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Abstract. We consider a class of Newton-type methods for constrained systems of equations that involve
complementarity conditions. In particular, at issue are the constrained Levenberg–Marquardt method and the
recently introduced Linear-Programming-Newton method, designed for the difficult case when solutions need
not be isolated, and the equation mapping need not be differentiable at the solutions. We show that the only
structural assumption needed for rapid local convergence of those algorithms is the piecewise error bound, i.e.,
a local error bound holding for the branches of the solution set resulting from partitions of the bi-active com-
plementarity indices. The latter error bound is implied by various piecewise constraint qualifications, including
some relatively weak ones. As further applications of our results, we consider Karush–Kuhn–Tucker systems
arising from optimization or variational problems, and from generalized Nash equilibrium problems. In the first
case, we show convergence under the assumption that the dual part of the solution is a noncritical Lagrange
multiplier, and in the second case convergence follows under a certain relaxed constant rank condition. In both
cases, this improves on results previously available for the corresponding problems.
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1. Introduction. The main contributions of this paper are concerned with local analysis
of Newton-type methods for solving the following system of equations and inequalities:

(1.1) a(z) = 0, b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0, c(z)⊤d(z) = 0,

where the functions a : Rn → R
p, b : Rn → R

q, c : Rn → R
r, and d : Rn → R

r are differen-
tiable with locally Lipschitz-continuous derivatives. We call the problem (1.1) complementarity

system because of the complementarity constraints appearing therein (given by the last three
relations). There are many problems which are naturally stated as (1.1), or can be reduced to
this form. Some examples are: (mixed) complementarity problems and Karush–Kuhn–Tucker
(KKT) systems arising from optimization, variational problems, or generalized Nash equilibrium
problems; see [10, Chapter 1], [21, Chapter 1], and also sections 6 and 7 below.

A good number of efficient techniques for solving problem (1.1) and its special cases go first
through reformulating it as a constrained system of equations:

(1.2) F (z) = 0 s.t. z ∈ Ω,

with a continuous function F : Rn → R
m and a nonempty and closed set Ω ⊆ R

n. There are
many ways of casting (1.1) as a constrained system of equations (1.2), depending on the choice
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of the function F and of the set Ω. In this paper, we shall mainly consider

(1.3) F (z) :=

(
a(z)

min{c(z), d(z)}

)

= 0 s.t. z ∈ Ω,

where

(1.4) Ω := {z ∈ R
n | b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0} ,

and the minimum in (1.3) is taken componentwise. Under our standing assumptions above, the
set Ω is obviously closed. It is also easy to see that every solution of (1.1) is a solution of (1.3),
and vice versa. Note also that, since the min-operation fully characterizes complementarity
(including the signs), the inclusion of the constraints c(z) ≥ 0 and d(z) ≥ 0 in the definition of
Ω is not necessary to state the problems’ equivalence. However, local quadratic convergence of
the Newtonian methods in [6, 7] (which are also the subject of this paper) cannot be guaranteed
without including those constraints into the definition of Ω. This will become clear in the
subsequent sections; see also [7]. The same concerns putting the constraint b(z) ≥ 0 into Ω
instead of writing it as min{0, b(z)} = 0 and incorporating this term into the function F .
In this respect, it should also be noted that if any of the functions b, c or d are nonlinear,
constrained subproblems of Newton-type methods applied to (1.3), with Ω given by (1.4),
would be (generally) impractical to solve. In that case, a further slacks reformulation of the
nonlinear constraints in (1.4) is performed, moving the resulting equality into the function F
and thus obtaining a polyhedral set Ω; see [6, 7, 20], and also sections 4 and 5 below.

Next, it should be emphasized that, unless the restrictive strict complementarity condition
holds at a solution z∗ of problem (1.1) (i.e., c(z∗) + d(z∗) > 0), the function F given in (1.3)
cannot be expected to be differentiable at z∗. Furthermore, we are interested here in the
general cases, where z∗ also need not be an isolated solution of the problem. This combination
of difficulties (nondifferentiability and degeneracy) makes for a very challenging case, with most
approaches not applicable; see [7] for a detailed discussion.

We next recall the methods in [6, 7] for solving constrained equations (1.2), to be considered
in the sequel. Eventually, our main focus will be on the case of piecewise continuously differ-
entiable (PC1-) functions F , and in particular on the reformulation (1.3)–(1.4) of the general
complementarity system (1.1), as well as the special case of KKT systems arising from opti-
mization or variational problems and generalized Nash equilibrium problems. The methods of
[6, 7] have very strong local convergence properties, even when solutions are not isolated and
the function is not differentiable at solutions. It should be mentioned that even for the case
of KKT systems, other Newton-type methods for degenerate problems need assumptions that
imply that the primal part of the solution is isolated [11, 12, 16, 17, 18, 19, 29]; see also [21,
Chapter 7].

The Linear-Programming-Newton method (LP-Newton method from now on), proposed in
[7], is the following iterative procedure. Let s ∈ Ω be a given iterate, and let ‖·‖ be an arbitrary
but fixed vector norm, where the space is clear from the context. Then, the new iterate is the
z-part of a solution of the following optimization problem:

(1.5)

min
z,γ

γ s.t. z ∈ Ω,

‖F (s) +G(s)(z − s)‖ ≤ γ ‖F (s)‖2 ,
‖z − s‖ ≤ γ ‖F (s)‖ ,

where G(s) is a suitable substitute for the derivative of F at s (the precise conditions imposed
on G will be specified in due time). It can be shown that, if s is not a solution of (1.2), the
subproblem (1.5) always has a solution; see [7, Proposition 1]. (Note that [7] uses the additional
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constraint γ ≥ 0 to define the feasible set in (1.5). However, this inequality is redundant, as in
(1.5) it is clearly satisfied automatically if s is not a solution of (1.1). And if s is a solution,
the method would simply stop before the subproblem (1.5) needs to be solved.) If the infinity
norm ‖ · ‖∞ is used and if Ω is a polyhedral set, then (1.5) is a linear program (LP). This is the
reason for the name “LP-Newton method”. It is shown in [7] that a sequence generated by this
algorithm converges locally quadratically to a solution of (1.2), under certain mild assumptions
(recalled in section 2 below), which in particular imply neither the differentiability of F nor the
local uniqueness of a solution of (1.2).

In [6], it was shown that the constrained version of the Levenberg–Marquardt method for
(1.2) converges under the same mild assumptions as those required for the LP-Newton scheme.
Again, let s ∈ Ω be a given iterate. Then, the constrained Levenberg–Marquardt method (see
[22] and [2]) computes the next iterate as a solution of the following optimization subproblem:

(1.6) min
z

‖F (s) +G(s)(z − s)‖2 + µ(s)‖z − s‖2 s.t. z ∈ Ω,

with an appropriate regularization parameter µ(s) > 0, and G(s) being again a suitable substi-
tute for the derivative of F at s. If the Euclidean norm ‖ · ‖2 is used and if Ω is a polyhedral
set, then (1.6) is a strongly convex quadratic program (QP), having a unique solution.

The main goal of this paper is to establish conditions under which the methods described
above converge quadratically to a solution of (1.3)–(1.4), and therefore of the complementarity
system (1.1). We start with recalling in section 2 the assumptions required in [7] for fast local
convergence in the context of the general constrained equation (1.2). Then, in section 3, we
consider the case of a PC1-function F , of which the function in (1.3) is a special case. For PC1-
functions, we develop conditions which are sufficient for the assumptions in [7]. A condition
based on error bounds for some of the selection functions defining F was already introduced
in [7], and it was shown there that this condition implies one of the convergence assumptions.
The first main result in our paper is that the same condition, in addition to a suitable choice
of the feasible set Ω, is actually sufficient for all of the convergence assumptions to hold. A
related result for a slacks reformulation of (1.2) is proved in section 4. In section 5, we go back
to the complementarity system (1.1), and transfer the main result for PC1-functions to the
constrained reformulation (1.3)–(1.4) of (1.1). In particular, we show that the methods under
consideration converge quadratically to a solution of (1.1) under the only assumption that the
complementarity system satisfies a mild piecewise local error bound condition. In section 6, the
special case of KKT systems arising from optimization or variational problems is considered,
and it is shown that the noncriticality assumption on the Lagrange multiplier [19, 15] is sufficient
for convergence in this case. Sections 7 and 8 consider different reformulations of KKT systems
associated to generalized Nash equilibrium problems, where we exhibit sufficient conditions for
the required error bounds in that setting. Specifically, a result from [20] based on the full row
rank of a certain matrix is recovered. In addition, a more general result is presented, showing
that even the weaker constant rank of certain matrices is sufficient.

Throughout the paper, we assume that the solution set Z of problem (1.2) is nonempty and
that z∗ ∈ Z is an arbitrary but fixed solution. We denote by JH the Jacobian of a differentiable
function H. Throughout the paper, ‖ · ‖ stands for an arbitrary but fixed vector norm in a
finite dimensional space, always clear from the context. The specific Euclidean norm is denoted
by ‖ · ‖2 and the infinity norm by ‖ · ‖∞. The distance from a point z ∈ R

n to a nonempty set
U ⊆ R

n is given by dist[z, U ] := inf{‖s − z‖ | s ∈ U}. By Bδ(z) := {s ∈ R
n | ‖s − z‖ ≤ δ} we

denote the closed ball around z ∈ R
n with radius δ > 0.

