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Abstract. Based on the identification of indices active at a solution of the mixed complementar-
ity problem (MCP), we propose a class of Newton methods for which local superlinear convergence
holds under extremely mild assumptions. In particular, the error bound condition needed for the
identification procedure and the nondegeneracy condition needed for the convergence of the resulting
Newton method are individually and collectively strictly weaker than the property of semistabil-
ity of a solution. Thus the local superlinear convergence conditions of the presented method are
weaker than conditions required for the semismooth (generalized) Newton methods applied to MCP
reformulations. Moreover, they are also weaker than convergence conditions of the linearization
(Josephy–Newton) method. For the special case of optimality systems with primal-dual structure,
we further consider the question of superlinear convergence of primal variables. We illustrate our
theoretical results with numerical experiments on some specially constructed MCPs whose solutions
do not satisfy the usual regularity assumptions.
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1. Introduction. The mixed complementarity problem (MCP) [8] is the varia-
tional inequality on a generalized box; that is,

find x ∈ B such that 〈F (x), y − x〉 ≥ 0 ∀y ∈ B,(1.1)

where F : Rn → Rn and

B = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n},

li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, li < ui ∀i = 1, . . . , n. Equivalently, this can be
stated as

find x ∈ B such that Fi(x)

⎧⎪⎨
⎪⎩
≥ 0 if xi = li,

= 0 if xi ∈ (li, ui),

≤ 0 if xi = ui.

i = 1, . . . , n.

As is well known, many important problems can be cast in the format of MCP [10, 8].
As a special case of MCP, we mention the nonlinear complementarity problem (NCP),
which corresponds to setting li = 0, ui = +∞, i = 1, . . . , n. The systems of nonlinear
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equations are obtained by choosing li = −∞, ui = +∞, i = 1, . . . , n. Another im-
portant example is the primal-dual Karush–Kuhn–Tucker (KKT) optimality system:
find z ∈ Rp and µ ∈ Rm such that

g(z) − (G′(z))Tµ = 0,
(1.2)

µ ≥ 0, G(z) ≥ 0, 〈µ,G(z)〉 = 0,

where g : Rp → Rp and G : Rp → Rm. The KKT system (1.2) can be written as an
MCP if we set n = p + m and

F (x) =

(
g(z) − (G′(z))Tµ

G(z)

)
, x = (z, µ) ∈ Rp × Rm,

li = −∞, i = 1, . . . , p, li = 0, i = p + 1, . . . , n, ui = +∞, i = 1, . . . , n. Under
well-known assumptions, (1.2) represents the first-order primal-dual necessary con-
ditions characterizing solutions in variational inequality or constrained optimization
problems. We note that the inclusion of pure equality constraints in the KKT system
does not add anything conceptually important in the setting of this paper. For this
reason, when talking about the KKT systems we shall consider only the format of
(1.2).

This paper follows the development of Newton methods based on the identification
of active constraints for KKT systems, presented in [15]. Apart from extending the
ideas to MCP, this paper contains a number of improvements and refinements, as
will be pointed out in what follows. In particular, the MCP regularity condition
introduced here, even when reduced to the special case of KKT systems, is strictly
weaker than the one in [15]. Also, some numerical experiments will be reported to
illustrate the local behavior of the proposed method under weak assumptions.

As another somewhat related recent work on active-set methods, we mention [4].
In that reference, the special case of NCP is considered. We note that our assumptions
for local superlinear convergence are neither stronger nor weaker than those for the
method of [4]. On the one hand, [4] can deal with nonisolated solutions, while our
assumptions do imply that the given solution is locally unique. On the other hand,
monotonicity of F is essential in all of the constructions in [4], while no assumptions of
this type are being made in this paper. Also, it seems that the error bound assumed
in [4] cannot be directly compared with more standard types of bounds, such as
ours. Finally, we consider a more general class of Newton methods, not restricted to
the Gauss–Newton method for the (overdetermined) system of nonlinear equations
obtained via some identification procedure.

We start in section 2 with deriving a new error bound for MCP (an upper esti-
mate for the distance from a given point to a solution of MCP), based on a smooth
reformulation of MCP and a 2-regularity condition [13, 14]. It has been shown previ-
ously that in the context of NCP [13] and KKT [15], this construction leads to error
bounds which hold under weaker conditions than the alternatives for the correspond-
ing problems (such as b-regularity, semistability, R0-property, quasi-regularity, etc.).
Here, we extend the analysis and the comparisons to MCP. In addition, we further
prove that 2-regularity is both a sufficient and necessary condition for the associated
error bound to hold.

Error bounds have many applications [24], among which is identifying active
constraints in constrained optimization [7] (see also [8, Ch. 6.7]). In the context of
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MCP, those ideas correspond to identifying the sets of indices

A = A(x̄) = {i = 1, . . . , n | Fi(x̄) = 0},
N = N(x̄) = {i = 1, . . . , n | Fi(x̄) 
= 0},

Nl = Nl(x̄) = {i ∈ N | x̄i = li},
Nu = Nu(x̄) = {i ∈ N | x̄i = ui},

where x̄ is some solution of MCP. If the specified sets can be correctly identified
using information available at a point x close enough to the solution x̄, then locally
MCP can be reduced to a system of nonlinear equations (which is structurally a much
simpler problem to solve). In what follows, we shall also use the following partitioning
of the set of active indices:

A0 = A0(x̄) = {i ∈ A | x̄i = li or x̄i = ui},
A+ = A+(x̄) = {i ∈ A | x̄i ∈ (li, ui)},
A0l = A0l(x̄) = {i ∈ A0 | x̄i = li},
A0u = A0u(x̄) = {i ∈ A0 | x̄i = ui}.

The analogue of the strict complementarity condition in NCP (or KKT) corresponds,
in the setting of MCP, to saying that A0 = ∅. Under this assumption, locally MCP
trivially reduces to a system of nonlinear equations, which simplifies the local structure
of MCP significantly. The condition of strict complementarity, however, is restrictive.
We emphasize that this condition is not assumed anywhere in this paper.

In section 3, we propose a new class of active-set Newton methods for solving
MCP. Each iteration of the method consists of solving one system of linear equations.
We note that when specified to the setting of KKT, this class is different from what
has been discussed in [15]. Moreover, the nondegeneracy condition that we introduce
here is weaker than the corresponding condition in [15]. Also, the new condition per-
mits a specific deterministic choice of parameters involved in reducing the MCP to
a system of equations, while in [15] in general a generic choice of parameters had to
be made (at least without strengthening somewhat the regularity assumptions). We
show that the conditions needed for the identification of active sets and for conver-
gence of the proposed local Newton method are weaker than semistability of the MCP
solution [3, 8] (equivalently, the R0-property of the natural residual). This implies, in
particular, that the proposed method attains local superlinear/quadratic convergence
under assumptions considerably weaker than what is needed for semismooth Newton
methods (SNMs) for MCP [1, 19, 9, 16, 18] (BD-regularity of the reformulation being
used). Even more remarkably, our assumptions are also strictly weaker than those
needed for the linearization (Josephy–Newton) method [17, 3, 12] (which are semista-
bility and hemistability of the solution). It should also be noted that in the latter
methods subproblems are linearized MCPs, which are computationally more complex
than systems of linear equations in our methods.

In section 4, we turn our attention to the specific case of KKT, and in particular
consider the issue of superlinear convergence of primal variables. Some comments on
the comparison of convergence conditions for various Newton-type methods for MCP
constitute section 5. Numerical experiments are presented and discussed in section 6.

