expressed as a conceptual model is the dominant guide. Unlike

many NLP systems, our work does not attempt to extract “deep-level understanding” and

our work does not depend upon complete sentences. Our approach is more appropriate

for Web pages that publish information (like classified ads) which rarely contains complete

sentences.

“Case frames” [30] are a middle ground between classical NLP approaches and wrapper-

based approaches. Case frames parse Web pages into coherent segments based on page

layout cues. These “sentence-length” segments of text are then fed into a NLP system

that relies on a semantic lexicon for the domain of interest instead of using part-of-speech

tagging. The output is a case frame, from which a populated relational database could be

generated. Although case frames have some similarities to our ontology-based approach,

6

the approaches are quite different: we are guided by a domain ontology; they are guided

by NLP techniques.

“Concept definition frames” [29] are also used to extract information from text-based

data sources. Concept definition frames are similar to the object definitions (“data frames”)

in our conceptual model. However, our conceptual-model approach is richer; for example,

we include cardinality constraints, which are used in our heuristics for composing extracted

attribute values into object structures.

Our experimental data comes from the Web. We believe that our techniques are useful

for extracting and structuring Web information. Our approach, however, does not consti-

tute a query language that is “Web aware” [5, 22, 24, 27, 28], Instead, once we populate

our model instance and produce a database, we can perform queries using standard query

languages such as SQL.

3 Web Data Extraction and Structuring

Figure 2 shows the overall process we use for extracting and structuring Web data. As

depicted in the figure, the input (upper left) is a Web page, and the output (lower right)

is a populated database. Figure 2 shows the application ontology as an independent input

describing the application of interest. When applications change (for example from car

ads, to job ads, to obituaries), it suffices to change the ontology, in order to apply the

process to Web pages associated with the new application. Everything else remains the

same: the routines that extract records, the routines that parse the ontology, the routines

that recognize constants and keywords, the routines that generate the populated database

instance—none of these routines change. In this way, our process is generally applicable to

any domain.

We proceed by describing in succeeding subsections each major component of Figure 2.

3.1 Ontological Specification

As Figure 2 shows, the application ontology consists of an object-relationship model in-

stance, data frames, and lexicons. An ontology parser takes this information as input and

produces constant/keyword matching rules and a database description as output. First we

describe our object-relationship model; then we describe data frames and lexicons.

Figure 3 gives the object-relationship model instance for our obituary application in

7

 Application Ontology

 Ontology
 Parser

Constant/Keyword
Matching Rules

Unstructured
Record

Documents

 Constant/Keyword
 Recognizer

 Database-Instance
 Generator

Populated Database

 Database Description

Record-Level
Objects,

Relationships,
and Constraints

Database
Scheme

Web Page

Record Extractor

Data-Record Table
(Descriptor/String/Position)

Object-Relationship
Model Instance

Data Frames

Lexicons

Figure 2: Data extraction and structuring process.

8

graphical form; Figure 4 displays excerpts of this model instance in its equivalent textual

form. We use the Object-oriented Systems Model (OSM) [15] for our object-relationship

model. We briefly discuss four aspects of OSM: (1) object sets, (2) relationship sets, (3)

participation constraints, and (4) generalization/specialization.

1. Object Sets. Rectangles represent sets of objects; dotted rectangles represent lexical

object sets (such as Age and Birth Date whose objects have identifiers that represent

themselves); solid rectangles represent nonlexical object sets (such as Deceased Person

and Viewing whose objects are object identifiers that represent nonlexical real-world

entities).

2. Relationship Sets. Lines connecting rectangles represent sets of relationships; bi-

nary relationship sets have a verb phrase and reading-direction arrow (e.g. Funeral is

on Funeral Date names the relationship set between Funeral and Funeral Date); n-ary

relationships have a diamond and a full descriptive name that includes the names of

its connected object sets.

3. Participation Constraints. Participation constraints (located near connection

points between object sets and relationship sets) designate the minimum and max-

imum number of times an object in the set participates in the relationship. For

example, the 1..* near Age indicates that an age must associate with at least one

decedent, and perhaps many.

4. Generalization/Specialization. A colon (:) after an object-set name (e.g. Birth

Date: Date) denotes that the object set is a specialization (e.g. the set of objects in

Birth Date is a subset of the objects in the implied Date object set).

For our ontologies, an object-relationship model instance gives both a global view (e.g.

across all obituaries) and a local view (e.g. for a single obituary). We express the global

view as an object-relationship model instance, as we described above. We then specialize

the global view to a particular obituary by imposing additional constraints. We denote these

specializing constraints by a “becomes” arrow (–>). For example, in Figure 3, by adding

“–> •”, the Deceased Person object set: (a) becomes a single object, meaning that in an

obituary there is exactly one decedent of interest, and (b) the 1..* participation constraint

on both Deceased Name and Relative Name becomes 1. These specializing constraints

9

Relative
Name: NameAge

Birth Date: Date

Death Date: Date

Relationship

Deceased
Person

1..*->1

1..*

Deceased Person
has Relationship
to Relative Name0..*

0..11..* died on

Funeral
Date: Date

Viewing

Funeral

0..1

1

has

0..*

1

has

Beginning Time: Time

Ending Time: Time

0..1

1..*
has

0..1

1..*

has

Viewing Date: Date

0..1
1..*

is on

Interment Date: Date

Funeral Time: Time

0..1

1..*

has

Interment

0..1

1

has

0..11..*

has

Viewing
Address:
Address

Interment
Address: Address

Funeral
Address:
Address

0..1

1..*

has

 ->

0..1

1..*

has

0..1

1..*

has

0..11..*

has

0..1

1..* has

0..1

1..*

has

Deceased
Name: Name

1

1..*->1

has

Figure 3: Sample object-relationship model instance.