The following constraint qualifications (CQs) for systems of equations and inequalities will
play some role in the sequel. To this end, consider the system

(1.7) R(z) = 0, S(z) ≥ 0
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with continuously differentiable functions R : Rn → R
m1 and S : Rn → R

m2 . Let z̄ denote
an arbitrary but fixed solution of (1.7). We indicate by S0 the index set of those functions Si

which are active at z̄, i.e.,

S0 := {i ∈ {1, . . . ,m2} | Si(z̄) = 0}.

The linear independence constraint qualification (LICQ for short) holds at z̄ if the matrix

(

JR(z̄)

JSS0
(z̄)

)

has full row rank. Here, SS0
consists of those components of S whose indices belong to S0.

System (1.7) satisfies the Mangasarian–Fromovitz constraint qualification (MFCQ for short) at
z̄ if the matrix JR(z̄) has full row rank and there exists h ∈ R

n such that

JR(z̄)h = 0 and JSS0
(z̄)h < 0

hold. The MFCQ was introduced in [26]. The next constraint qualification which we would like
to recall is the relaxed constant rank constraint qualification (RCRCQ for short) introduced in
[24]. This condition is satisfied at z̄ if there exists ε > 0 such that, for each index set S ⊆ S0,
the matrices (

JR(z)

JSS(z)

)

have the same rank for all z ∈ Bε(z̄). It is well known that LICQ implies both MFCQ and
RCRCQ. However, MFCQ neither is implied by nor implies RCRCQ [27].

Finally, we say that the local error bound condition for system (1.7) is satisfied at z̄ if there
exist ε > 0 and ω > 0 such that

dist[z,Z] ≤ ω(‖R(z)‖+ ‖min{0, S(z)}‖)

holds for all z ∈ Bε(z̄), where Z denotes the solution set of (1.7). This condition will play a
central role in this paper. It is shown in [28] that the local error bound condition is implied
by MFCQ. Moreover, the RCRCQ also implies the local error bound condition. The latter is
established in [27] and also in [25]. It should also be mentioned that for twice continuously
differentiable functions, the relaxed constant positive linear dependence condition is weaker
than RCRCQ, but also implies the error bound [1]. As we do not assume twice differentiability
in this paper, we shall not state or use this weaker CQ.

2. A general framework for the analysis of local convergence. In this section, we
recall and discuss the assumptions required for local convergence of the LP-Newton method,
described by (1.5), for solving constrained equations (1.2). These assumptions were given in
[7]. Recall, however, that the same set of assumptions also guarantees local convergence of the
constrained Levenberg–Marquardt method described by (1.6). This was established in [6].

Let a function G : Rn → R
m×n be given. The choice of G will be specified in the next

section, where F is assumed to be a PC1 function. For the moment, it is enough to say that G
is the Jacobian of F , or a suitable substitute if F is not differentiable.

It is shown in [6, 7] that the algorithms in question converge locally quadratically to a
solution of (1.2) if the following four assumptions are satisfied, with some suitable δ > 0.

Assumption 1 (Lipschitzian growth of the residual). There exists L > 0 such that

‖F (s)‖ ≤ L dist[s, Z]



Newton methods for complementarity systems 5

holds for all s ∈ Bδ(z
∗) ∩ Ω.

Assumption 2 (Error bound). There exists ω > 0 such that

dist[s, Z] ≤ ω‖F (s)‖

holds for all s ∈ Bδ(z
∗) ∩ Ω.

Assumption 3 (Nonemptyness of approximate solution sets). There exists Γ > 0 such that
the set

F(s,Γ) :=
{
z ∈ Ω | ‖F (s) +G(s)(z − s)‖ ≤ Γ‖F (s)‖2, ‖z − s‖ ≤ Γ‖F (s)‖

}

is nonempty for all s ∈ Bδ(z
∗) ∩ Ω.

Assumption 4 (Quality of the approximate solution set). There exists κ > 0 such that

z ∈
{
z ∈ Ω | ‖F (s) +G(s)(z − s)‖ ≤ α2, ‖z − s‖ ≤ α

}

implies
‖F (z)‖ ≤ κα2

for all s ∈ (Bδ(z
∗) ∩ Ω) \ Z and all α ∈ [0, δ].

Note that Assumption 3 above is different from its formulation in [7]. There, it is required
that, for some Γ̃ ≥ 1, the optimal value γ(s) of (1.5) is bounded above by Γ̃ for all s ∈ Bδ(z

∗)∩Ω.
Under the natural convention that for our subproblem (1.5) it holds that γ(s) = −∞ if F (s) = 0,
Assumption 3 and its counterpart in [7] are equivalent. Indeed, if the set F(s,Γ) is nonempty
for some s ∈ Bδ(z

∗) ∩ Ω, and z is an element of F(s,Γ), then (z, γ) with γ := Γ is feasible
for problem (1.5). Therefore, γ(s) ≤ Γ ≤ Γ̃ with Γ̃ := max{1,Γ} holds for all s ∈ Bδ(z

∗) ∩ Ω.
Conversely, if γ(s) ≤ Γ̃ is valid for some s ∈ Bδ(z

∗) ∩ Ω, then the z-part of every solution of
(1.5) belongs to F(s,Γ) with Γ := Γ̃. Thus, the set F(s,Γ) is nonempty for all s ∈ Bδ(z

∗) ∩ Ω.
At the end of this section, let us recall the main local convergence results of the LP-

Newton and the constrained Levenberg–Marquardt method. The following theorem follows
by [7, Theorem 1] and [6, Corollary 2].

Theorem 2.1. Let Assumptions 1–4 be satisfied. Then, there is r > 0 such that any infinite

sequence {zk} generated by the LP-Newton method, described by (1.5), or by the constrained

Levenberg–Marquardt method, described by (1.6), with a starting point z0 ∈ Br(z
∗)∩Ω converges

quadratically to some solution of (1.2).

3. Discussion of the assumptions for PC1-functions. In this section, we consider the
case of F being a PC1-function. We shall provide sufficient conditions for Assumptions 1–4 to
hold in this setting. Our main result is Theorem 3.8 below which shows that all the needed
assumptions (i.e., Assumptions 1–4) are satisfied if certain error bound conditions hold, and if
the set Ω is appropriately chosen.

A function F : R
n → R

m is called piecewise continuously differentiable (PC1) if F is
continuous and if there are continuously differentiable functions F 1, . . . , F ℓ : Rn → R

m such
that

F (z) ∈ {F 1(z), . . . , F ℓ(z)}

holds for all z ∈ R
n. The functions F 1, . . . , F ℓ are called selection functions. For z ∈ R

n, we
denote by A(z) the index set of all selection functions which are active at z, i.e.,

A(z) :=
{
i ∈ {1, . . . , ℓ} | F (z) = F i(z)

}
.

We assume that the derivatives of the selection functions are locally Lipschitz-continuous. We
also assume that G : Rn → R

m×n is such that G(z) ∈ {JF i(z) | i ∈ A(z)} holds for all z ∈ R
n,

which is clearly natural.
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Obviously, the function F : Rn → R
p+r defined in (1.3) is a PC1-function (with ℓ = 2r

selection functions F 1, . . . , F 2r : Rn → R
p+r). Due to our smoothness assumptions on a, c, and

d, the selection functions F 1, . . . , F 2r are differentiable and have locally Lipschitz-continuous
derivatives.

Next, we discuss Assumptions 1–4 in the context of PC1-functions. It is clear that Assump-
tion 1 is satisfied, because a PC1-function is locally Lipschitz-continuous [14, Theorem 2.1].

Proposition 3.1. Any PC1-function F is locally Lipschitz-continuous. In particular,

Assumption 1 is satisfied with arbitrary δ > 0.

Our next objective is to provide sufficient conditions for the Assumptions 2 and 3 to hold.
To this end, consider the following.

Condition 1 (Error bounds in terms of residuals of active pieces). There exist δ1 > 0 and
ω1 > 0 such that

dist[s, Z] ≤ ω1

∥
∥F i(s)

∥
∥

holds for all i ∈ A(z∗) and all s ∈ Bδ1(z
∗) ∩ Ω.

Proposition 3.2 below shows that Condition 1 implies Assumption 2. Roughly speaking,
Condition 1 requires that every selection function which is active at z∗, provides a local overes-
timate for the distance to the solution set of problem (1.2).

Proposition 3.2. Let Condition 1 be satisfied. Then, Assumption 2 holds for δ > 0
sufficiently small.

Proof. Let δ ∈ (0, δ1] be small enough so that A(s) ⊆ A(z∗) holds for all s ∈ Bδ(z
∗) (such δ

exists, due to the continuity of F ). Now, for s ∈ Bδ(z
∗)∩Ω and i ∈ A(s), we have F (s) = F i(s),

and Condition 1 yields

dist[s, Z] ≤ ω1‖F
i(s)‖ = ω1‖F (s)‖.

Hence, Assumption 2 is satisfied with ω := ω1.

Note that the differentiability of the selection functions is not needed in the last proof. The
assertion of Proposition 3.2 remains valid if the selection functions are only continuous.

We next show that Condition 1 does not imply Assumption 3, even if F and Ω are given
by (1.3) and (1.4).

Example 1. Consider the following constrained system of equations:

(3.1) F (z) := F (x, y) := min{x2 − y,−2y} = 0 s.t. z = (x, y)⊤ ∈ Ω

with

Ω := {(x, y)⊤ ∈ R
2 | x2 − y ≥ 0, −2y ≥ 0} = {(x, y)⊤ ∈ R

2 | y ≤ 0}.