A few words about our notation. Given a finite set I, |I| stands for its cardinality.
By R(m,n) we denote the space of m × n matrices with real entries. By E we shall
denote the identity matrix whose dimension would always be clear from the context.
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For x ∈ Rn and an index set I ⊂ {1, . . . , n}, xI stands for the vector with components
xi, i ∈ I. For a linear operator Λ, im Λ is its range (image space), and ker Λ is its
kernel (null space). For a directionally differentiable mapping φ : Rn → Rm, by
φ′(x; d) we denote the usual directional derivative of φ at x ∈ Rn in the direction
d ∈ Rn. If {zk} is a sequence in Rp and {tk} is a sequence in R such that tk → 0+
as k → ∞, by zk = o(tk) we mean that limk→∞ ‖zk‖/tk = 0.

2. A new error bound for MCP. In this section, we are interested in esti-
mating the distance to a solution of MCP in terms of some computable quantity. As
is well known [1, 9], MCP can be equivalently reformulated as a system of nonlinear
equations via the following transformation.

Let ψ : R × R → R be a complementarity function, i.e., a function such that

ψ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Assuming that ψ also satisfies the following additional assumptions:

a > 0, b < 0 ⇒ ψ(a, b) < 0,

a > 0, b > 0 ⇒ ψ(a, b) > 0,

solutions of MCP coincide with solutions of the following system of nonlinear equa-
tions:

Ψ(x) = 0,(2.1)

where

Ψ : Rn → Rn, Ψi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi(x) if i ∈ IF ,

ψ(xi − li, Fi(x)) if i ∈ Il,

−ψ(ui − xi,−Fi(x)) if i ∈ Iu,

ψ(xi − li,−ψ(ui − xi,−Fi(x))) if i ∈ Ilu,

IF = {i = 1, . . . , n | −∞ = li, ui = +∞},
Il = {i = 1, . . . , n | −∞ < li, ui = +∞},
Iu = {i = 1, . . . , n | −∞ = li, ui < +∞},
Ilu = {i = 1, . . . , n | −∞ < li, ui < +∞}.

Complementarity functions to be mentioned in what follows are the natural residual
ψNR(a, b) = min{a, b}, the Fischer–Burmeister function ψFB(a, b) = a+b−

√
a2 + b2,

and ψS(a, b) = 2ab − (min{0, a + b})2 (where S stands for “smooth”). All these
functions satisfy the assumptions above. The corresponding reformulations of MCP
would be denoted by ΨNR, ΨFB , and ΨS , respectively. For the purposes of this
paper, the signs of the components of Ψ could be chosen differently from the above
(see, however, [2, 9] for the justification of the choice adopted here).

Let x̄ be a solution of MCP. It is known [8, Ch. 6.2] that the natural residual
error bound

‖x− x̄‖ ≤ M‖ΨNR(x)‖ ∀x ∈ U(2.2)

holds for some neighborhood U of x̄ and some constant M > 0 if and only if x̄ is
a semistable [3, 8] solution of MCP. It can be seen that this is also equivalent to an
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error bound in terms of ΨFB . Furthermore, for MCP, semistability is equivalent to
the R0-property of ΨNR at x̄, which is {ξ ∈ Rn | Ψ′

NR(x̄; ξ) = 0} = {0}, and the
latter is also equivalent to the corresponding property for ΨFB . As can be easily
checked, the R0-property means that

L = {0},

where L = L(x̄) denotes the solution set of the “linearized” MCP:

L =

⎧⎪⎨
⎪⎩ξ ∈ Rn

∣∣∣∣∣∣∣
ξi ≥ 0, 〈F ′

i (x̄), ξ〉 ≥ 0, ξi〈F ′
i (x̄), ξ〉 = 0, i ∈ A0l,

ξi ≤ 0, 〈F ′
i (x̄), ξ〉 ≤ 0, ξi〈F ′

i (x̄), ξ〉 = 0, i ∈ A0u,

F ′
A+

(x̄)ξ = 0, ξN = 0

⎫⎪⎬
⎪⎭ .(2.3)

Semistability is one of the weakest conditions under which a computable error
bound for MCP had been exhibited up to now. To our knowledge, alternative con-
ditions are either stronger or different in nature and not comparable to semistability
(e.g., analyticity [23] or subanalyticity of F ). In what follows, we provide an error
bound under a condition which we show to be strictly weaker than semistability.

Definition 2.1. Let Ψ : Rn → Rn be differentiable in a neighborhood of x̄ ∈ Rn

and Ψ′ : Rn → R(n, n) be directionally differentiable at x̄. Then Ψ is 2-regular at x̄ if

T = {0},

where

T = T (x̄) = {ξ ∈ ker Ψ′(x̄) | (Ψ′)′(x̄; ξ)ξ ∈ im Ψ′(x̄)}
(2.4)

= {ξ ∈ ker Ψ′(x̄) | P (Ψ′)′(x̄; ξ)ξ = 0},

with P being the orthogonal projector onto (im Ψ′(x̄))⊥.
The above is a special case of 2-regularity of a nonlinear mapping [14, 13], corre-

sponding to the case when the mapping acts from some space into itself.
We next give an error bound result based on the smooth MCP reformulation ΨS .

A comparison with semistability will be made later. We note that the fact that the
error bound below is actually equivalent to 2-regularity is new.

Theorem 2.2. Let F : Rn → Rn be sufficiently smooth near a point x̄ ∈ Rn,
which is a solution of MCP.

The mapping ΨS is 2-regular at x̄ if and only if there exist a neighborhood U of x̄
and a constant M > 0 such that

‖x− x̄‖ ≤ M(‖(E − P )ΨS(x)‖ + ‖PΨS(x)‖1/2) ∀x ∈ U.(2.5)

Proof. Obviously, ΨS satisfies the smoothness assumptions in Definition 2.1. The
sufficiency part of the assertion is a direct consequence of [13, Theorem 4]. We prove
the necessity part.

Take any ξ ∈ T . For any t ≥ 0, we have that

‖ΨS(x̄ + tξ)‖ = ‖ΨS(x̄ + tξ) − ΨS(x̄)‖ = ‖tΨ′
S(x̄)ξ‖ + o(t) = o(t),
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where the last equality follows from ξ ∈ ker Ψ′
S(x̄). We further have that

‖PΨS(x̄ + tξ)‖ = ‖P (ΨS(x̄ + tξ) − ΨS(x̄))‖

≤ t sup
τ∈[0,1]

‖PΨ′
S(x̄ + τtξ)‖‖ξ‖

= t sup
τ∈[0,1]

‖P (Ψ′
S(x̄ + τtξ) − Ψ′

S(x̄))‖‖ξ‖

= t sup
τ∈[0,1]

‖τtP (Ψ′
S)′(x̄; ξ)ξ‖‖ξ‖ + o(t2)

= o(t2),

where we have used the mean-value theorem, the fact that PΨ′
S(x̄) = 0, the positive

homogeneity of the mapping P (Ψ′
S)′(x̄; ·), and the fact that P (Ψ′

S)′(x̄; ξ)ξ = 0.
Therefore, (2.5) implies that

t‖ξ‖ = ‖x̄ + tξ − x̄‖ ≤ M(‖(E − P )ΨS(x̄ + tξ)‖ + ‖PΨS(x̄ + tξ)‖1/2) = o(t),

which means that ξ = 0. We have thus established that T = {0}, i.e., that ΨS is
2-regular at x̄.