Deceased Person [-> object];
Deceased Person [1] has Deceased Name [1..* -> 1];
...
Deceased Person [0..*] has Relationship [1..*] to Relative Name [1..* -> 1];
...
Funeral [0..1] is on Funeral Date [1..*];
...
Birth Date, Death Date, Interment Date, Viewing Date, Funeral Date : Date;
...

Figure 4: Sample textual object-relationship model instance.

10

declare that a name either identifies the decedent or the family relationship of a relative of

the decedent1. From these specializing constraints the system derives facts about individual

obituaries; for example, it now knows that there is only one funeral, there is only one

interment, there may be several viewings, there may be several relatives.

Since a model-equivalent language has been defined already for OSM [25], we can faith-

fully convert any OSM model instance to an equivalent textual form. We use the textual

representation for parsing. Figure 4 shows part of the sample ontology written as text.

We now describe data frames. Whether an object set is lexical or nonlexical depends on

whether its associated data frame [14] describes a set of possible strings as objects for the

object set. In general, a data frame describes the relevant knowledge about an object set.

If a data frame is for a lexical object set, it describes the string patterns for its constants

(member objects). For example, date data frames match dates using regular expressions,

and name data frames match names using a combination of regular expressions and lexicons

of common first names and last names. Whether lexical or nonlexical, an associated data

frame can describe context keywords that indicate the presence of an object in an object

set. For example, “died” and “passed away” may be context keywords for Death Date;

“buried” may be a context keyword for Interment. A data frame for a lexical object set also

defines common representation conversion routines, but its main emphasis is on recognizing

constants/keywords.

Figure 5 shows partial data frames for Name, Relative Name, and Relationship. A num-

ber in brackets (e.g. 80 in the Name data frame) designates the longest expected constant

for the data frame; the system uses this number to generate upper bounds for declarations

in our database scheme. A data frame also declares constant patterns, keyword patterns,

and lexicons of constants. A pattern can be declared to be case sensitive/insensitive. Pat-

terns are written using Perl 5 regular expression syntax. The lexicons referenced in Name in

Figure 5 are external files consisting of a simple list of names: first.dict contains 16,167 first

names from “aaren” to “zygmunt” and last.dict contains 16,522 last names from “aalders”

to “zywiel”. To use these lexicons, a pattern in first.dict is referred to as First; a pattern in

last.dict is referred to as Last. Our rule for Name says that the first constant must match

one of the names in the first-name lexicon, followed by one or more white-space characters,

followed by one of the names in the last-name lexicon. A second rule for Name allows a

1Without the specializing constraints we would not be able to make the stronger assertion that a name
functionally determines a decedent or a relative.

11

...
Name matches [80] case sensitive

constant
{ extract First, "\s+", Last; },
...
{ extract "[A-Z][a-zA-Z]*\s+([A-Z]\.\s+)?", Last; },
...

lexicon {
First case insensitive;
filename "first.dict";

},{
Last case insensitive;
filename "last.dict";

};
end;
Relative Name matches [80] case sensitive

constant { extract First, "\s*\(", First, "\)\s*", Last;
substitute "\s*\([^)]*\)" -> "";

...
end;
...
Relationship matches [14]

constant
{ extract "brother"; context "\bbrothers?\b"; },
{ extract "sister"; context "\bsisters?\b"; },
...
{ extract "step-?father"; context "\bstep-?father\b";

filter "-"; },
{ extract "\bstepfather\b"; }
...

keyword "\bspouse\b",
"\bmarried\b",
...

end;
...

Figure 5: Sample data frames.

pattern to match a string of letters starting with a capital letter (i.e. a first name, not

necessarily in the first-name lexicon), followed by white space, optionally followed by a

capital-letter/period pair (a middle initial), followed by white space and one of the names

in the last-name lexicon.

The Relative Name data frame in Figure 5 is a specialization of the Name data frame. In

many obituaries, spouse names of blood relatives appear parenthetically inside names. In

Figure 1, for example, we find “Anne (Dale) Elkins”. Here, Anne Elkins is the sister of the

decedent, and Dale is the husband of Anne. To extract the name of the blood relative, the

Relative Name data frame applies a substitution that discards the (optional) parenthesized

name when it extracts a relative name. Besides extract and substitute, a data frame may

also use context and filter clauses, which are illustrated in the Relationship data frame. A

12

context clause defines the context for an extraction; a filter clause defines what to filter out

for an extraction. The third rule in the Relationship data frame in Figure 5 has context and

filter clauses indicating that if the system finds “... step-father ...”, it extracts “step-father”

and filters out the hyphen, leaving “stepfather”. Thus constants extracted using this rule

are treated the same as constants extracted using the fourth rule for Relationship (which

only matches the word “stepfather” without a hyphen).

3.2 Unstructured Record Extraction

In our data extraction approach, obtaining pages of interest from the Web is done in two

steps: (1) identify pages containing multiple records of interest with respect to the given

application ontology, and (2) separate the information on such pages into records. A record

is a chunk of data that represents one instance of the main item specified in the ontology.

For obituaries, these two steps become: (1) find pages containing obituaries, (2) partition

these pages into individual obituaries. We are still working on the first problem: identifying

pages with multiple records of interest; we do not report on this work here. Instead, we

assume we are given HTML pages containing multiple records of interest with respect to

the ontology.