The function F is a PC1-function with the selection functions

F 1(z) := F 1(x, y) := x2 − y and F 2(z) := F 2(x, y) := −2y.

Let G : R
2 → R

1×2 be any function satisfying G(z) ∈ {JF i(z) | i ∈ A(z)}. Obviously,
z∗ := (0, 0)⊤ is a solution of (3.1) with A(z∗) = {1, 2}. The solution set of (3.1) is

Z = {(x, y)⊤ ∈ R
2 | min{x2 − y,−2y} = 0} = {(x, y)⊤ ∈ R

2 | y = 0}.

Throughout the rest of this example, the Euclidean vector norm is used. The distance from
s = (x, y)⊤ to Z is equal to |y| for all s ∈ R

2. Taking into account that y ≤ 0 for s = (x, y)⊤ ∈ Ω,
we have

dist[s, Z] = |y| = −y ≤

{
x2 − y = |F 1(s)|
−2y = |F 2(s)|

for all s ∈ Ω. Therefore, Condition 1 is satisfied with arbitrary δ1 > 0 and ω1 := 1.
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However, to see that Assumption 3 is not valid at z∗, let us consider the sequence {sk} ⊂ Ω

given by sk :=
(
1
k
,− 2

k2

)⊤
. Obviously, this sequence converges to z∗. For every k ≥ 1 we have

F 1(sk) =
3

k2
<

4

k2
= F 2(sk).

Therefore, A(sk) = {1} holds for all k ∈ N and thus,

F (sk) = F 1(sk) =
3

k2
and G(sk) = JF 1(sk) =

(
2

k
,−1

)

.

Suppose that Assumption 3 is satisfied at z∗ with some constants Γ > 0 and δ > 0. Then,
for k sufficiently large, there is zk = (xk, yk)

⊤ ∈ F(sk,Γ). Due to ‖zk − sk‖2 ≤ Γ|F (sk)| we
particularly have

∣
∣
∣
∣
xk −

1

k

∣
∣
∣
∣
≤ Γ|F (sk)| =

3

k2
Γ.

Using this, |F (sk) +G(sk)(zk − sk)| ≤ Γ|F (sk)|2, and yk ≤ 0, we obtain

9

k4
Γ ≥

∣
∣
∣
∣

3

k2
+

2

k

(

xk −
1

k

)

−

(

yk +
2

k2

)∣
∣
∣
∣
≥

∣
∣
∣
∣
−yk +

1

k2

∣
∣
∣
∣
−

2

k

∣
∣
∣
∣
xk −

1

k

∣
∣
∣
∣
≥

1

k2
−

6

k3
Γ.

This inequality cannot be satisfied for k sufficiently large. Thus, we have a contradiction and
Assumption 3 does not hold. Note that the assertions of this example stay true for any vector
norm.

Next, for i ∈ {1, . . . , ℓ}, let Zi denote the set of all zeros of the selection function F i in Ω,
i.e.,

Zi :=
{
z ∈ Ω | F i(z) = 0

}
.

For i ∈ A(z∗), it is clear that the set Zi is nonempty since z∗ belongs to Zi. Condition 2 below
requires that every selection function F i which is active at z∗ provides an overestimate for the
distance to Zi for all points in a certain neighborhood of z∗. Note that, unlike Condition 1,
Condition 2 refers to the distance to Zi, not to Z.

Condition 2 (Individual error bounds on Ω for active pieces). There exist δ2 > 0 and
ω2 > 0 such that

dist[s, Zi] ≤ ω2

∥
∥F i(s)

∥
∥

holds for all i ∈ A(z∗) and all s ∈ Bδ2(z
∗) ∩ Ω.

It will turn out that Condition 2 implies Assumption 3. Moreover, it also implies Assump-
tion 2 if the following property is additionally satisfied: the set Ω excludes all zeros of the
selection functions (being active at z∗) which are not zeros of F , at least in a certain neighbor-
hood of z∗. In other words, it is required that every zero of any selection function being active
at z∗, which is sufficiently close to z∗ and which belongs to Ω, is also a zero of F . Formally, we
state this requirement as follows. The Ω-property holds at z∗ if there exists δΩ > 0 such that

Zi ∩ BδΩ(z
∗) ⊆ Z for all i ∈ A(z∗).

In the case of F given by (1.3), the Ω-property means that the set Ω excludes all zeros of the
selection functions for which some components of c(z̄) or d(z̄) are negative. In particular, this
is guaranteed if Ω is defined by (1.4). The next proposition shows that Condition 2 and the
Ω-property, together, imply Condition 1.

Proposition 3.3. Let Condition 2 and the Ω-property at z∗ be satisfied. Then, Condition 1

holds.
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Proof. For δ1 > 0 with δ1 ≤ min{δ2,
1
2δΩ} let us take any s ∈ Bδ1(z

∗)∩Ω, and let i ∈ A(z∗)
be arbitrary but fixed. Moreover, let s̄ be an element of Zi with

(3.2) dist[s, Zi] = ‖s− s̄‖.

Note that Zi is nonempty, because i ∈ A(z∗) implies z∗ ∈ Zi. Further, Zi is closed due to the
continuity of F i, and the closedness of Ω. Condition 2 yields

(3.3) ‖s− s̄‖ ≤ ω2‖F
i(s)‖.

Since

‖s̄− z∗‖ ≤ ‖s− s̄‖+ ‖s− z∗‖ ≤ 2‖s− z∗‖ ≤ 2δ1 ≤ δΩ,

the Ω-property ensures s̄ ∈ Z. By (3.3), we obtain

dist[s, Z] ≤ ‖s− s̄‖ ≤ ω2‖F
i(s)‖.

Thus, Condition 1 is satisfied with ω1 := ω2.

Now, we prove a relation between Condition 2 and Assumptions 2 and 3.

Proposition 3.4. Let Condition 2 be satisfied. Then, for δ > 0 sufficiently small, the

following assertions are valid.

(i) Assumption 2 holds if the Ω-property at z∗ is additionally satisfied.

(ii) Assumption 3 holds.

Proof. (i) Since Condition 2 and the Ω-property are satisfied, Condition 1 holds as well
due to Proposition 3.3. The validity of Assumption 2 for δ > 0 sufficiently small follows by
Proposition 3.2.

(ii) Let δ ∈ (0, δ2] be small enough so that A(s) ⊆ A(z∗) holds for all s ∈ Bδ(z
∗). Moreover,

let C > 0 be a constant such that

(3.4) ‖F i(s) + JF i(s)(z − s)− F i(z)‖ ≤ C‖z − s‖2

is valid for all i ∈ A(z∗) and all s, z ∈ B2δ(z
∗). Such a constant exists since the selection

functions are differentiable and have locally Lipschitz-continuous Jacobians.

For any s ∈ Bδ(z
∗) ∩ Ω let i be an element of A(s) with G(s) = JF i(s). Moreover, let s̄ be

an element of Zi such that (3.2) is satisfied. As in the proof of the last proposition we obtain
(3.3) by Condition 2. Due to i ∈ A(s) this yields

(3.5) ‖s− s̄‖ ≤ ω2‖F (s)‖.

Because of

‖s̄− z∗‖ ≤ ‖s− s̄‖+ ‖s− z∗‖ ≤ 2‖s− z∗‖ ≤ 2δ,

we can apply (3.4) and (3.5) and obtain

‖F (s) +G(s)(s̄− s)‖ = ‖F i(s) + JF i(s)(s̄− s)− F i(s̄)‖

≤ C‖s− s̄‖2

≤ Cω2
2‖F (s)‖2.

Since s was arbitrarily chosen, Assumption 3 is valid with Γ := max{ω2, Cω2
2}.

Note that item (ii) of Proposition 3.4 had been established in [7, Corollary 3]. However, the
proof there is indirect. In particular, nothing was specified about the value of δ. The simpler
and direct proof presented above seems useful.
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We next consider Assumption 4. To this end, we introduce the following.
Condition 3 (Residual bounded above by residuals of active pieces). There exist δ3 > 0

and K > 0 such that
‖F (s)‖ ≤ K‖F i(s)‖

holds for all i ∈ A(z∗) and all s ∈ Bδ3(z
∗) ∩ Ω.

We show that Condition 3 is sufficient for Assumption 4 to hold.
Proposition 3.5. Let Condition 3 be satisfied. Then, Assumption 4 holds for δ > 0

sufficiently small.

Proof. Let δ ∈ (0, 12δ3] be small enough so that A(s) ⊆ A(z∗) holds for all s ∈ Bδ(z
∗). Since

all selection functions are differentiable and have locally Lipschitz-continuous Jacobians, there
is C > 0 such that (3.4) holds for all i ∈ A(z∗) and all s, z ∈ B2δ(z

∗). Now let α ∈ [0, δ] and
s ∈ (Bδ(z

∗)∩Ω)\Z be arbitrarily chosen and let i be an element of A(s) such that G(s) = JF i(s)
holds. Moreover, let z ∈ Ω be a point for which the inequalities

(3.6) ‖F (s) +G(s)(z − s)‖ ≤ α2 and ‖z − s‖ ≤ α

are satisfied. Then,
‖z − z∗‖ ≤ ‖z − s‖+ ‖s− z∗‖ ≤ α+ δ ≤ 2δ

holds. Using (3.4) and (3.6), we obtain

‖F i(z)‖ ≤ ‖F i(s) + JF i(s)
︸ ︷︷ ︸

=G(s)

(z − s)‖+ C‖z − s‖2 ≤ (1 + C)α2.