Adjusting M and U , if necessary, the error bound (2.5) can be simplified into the
following relation (less accurate but possibly easier to use):

‖x− x̄‖ ≤ M‖ΨS(x)‖1/2 ∀x ∈ U.(2.6)

Note that for NCP or KKT the error bound (2.6) is implied by error bound (2.2)
(this follows from a comparison of growth rates for ψNR, ψFB , and ψS , given in [28]).
However, for MCP it is not clear whether one can use the same comparison, as the
definition of Ψ involves a superposition of the functions ψ. In any case, the more
accurate estimate (2.5) does not follow from (2.2). Moreover, (2.5) and (2.6) can hold
when (2.2) does not, as shown next.

Proposition 2.3. Semistability of a solution x̄ of MCP (equivalently, error
bound (2.2)) implies 2-regularity of ΨS at x̄ (equivalently, error bound (2.5)) but not
vice versa.

Proof. Let x̄ be a solution of MCP. The fact that 2-regularity of ΨS at x̄ can hold
when the error bound (2.2) (semistability of x̄) does not has already been shown for
two special cases of MCP, namely, NCP [13, Example 1] and KKT [15, Example 2].
Thus no further justification is needed for this assertion.

Let x̄ be a semistable solution. To prove that this implies 2-regularity of ΨS

at x̄, it suffices to show that T ⊂ L, where T and L are defined in (2.4) and (2.3),
respectively.

By direct computations, we have that

(Ψ′
S)i(x̄) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i ∈ A0,

αiF
′
i (x̄) if i ∈ A+,

βie
i if i ∈ N,
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where e1, . . . , en is the canonical basis in Rn, and

αi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(x̄i − li) if i ∈ Il,

2(ui − x̄i) if i ∈ Iu,

1 if i ∈ IF ,

4(x̄i − li)(ui − x̄i) if i ∈ Ilu,

βi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Fi(x̄) if i ∈ Il,

−2Fi(x̄) if i ∈ Iu,

4Fi(x̄)(ui − li) + 2(min{0, ui − li − Fi(x̄)})2 if i ∈ Ilu ∩Nl,

−4Fi(x̄)(ui − li) if i ∈ Ilu ∩Nu.

Observe that αi 
= 0 ∀i ∈ A+ and βi 
= 0 ∀i ∈ N . Hence,

ker Ψ′
S(x̄) = {ξ ∈ Rn | F ′

A+
(x̄)ξ = 0, ξN = 0}.

Then P , the orthogonal projector onto (im Ψ′
S(x̄))⊥ in Rn, satisfies

(Py)i = yi ∀y ∈ Rn, ∀i ∈ A0.

Since PΨ′
S = (PΨS)′, it now easily follows that

T ⊂ {ξ ∈ Rn | (Ψ′
S)′i(x̄; ξ)ξ = 0, i ∈ A0, F ′

A+
(x̄)ξ = 0, ξN = 0}.(2.7)

For any i ∈ A0 and ξ ∈ Rn, we further obtain that

(Ψ′
S)′i(x̄; ξ)ξ = 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψS(ξi, 〈F ′

i (x̄), ξ〉) if i ∈ Il,

−ψS(−ξi,−〈F ′
i (x̄), ξ〉) if i ∈ Iu,

ψS(ξi, (ui − li)〈F ′
i (x̄), ξ〉) if i ∈ Ilu ∪A0l,

−(ui − li)ψS(−ξi,−〈F ′
i (x̄), ξ〉) if i ∈ Ilu ∪A0u.

Since ψS is a complementarity function, the right-hand side of the latter equality is
zero if and only if

ξi ≥ 0, 〈F ′
i (x̄), ξ〉 ≥ 0, ξi〈F ′

i (x̄), ξ〉 = 0, i ∈ A0l,

ξi ≤ 0, 〈F ′
i (x̄), ξ〉 ≤ 0, ξi〈F ′

i (x̄), ξ〉 = 0, i ∈ A0u.

Hence, the right-hand side in (2.7) coincides with L defined in (2.3). In particular,
we have established that T ⊂ L, which completes the proof.

3. A class of active-set Newton methods. The following technique for iden-
tifying the relevant index sets is based on the ideas of [7]; see also [8, Ch. 6.7]. Define
the identification function

ρ : R+ → R, ρ(t) =

⎧⎪⎨
⎪⎩
ρ̄ if t ≥ t̄,

−1/ log t if t ∈ (0, t̄ ),

0 if t = 0,

where t̄ ∈ (0, 1) and ρ̄ > 0 are fixed numbers (the choice of t̄ and ρ̄ does not affect
theoretical analysis; in our numerical experiments reported in section 6, we use t̄ = 0.9
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and ρ̄ = −1/ log t̄, as suggested in [7]). For any x ∈ Rn, define further the index sets

A(x) = {i = 1, . . . , n | |Fi(x)| ≤ ρ(‖ΨS(x)‖)},(3.1)

N(x) = {1, . . . , n} \A(x),(3.2)

Nl(x) = {i ∈ N(x) | xi − li ≤ ui − xi}, Nu(x) = N(x) \Nl(x),(3.3)

A0(x) = {i ∈ A(x) | min{|xi − li|, |ui − xi|} ≤ ρ(‖ΨS(x)‖)},(3.4)

A+(x) = A(x) \A0(x),(3.5)

A0l(x) = {i ∈ A0(x) | xi − li ≤ ui − xi}, A0u(x) = A0(x) \A0l(x).(3.6)

Proposition 3.1. If ΨS is 2-regular at a solution x̄ of MCP (equivalently, the
error bound (2.5) holds), then for any x ∈ Rn sufficiently close to x̄, it holds that

A(x) = A, N(x) = N, Nl(x) = Nl, Nu(x) = Nu,(3.7)

A0l(x) = A0l, A0u(x) = A0u, A0(x) = A0, A+(x) = A+.(3.8)

Proof. Take any i ∈ A. Then for any x close enough to x̄, we have that

|Fi(x)| = |Fi(x) − Fi(x̄)| ≤ K‖x− x̄‖ ≤ KM‖ΨS(x)‖1/2 ≤ ρ(‖ΨS(x)‖),

where the second inequality is by the local Lipschitz-continuity of F (with some
modulus K > 0), the third inequality is by (2.5), and the last follows from the fact
that limt→0+ tν log t = 0 for any ν > 0. The above shows that i ∈ A(x). Hence,
A ⊂ A(x).

Take any i ∈ {1, . . . , n} \ A. In that case, there exists some γ > 0 such that for
any x close enough to x̄ it holds that

|Fi(x)| ≥ γ, ρ(‖ΨS(x)‖) < γ.

It follows that i 
∈ A(x), which shows that A(x) ⊂ A.
We have therefore established the first (and hence the second) equality in (3.7).
The other relations either hold trivially (e.g., (3.3)) or can be verified by consid-

erations similar to the above.
We note that any other MCP reformulation Ψ with a corresponding valid error

bound can be used in the identification procedure. But since it has been established
above that ΨS requires the weakest assumptions for the error bound to hold, it is
fair to say that this is the function which should be used for this purpose. However,
different choices of the function ρ are possible under the same assumptions. For
example,

ρ : R+ → R, ρ(t) = tθ, θ ∈ (0, 1/2).