Our approach (1) builds a tree of the page’s structure, (2) heuristically searches the

tree for the subtree most likely to contain the records, and (3) heuristically finds the most

likely separator among siblings in this subtree of records. Our HTML-tag tree approach

is applicable both to Web pages created using an automated tool and to pages written

manually. When an automated tool is used, there is a high likelihood that the use of

HTML tags will be consistent across records. For HTML documents with multiple records

that are generated manually, it is usually true that the creator of these documents follows

certain patterns, though these patterns are not necessarily rigid or well-formed. To deal

with inconsistency within a Web page and variation across individually consistent pages,

we use multiple heuristics in identifying record separators. The experimental results of

applying the different heuristics on randomly chosen sets of HTML documents show a high

success rate in determining the correct record separators [18]. The results support our claim

that the tag-tree approach is reliable and general. We now describe our implementation.

HTML tags define discrete regions within an HTML document. Some HTML start tags

have corresponding end tags that together determine the boundary of a region in an HTML

13

<html><head><title>Classifieds</title></head>

<body bgcolor="#FFFFFF">

<table width="475">

<tr><td>

<h1 align="left">Funeral Notices</h1>

<h4> </h4>

<hr size="4" noshade>

<h4> Lemar K. Adamson ...</h4>

<hr>

...

<h4> Brian Fielding Frost ...</h4>

<hr>

<h4> Leonard Kenneth Gunther ...</h4>

<hr>

...

<hr>

</td></tr>

</table>

All material is copyrighted.

</body>

</html>

(a) A sample obituary HTML document .

html

head

title

body

table

tr

td

h1 h4 hr h4 hr ... h4 hr h4 hr hr...

(b) Tag-tree of HTML document in (a).

Figure 6: An HTML document and its tag-tree.

document. Between a start-tag/end-tag pair (or start-tag/implied-end-tag pair), other tags

can be nested. Based on the nested structure of start and end tags, we build what is called

a tag tree. Figure 6(a) gives part of a sample obituary HTML document, and Figure 6(b)

gives its corresponding tag tree. Figure 6(a) shows that the tag pair <html>-</html>

surrounds the entire document; thus, html becomes the root of the tag-tree. Similarly, title

is nested within head, which is nested within html; body (which has its own nested structure)

is a sibling to head. The leaves nested within the <td>-</td> pair are the ordered sequence

of sibling nodes h1, h4, hr, h4, A node in a tag tree contains the tag of each region and

its associated text. Because of space restrictions we do not show text in Figure 6(b). But

the text field for the title node would be “Classifieds”; the text field for the first h4 field

following the first ellipsis in the leaves would be the obituary for Brian Fielding Frost.

To detect the region in the document containing the records of interest, we search the

tag tree for the subtree with the largest fan-out—td in Figure 6(b). Call this subtree S. If a

document matches the desired profile (i.e. it contains many records of interest), S generally

contains the records we wish to extract2. Other portions of the tag tree likely contain page

headers or trailers. To extract records we restrict our attention to S, and we look for an

HTML tag that separates records in S. Tags that are direct children of the root of S are

called candidate tags (h1, h4, and hr in our example). We discard any candidate tags that

2This property is a consequence of our key assumption that the Web page contains multiple records of
interest. Given this assumption, it is highly unlikely that the largest-fan-out subtree does not contain the
multiple records of interest. In our experiments, we never found such a pathological example.

14

occur relatively few times (h1 in this case).

To discover the record separator, we independently rank the candidate tags using the

following five heuristics.

• HC is the Highest Count heuristic. It ranks the candidate tags on the number of

occurrences. HC assumes that the separator tag occurs frequently when there are

many records.

• IS is the Identifiable Separator heuristic. It uses a predetermined list of ranked HTML

separator tags. Both hand-created HTML documents and tool-generated HTML doc-

uments tend to use common separator tags consistently. Our current list is hr, td,

tr, a, table, p, br, h4, h1, strong, b, i.

• SD is the Standard Deviation heuristic. It assumes that records are similar in size.

Candidate tags are ranked in order of the standard deviation of included plain text

between identical tags.

• RP is the Repeating Pattern heuristic. It assumes that divisions between records are

formed by several tags that consistently occur in the same order (e.g. a br followed

immediately by an hr). If a tag pair <a> occurs at a record boundary and

<a> is the record separator, then the count for the pair <a> should be about

the same as the number of occurrences of <a> alone. RP ranks tags based on how

close the total number of occurrences comes to the total number of occurrences of a

particular pair in which the tag occurs.

• OM is the Ontology Matching heuristic. It is based on the ontological content of a

record. Our ontology tells which fields of a record are expected to occur once and

only once. Such fields are called record-identifying fields3. OM counts the number

of such record-identifying fields on a page, and then computes X, the average of the

number of occurrences of each record-identifying field. OM ranks the candidate tags

by how closely their number of occurrences corresponds to X.

Each of these individual heuristics produces a ranking of the candidate tags. We adopt

Stanford certainty theory [26] to obtain a consensus heuristic. Stanford certainty theory

requires “certainty factors.” We use the certainty factors of Table 1. These factors were

3E.g. because of a specializing constraint, Deceased Name in Figure 3 is a record-identifying field.

15

Heuristic Approach\Ranking 1 2 3 4

HT 49.0% 32.5% 16.5% 2.0%
IT 96.0% 4.0% 0.0% 0.0%
SD 65.5% 22.5% 12.0% 0.0%
RP 77.5% 12.5% 9.0% 1.0%
OM 84.5% 12.5% 2.0% 1.0%

Table 1: Certainty factors

obtained by running each of the individual heuristics against real data and checking the

results by hand. The certainty factors in Table 1 assert, for example, that the OM heuristic

ranked a correct separator first an average of 84.5% of the time, an incorrect separator first

and a correct separator second an average of 12.5% of the time, and so forth.

The Stanford-certainty-theory formula for combining the five heuristics is

a + b + c + d + e − a(b + c + d + e) − b(c + d + e) − c(d + e) − de+

ab(c + d + e) + ac(d + e) + bc(d + e) + de(a + b + c)−
abcd − abce − abde − acde − bcde + abcde

where a, b, c, d, and e are the certainty factors, each determined by its corresponding

individual heuristic.