This together with Condition 3 yields

‖F (z)‖ ≤ (1 + C)Kα2.

Therefore, Assumption 4 is valid with κ := (1 + C)K.
It can be easily seen that Condition 3 implies the Ω-property at z∗, i.e., that the zeros of

the selection functions which are not zeros of F , do not belong to Ω (at least in a sufficiently
small neighborhood of z∗). This assertion is proven in the next proposition.

Proposition 3.6. If Condition 3 is satisfied, then the Ω-property holds at z∗.
Proof. Let δΩ ∈ (0, δ3], i ∈ A(z∗), and s ∈ Zi ∩ BδΩ(z

∗) be arbitrarily chosen. Then, by
s ∈ Zi, Condition 3 yields

‖F (s)‖ ≤ K‖F i(s)‖ = 0,

so that F (s) = 0 and, thus, s ∈ Z follow.
However, the Ω-property is not sufficient for Assumption 4 to hold. This can be shown by

a simple example.
Example 2. Let us consider the function F : R2 → R defined by F (z) := F (x, y) :=

min{x, y}, which is a PC1-function with the selection functions F 1(x, y) := x and F 2(x, y) := y.
Let G : R2 → R

1×2 be any function satisfying G(z) ∈ {JF i(z) | i ∈ A(z)}. Throughout this
example, we use the Euclidean vector norm. Note that the choice of the norm does not influence
the validity of our assumptions and conditions, respectively, it might only change the values of
some constants. Let us define Ω by

Ω := R
2
+ ∪ {(x, y)⊤ ∈ R

2 | y ≥ x2}.

Figure 1 shows an illustration of Ω. Obviously, the points on the negative half axes do not
belong to Ω, i.e., the zeros of F 1 and F 2 which are not zeros of F are excluded. Therefore, the Ω-
property holds at z∗ := (0, 0)⊤ (for arbitrary δΩ > 0). However, Assumption 4 is not satisfied at
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x

y

Fig. 1. The set Ω from Example 2.

z∗ for this choice of Ω. In order to show this, let us assume the contrary, i.e., that Assumption 4
is valid with some constants δ > 0 and κ > 0. Furthermore, let us define sequences {sk} ⊂ Ω\Z,
{zk} ⊂ Ω, and {αk} ⊂ (0,∞) as follows: sk := ( 2

k2
, 1
k2
)⊤, zk := (− 1

k
, 1
k2
)⊤, αk := 3

k
.

Obviously, the sequence {sk} converges to z∗ and the sequence {αk} to zero. Therefore, for
sufficiently large k, we have αk ≤ δ and sk ∈ (Bδ(z

∗) ∩ Ω) \ Z. Moreover,

(3.7) ‖zk − sk‖2 =
1

k
+

2

k2
≤

3

k
= αk

is satisfied for all k ≥ 1. Furthermore, A(sk) = {2} holds for all k and therefore

F (sk) = F 2(sk) =
1

k2
, G(sk) = JF 2(sk) = (0, 1).

This implies

(3.8) |F (sk) +G(sk)(zk − sk)| =

∣
∣
∣
∣

1

k2
+

1

k2
−

1

k2

∣
∣
∣
∣
=

1

k2
<

9

k2
= α2

k

for all k ≥ 1. Taking into account (3.7) and (3.8), Assumption 4 yields

|F (zk)| ≤ κα2
k = κ ·

9

k2

for all sufficiently large k ≥ 1. On the other hand, F (zk) = − 1
k
holds for all k which provides

a contradiction. Therefore, Assumption 4 is not satisfied.
Next, we present two examples where Condition 3 (and therefore Assumption 4) are satisfied.

In particular, it will turn out that Assumption 4 holds for system (1.3) with Ω defined by (1.4).
Example 3. We consider the function from Example 2 again, i.e., F (z) := F (x, y) :=

min{x, y}. As before, F 1(x, y) := x and F 2(x, y) := y denote the selection functions. For ε > 0,
define

Ωε := {(x, y)⊤ ∈ R
2 | |y| ≥ ε|x| if x < 0, |x| ≥ ε|y| if y < 0}.

Figure 2 shows illustrations of Ωε for two different values of ε.
For all (x, y)⊤ ∈ Ωε we have, using the Euclidean norm,

|F (x, y)| = |min{x, y}| ≤ max

{
1

ε
, 1

}

|x| = K|F 1(x, y)| and

|F (x, y)| = |min{x, y}| ≤ max

{
1

ε
, 1

}

|y| = K|F 2(x, y)|,

where K := max
{
1
ε
, 1
}
. Therefore, Condition 3 is satisfied with this K and an arbitrary δ3 > 0.

Condition 3 stays true for Ω+ := R
2
+. By Proposition 3.5 we know that Condition 3 implies

Assumption 4.
Example 4. Let us consider the PC1-function F : R

n → R
r defined by F (z) :=

min{c(z), d(z)} with given continuously differentiable functions c, d : R
n → R

r. As in the
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x

y

x

y

Fig. 2. The set Ωε from Example 3 — on the left for ε < 1 and on the right for ε > 1.

previous examples, the Euclidean vector norm is used. Once again, note that the choice of the
norm does not influence the validity of Condition 3. For

Ω ⊆ Ω+ := {z ∈ R
n | c(z) ≥ 0, d(z) ≥ 0}

Condition 3 is satisfied at every solution of the system F (z) = 0 s.t. z ∈ Ω because

(3.9) |Fi(z)| = |min{ci(z), di(z)}| = min{|ci(z)|, |di(z)|}

holds for all i ∈ {1, . . . , r} and all z ∈ Ω. By a similar argument it can be seen that Condition 3
and, thus, Assumption 4 are valid for problem (1.3) with Ω given by (1.4).

Condition 3 stays true at every solution of the system F (z) = 0 s.t. z ∈ Ω, if Ω is chosen
according to

Ω ⊆ Ω0 := {z ∈ R
n | c(z) + d(z) ≥ 0}.

In order to show this, let z ∈ Ω and i ∈ {1, . . . , r} be arbitrary but fixed. Without loss of
generality, we assume that ci(z) ≤ di(z) holds. If ci(z) is nonnegative, we have

|Fi(z)| = |min{ci(z), di(z)}| = |ci(z)| = min{|ci(z)|, |di(z)|}.

Otherwise, if ci(z) < 0 holds, then di(z) ≥ |ci(z)| must be valid due to the choice of Ω and
therefore we obtain

|Fi(z)| = |min{ci(z), di(z)}| = |ci(z)| = min{|ci(z)|, |di(z)|},

too. Thus, Condition 3 and therefore Assumption 4 are satisfied. This recovers [7, Corollary 5].

We next show that Condition 3 (and therefore Assumption 4) are implied by Condition 2,
together with the Ω-property, i.e., with a suitable choice of Ω.

Proposition 3.7. Let Condition 2 and the Ω-property at z∗ be satisfied. Then, Condition 3

is valid and therefore, Assumption 4 holds for δ > 0 sufficiently small.

Proof. Choose δ3 ∈ (0,min{δ2,
1
2δΩ}]. By Proposition 3.1, there is l > 0 such that

(3.10) ‖F (z)− F (s)‖ ≤ l‖z − s‖

holds for all s, z ∈ B2δ3(z
∗). Now, let i ∈ A(z∗) and s ∈ Bδ3(z

∗) ∩ Ω be arbitrarily chosen.
Moreover, let s̄ be an element of Zi such that ‖s − s̄‖ = dist[s, Zi] holds. Taking into account
Condition 2,

(3.11) ‖s− s̄‖ ≤ ω2‖F
i(s)‖

follows. Furthermore, since z∗ also belongs to Zi, we have

‖s̄− z∗‖ ≤ ‖s− s̄‖+ ‖s− z∗‖ ≤ 2‖s− z∗‖ ≤ 2δ3 ≤ δΩ.
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Therefore, the Ω-property yields that s̄ is a zero of F , too. Using this, (3.10), and (3.11), we
obtain

‖F (s)‖ = ‖F (s)− F (s̄)‖ ≤ l‖s− s̄‖ ≤ lω2‖F
i(s)‖.

Hence, Condition 3 is valid with K := lω2. Assumption 4 is satisfied due to Proposition 3.5.

Combining now the assertions of Propositions 3.1, 3.4, and 3.7, we state the main result
of this section. Specifically, Condition 2 and the Ω-property are sufficient for Assumptions 1–4
to hold and, therefore, for the quadratic convergence of the Newton-type methods discussed
above.

Theorem 3.8. Let F be a PC1-function. Suppose that Condition 2 and the Ω-property at

z∗ are satisfied. Then, Assumptions 1–4 hold.

Let us summarize the results of this section. We introduced conditions and proved relations
to the convergence assumptions which we recalled in section 2. In particular, it was shown that
the validity of individual local error bound conditions on Ω for the active pieces (Condition 2)
is sufficient for Assumptions 1–4 to hold if additionally Ω excludes all zeros of the selection
functions which are not zeros of F . We also would like to mention two very influencing papers.
The first is [23] for solving systems of equations with PC1-functions under the nonsingularity
assumption for all the elements of G(z∗). The second paper [22] provides conditions for the
quadratic convergence of the constrained Levenberg–Marquardt method if the function F is
smooth but may have nonisolated zeros. The results in the current paper weaken the classical
convergence conditions from [22, 23] but still enable to obtain superlinear convergence.