Observe also that in the implementation of the identification procedure, the following
obvious relations can be taken into account: IF ⊂ A+, Il ⊂ (A0l ∪ A+ ∪ Nl), and
Iu ⊂ (A0u ∪A+ ∪Nu).

Once the index sets are identified, we have the following relations, which are
guaranteed to be satisfied at a solution x̄ of MCP:

FA(x) = 0, xA0l∪Nl
= lA0l∪Nl

, xA0u∪Nu = uA0u∪Nu .

For simplicity of notation, suppose that the components of x ∈ Rn are ordered in such
a way that x = (xA+ , xA0l∪Nl

, xA0u∪Nu). Then MCP locally reduces to the following
system of nonlinear equations:

FA(xA+
, lA0l∪Nl

, uA0u∪Nu
) = 0.(3.9)
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Observe that in the absence of strict complementarity (when A0 
= ∅, i.e., |A| > |A+|),
the system is overdetermined (the number of equations is larger than the number of
unknowns). This opens up a number of options. Of course, one can just solve the
system by the Gauss–Newton method (GNM). This possibility will be considered.
However, we prefer not to limit ourselves to GNM for the following reason: the Gauss–
Newton approach can destroy structure present in FA (for example, sparsity or the
primal-dual structure in the case of KKT).

Our proposal is to consider the following system of nonlinear equations:

ΦC(xA+
) = 0,(3.10)

where

ΦC : R|A+| → R|A+|, ΦC(xA+) = C(xA+)FA(xA+ , lA0l∪Nl
, uA0u∪Nu),

with C : R|A+| → R(|A+|, |A|) being a smooth mapping (possibly constant). Clearly,
x̄A+ is a solution of (3.10) for any choice of C. The Jacobian of (3.10) at this solution
is given by

Φ′
C(x̄A+) = C(x̄A+)

∂FA

∂xA+

(x̄),(3.11)

where we have taken into account that FA(x̄) = 0. Thus x̄A+
can be found by applying

Newton-type methods to (3.10) whenever the matrix in (3.11) is nonsingular.
Note that GNM for (3.9) would essentially correspond to choosing in (3.10)

C(xA+
) =

(
∂FA

∂xA+

(xA+
, lA0l∪Nl

, uA0u∪Nu)

)T

(3.12)

and applying to the resulting system an approximate version of the pure Newton
method. Indeed, with the notation of (3.12), the Gauss–Newton iteration for (3.9)
has the form

xk+1
A+

= xk
A+

−
(
C(xk

A+
)
∂FA

∂xA+

(xk
A+

, lA0l∪Nl
, uA0u∪Nu

)

)−1

ΦC(xk
A+

).(3.13)

Observe that the above formula is just an approximation of the standard Newton
iteration for (3.10), where the Jacobian Φ′

C(xk
A+

) is replaced by

C(xk
A+

)
∂FA

∂xA+

(xk
A+

, lA0l∪Nl
, uA0u∪Nu

).

Due to (3.11), this change preserves the superlinear convergence of the pure Newton
iteration for (3.10). Note finally that with the choice of (3.12), we have

Φ′
C(x̄A+) =

(
∂FA

∂xA+

(x̄)

)T
∂FA

∂xA+

(x̄).(3.14)

This immediately motivates the following definition.
Definition 3.2. A solution x̄ of MCP is referred to as weakly regular if

rank
∂FA

∂xA+

(x̄) = |A+|.
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Clearly, weak regularity is a necessary and sufficient condition for the matrix in
(3.14) to be nonsingular, and hence for the superlinear convergence of GNM applied
to (3.9) (or the approximate Newton method applied to (3.10) with the choice of
(3.12)). It is also clear that weak regularity is necessary for the nonsingularity of the
matrix in (3.11) corresponding to the more general scheme, and this is regardless of
the choice of C.

We next show that weak regularity is implied by semistability, but not vice versa.
Moreover, 2-regularity of ΨS at x̄ and weak regularity, when combined, are still a
weaker condition than semistability.

Proposition 3.3. Let x̄ be a solution of MCP. Then semistability of x̄ implies
weak regularity of x̄ but not vice versa.

Proof. Suppose that x̄ is a semistable solution. If it is not weakly regular, then
there exists ξA+

∈ ker ∂FA

∂xA+
(x̄) \ {0}. But then setting ξA0∪N = 0, we obtain ξ 
= 0

such that ξ ∈ L, where L is defined in (2.3). This contradicts semistability.
The lack of the reverse implication is established in Example 3.5.
The following result is of special importance.
Proposition 3.4. Let x̄ be a solution of MCP. Then semistability of x̄ implies

the combination of 2-regularity of ΨS at x̄ and weak regularity of x̄ but not vice versa.
Proof. The forward assertion is by Propositions 2.3 and 3.3. The lack of the

reverse implication is shown in Example 3.5.
Example 3.5. Let n = 2, li = 0, ui = +∞, i = 1, 2, and let F (x) = ((x1 − 1)2, x1+

x2 − 1).
The point x̄ = (1, 0) ∈ R2 is the solution of this NCP, and we have A = {1, 2},

A0 = A0l = {2}, A+ = {1}, with all the other index sets being empty.
We first verify that semistability is violated. Noting that F ′

A+
(x̄) = 0, it can be

seen that the cone L defined in (2.3) is

L = {ξ ∈ R2 | ξ2 ≥ 0, ξ1 + ξ2 ≥ 0, ξ2(ξ1 + ξ2) = 0} 
= {0}.

Thus x̄ is not semistable.
Weak regularity certainly holds, as

∂FA

∂xA+

(x̄) =

(
0
1

)
, rank

∂FA

∂xA+

(x̄) = 1 = |A+|.

We proceed to show 2-regularity of ΨS at x̄. It can be seen that Ψ′
S(x̄) = 0.

Hence,

ker Ψ′
S(x̄) = R2 = (im Ψ′

S(x̄))⊥, P = E,

and further

T = {ξ ∈ R2 | (Ψ′
S)′(x̄; ξ)ξ = 0}.

We obtain that

(Ψ′
S)′(x̄; ξ)ξ =

(
4ξ2

1

2ξ2(ξ1 + 2ξ2) − min{0, ξ2 + (ξ1 + ξ2)}

)
.

Hence,

T = {ξ ∈ L | ξ1 = 0} = {0},

and ΨS is 2-regular at x̄.
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We have thus constructed a local algorithm with superlinear convergence under
assumptions weaker than semistability of the MCP solution. Specifically, we have the
following.

Theorem 3.6. Let F : Rn → Rn be sufficiently smooth near a point x̄ ∈ Rn,
which is a solution of MCP. Suppose that this solution is weakly regular and ΨS is
2-regular at x̄.

For any x0 ∈ Rn sufficiently close to x̄, if the index sets A = A(x0), A+ =
A+(x0), A0l = A0l(x

0), A0u = A0u(x0), Nl = Nl(x
0), and Nu = Nu(x0) are defined

according to (3.1)–(3.6), then GNM applied to the system (3.9) (with x0
A+

as a starting

point) is well defined and superlinearly convergent to x̄A+
.

Proof. By 2-regularity of ΨS at x̄ and Proposition 3.1, for any x = x0 close to x̄
the index sets defined according to (3.1)–(3.6) correctly identify the index sets at the
solution x̄. Then x̄A+ is the solution of (3.9). By weak regularity, we have that the
matrix in (3.14) is nonsingular. Hence, GNM applied to (3.9) is locally superlinearly
convergent to x̄A+ .