Using the Stanford-certainty-theory formula with the certainty factors in Table 1, our

algorithm determined a record separator correctly 100% of the time in the 120 Web pages

we tried. The 120 pages include the pages used in the training set and those used in the

test set4.

Once a separator tag t is found, the system inserts “#####” surrounded by blank

lines immediately after each occurrence of t. The system then removes all HTML tags,

to yield the records of interest separated by five pound signs. Figure 7 shows the records

produced for the sample HTML document of Figure 6(a). In Figure 7 the obituaries (the

records of interest) occur between pairs of separators. Header and trailer information occurs

before the first separator and after the last separator.

4The Web pages came from newspaper sites geographically distributed throughout the United States
and contained records from several different application domains. See [18] for further details.

16

Classifieds

Funeral Notices
#####
Lemar K. Adamson ...
#####
...
#####
Brian Fielding Frost ...
#####
Leonard Kenneth Gunther ...
#####
...
#####

All material is copyrighted.

Figure 7: Obituaries extracted from the HTML document.

3.3 Database Record Generation

With the output of the ontology parser and the output of the record extractor the system

proceeds to populate the database by applying two basic steps for each unstructured record.

The first step produces a data-record table containing a set of descriptor/string/position

tuples for those constants and keywords recognized in the unstructured record. The second

step applies heuristics to this table to construct database tuples.

As Figure 2 shows, the constant/keyword recognizer applies the generated matching

rules to an unstructured document to produce a data-record table. Figure 8 gives the first

several lines of the data-record table produced from the obituary of Figure 1. Each entry (a

line in the table) describes either a constant or a keyword. Fields of an entry are separated

by a bar (|). The first field is a descriptor. For constants, the descriptor is an object-set

name to which the constant may belong. For keywords, the descriptor is KEYWORD(x),

where x is an object-set name to which the keyword may apply. The second field is the

constant or keyword found in the document (transformed by substitution rules provided in

the data frame). The third field is the starting position of the constant or keyword within

the record. The fourth field is the ending position of the constant or keyword. To facilitate

processing, the system sorts this table on the third and fourth fields.

We now describe the construction of database tuples from the data-record table. Figure 8

gives insights into (1) the recognition of constants and keywords, and (2) the processing

17

RelativeName|Brian Fielding Frost|1|20
DeceasedName|Brian Fielding Frost|1|20
RelativeName|Brian Fielding Frost|36|55
DeceasedName|Brian Fielding Frost|36|55
KEYWORD(Age)|age|58|60
Age|41|62|63
KEYWORD(DeathDate)|passed away|66|76
BirthDate|March 7, 1998|96|108
DeathDate|March 7, 1998|96|108
IntermentDate|March 7, 1998|96|108
FuneralDate|March 7, 1998|96|108
ViewingDate|March 7, 1998|96|108
KEYWORD(Relationship)|born August 4, 1956 in Salt Lake City, to|172|212
Relationship|parent|172|212
KEYWORD(BirthDate)|born|172|175
BirthDate|August 4, 1956|177|190
DeathDate|August 4, 1956|177|190
IntermentDate|August 4, 1956|177|190
FuneralDate|August 4, 1956|177|190
ViewingDate|August 4, 1956|177|190
RelativeName|Donald Fielding|214|228
DeceasedName|Donald Fielding|214|228
RelativeName|Helen Glade Frost|234|250
DeceasedName|Helen Glade Frost|234|250
KEYWORD(Relationship)|married|257|263
Relationship|spouse|257|263
...

Figure 8: Sample entries in a data-record table.

required by the database-instance generator. We give three examples.

Example 1. The first four lines of Figure 8 are the string “Brian Fielding Frost.”

At this point the string could be either the name of the decedent or the name of the

decedent’s relative. Since Figure 8 has no keyword for Deceased Person, no keyword directly

resolves this conflict. The system uses the heuristic that an important item is almost always

introduced at the beginning. Using this heuristic the system infers that “Brian Fielding

Frost” is the name of the decedent, not the name of one of the decedent’s relatives.

Example 2. Resolution of conflicts using keywords is common. In Figure 8 consider

the resolution of “March 7, 1998” of lines 8 and 9. Is it a death date or a birth date? Since

the various dates are all specializations of Date, a particular date could be any one of five

possible kinds of date. Notice, however, that “passed away”, a keyword for DeathDate,

is only 20 characters away from the beginning of “March 7, 1998”. Similarly, “born”, a

keyword for BirthDate, is within two characters of “August 4, 1956”. The system uses

keyword proximity to resolve these conflicts.

18

Object: DeceasedPerson;
Nonlexical: Viewing {ViewingDate, ViewingAddress, ...
Lexical: Date, BirthDate, DeathDate, ...
DeceasedPerson: DeceasedName [1];
DeceasedPerson: Age [0..1];
DeceasedPerson: BirthDate [0..1];
DeceasedPerson: DeathDate [0..1];
DeceasedPerson: Funeral [0..1];
DeceasedPerson: FuneralDate [0..1];
...
Viewing: DeceasedPerson [0..*] has Viewing [1];
Viewing: Viewing [0..1] has ViewingDate [1..*];
...
DeceasedPersonRelationshipRelativeName:

DeceasedPerson [0..*] has Relationship [1..*] to RelativeName [1];

Figure 9: Part of the generated record-level description.

Example 3. Consider the phrase of line 13 of Figure 8 “born August 4, 1956 in Salt

Lake City, to”. Line 13 of Figure 8 indicates that the recognizer tagged this phrase as

a keyword for Relationship. Line 14 of Figure 8 indicates that the recognizer tagged this

same phrase as a Relationship constant, with “parent” substituted for the longer phrase.