Figure 3 illustrates the relations which were proved in this section. Moreover, relations
between Condition 2 and Conditions 4 and 5 are already shown in Figure 3. The latter conditions
will be introduced in sections 4 and 5. Condition 4 is an extension of Condition 2. It will turn
out that Condition 4, together with the Ω-property, does not only imply Assumptions 1–4 for
system (1.2) but also the counterparts of Assumptions 1–4 for the reformulation of (1.2) with
slack variables. Such a reformulation is advisable from the computational point of view; see the
discussion at the beginning of section 4. Condition 5 is equivalent to Condition 4 for problem
(1.3) with Ω from (1.4).

4. Slacks reformulations of inequalities. The feasible set Ω often involves inequality
constraints. For instance, in our problem (1.3), the inequalities b(z) ≥ 0, c(z) ≥ 0, and
d(z) ≥ 0 are present. If any of those functions is nonlinear, Ω need not be a polyhedral set
so that the subproblems of the LP-Newton as well as of the constrained Levenberg–Marquardt
method would not be computationally acceptable (unless further structure is present and can
be exploited). To alleviate this complication, slack variables can be used to reduce the problem
to that with simple (bound) constraints.

Consider the problem (1.2) with Ω given by

Ω := {z ∈ R
n | α(z) ≥ 0, β(z) ≥ 0},

with an affine function α : Rn → R
k1 and a nonlinear function β : Rn → R

k2 . The latter
is assumed to be differentiable with a locally Lipschitz-continuous derivative. Then, from the
algorithmic point of view, it is advisable to consider the following reformulation of (1.2):

(4.1) F̂ (z, w) :=

(
F (z)

β(z)− w

)

= 0 s.t. (z, w) ∈ Ω̂,

where Ω̂ is given by

Ω̂ := {(z, w) ∈ R
n × R

k2 | α(z) ≥ 0, w ≥ 0}.
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Assumption 1

always satisfied

Assumption 2

Assumption 3

Assumption 4

Condition 1

dist[s, Z] ≤ ω1‖F
i(s)‖

∀i ∈ A(z∗) ∀s ∈ Bδ1(z
∗) ∩ Ω

Condition 2

dist[s, Zi] ≤ ω2‖F i(s)‖
∀i ∈ A(z∗) ∀s ∈ Bδ2(z

∗) ∩ Ω

Condition 3

‖F (s)‖ ≤ K‖F i(s)‖
∀i ∈ A(z∗) ∀s ∈ Bδ3(z

∗) ∩ Ω

Condition 5

(for complementarity systems)

dist[s, ZI1,I2
] ≤ ω5(‖a(s)‖+ . . .)

∀(I1, I2) ∀s ∈ Bδ5(z
∗)

Condition 4

dist[s, Zi] ≤ ω4(‖F i(s)‖+ . . .)
∀i ∈ A(z∗) ∀s ∈ Bδ4(z

∗)

-

-

-

6

?

�

-

?

6
Ω-property

Ω-property

Ω-property

Fig. 3. Scheme on relations of the conditions and assumptions.

Obviously, a point z̄ is a solution of (1.2) if and only if (z̄, w̄) with w̄ := β(z̄) solves (4.1). By Ẑ
we denote the solution set of (4.1). As before, by z∗ an arbitrary but fixed solution of (1.2) is
indicated and by (z∗, w∗) with w∗ := β(z∗) the counterpart for problem (4.1). The advantage
of problem (4.1) compared to (1.2) is that Ω̂ is polyhedral.

Assuming again that F is a PC1-function with the selection functions F 1, . . . , F ℓ, the func-
tion F̂ is also a PC1-function with the selection functions

F̂ i(z, w) :=

(
F i(z)

β(z)− w

)

,

i = 1, . . . , ℓ. Obviously, A(z, w) = A(z) holds for all (z, w) ∈ R
n × R

k2 . For every i = 1, . . . , ℓ
we denote the set of all zeros of F̂ i belonging to Ω̂ by Ẑi. Note that at least for i ∈ A(z∗) the
set Ẑi is nonempty since (z∗, w∗) belongs to it.

The counterparts of Assumptions 1–4 for problem (4.1) are implied, according to Theo-
rem 3.8, by the counterparts of Condition 2 and the Ω-property for (4.1). It is easy to see that
the counterpart of the Ω-property for (4.1) is satisfied if and only if the Ω-property itself holds
at z∗. The counterpart of Condition 2 for problem (4.1) says that there are δ̂2 > 0 and ω̂2 > 0
such that

dist[(s, w), Ẑi] ≤ ω̂2‖F̂
i(s, w)‖

holds for all i ∈ A(z∗) and all (s, w) ∈ B
δ̂2
(z∗, w∗) ∩ Ω̂. Unfortunately, this counterpart of

Condition 2 for (4.1) is in general not implied by Condition 2 itself because the former requires
that the inequality also holds for certain points s where some components of β(s) might be
negative. That was not needed in Condition 2.

This motivates to consider the following Condition 4 for problem (1.2) which is an extension
of Condition 2.

Condition 4 (Individual error bounds for active pieces). There exist δ4 > 0 and ω4 > 0



14 Andreas Fischer, Markus Herrich, Alexey F. Izmailov, Mikhail V. Solodov

such that
dist[s, Zi] ≤ ω4

(
‖F i(s)‖+ ‖min{0, α(s)}‖+ ‖min{0, β(s)}‖

)

holds for all i ∈ A(z∗) and all s ∈ Bδ4(z
∗).

Obviously, for all s ∈ Ω, the inequality in Condition 4 coincides with the inequality in
Condition 2. Thus, Condition 4 implies Condition 2. But, unlike Condition 2, Condition 4
makes a requirement also for points which do not belong to Ω. The counterpart of Condition 4
for the constrained system with slack variables (4.1) can be stated as follows. There exist δ̂4 > 0
and ω̂4 > 0 such that

(4.2) dist[(s, w), Ẑi] ≤ ω̂4

(
‖F i(s)‖+ ‖β(s)− w‖+ ‖min{0, α(s)}‖+ ‖min{0, w}‖

)

holds for all i ∈ A(z∗) and all (s, w) ∈ B
δ̂4
(z∗, w∗). The next proposition shows that Condition 4

is valid if and only if its counterpart for system (4.1) is satisfied.
Proposition 4.1. Condition 4 is satisfied if and only if there exist δ̂4 > 0 and ω̂4 > 0 such

that (4.2) holds for all i ∈ A(z∗) and all (s, w) ∈ B
δ̂4
(z∗, w∗).

Proof. Let l > 0 be a Lipschitz constant of the function β on Bε(z
∗) with a sufficiently large

ε > 0, i.e., the inequality

(4.3) ‖β(s)− β(z)‖2 ≤ l‖s− z‖2

holds for all s, z ∈ Bε(z
∗). Assume that Condition 4 is satisfied and let a vector (s, w) ∈

Bδ4(z
∗, w∗) and an index i ∈ A(z∗) be arbitrarily chosen. In particular, s ∈ Bδ4(z

∗) holds. Let
s̄ ∈ Zi be a point with the property

‖s− s̄‖2 = dist[s, Zi].

Then, Condition 4 implies

(4.4) ‖s− s̄‖2 ≤ ω4

(
‖F i(s)‖2 + ‖min{0, α(s)}‖2 + ‖min{0, β(s)}‖2

)
.

To estimate the right-hand side of the latter inequality, let j ∈ {1, . . . , k2} be arbitrary but
fixed. If βj(s) ≥ 0 holds, we obviously have

|min{0, βj(s)}| ≤ |βj(s)− wj |+ |min{0, wj}|.

Otherwise, this inequality also holds, because

|min{0, βj(s)}| = −βj(s) + wj − wj ≤ |βj(s)− wj | − wj ≤ |βj(s)− wj |+ |min{0, wj}|.

Since j ∈ {1, . . . , k2} was arbitrarily chosen this implies

(4.5) ‖min{0, β(s)}‖2 ≤ ‖β(s)− w‖2 + ‖min{0, w}‖2.

Combining (4.4) and (4.5) yields

(4.6) ‖s− s̄‖2 ≤ ω4

(
‖F i(s)‖2 + ‖β(s)− w‖2 + ‖min{0, α(s)}‖2 + ‖min{0, w}‖2

)
.

Now, let us set w̄ := β(s̄). Obviously, (s̄, w̄) ∈ Ẑi holds and therefore

(4.7) dist[(s, w), Ẑi] ≤ ‖s− s̄‖2 + ‖w − w̄‖2

follows. Using the triangle inequality and (4.3), we obtain

‖w − w̄‖2 ≤ ‖w − β(s)‖2 + ‖β(s)− β(s̄)‖2 ≤ ‖w − β(s)‖2 + l‖s− s̄‖2.
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Thus, (4.7) yields
dist[(s, w), Ẑi] ≤ (l + 1)‖s− s̄‖2 + ‖β(s)− w‖2.

This together with (4.6) implies

dist[(s, w), Ẑi] ≤ (1 + (l + 1)ω4)(‖F
i(s)‖2 + ‖β(s)− w‖2

+‖min{0, α(s)}‖2 + ‖min{0, w}‖2).