As already mentioned above (see also section 4), it sometimes can be useful to
choose the mapping C differently from the Gauss–Newton option of (3.12). For ex-
ample, we might want to take C(·) = C ∈ R(|A+|, |A|), a fixed matrix, in order
to preserve in the matrix C ∂FA

∂xA+
(xA+

, lA0l∪Nl
, uA0u∪Nu

) the structure (primal-dual,

sparsity, etc.) of the matrix ∂FA

∂xA+
(xA+ , lA0l∪Nl

, uA0u∪Nu). This motivates the follow-

ing considerations.
Proposition 3.7. Suppose that a solution x̄ of MCP is weakly regular. Then

the set of matrices C ∈ R(|A+|, |A|) such that Φ′
C(x̄A+

) is nonsingular is open and
dense in R(|A+|, |A|).

Proof. The determinant det Φ′
C(x̄A+

) is a polynomial with respect to the elements
of the matrix C ∈ R(|A+|, |A|). By weak regularity (see Definition 3.2), this poly-
nomial is not everywhere zero, because it is not zero for the choice C = ( ∂FA

∂xA+
(x̄))T .

Hence, the set where this polynomial is not zero is obviously open and dense in
R(|A+|, |A|).

Proposition 3.7 justifies choosing C in any desirable way, as the chance that
the resulting system would be degenerate is negligible (the set of matrices for which
this would happen is of the Lebesgue measure zero). Of course, one should make
reasonable choices. For example, it should hold that rankC = |A+|.

4. KKT systems. In the case of the KKT system (1.2), the developments of
section 3 give

FA(xA+ , lA0l∪Nl
, uA0u∪Nu) =

(
g(z) − (G′

I+
(z))TµI+

GI(z)

)
,

xA+ = (z, µI+) ∈ Rp × R|I+|,

where

I = I(z̄) = {i = 1, . . . ,m | Gi(z̄) = 0}, I+ = I+(z̄) = {i ∈ I | µ̄i > 0},
A = {1, . . . , p} ∪ {p + j | j ∈ I}, A+ = {1, . . . , p} ∪ {p + j | j ∈ I+}.

Defining

φ : Rp × R|I+| → Rp, φ(z, µI+) = g(z) − (G′
I+(z))TµI+ ,



420 A. N. DARYINA, A. F. IZMAILOV, AND M. V. SOLODOV

Definition 3.2 of weak regularity consists of saying that

rank

⎛
⎝∂φ

∂z
(z̄, µ̄I+) −(G′

I+
(z̄))T

G′
I(z̄) 0

⎞
⎠ = p + |I+|.(4.1)

In the case of optimization (g is a gradient mapping), ∂φ
∂z (z̄, µ̄I+) coincides with the

Hessian of the standard Lagrangian function at a KKT point (z̄, µ̄).
We first show that (4.1) is weaker than the regularity condition for KKT systems

introduced in [15, Definition 2]. Defining I0 = I \ I+, the latter states that there exist
D1, D2 ∈ R(|I0|, |I0|) such that

det

⎛
⎜⎜⎝
∂φ

∂z
(z̄, µ̄I+) −(G′

I0
(z̄))T −(G′

I+
(z̄))T

D1G
′
I0

(z̄) D2 0

G′
I+

(z̄) 0 0

⎞
⎟⎟⎠ 
= 0.(4.2)

Proposition 4.1. Let (z̄, µ̄) be a solution of the KKT system. Then (4.2) implies
(4.1) but not vice versa.

Proof. Assume (4.2). If (4.1) does not hold, then there exists (ζ, νI+) 
= 0 in the
kernel of the matrix in (4.1). But then (ζ, 0, νI+) 
= 0 will be in the kernel of the
matrix in (4.2) for any choice of D1, D2 ∈ R(|I0|, |I0|).

The lack of the reverse implication is shown in Example 4.2.
Example 4.2. Let p = 2, m = 1, g(z) = (z2, 0), G(z) = z1.
The point (z̄, µ̄) = (0, 0) is a solution of the KKT system (1.2), and we have

I+ = ∅, I0 = {1}.
The matrix in (4.1) takes the form⎛

⎝0 1
0 0
1 0

⎞
⎠ ,

and it has full column rank.
The matrix in (4.2) takes the form⎛

⎝ 0 1 −1
0 0 0
D1 0 D2

⎞
⎠ ,

which is always singular.
Note that in Example 4.2, ∂φ

∂z (z̄, µ̄I+) is asymmetric. It is an open question at
this time whether the conditions (4.2) and (4.1) are different also in the symmetric
(optimization) case.

We next provide a characterization of weak regularity for KKT systems in terms
of a constraint qualification and a second-order condition. We say that the weak linear
independence constraint qualification (WLICQ) holds at z̄ if

rankG′
I+(z̄) = |I+|.

We say that the second-order condition (SOC) holds if〈
∂φ

∂z
(z̄, µ̄I+)ζ, ζ

〉

= 0 ∀ζ ∈ kerG′

I(z̄) \ {0}.
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Obviously, WLICQ is implied by the standard linear independence constraint qualifi-
cation, while SOC is implied by the standard second-order sufficiency condition.

Proposition 4.3. Let (z̄, µ̄) be a solution of the KKT system. Then WLICQ
and SOC imply weak regularity of (z̄, µ̄). Weak regularity implies WLICQ.

Proof. The fact that weak regularity subsumes WLICQ is obvious.
In view of (4.1), it suffices to prove that under WLICQ and SOC, the equality⎛

⎝∂φ

∂z
(z̄, µ̄I+)ζ − (G′

I+(z̄))T νI+

G′
I(z̄)ζ

⎞
⎠ = 0(4.3)

implies that (ζ, νI+) = 0. Indeed, from (4.3) we obtain that〈
∂φ

∂z
(z̄, µ̄I+)ζ, ζ

〉
= 〈(G′

I+(z̄))T νI+ , ζ〉 = 〈νI+ , G′
I+(z̄)ζ〉 = 0.

Since ζ ∈ kerG′
I(z̄), SOC implies that ζ = 0. Thus (G′

I+
(z̄))T νI+ = 0. By WLICQ,

we have that νI+ = 0, which concludes the proof.
Under the weak regularity condition (4.1) and 2-regularity of ΨS at (z̄, µ̄), we

can solve the reduced KKT system (3.9) by GNM, with the convergence result given
by Theorem 3.6. We next show that for KKT systems with symmetric ∂φ

∂z (z̄, µ̄I+),
the latter two assumptions, when combined, are equivalent to semistability of (z̄, µ̄).
(Under the second-order necessity condition, the latter is further equivalent to the
uniqueness of µ̄ associated to z̄ and the second-order sufficiency condition; see [3,
Proposition 6.2], [15, Proposition 1].)

Proposition 4.4. If ∂φ
∂z (z̄, µ̄I+) is symmetric, then semistability of a solution

(z̄, µ̄) of the KKT system is equivalent to the combination of 2-regularity of ΨS at this
solution and weak regularity of this solution.

Proof. The fact that semistability implies the other two properties is given by
Proposition 3.4.

We next re-examine the proof of Proposition 2.3 under the new assumptions. In
addition to the sets of indices defined above, let IN = {1, . . . ,m} \ I and I0 = I \ I+.
Suppose, for simplicity of notation, that the ordering is such that in the set {1, . . . ,m},
the indices in I+ come first, then those in I0, and then those in IN . With this
convention, the matrix whose rows are comprised by F ′(x̄), i ∈ A+, ei, i ∈ N , is given
by ⎛

⎜⎜⎝
∂φ

∂z
(z̄, µ̄I+) −(G′

I+
(z̄))T −(G′

I0
(z̄))T −(G′

IN
(z̄))T

G′
I+

(z̄) 0 0 0

0 0 0 EIN

⎞
⎟⎟⎠ .