The regular expression that the recognizer uses for “parent” matches “born to” with any

number of intervening characters. The Relationship data frame states that “born to” is a

keyword for a family relationship and is also a possible constant value for the Relationship

object set, with the substitution “parent”. Furthermore, the system observes that “parent”

is only two characters before the beginning of the name Donald Fielding and twenty-two

characters before the beginning of the name Helen Glade Frost. It therefore infers that

these two people are the parents of the decedent.

The database-instance generator takes the data-record table as input along with a de-

scription of the database and constructs tuples for the extracted raw data. Figure 9 gives

part of the generated record-level description, and Figure 10 gives part of the generated

database scheme. The database-instance generator uses the record-level description to pro-

cess a single obituary and generate appropriate insert statements for the database scheme.

We now describe the heuristics used by the database-instance generator. These heuris-

tics are motivated by observations about the constraints in the record-level description. We

classify constraint-based heuristics as singleton heuristics, functional-group heuristics, and

nested-group heuristics.

• Singleton Heuristics. For a value that can occur at most once, we use keyword prox-

19

create table DeceasedPerson (
DeceasedPerson integer,
DeceasedName varchar(80),
Age varchar(4),
DeathDate varchar(16),
...

create table Viewing (
Viewing integer,
DeceasedPerson integer,
ViewingDate varchar(80),
...

create table DeceasedPersonRelationshipRelativeName (
DeceasedPerson integer,
Relationship varchar(14),
RelativeName varchar(80))

Figure 10: Part of the generated database scheme.

imity to find the best match (if any). example, for the generated data-record table in

Figure 8 we match keyword DeathDate of line 7 with “March 7, 1998” and keyword

BirthDate of line 15 with “August 4, 1956”, as explained earlier.

For a value that must be present, when keyword proximity fails to find a match,

the system chooses the first occurrence of a constant belonging to the corresponding

object set. If no such value is present, then the system rejects the record. For our

ontology, only the name of the decedent must be found.

Once the system associates a value with a singleton attribute for an object set S, it

culls the data-record table by removing all other constant entries (1) whose descriptor

is S or (2) whose position numbers overlap with the constant chosen for S. Thus,

once the system chooses “March 7, 1998” of position 96 to 108 as the death date,

it removes (1) other DeathDate entries and (2) all constant entries that overlap the

character positions 96-108.

• Functional-Group Heuristics. An object set whose objects can occur several times,

along with its functionally dependent object sets, constitutes a functional group. In

our sample ontology Viewing and its functionally dependent attributes constitute

such a group. Groups of such data generally occur as a unit within an unstructured

document. Thus, the system looks for groups of values in close proximity within the

boundaries of a context switch that pertain to the item of interest. Keywords that do

not pertain to the item of interest provide boundaries for context switches. For the

obituary of Figure 1, there is a Funeral context before the viewing information and

20

an Interment context after the viewing information. Within this context the system

therefore searches for ViewingDate / ViewingAddress / BeginningTime / EndingTime

groups.

• Nested-Group Heuristics. We use nested-group heuristics to process n-ary relationship

sets (for n > 2). Cardinality constraints can simplify the nesting and can suggest

potential orders. The ontology of Figure 3 has an n-ary relationship set for capturing

family relationships. This particular n-ary relationship set has strong cardinality

constraints that heuristically guide the nesting. Observe in Figure 3 that for a single

obituary, the n-ary relationship set connects the decedent to a relative, and Relative

Name functionally determines the Relationship. This suggests that the nesting is likely

to be implicit for the decedent and be otherwise hierarchical, with family relationships

as roots of subtrees of information. Indeed, the obituaries we considered consistently

follow this pattern. In Figure 1 we see “sons” followed by “Jordan”, “Travis”, and

“Bryce”; “brothers” followed by “Donald”, “Kenneth”, and “Alex”; and “sisters”

followed by “Anne” and “Sally”.

The result of applying these heuristics to an unstructured obituary record is a set of

generated SQL insert statements. For the obituary of Figure 1, our extraction process gen-

erated the insert statements of Figure 11. The values extracted are quite accurate, but not

perfect, as illustrated by three examples. Example 1: we missed the second viewing address,

which happens to have been correctly inserted as the funeral address, but not inserted as

the viewing address for the second viewing. Our implementation currently does not allow

constants to be inserted in two different places, but we plan to have future implementations

allow for this possibility. Example 2: we obtained neither of the viewing dates, both of

which can be inferred from “Thursday” and “Friday” in the obituary. Example 3: we did

not obtain the full name for sons of the decedent, which can be inferred by common rules

for family names. Our implementation currently finds only constants that actually occur

in the document. We plan to add procedures to our data frames to do the calculations and

inferences needed to obtain better results.

21

insert into DeceasedPerson
values(1001, "Brian Fielding Frost", "41", "March 7, 1998",
"August 4, 1956", 5001, "March 13, 1998", "350 South 1600 East",
"12 noon", 0, "", "")

insert into Viewing
values(7001, 1001, "", "3401 S. Highland Drive", "5", "7 p.m .")

insert into Viewing
values(9001, 1001, "", "", "10:45", "11:45 a.m.")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "parent", "Donald Fielding")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "parent", "Helen Glade Frost")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "spouse", "Susan Fox")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Jordan")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Travis")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Bryce")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "brother", "Donald Glade")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "brother", "Kenneth Wesley")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "brother", "Alex Reed")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "sister", "Anne Elkins")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "sister", "Sally Britton")

insert into DeceasedPersonRelationshipRelativeName
values(1001, "son", "Michael Brian Frost")

Figure 11: Generated SQL insert statements.