Therefore, (4.2) is satisfied with δ̂4 := δ4 and ω̂4 := 1 + (l + 1)ω4.
Now we assume that there are δ̂4 > 0 and ω̂4 > 0 such that (4.2) is valid for all i ∈ A(z∗) and

all (s, w) ∈ B
δ̂4
(z∗, w∗). Let us define δ4 according to δ4 :=

δ̂4
1+l

and let a vector s ∈ Bδ4(z
∗) and

an index i ∈ A(z∗) be arbitrarily chosen. We set w := β(s). Taking into account (z∗, w∗) ∈ Ẑi

and (4.3) we obtain

‖w − w∗‖2 = ‖β(s)− β(z∗)‖2 ≤ l‖s− z∗‖2 ≤ lδ4.

This implies
‖s− z∗‖2 + ‖w − w∗‖2 ≤ (1 + l)δ4 = δ̂4

and therefore (s, w) ∈ B
δ̂4
(z∗, w∗). Let (s̄, w̄) ∈ Ẑi be a point with the property

∥
∥
∥
∥

(
s− s̄
w − w̄

)∥
∥
∥
∥
2

= dist[(s, w), Ẑi].

Obviously, s̄ ∈ Zi holds. Furthermore, (4.2) and the definition of w yield

dist[s, Zi] ≤ ‖s− s̄‖2

≤ dist[(s, w), Ẑi]

≤ ω̂4(‖F
i(s)‖2 + ‖β(s)− w‖2

︸ ︷︷ ︸

=0

+‖min{0, α(s)}‖2 + ‖min{0, w}‖2)

= ω̂4(‖F
i(s)‖2 + ‖min{0, α(s)}‖2 + ‖min{0, β(s)}‖2).

Therefore, Condition 4 is satisfied with δ4 :=
δ̂4
1+l

and ω4 := ω̂4.
The essence of Proposition 4.1 is the following. Every condition which implies Condition 4

is also sufficient for its counterpart for system (4.1) to hold and therefore, assuming that the
Ω-property is additionally satisfied, guarantees that the Newton-type methods described in the
Introduction applied to (4.1) converge locally quadratically to a solution; see Theorem 2.1. In
the next section we specify Condition 4 for problem (1.3) with Ω defined according to (1.4). In
sections 6–8, we present conditions implying Condition 4 for special problem classes.

5. Individual error bounds for active pieces in case of complementarity systems.

In this section, we analyze Condition 4 above for the case when the constrained equation arises
from the complementarity system (1.1). As already mentioned, in this setting F defined in (1.3)
is a PC1-function, and the Newtonian methods employ G with G(s) ∈ {JF i(s) | i ∈ A(s)},
s ∈ R

n. Let us define the index sets related to “activity” of the selection functions at z∗:

Ic := Ic(z
∗) := {i ∈ {1, . . . , r} | 0 = ci(z

∗) < di(z
∗)},

Id := Id(z
∗) := {i ∈ {1, . . . , r} | 0 = di(z

∗) < ci(z
∗)},

I0 := I0(z
∗) := {i ∈ {1, . . . , r} | 0 = ci(z

∗) = di(z
∗)}.

Obviously, these index sets are a partition of the set {1, . . . , r}, i.e., they are pairwise disjoint
and their union is the set {1, . . . , r}. It can be easily seen that a selection function F i is active
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at z∗ (i.e., i ∈ A(z∗)) if and only if there is a partition (I1, I2) of I0 such that F i has, after
some row permutations, the same structure as the function F I1,I2 defined by

(5.1) F I1,I2(z) :=





a(z)
cIc∪I1(z)
dId∪I2(z)



 .

We define the set of all zeros of F I1,I2 belonging to Ω by ZI1,I2 , i.e.,

ZI1,I2 = {z ∈ R
n | F I1,I2(z) = 0, b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0}.

Condition 5 below was already considered in [20] and is equivalent to Condition 4 for problem
(1.3) with Ω given by (1.4).

Condition 5 (Piecewise error bound). There exist δ5 > 0 and ω5 > 0 such that

dist[s, ZI1,I2 ] ≤ ω5 (‖a(s)‖+ ‖cIc∪I1(s)‖+ ‖dId∪I2(s)‖+ ‖min{0, b(s)}‖
+ ‖min{0, cId∪I2(s)}‖+ ‖min{0, dIc∪I1(s)}‖)

holds for all partitions (I1, I2) of I0 and for all s ∈ Bδ5(z
∗).

In other words, Condition 5 requires that, for all partitions (I1, I2) of I0, the local error
bound condition is satisfied at z∗ for the following system:

(5.2)
a(z) = 0, cIc∪I1(z) = 0, dId∪I2(z) = 0,
b(z) ≥ 0, cId∪I2(z) ≥ 0, dIc∪I1(z) ≥ 0.

The following theorem is an application of Theorem 3.8 to problem (1.3). Recall that the
definition of Ω by (1.4) implies the Ω-property for system (1.3); thus, this property need not be
required explicitly in the following theorem.

Theorem 5.1. Let F and Ω be given by (1.3) and (1.4). If Condition 5 is satisfied, then

Assumptions 1–4 hold.

As is explained in [20], if, for each partition (I1, I2) of I0, some constraint qualification
implying the local error bound condition for (5.2) is satisfied at z∗, then Condition 5 holds. For
example, if MFCQ or RCRCQ holds at z∗ for system (5.2) for each partition (I1, I2) of I0, then
Condition 5 is valid. In [20], it is actually stated that Condition 5 implies Condition 1 for system
(1.3) and so Assumption 2. However, the relation between Condition 5 and Assumption 3 was
not analyzed in [20].

By Theorems 2.1 and 5.1 we know that the LP-Newton method as well as the constrained
Levenberg–Marquardt method converge locally quadratically to a solution of (1.3) if Condition 5
is satisfied. It follows from the last section that the local quadratic convergence is preserved if
Condition 5 (which is Condition 4 for system (1.3)) holds and one of those methods is applied
to the following reformulation with slack variables:

F̂ (z, u, v, w) :=









a(z)
min{c(z), d(z)}

b(z)− u
c(z)− v
d(z)− w









= 0 s.t. (z, u, v, w) ∈ Ω̂

with Ω̂ := R
n × R

q
+ × R

2r
+ . Moreover, if we replace problem (1.3) by

(5.3) F̃ (z, u, v, w) :=









a(z)
min{v, w}
b(z)− u
c(z)− v
d(z)− w









= 0 s.t. (z, u, v, w) ∈ Ω̂,
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we find that the counterpart of Condition 4 for problem (5.3) is equivalent to Condition 4.
This follows easily from Proposition 4.1 and the fact that, for any (z, v, w) ∈ R

n ×R
2r and any

i ∈ {1, . . . , r}, we have

|min{ci(z), di(z)}| ≤ |ci(z)− vi|+ |di(z)− wi|+ |min{vi, wi}|

and
|min{vi, wi}| ≤ |ci(z)− vi|+ |di(z)− wi|+ |min{ci(z), di(z)}|.

Thus, the LP-Newton method and the constrained Levenberg–Marquardt method applied to
system (5.3) exhibit local quadratic convergence if Condition 4 is satisfied.

6. KKT systems of optimization or variational problems. Consider the problem of
solving the KKT system

(6.1) Θ(x) + Jg(x)⊤λ = 0, λ ≥ 0, g(x) ≤ 0, λ⊤g(x) = 0,

where Θ : Rn → R
n is differentiable and has a locally Lipschitz-continuous derivative, and g :

R
n → R

m is twice differentiable and has locally Lipschitz-continuous second-order derivatives.
Equality constraints can easily be incorporated; we do not consider them here in order to
simplify the presentation. For origins of problems with the primal-dual structure like (6.1), see
[10, Chapter 1] and [21, Chapter 1]. Let us define the function Ψ : Rn × R

m → R
n by

Ψ(x, λ) := Θ(x) + Jg(x)⊤λ.

Moreover, for a given solution (x∗, λ∗) ∈ R
n×R

m of the KKT system (6.1), we define the index
sets

A := {i ∈ {1, . . . , m} | gi(x
∗) = 0}, N := {i ∈ {1, . . . , m} | gi(x

∗) < 0},
A+ := {i ∈ A | λ∗

i > 0}, A0 := {i ∈ A | λ∗
i = 0}.

The set A consists of the indices of those constraints being active at x∗. The sets A and N
partition the set {1, . . . , m}. The critical cone of the system (6.1) at x∗ is

C(x∗) := {ξ ∈ R
n | JgA(x

∗)ξ ≤ 0, Θ(x∗)T ξ = 0}.

For x∗ fixed and any choice of λ∗ such that (x∗, λ∗) satisfies (6.1) it holds that

(6.2) C(x∗) = {ξ ∈ R
n | JgA+

(x∗)ξ = 0, JgA0
(x∗)ξ ≤ 0},

see, e.g., [21, p. 32].
Local quadratic convergence of the LP-Newton method applied to an appropriate reformu-

lation of the KKT system (6.1) is established in [7, Corollary 6] (thus, the same also holds for
the constrained Levenberg–Marquardt method; see [6]). The only assumption required in this
result is the following second-order condition (SOC):

(6.3) ξ⊤JxΨ(x∗, λ∗)ξ 6= 0 for all ξ ∈ C(x∗) \ {0},

where Jx denotes the partial Jacobian with respect to the variable x. We next show that
quadratic convergence is in fact guaranteed under the noncriticality of the dual part λ∗ of the
solution (x∗, λ∗) of (6.1). Noncriticality is a weaker assumption than SOC (6.3).