Under the assumption that ∂φ
∂z (z̄, µ̄I+) is symmetric, the weak regularity condition

(4.1) implies that the rows of this matrix are linearly independent. Revisiting the
proof of Proposition 2.3, it is easily seen that in this case

im Ψ′
S(x̄) = {y ∈ Rn | yi = 0, i ∈ A0},

and

(Py)i =

{
yi if i ∈ A0,

0 if i ∈ A+ ∪N,
y ∈ Rn,
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where

A0 = A \A+ = {p + j | j ∈ I0}, N = {i = 1, . . . , n} \A = {p + j | j ∈ IN}.

It follows that the inclusion (2.7) holds as equality, in which case the proof of Propo-
sition 2.3 establishes that T = L, where T and L are defined in (2.4) and (2.3),
respectively. Semistability and 2-regularity are therefore equivalent in that case.

It is not difficult to observe that the Gauss–Newton iteration in a certain sense
destroys the primal-dual structure present in a KKT system. For example, it does not
seem possible to analyze the superlinear convergence of the primal variables separately
from the convergence of the primal-dual pair. Proposition 3.7, on the other hand,
allows us to make other choices of C in (3.10), with the expectation that they would
still do the job. We next make one specific choice and analyze conditions for the
superlinear convergence of primal variables. We refer the reader also to [15] (the
discussion following Proposition 6) for some possibilities of how further assumptions
about the problem can be taken into account in the framework of that paper. Similar
options under similar assumptions could be analyzed here, but we shall not pursue
the details.

Assuming again that the active constraints are ordered in such a way that the
strongly active are first (i.e., for the first |I+| active constraints the corresponding
multiplier is positive), let

C =

(
C1 0 0
0 C2 0

)
,(4.4)

where C1 ∈ R(p, p) and C2 ∈ R(|I+|, |I+|) are arbitrary nonsingular matrices. Note
that rankC = p + |I+| = |A+| holds. We shall consider further the case where in the
implementation of the Newton method for (3.10) the matrix ∂φ

∂z (zk, µk
I+

) at iteration

k is replaced by some (e.g., quasi-Newton) approximation Hk. The resulting iteration
is then given by

C

(
g(zk) − (G′

I+
(zk))Tµk

I+
+ Hk(z

k+1 − zk) − (G′
I+

(zk))T (µk+1
I+

− µk
I+

)

GI(z
k) + G′

I(z
k)(zk+1 − zk)

)
= 0,(4.5)

and taking into account the chosen structure of C, it holds that

g(zk) + Hk(z
k+1 − zk) − (G′

I+(zk))Tµk+1
I+

= 0,(4.6)

GI+(zk) + G′
I+(zk)(zk+1 − zk) = 0.(4.7)

To establish a sufficient condition for the superlinear rate of convergence of primal
variables, we shall need assumptions somewhat stronger than weak regularity. We say
that the strong second-order sufficiency condition (SSOSC) holds if〈

∂φ

∂z
(z̄, µ̄I+)ζ, ζ

〉

= 0 ∀ζ ∈ kerG′

I+(z̄) \ {0}.

Theorem 4.5. Suppose that the sequence {(zk, µk
I+

)} generated according to (4.5)

with C given by (4.4) converges to (z̄, µ̄I+), a solution of the KKT system.
If {zk} converges to z̄ superlinearly, then

Π

((
∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk)

)
= o(‖zk+1 − zk‖),(4.8)
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where Π is the orthogonal projector onto kerG′
I+

(z̄) in Rp.

Under WLICQ and SSOSC, the condition (4.8) is also sufficient for {zk} to
converge to z̄ at a superlinear rate.

Proof. By (4.6), we have that

−Hk(z
k+1 − zk) = g(zk) − (G′

I+(zk))Tµk+1
I+

= g(z̄) − (G′
I+(z̄))Tµk+1

I+
+

∂φ

∂z
(z̄, µk+1

I+
)(zk − z̄) + o(‖zk − z̄‖)

= (G′
I+(z̄))T (µ̄I+ − µk+1

I+
) +

∂φ

∂z
(z̄, µ̄I+)(zk − z̄) + o(‖zk − z̄‖),

where in the third equality we have used the fact that g(z̄) = (G′
I+

(z̄))T µ̄I+ and the

assumption that {µk
I+
} → µ̄I+ . Hence,

(
∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk)

(4.9)

= (G′
I+(z̄))T (µ̄I+ − µk+1

I+
) +

∂φ

∂z
(z̄, µ̄I+)(zk+1 − z̄) + o(‖zk − z̄‖).

Suppose first that zk+1 − z̄ = o(‖zk − z̄‖). Then we obtain from (4.9) that(
∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk) = (G′

I+(z̄))T (µ̄I+ − µk+1
I+

) + o(‖zk − z̄‖).(4.10)

For any ζ ∈ kerG′
I+

(z̄), it holds that

〈(G′
I+(z̄))T (µ̄I+ − µk+1

I+
), ζ〉 = 〈µ̄I+ − µk+1

I+
, G′

I+(z̄)ζ〉 = 0,

which implies that

Π(G′
I+(z̄))T (µ̄I+ − µk+1

I+
) = 0.

By the Lipschitz-continuity of the projection operator, we then have from (4.10) that

Π

((
∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk)

)
= o(‖zk − z̄‖),

and (4.8) follows by noting that

‖zk+1 − zk‖ ≥ ‖zk − z̄‖ − ‖zk+1 − z̄‖ = ‖zk − z̄‖ − o(‖zk − z̄‖) ≥ ‖zk − z̄‖/2

for all k large enough.
We proceed to prove the second assertion. From (4.7), we have that

0 = GI+(zk) + G′
I+(zk)(zk+1 − zk)

= GI+(z̄) + G′
I+(z̄)(zk − z̄) + G′

I+(zk)(zk+1 − zk) + o(‖zk − z̄‖)(4.11)

= G′
I+(z̄)(zk+1 − z̄) + ηk,

where taking into account that {zk} → z̄,

ηk = (G′
I+(zk) −G′

I+(z̄))(zk+1 − zk) + o(‖zk − z̄‖) = o(‖zk+1 − zk‖) + o(‖zk − z̄‖).
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By WLICQ, for every k there exists vk ∈ Rp such that

G′
I+(z̄)vk = ηk, vk = o(‖zk+1 − zk‖) + o(‖zk − z̄‖).(4.12)

Denoting ζk = zk+1 − z̄ + vk, from (4.11) we then have that G′
I+

(z̄)ζk = 0, i.e.,

ζk ∈ kerG′
I+

(z̄). By (4.9), we have that〈(
∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk), ζk

〉

=

〈
∂φ

∂z
(z̄, µ̄I+)(zk+1 − z̄), ζk

〉
+ 〈µ̄I+ − µk+1

I+
, G′

I+(z̄)ζk〉 + o(‖ζk‖‖zk − z̄‖).