4 Results

For our test data, we took 38 obituaries from a Web page provided by the Salt Lake Tribune

(www.sltrib.com) and 90 obituaries from a Web page provided by the Arizona Daily Star

(www.azstarnet.com). Before running our extraction processor on these obituaries, we

trained the system on several dozen other obituaries from these two newspapers. Based on

this training set, we made a number of adjustments to the ontology. We then applied our

developed application ontology to the test sets and obtained the results in Table 2 for the

Salt Lake Tribune and in Table 3 for the Arizona Daily Star.

As Tables 2 and 3 show, we counted the number of facts (attribute values) in the test-set

documents. Consistent with our implementation, which only extracts explicit constants,

we counted a string as being correct if we extracted the constant as it occurred in the text.

22

Table 2: Salt Lake Tribune Obituaries

Number of Number of Facts Number of Facts Recall Precision
Facts in Source Declared Correctly Declared Incorrectly Ratio Ratio

+ Partially Correct
DeceasedPerson 38 38 0 100% 100%
DeceasedName 38 23+15 0 100% 100%
Age 22 20 1 91% 95%
BirthDate 30 30 1 100% 97%
DeathDate 33 31 0 94% 100%
FuneralDate 24 22 0 92% 100%
FuneralAddress 25 24 1 96% 96%
FuneralTime 29 28 0 97% 100%
IntermentDate 0 0 0 NA NA
IntermentAddress 4 4 0 100% 100%
Viewing 29 27 1 93% 96%
ViewingDate 10 7 0 70% 100%
ViewingAddress 17 13 0 76% 100%
BeginningTime 32 28 0 88% 100%
EndingTime 29 26 0 90% 100%
Relationship 453 359+9 29 81% 93%
RelativeName 453 322+75 159 88% 71%

Table 3: Arizona Daily Star Obituaries

Number of Number of Facts Number of Facts Recall Precision
Facts in Source Declared Correctly Declared Incorrectly Ratio Ratio

+ Partially Correct
DeceasedPerson 90 90 0 100% 100%
DeceasedName 90 80+10 0 100% 100%
Age 73 63 1 86% 98%
Birthdate 26 25 1 96% 96%
DeathDate 86 72 1 84% 99%
FuneralDate 45 43 3 96% 93%
FuneralAddress 33 27 6 82% 82%
FuneralTime 50 46 7 92% 87%
IntermentDate 1 1 0 100% 100%
IntermentAddress 0 0 1 NA 0%
Viewing 29 28 0 97% 100%
ViewingDate 25 25 0 100% 100%
ViewingAddress 21 20 0 95% 100%
BeginningTime 29 27 1 93% 96%
EndingTime 22 21 0 95% 100%
Relationship 626 566+11 20 92% 97%
RelativeName 626 446+150 211 95% 74%

23

With this understanding, counting was basically straightforward. For names, however, we

often only obtained partial names, even when more of the name was present. Because our

name lexicon was incomplete and because our name-extraction expressions were not rich,

we sometimes missed part of a name or split a single name into two. We list the count for

these cases after the + in the Declared Correctly column. Partial names also caused most of

the problem for the large number of incorrectly identified relatives. With a more accurate

and complete lexicon and with richer name-extraction expressions, we believe that we could

achieve much higher precision.

In information retrieval, recall is the ratio of the number relevant documents retrieved

to the total number of relevant documents, and precision is the ratio of the number of

relevant documents retrieved to the total number of documents retrieved [19]. We compute

our recall and precision ratios replacing “documents” by “facts.” If N is the number of

facts in the source, C is the number of facts declared correctly, and I is the number declared

incorrectly, then the recall ratio is C
N
, and the precision ratio is C

C+I
.

Several comments about our results are in order. Nonlexical object sets are generally

easier to identify correctly because they are represented by surrogate identifiers generated

by the system. For example, a Deceased Person is always generated for an obituary record,

and consequently the results for that set are 100% precision and recall. For other nonlexical

object sets such as Viewing, the system generates a surrogate nonlexical object when it infers

the presence of one of the associated lexical objects (e.g. Viewing Date, Viewing Address,

Beginning Time, or Ending Time). Thus, misses in the nonlexical object sets result from

misses in the associated lexical object sets. If the system infers a viewing date, it must also

infer a viewing, so if the viewing date is incorrect, the system may infer the presence of a

viewing that does not exist. Likewise, if the system incorrectly fails to infer all the lexical

viewing information in an obituary (i.e. viewing date, address, starting time, and ending

time), it will also fail to infer a viewing that actually does exist.

Lexical object sets are divided into bounded and unbounded sets. Bounded sets include

Age, various dates (e.g. Birth Date, Death Date), several times (e.g. Funeral Time), and

Relationship. Even though these sets could theoretically be infinite, they are practically

quite finite and also predictable. In today’s world, an age in years will probably be an

integer from 1 to 100, and perhaps up to 120, but certainly no more than 140. Date and

time objects are richer than age objects, but they usually appear in well-defined forms, such

24

as “March 23, 1998” or “6:00p.m.” We can specify regular expressions to match bounded

sets with a high degree of accuracy.

Errors in the bounded sets sometimes resulted from insufficiently general regular ex-

pressions. (Based on our current obituary ontology, we would miss times expressed on a

24-hour clock such as “19:30”.) Such omissions are easily corrected by editing the ontology.

Other errors in the bounded sets resulted from incorrectly categorizing a constant that was

correctly extracted. For example, due to incomplete understanding of context, a funeral

time was sometimes confused with a viewing time. Correcting this kind of error requires

a careful analysis of context keywords. Relationship is a particularly interesting bounded

set. Consider the phrase “was a member of the Daughter of the Nile and Eastern Star,”

which appeared in one of the obituaries. Our system inferred a parent relationship from

the phrase “Daughter of,” and it found “Star” in the name lexicon and thus inferred that

“Star” was a parent of the decedent. Using our current architecture, there is no easy way

to avoid this kind of incorrect inference.