We note that the result on local quadratic convergence under noncriticality can also be
derived using [7, Theorem 5] and the local primal-dual error bound which is known to be
implied for KKT systems by noncriticality (see, e.g., [21, Proposition 1.43]). Here, we give a
different argument which is, in a sense, more direct: we demonstrate that Condition 5 implying
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the whole set of Assumptions 1–4 holds under noncriticality of the Lagrange multiplier. Observe
that the error bound itself is an immediate consequence of Proposition 6.1 below and of [20,
Lemma 1].

In the terminology of [21, Definition 1.41] (see also [19, 15]), a multiplier λ∗ associated
to a primal solution x∗ of the KKT system (6.1), is called noncritical if there exists no pair
(ξ, η) ∈ R

n × R
m, with ξ 6= 0, satisfying

(6.4)

JxΨ(x∗, λ∗)ξ + Jg(x∗)⊤η = 0,
JgA+

(x∗)ξ = 0,
ηi ≥ 0, Jgi(x

∗)ξ ≤ 0, ηiJgi(x
∗)ξ = 0, i ∈ A0,

ηN = 0.

It can be easily shown that if SOC (6.3) holds, then λ∗ is automatically noncritical; see [19, 15,
21] for details. Also, it should be emphasized that usually, the class of noncritical multipliers is
much wider than the class of multipliers satisfying SOC.

To start, we write (6.1) in the form of (1.1) with p := n, q := 0, r := m, and

z := (x, λ) ∈ R
n+m, a(z) := Ψ(x, λ), c(z) := −g(x), d(z) := λ.

In section 5, we partitioned the set {1, . . . , r} into Ic, Id, and I0. Here, for a fixed solution
z∗ = (x∗, λ∗), these sets are Ic = A+, Id = N , I0 = A0. Therefore, Condition 5 in the context
of KKT systems means that there exist δ5 > 0 and ω5 > 0 such that

dist[s, ZI1, I2 ] ≤ ω5(‖Ψ(x, λ)‖+ ‖gA+∪I1(x)‖+ ‖λN∪I2‖

+‖min{0, −gN∪I2(x)}‖+ ‖min{0, λA+∪I1}‖)(6.5)

holds for all partitions (I1, I2) of A0 and for all s = (x, λ) ∈ Bδ5(z
∗), where by ZI1, I2 we denote

the solution set of the “branch” system

(6.6)
Ψ(x, λ) = 0,
gA+∪I1(x) = 0, λN∪I2 = 0,
gN∪I2(x) ≤ 0, λA+∪I1 ≥ 0.

Proposition 6.1. Let z∗ = (x∗, λ∗) be a solution of the KKT system (6.1), and let the

multiplier λ∗ be noncritical. Then, there exist δ5 > 0 and ω5 > 0 such that the inequality

‖x− x∗‖+ dist[λ,MI1,I2(x
∗, λ∗)] ≤ ω5(‖Ψ(x, λ)‖+ ‖gA+∪I1(x)‖+ ‖λN∪I2‖

+‖min{0,−gI2(x)}‖+ ‖min{0, λI1}‖)(6.7)

holds for all partitions (I1, I2) of A0 and all (x, λ) ∈ Bδ5(z
∗), where MI1, I2(x

∗, λ∗) is the

solution set of the system (6.6) with respect to λ, for x = x∗.
Proof. Since the number of different partitions of A0 is finite, it is sufficient to prove the

needed property for an arbitrary but fixed partition (I1, I2).
For any (x, λ) ∈ R

n×R
m, let ρI1, I2(x, λ) stand for the expression in brackets on the right-

hand side of (6.7). We first prove the primal estimate, i.e., the existence of ω5 > 0 such that

(6.8) ‖x− x∗‖ ≤ ω5ρI1, I2(x, λ)

holds for (x, λ) close enough to (x∗, λ∗). We argue by contradiction. Suppose that the assertion
above is not true, which means the existence of a sequence {(xk, λk)} ⊂ R

n × R
m convergent

to (x∗, λ∗), with xk 6= x∗ for all k, and such that

(6.9) ρI1, I2(x
k, λk) = o(‖xk − x∗‖)
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as k → ∞. By the definition of ρI1, I2(x, λ), the latter immediately implies

JgA+∪I1(x
∗)(xk − x∗) = gA+∪I1(x

k) + o(‖xk − x∗‖),(6.10)

λk
N∪I2 = o(‖xk − x∗‖)(6.11)

as k → ∞. Furthermore, since the number of different partitions of I1 and I2 is finite, passing
onto a subsequence, if necessary, we can assume (without loss of generality) that there exist a
partition (I1

1 , I
2
1 ) of I1, and a partition (I1

2 , I
2
2 ) of I2, such that

gI1
2
(xk) ≤ 0, gI2

2
(xk) > 0,(6.12)

λk
I1
1

≥ 0, λk
I2
1

< 0(6.13)

for all k. Then, according to the definition of ρI1,I2(x, λ) and (6.9),

− gI2
2
(xk) = min{0, −gI2

2
(xk)} = o(‖xk − x∗‖),(6.14)

λk
I2
1

= min{0, λk
I2
1

} = o(‖xk − x∗‖)(6.15)

follow for k → ∞. Moreover, employing (6.9) again, we derive

0 = Ψ(xk, λk) + o(‖xk − x∗‖)

= JxΨ(x∗, λ∗)(xk − x∗) + Jg(x∗)⊤(λk − λ∗) + o(‖xk − x∗‖)

= JxΨ(x∗, λ∗)(xk − x∗) + JgA+
(x∗)⊤(λk − λ∗)A+

+ JgI1
1
(x∗)⊤λk

I1
1

+ o(‖xk − x∗‖),

where the third equality is by (6.11) and (6.15). Taking into account the first inequality in
(6.13), we then conclude that

(6.16) −JgA+
(x∗)⊤R|A+| − JgI1

1
(x∗)⊤R

|I1
1 |

+ ∋ JxΨ(x∗, λ∗)(xk − x∗) + o(‖xk − x∗‖)

as k → ∞. Passing onto a further subsequence, if necessary, we can assume that {(xk −
x∗)/‖xk −x∗‖} converges to some ξ ∈ R

n, ‖ξ‖ = 1. Since the set on the left-hand side of (6.16)
is a closed cone (as a sum of linear subspaces and a polyhedral cone), dividing the right-hand
side of this expression by ‖xk − x∗‖ and passing onto the limit as k → ∞, we then obtain the
inclusion

JxΨ(x∗, λ∗)ξ ∈ −JgA+
(x∗)⊤R|A+| − JgI1

1
(x∗)⊤R

|I1
1 |

+ .

This means the existence of η ∈ R
m such that

(6.17)
JxΨ(x∗, λ∗)ξ + Jg(x∗)⊤η = 0,
ηI1

1
≥ 0, ηN∪I2

1
∪I2 = 0.

Furthermore, by similar manipulations, from (6.10), the first inequality in (6.12), and (6.14),
we derive that

(6.18) JgA+∪I1∪I2
2
(x∗)ξ = 0, JgI1

2
(x∗)ξ ≤ 0.

Combining (6.17) with (6.18) evidently yields that (ξ, η) is a solution of the system (6.4), which
contradicts the assumption that λ∗ is a noncritical multiplier. This shows that (6.8) holds for
all (x, λ) close to (x∗, λ∗) with some ω5 > 0.

To establish the remaining dual estimate, i.e.,

dist[λ, MI1, I2(x
∗, λ∗)] ≤ ω5ρI1, I2(x, λ)
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for (x, λ) close enough to (x∗, λ∗) (perhaps with a larger ω5), observe that the setMI1, I2(x
∗, λ∗)

is given by linear constraints. The needed result is obtained by Hoffman’s Lemma (e.g., [3,
Theorem 2.200]), and by the primal estimate (6.8).

Since (6.7) evidently implies (6.5), we conclude by Proposition 6.1 that noncriticality of the
multiplier λ∗ implies Condition 5. Therefore, according to Theorems 2.1 and 5.1, the methods
considered in this paper converge quadratically under the assumption that the starting point is
close enough to a solution (x∗, λ∗) of the KKT system (6.1) with λ∗ being a noncritical multi-
plier. This distinguishes these methods from, say, the stabilized Newton method for variational
problems and the stabilized sequential quadratic programming for optimization, for which SOC
(6.3) cannot be replaced by noncriticality when there are active inequality constraints (see [19]
and [21, Section 7.2]).

7. KKT systems of generalized Nash equilibrium problems. The aim of this section
is to find conditions which are sufficient for Condition 5 to hold if the complementarity system
(1.1) arises from a KKT system of a generalized Nash equilibrium problem (GNEP for short).
In particular, we will recover a result from [20] which says that the full row rank of a certain
matrix implies Condition 5. Moreover, this result is extended by showing that Condition 5 is
even implied by the constant rank of certain matrices.

We consider a GNEP with N players ν = 1, . . . , N where the constraints of the players
are described by inequalities. By nν the number of variables of player ν is denoted and by
n :=

∑N
ν=1 nν the number of all variables. For the sake of simplicity, a GNEP with shared

constraints only is considered so that the optimization problem of the ν-th player is given by

(7.1) θν(x
ν , x−ν) → min

xν
s.t. g(xν , x−ν) ≤ 0.