And using SSOSC, we further have that there exists γ > 0 such that

γ‖ζk‖2 ≤
∣∣∣∣
〈
∂φ

∂z
(z̄, µ̄I+)ζk, ζk

〉∣∣∣∣
=

∣∣∣∣
〈
∂φ

∂z
(z̄, µ̄I+)(zk+1 − z̄ + vk), ζk

〉∣∣∣∣
=

∣∣∣∣
〈(

∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk), ζk

〉
+

〈
∂φ

∂z
(z̄, µ̄I+)vk, ζk

〉∣∣∣∣
+ o(‖ζk‖‖zk − z̄‖)

=

∣∣∣∣
〈(

∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk), ζk

〉∣∣∣∣
+ o(‖ζk‖‖zk+1 − zk‖) + o(‖ζk‖‖zk − z̄‖)

=

∣∣∣∣
〈

Π

(
∂φ

∂z
(z̄, µ̄I+) −Hk

)
(zk+1 − zk), ζk

〉∣∣∣∣
+ o(‖ζk‖‖zk+1 − zk‖) + o(‖ζk‖‖zk − z̄‖)

= o(‖ζk‖‖zk+1 − zk‖) + o(‖ζk‖‖zk − z̄‖),

where the third equality is by (4.12), and the last equality is by (4.8). Dividing both
sides in the relation above by ‖ζk‖, we have that

‖ζk‖ = o(‖zk+1 − zk‖) + o(‖zk − z̄‖).

Finally,

‖zk+1− z̄‖ ≤ ‖ζk‖+‖vk‖ = o(‖zk+1−zk‖)+o(‖zk− z̄‖) = o(‖zk+1− z̄‖)+o(‖zk− z̄‖),

from which it follows that zk+1 − z̄ = o(‖zk − z̄‖).
5. Comparison with other Newton-type methods. In this section, we very

briefly compare convergence conditions needed for the active-set Newton method de-
scribed above with conditions required by other Newton-type methods for MCP.

We start with some comments on the special case of KKT. In that case, weak
regularity and 2-regularity of ΨS are equivalent to semistability of the solution. In the
case when this solution is a local minimizer in an optimization problem, this is further
equivalent to the uniqueness of the multiplier and the standard second-order sufficient
condition for optimality [3]. A detailed comparison with other constraint qualifications
and regularity conditions for KKT systems is given in [15] (even though the weak reg-
ularity condition itself is different in [15], and the resulting class of active-set methods
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is different, most of the comparison comments in [15] still apply here, due to the equiv-
alence with semistability). Summarizing, conditions for the superlinear convergence
of the proposed method are strictly weaker than those of SNM for KKT systems, and
are the same as conditions required by the sequential quadratic programming method
(SQP) in its basic form. Note that SQP subproblems are quadratic programs, while
the subproblems of the method proposed here are just systems of linear equations.
On the other hand, convergence conditions of SQP can be somewhat weakened, but
at the expense of nontrivial modifications of the basic iteration, which come with a
computational price [29, 11, 12]. We next focus on the more general case of MCP.

In the case of general MCP, convergence conditions for our method are, of course,
again significantly weaker than conditions for SNM [20, 21, 26, 27] applied to ΨFB

or ΨNR [1, 19, 9] (see also [8, Ch. 9]). Indeed, the latter need BD-regularity of
the corresponding function at the solution, which certainly implies the corresponding
error bound [25], and thus semistability, but not vice versa. We note, in passing,
that BD-regularity of ΨFB and ΨNR are not related; i.e., none is weaker or stronger
than the other. The fact that BD-regularity of ΨNR does not imply this property
for ΨFB has been exhibited in [22, Example 2.1]. We have not been able to find in
the literature an example showing that BD-regularity of ΨFB does not imply this
property for ΨNR. So we provide such an example below.

Example 5.1. Let n = 2, F (x) = (x2,−x1 + x2), li = 0, ui = +∞, i = 1, 2.
Then x̄ = 0 is a solution of this NCP, and it can be seen that all matrices in the B-
differential of ΨFB at x̄ are nonsingular, while the B-differential of ΨNR at x̄ contains
the singular matrix (0

0
1
1 ).

Most remarkably, convergence conditions for our method are also strictly weaker
than those for the linearization (Josephy–Newton) method [17, 3], which consists of
solving the following subproblems: Given the current iterate xk ∈ Rn,

find xk+1 ∈ B such that 〈F (xk) + F ′(xk)(xk+1 − xk), y − xk+1〉 ≥ 0 ∀y ∈ B.

Those types of methods are sometimes referred to as point-based approximation meth-
ods [12]. In the case of optimization, they are closely related to SQP. Conditions for
the local superlinear convergence of the linearization method are semistability and
hemistability [3] of the solution. And in general [3, Remark 2.4], hemistability does
not follow from semistability (it does in the case of KKT). Since our method re-
quires something even less than semistability, we conclude that its local convergence
properties are significantly stronger.

6. Local numerical experiments. In this section we report numerical experi-
ments on some examples designed to highlight the case where various standard regu-
larity conditions do not hold, and thus SNM-based methods have trouble or converge
slowly. This is precisely the case where the switch to our local algorithm can be
useful. We have also implemented a globalization of our local algorithm, in the spirit
of hybrid versions of SNM/FB methods for complementarity problems based on the
ΨFB reformulation (e.g., the “General Line Search Algorithm” of [22]). Details of
this implementation and numerical results on the MCPLIB test problems collection
(the newer version of [6]) can be found in the technical report [5]. Before describing
our local experiments, we give some general conclusions for the globalized version of
[5]. The option of switching to our active-set step never harms too much the global
algorithm, though we certainly have to pay some extra price for computing this step
at those iterations at which it is eventually rejected (there are safeguards and heuris-
tics that can be used to avoid computing the active-set step too early; see [5]). We
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Table 1

GNM/AS for Example 6.1.

k 0 1 2 3

‖xk − x̄‖ 7.1e–01 1.3e–01 3.7e–03 9.9e–08

‖ΨFB(xk)‖ 8.2e–01 1.6e–02 1.4e–05 9.9e–15

‖xk−x̄‖
‖xk−1−x̄‖ 1.8e–01 2.9e–02 2.7e–05

emphasize that the overall goal of the presented approach is not to improve the SNM
(or any other algorithm) when it works efficiently but rather to safeguard fast local
convergence in irregular cases for which other methods do not work well. The results
of [5] indicate that this can be achieved without paying a high price over iterations of
the globally convergent hybrid SNM/FB method.

We now describe some possible scenarios of the local behavior of SNM/FB and
GNM/AS by applying them to some small test problems with various combinations
of satisfied and violated regularity properties of the solution that have been discussed
above. Constructing artificial examples allows us to obtain a rather complete selec-
tion of irregular MCPs with “various degrees of irregularity” and to make reliable
conclusions about the reasons for the observed performance of the algorithms. This is
not possible, for example, for MCPLIB problems, since precise regularity properties
of solutions are typically not known. On the other hand, we cannot draw far-reaching
conclusions based on small artificial examples. What follows is intended merely to
illustrate the theoretical results and comparisons obtained above.

By GNM/AS we mean here the algorithm specified by (3.12), (3.13), with the
index sets identified at the starting point (thus, the local properties of this algorithm
are given by Theorem 3.6).

By SNM/FB we mean the iterative procedure

xk+1 = xk − Λ−1
k ΨFB(xk), Λk ∈ ∂BΨFB(xk), k = 0, 1, . . . ,

where the element Λk of the B-differential of ΨFB at xk is computed by the procedure
suggested in [1] (with zi = 1 ∀i = 1, . . . , n, in the notation of [1], and the “computer
zero” parameter set to 10−10).