Unbounded sets include names and addresses; it is much more difficult to specify regular

expressions for unbounded sets. For this reason we incorporated lexicons into our archi-

tecture. However, as we show below, lexicons are subject to local variation, are difficult to

specify completely, and still are subject to overlap and ambiguity (e.g. “May” is a month,

a first name, a last name, and a place name). Names and addresses were the most diffi-

cult elements for our architecture to extract correctly, in part because of the considerable

overlap between domains. For example, “Lombard Junior High” led to the inference that

“Lombard” was a grandson of the decedent. We also encountered considerable variety in

the way person names were expressed. Larger training sets would help solve the format va-

riety problem. Improved context information would reduce misclassification of place names

and person names; this is a more difficult problem. Improved results for unbounded sets

would require larger training sets and a greater ontology-tuning effort.

This first experiment applied the ontology to a limited corpus of test obituaries from two

different sources. In order to demonstrate the robustness of the approach and the general

applicability of this ontology5, we undertook a second experiment of greater quantitative

and qualitative scope.

In the second experiment we collected a new corpus of obituaries which exemplified

5and at the suggestion of one of the anonymous referees

25

wider variability in style and content. First, we identified sources (in this case online

newspapers) throughout the world that published local obituaries in English6. We chose

six widely-dispersed American sources and four sources from other countries. From each of

these ten sources eleven obituaries were randomly selected. Sometimes the same obituary

happened to be selected more than once, so duplicates were discarded. The result was a

corpus of 97 obituaries.

Without modifying the program or the ontology to treat this new corpus, and with-

out editing the content of the individual obituaries, we submitted the new corpus to the

extraction processor. The results for key facts are presented in Table 4. To summarize,

performance in identifying crucial items (i.e. the decedent’s name, age, death date and

birth date) compared favorably with the first experiment’s results.

Some interesting results emerged from this second experiment. Given the fact that the

second corpus reflected a wider cultural context, there were key words and patterns that

the ontology was not prepared to handle: terms for ceremonial events such as “Tenth Day

Kriya” (India), “obsequies” and “cortege” (Sri Lanka), various date and address formats,

the use of parenthetical or quoted nicknames and maiden names for the decedent (e.g.

Edward J. “Butch” O’Hotto), and the use of different euphemisms for death (“expired”,

“at rest”). More problematic was the fact that the name dictionary was inadequate to

handle the Maori, Sri Lankan, Hispanic, and Indian names that the extractor encountered.

There were also editing-related stylistic idiosyncrasies (e.g. the use of “w/o” for “wife of”)

that were evident in the new corpus.

It is important to note, however, that all of these shortcomings can be addressed within

our current approach. The solution involves extending the ontology’s stock of patterns,

specifying the new constructions in the regular-expression formalism we currently use, and

extending the name lexicon. This effort reduces to an exercise in cultural localization for

the domain in question.

As a final note, we observe that since our precision and recall numbers only measure

individual fields, in the future we should also work on a metric for extracted data quality

in the aggregate. For example, how complete are the extracted records in total, rather

than just individual fields? Did the extraction problems tend to cluster within certain

obituaries, or were they evenly spread out among all records? More aggregate quality

6The second corpus and associated Web links can be obtained by contacting the authors.

26

Table 4: Selected results from processing the second corpus of obituaries.

Location Name Age Deathdate Birthdate
New Zealand 4-5-0 6-0-3 6-1-2 7-0-2
Ohio 7-4-0 11-0-0 11-0-0 8-0-3
New Hampshire 5-6-0 10-0-1 10-0-1 9-0-2
New Mexico 3-7-0 10-0-0 10-0-0 6-0-4
Sri Lanka 0-7-3 5-0-5 7-0-3 9-0-1
Maine 4-6-0 10-0-0 10-0-0 9-0-1
Ireland 6-4-0 9-0-1 9-0-1 10-0-0
Minnesota 0-9-0 8-0-1 9-0-0 9-0-0
Florida 8-1-1 10-0-0 10-0-0 10-0-0
India 0-1-6 4-0-3 0-0-7 4-0-3
Totals 37-50-10 82-1-14 82-1-14 81-0-16

Each cell reports (in sequence) the number of correct, partial, and incorrect matches.

information would help us in adjusting our extraction heuristics.

5 Conclusions

We have described a conceptual-modeling approach to extract and to structure data from

the Web. The approach described fully automates wrapper generation for Web documents

that are rich in data, narrow in ontological breadth, and have multiple records on a single

page. Instead of using page structure or HTML format as a guide to extracting data,

we used a predefined ontological model instance for the chosen application. An application

ontology provided the relationships among the objects of interest, the cardinality constraints

for these relationships, a description of the possible strings that can populate various sets

of objects, and possible context keywords to help match values with object sets. To prepare

unstructured documents for comparison with the ontology, we provided a means to identify

the records of interest on a Web page. With the ontology and record extractor in place,

we automatically extracted records and fed them to a processor that heuristically matched

them with the ontology to populate a database with the extracted data.

The results we obtained for our obituary example are encouraging. Because of the

richness of the ontology, we had initially expected much lower recall and precision ratios.

Achieving about 90% recall and 75% precision for names and 95% precision elsewhere was

a pleasant surprise.

27

Although we have accomplished our goal of showing that our conceptual-modeling ap-

proach to information extraction has promise, much remains to be done. We mention seven

items of future work: (1) using an ontological approach to find and classify Web pages of

interest for a given application ontology, (2) strengthening our heuristics for unstructured

record identification, (3) using the application ontology to design more sophisticated ways

to identify records of interest both within a page or on a set of related pages, (4) improving

our heuristics to identify attribute-value pairs and to construct database tuples, (5) adding

richer data conversions to our data frames, (6) providing a means to do inferencing so that

inferred data, as well as extracted data, can be inserted into the database, and (7) using

more extensive quality metrics.