The stopping criterion for both methods is

‖ΨFB(xk)‖ < 10−9.(6.1)

The first problem is a slight modification of Example 3.5.
Example 6.1. Let n = 2, li = 0, ui = +∞, i = 1, 2, and let F (x) = ((x1 − 1)2, x1+

x2 +x2
2−1). The point x̄ = (1, 0) is the solution of this NCP. Semistability is violated

here (and hence BD-regularity for ΨNR and ΨFB is violated), while 2-regularity
of ΨS and weak regularity hold at x̄. The starting point is x0 = (1.5,−0.5), with
‖x0 − x̄‖ ≈ 7.1e–01, ‖ΨFB(x0)‖ ≈ 8.2e–01, det Λ0 ≈ 1.4e+00.

SNM/FB converges in thirteen steps. At termination, ‖x13 − x̄‖ ≈ 3.0e–05,
‖ΨFB(x13)‖ ≈ 6.2e–10, det Λ13 ≈ –8.3e–05 (note that the latter indicates degener-
acy). The rate of convergence is linear, with the ratio approaching 1/2.

The behavior of GNM/AS is reported in Table 1, and it clearly shows fast
quadratic convergence.

The next problem is a modification of [15, Example 1].
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Table 2

GNM/AS for Example 6.2.

k 0 1 2 3 4 5 6 7

‖xk − x̄‖ 2.2e+00 9.0e–01 3.2e–01 7.1e–02 5.0e–03 2.8e–05 9.1e–10 9.3e–19

‖ΨFB(xk)‖ 1.7e+01 4.1e+00 9.3e–01 1.6e–01 1.0e–02 5.7e–05 1.8e–09 1.8e–18

‖xk−x̄‖
‖xk−1−x̄‖ 4.0e–01 3.5e–01 2.2e–01 7.1e–02 5.6e–03 3.2e–05 1.0e–09

Table 3

GNM/AS for Example 6.3.

k 0 1 2 3 4

‖xk − x̄‖ 1.0e+00 6.0e–01 2.2e–01 2.7e–03 9.0e–13

‖ΨFB(xk)‖ 9.1e–01 2.2e–01 1.0e–03 2.0e–08 7.4e–37

‖xk−x̄‖
‖xk−1−x̄‖ 6.0e–01 3.6e–01 1.3e–02 3.3e–10

Example 6.2. Let p = m = 2, f(z) = (z1 + z2)
2/2 + (z1 + z2)

3/3, G(z) = (z1, z2),
z ∈ R2, z̄ = 0, µ̄ = 0. Semistability holds here, but for ΨNR (and hence for ΨFB),
BD-regularity is violated. The starting point is z0 = (1, 2), µ0 = (0.01, 0.01), with
‖x0 − x̄‖ ≈ 2.2e+00, ‖ΨFB(x0)‖ ≈ 1.7e+01, det Λ0 ≈ 4.3e–04.

The behavior of SNM/FB is as follows: det Λ1 ≈ 7.3e–10, det Λ2 ≈ 0, but the
corresponding linear system is solvable, and the method manages to escape the “bad”
region. Specifically, det Λ3 ≈ 4.3e–16, while det Λ4 ≈ 2.5e–00, and the algorithm
converges in seven iterations. At the final step, ‖x7 − x̄‖ ≈ 1.0e–16, ‖ΨFB(x7)‖ ≈
1.4e–16, det Λ7 ≈ 2. The rate of convergence is superlinear. The behavior of GNM/AS
is reported in Table 2, and it also shows the superlinear rate.

Note that while SNM/FB and GNM/AS exhibit similar convergence for this prob-
lem, the performance of SNM/FB depends on the specific implementation. In par-
ticular, the solution which is produced for a given degenerate linear system clearly
depends on the linear solver being used. The choice of this solution can affect the
overall convergence. Also, in general (this is not the case for this example), when
BD-regularity is violated different procedures to compute Λk could result in different
linear systems some of which can be ill-conditioned close to the solution, preventing
fast convergence of SNM/FB.

The next problem is [15, Example 4]. Combined with Example 6.5 below, it
seems to indicate that weak regularity is somewhat more important for the success of
GNM/AS than 2-regularity.

Example 6.3. Let p = m = 1, f(z) = z4/4, G(z) = z, z ∈ R, z̄ = 0, µ̄ = 0. Weak
regularity holds here but 2-regularity of ΨS does not, and thus semistability is violated
(and hence BD-regularity for ΨNR and ΨFB is also violated). The starting point is
z0 = 1, µ0 = 0.1, with ‖x0 − x̄‖ ≈ 1.0e+00, ‖ΨFB(x0)‖ ≈ 9.1e–01, det Λ0 ≈ 2.7e+00.

SNM/FB converges in eighteen steps. At termination, ‖x18 − x̄‖ ≈ 6.8e–04,
‖ΨFB(x18)‖ ≈ 3.1e–10, det Λ13 ≈ 3.1e–06. The rate of convergence is linear with
ratio approaching 2/3.

The behavior of GNM/AS is reported in Table 3, and it shows fast quadratic
convergence.

The next example is borrowed from [22, Example 2.1].
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Example 6.4. Let n = 2, F (x) = (−x1 + x2,−x2), x ∈ R2, x̄ = 0. BD-regularity
holds for ΨNR (and hence semistability also holds) but not for ΨFB . The starting
point is x0 = (2, 4), with ‖x0 − x̄‖ ≈ 4.5e+00, ‖ΨFB(x0)‖ ≈ 5.8e+00, det Λ0 = 0.

Here, SNM/FB fails to make a step. At the same time, GNM/AS terminates
after 1 step at the exact solution. The reason for this is that A0 = {1, 2}. Thus, the
iteration of GNM/AS reduces to identifying the index sets.

Note that the problem in Example 6.4 is actually a linear complementarity prob-
lem, that is, NCP with affine F . We point out that in the case of affine F , just one
step of GNM/AS gives the exact solution, whenever the index sets are correctly iden-
tified. For example, this behavior is observed also for the problem badfree from the
MCPLIB collection: once xk is close to the solution x̄ = (0, 0, 0.5, 0.5, 1), GNM/AS
produces xk+1 = x̄. At the same time, for xk close to x̄, a degenerate Λk is computed,
and SNM/FB fails; see [5].

The next example is [15, Example 2] and it shows that both 2-regularity of ΨS

and weak regularity are important for fast convergence of GNM/AS in general (recall,
however, Example 6.3).

Example 6.5. Let p = m = 2, f(z) = z2
1/2 + z3

2/3, G(z) = (z1 − z2
2/2, z1 + z2

2/2),
z ∈ R2, z̄ = 0, µ̄ = 0. Semistability is violated (and hence BD-regularity for
ΨNR and ΨFB is violated). For ΨS , 2-regularity holds, but weak regularity does
not. The starting point is z0 = (0.1, 0.1), µ0 = (0.1, 0.1), with ‖x0 − x̄‖ ≈ 2.0e–01,
‖ΨFB(x0)‖ ≈ 1.3e–01, det Λ0 ≈ 2.0e–01.

Both SNM/FB and GNM/AS converge in 12 steps, and ‖x12 − x̄‖ ≈ 2.4e–05,
‖ΨFB(x12)‖ ≈ 8.4e–10, det Λ12 ≈ 2.9e–04. The rate of convergence is linear with
ratio 1/2.
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