Our tools and related papers are available from our Web site, www.deg.byu.edu. Our

current implementation uses a mixture of Perl, Java, and C++ code. Future implementa-

tion work will be done primarily in Java.

References

[1] Abiteboul, S., Cluet, S., Christophides, V., Milo, T., Moerkotte, G., Siméon, J.: Query-
ing documents in object databases. International Journal on Digital Libraries 1 (1997)
5–9

[2] Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.: The Lorel query language
for semistructured data. International Journal on Digital Libraries 1 (1997) 66–88

[3] Adelberg, B.: NoDoSE—a tool for semi-automatically extracting structured and
semistructured data from text documents. Proc. 1998 ACM SIGMOD International
Conference on Management of Data. (1998) 283–294

[4] Apers, P.: Identifying internet-related database research. Proc. 2nd International East-
West Database Workshop (1994) 183–193

[5] Arocena, G., Mendelzon, A.: WebOQL: restructuring documents, databases and webs.
Proc. Fourteenth International Conference on Data Engineering (1998)

[6] Ashish, N., Knoblock, C.: Wrapper generation for semi-structured internet sources.
SIGMOD Record 26 (1997) 8–15

[7] Atzeni, P., Mecca, G., Merialdo, P.: To weave the Web. Proc. Twenty-third Interna-
tional Conference on Very Large Data Bases (1997) 206–215

[8] Atzeni, P., Mecca, G.: Cut and paste. Proc. PODS’97 (1997) 144–153

[9] Buneman, P., Davidson, S., Hillebrand, G., Suciu, D.: A query language and optimiza-
tion techniques for unstructured data. Proc. SIGMOD’96 (1996) 505–516

[10] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ull-
man, J., Widom, J.: The TSIMMIS project: integration of heterogeneous information
sources. IPSJ Conference (1994) 7–18

28

[11] Cowie, J., Lehnert, W.: Information extraction. Communications of the ACM 39
(1996) 80–91

[12] Delcambre, L., Maier, D., Reddy, R., Anderson, L.: Structured maps: modeling ex-
plicit semantics over a universe of information. International Journal on Digital Libraries
1 (1997) 20–35

[13] Doorenbos, R., Etzioni, O., Weld, D.: A scalable comparison-shopping agent for the
World-Wide Web. Proc. First International Conference on Autonomous Agents (1997)
39–48

[14] Embley, D.: Programming with data frames for everyday data items. Proc. 1980 Na-
tional Computer Conference (1980) 301–305

[15] Embley, D., Kurtz, B., Woodfield, S.: Object-oriented Systems Analysis: A Model-
Driven Approach. (Prentice Hall, 1992)

[16] Embley, D., Campbell, D., Smith, R., Liddle, S.: Ontology-based extraction and struc-
turing of information from data-rich unstructured documents. Proc. Conference on In-
formation and Knowledge Management (CIKM’98) (1998) 52–59

[17] Embley, D., Campbell, D., Smith, R., Liddle, S.: A Conceptual-modeling approach
to extracting data from the Web. Proc. 17th International Conference on Conceptual
Modeling (ER’98) (1998) 78–91

[18] Embley, D., Jiang, S., Ng, Y.-K.: Record-boundary discovery in Web documents.
Proc. 1999 ACM SIGMOD International Conference on Management of Data. (1999),
to appear.

[19] Frakes, W., Baeza-Yates, R.: Information Retrieval: Data Structures & Algorithms.
(Prentice Hall, 1992)

[20] Gupta, A., Harinarayan, V., Rajaraman, A.: Virtual database technology. SIGMOD
Record 26 (1997) 57–61

[21] Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., Crespo, A.: Extracting semistruc-
tured information from the Web. Proc. Workshop on Management of Semistructured
Data (1997)

[22] Konopnicki, D., Shmueli, O.: W3QS: a query system for the world-wide Web. Proc.
Twenty-first International Conference on Very Large Data Bases (1995) 54–65

[23] Kushmerick, N., Weld, D., Doorenbos, R.: Wrapper induction for information extrac-
tion. Proc. 1997 International Joint Conference on Artificial Intelligence (1997) 729–735

[24] Lakshmanan, L., Sadri, F., Subramanian, I.: A declarative language for querying and
restructuring the Web. Proc. 6th international workshop on research issues in data
engineering, RIDE’96 (1996)

[25] Liddle, S., Embley, D., Woodfield, S.: Unifying modeling and programming through
an active, object-oriented, model-equivalent programming language. Proc. Fourteenth
International Conference on Object-Oriented and Entity-Relationship Modeling (1995)
55–64

[26] Luger, G.F., Stubblefield, W.A.: Artificial Intelligence: Structures and Strategies for
Complex Problem Solving, Third Edition. Addison Wesley Longman, Inc., (1998)

29

[27] Mendelzon, A., Mihaila, G., Milo, T.: Querying the World Wide Web. Proc. First
International Conference on Parallel and Distributed Information Systems (PDIS’96)
(1996)

[28] Mendelzon, A., Mihaila, G., Milo, T.: Querying the World Wide Web. International
Journal on Digital Libraries 1 (1997) 54–67

[29] Smith, D., Lopez, M.: Information extraction for semi-structured documents. Proc.
Workshop on Management of Semistructured Data (1997)

[30] Soderland, S.: Learning to extract text-based information from the World Wide Web.
Proc. Third International Conference on Knowledge Discovery and Data Mining (1997)
251–254

30