It is assumed that the functions θ1, . . . , θN : Rn → R and g : Rn → R
m are twice differentiable

and have locally Lipschitz-continuous second-order derivatives. The notation (xν , x−ν) for a
strategy vector x ∈ R

n is typically used in the context of GNEPs to emphasize the variables
xν of the ν-th player and the variables x−ν of all the rival players. For more information on
GNEPs see [9, 13] and references therein. The KKT system associated with the ν-th player’s
optimization problem (7.1) is given by

(Jxνθν(x))
⊤ + (Jxνg(x))⊤λν = 0, λν ≥ 0, g(x) ≤ 0, (λν)⊤g(x) = 0

with some multiplier vector λν ∈ R
m. By concatenating the KKT conditions of all players we

obtain the KKT system of the GNEP:

(7.2) Θ(x) +B(x)λ = 0, λ ≥ 0, g(x) ≤ 0, (λν)⊤g(x) = 0, ν = 1, . . . , N,

where

λ :=






λ1

...
λN




 , Θ(x) :=






(Jx1θ1(x))
⊤

...
(JxN θN (x))⊤




 ,

and

B(x) :=









Jx1g(x) 0 · · · 0

0 Jx2g(x)
. . .

...
...

. . .
. . . 0

0 · · · 0 JxN g(x)









⊤

.

In order to shorten the notation, we use from now on block(·) to denote a block diagonal matrix.
Therefore, we can write for instance

B(x) = block
(

(Jxνg(x))⊤
)N

ν=1
.
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By z∗ = (x∗, λ∗), an arbitrary but fixed solution of (7.2) is denoted. Let the index sets N and
A be defined as in section 6, and let us set

A+ := {i ∈ A | ∃ν ∈ {1, . . . , N} : λ∗,ν
i > 0}, A0 := A \ A+.

The sets A+ and A0 are a partition of A. An index i ∈ {1, . . . ,m} belongs to A+ if and only
if gi is active at x∗ and the corresponding multiplier λ∗,ν

i of at least one player ν is strictly
positive. The set A0 consists of the indices of those active constraints where the corresponding
multipliers of all players are equal to zero. Moreover, for every ν ∈ {1, . . . , N}, we set

Aν
+ := {i ∈ A | λ∗,ν

i > 0}, Aν
0 := {i ∈ A | λ∗,ν

i = 0}.

Obviously, for any ν, the sets Aν
+ and Aν

0 partition the set A.

System (7.2) can be written as problem (1.1) with p := n, q := 0, r := Nm, and

z := (x, λ), a(z) := Θ(x) +B(x)λ, c(z) := (−g(x))Nν=1, d(z) := λ.

In section 5, depending on the fixed solution z∗, we partitioned the set {1, . . . , r} into Ic, Id,
and I0. By means of these index sets we stated Condition 5 for problem (1.1). In order to
formulate Condition 5 for system (7.2), we now partition, for each player ν, the set {1, . . . ,m}
into Iν

c = Aν
+, I

ν
d = N , and Iν

0 = Aν
0 .

It is not difficult to see that Condition 5 is satisfied in the context of GNEPs if and only
if there are δ5 > 0 and ω5 > 0 such that the following inequality is satisfied for all partitions
(Iν

1 , I
ν
2 ) of the set Aν

0 (ν = 1, . . . , N) and all s = (x, λ) ∈ Bδ5(x
∗, λ∗):

(7.3)

dist[s, Z{(Iν
1
,Iν

2
)}N

ν=1
] ≤ ω5(‖Θ(x) +B(x)λ‖+ ‖gA+∪I1(x)‖

+ ‖min{0,−gN∪I2(x)}‖

+
N∑

ν=1

(

‖λν
N∪Iν

2
‖+ ‖min{0, λν

Aν
+∪Iν

1
}‖
)

),

where I1 and I2 are defined by

(7.4) I1 :=

(
N⋃

ν=1

Iν
1

)

\ A+ and I2 :=

(
N⋃

ν=1

Iν
2

)

\ (A+ ∪ I1),

respectively. By Z{(Iν
1
,Iν

2
)}N

ν=1
the solution set of the system

(7.5)
Θ(x) +B(x)λ = 0, gA+∪I1(x) = 0, gN∪I2(x) ≤ 0,
λν
N∪Iν

2
= 0, λν

Aν
+∪Iν

1
≥ 0, ν = 1, . . . , N

is indicated. Note that Z{(Iν
1
,Iν

2
)}N

ν=1
is nonempty since z∗ belongs to it. In other words,

(7.3) requires that the system (7.5) of equations and inequalities satisfies the local error bound
condition at z∗ = (x∗, λ∗). In the rest of this section we look for sufficient conditions for these
error bound conditions and therefore for Condition 5 to hold. At first it turns out that the full
row rank of a certain matrix implies the validity of Condition 5. This result was already proved
in [20, Theorem 1] for the case of two players.

Condition 6. The following matrix has full row rank:




Jx (Θ(x∗) +B(x∗)λ∗) block

(

(JxνgAν
+
(x∗))⊤

)N

ν=1

JgA(x
∗) 0



 ,
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where JxνgAν
+
(x∗) consists of those rows of Jxνg(x∗) whose indices belong to Aν

+.
Theorem 7.1. Let Condition 6 be satisfied. Then, Condition 5 holds at z∗. We omit the

proof of Theorem 7.1 because it is an immediate consequence of the next result which shows
that even the constant rank of certain matrices in a neighborhood of (x∗, λ∗) is sufficient for
Condition 5 to hold.

Condition 7. There exists δ7 > 0 such that, for each tuple (K,K1, . . . ,KN ) of subsets
K ⊆ A0 and Kν ⊆ Aν

0 (ν = 1, . . . , N), the matrices




Jx (Θ(x) +B(x)λ) block

(

(JxνgAν
+∪Kν (x))⊤

)N

ν=1

JgA+∪K(x) 0





have the same rank for all (x, λ) ∈ Bδ7(x
∗, λ∗).

Note that Condition 7 is implied by Condition 6. In fact, Condition 6 implies that the
matrix from Condition 7 has full row rank at z∗ for every (N + 1)-tuple (K,K1, . . . ,KN ) of
subsets K ⊆ A0 and Kν ⊆ Aν

0 (ν = 1, . . . , N). Due to the continuity of all functions involved
in the matrices from Condition 7, the rows stay linearly independent for all points (x, λ) in a
sufficiently small neighborhood of (x∗, λ∗).

Theorem 7.2. Let Condition 7 be satisfied. Then, Condition 5 holds at z∗.
Proof. Let, for each player ν = 1, . . . , N , a partition (Iν

1 , I
ν
2 ) of A

ν
0 be arbitrarily chosen and

let I1 and I2 be defined according to (7.4). We are going to show that the system (7.5) satisfies
RCRCQ at z∗; see section 1 for details on RCRCQ. For our system (7.5), RCRCQ requires
that, for each (N + 1)-tuple (L,L1, . . . ,LN ) of index sets L ⊆ I2 and Lν ⊆ Iν

1 (ν = 1, . . . , N),
the matrices

(7.6)








Jx (Θ(x) +B(x)λ) block
(
(JxνgN∪Iν

2
∪Lν (x))⊤

)N

ν=1
C(x)

JgA+∪K(x) 0 0

0 block
(

I|N∪Iν
2
∪Lν |

)N

ν=1
0








have the same rank for all (x, λ) in a sufficiently small neighborhood of (x∗, λ∗), where the index
sets K,K1, . . . ,KN are defined by K := I1 ∪L and Kν := Iν

1 \ Lν , and the matrix C(x) is given

by C(x) := block
(

(JxνgAν
+∪Kν (x))⊤

)N

ν=1
.

Generally, if the rank of some matrix A1 ∈ R
ρ×σ equals k ∈ N, then the rank of the matrix

A2 :=

(

A1 α

0 1

)

∈ R
(ρ+1)×(σ+1)

equals k + 1 for any vector α ∈ R
ρ, because the last column of A2 is obviously linearly inde-

pendent of the other columns. Therefore, the maximal number of linear independent columns
is increased by one. Thus, the rank of A2 is also increased by one compared to the rank of A1.
With these observations we obtain that the rank of the matrix in (7.6) equals the rank of the
matrix

(7.7)

(
Jx (Θ(x) +B(x)λ) C(x)

JgA+∪K(x) 0

)

plus
∑N

ν=1 |N ∪ Iν
2 ∪ Lν |. So, in particular, the matrices in (7.6) have the same rank for all

(x, λ) near (x∗, λ∗) if and only if the matrices in (7.7) have this property. The matrices in (7.7)
actually have the same rank for all (x, λ) ∈ Bδ7(x

∗, λ∗) due to Condition 7. Therefore, the
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RCRCQ is satisfied for system (7.5) at z∗. Hence, the local error bound condition (7.3) also
holds for this system since RCRCQ implies the local error bound condition; see section 1 for
details. Since the partitions (Iν

1 , I
ν
2 ) of A

ν
0 (ν = 1, . . . , N) were arbitrarily chosen, Condition 5

is satisfied.
Let us summarize the results of this section. We stated Condition 6 and Condition 7 which

were shown to be sufficient for Condition 5 to hold. Condition 7 is implied by Condition 6.
Taking into account Theorems 2.1 and 5.1, the LP-Newton method as well as the constrained
Levenberg–Marquardt method, which we recalled in the Introduction, converge locally with a
Q-quadratic rate to a solution of (7.2) if Condition 7 is satisfied.

It can be easily shown that Condition 5 implies [8, Assumption 2]. Condition 7 is in
particular satisfied if the objectives θν of the players are quadratic functions and the constraint
functions gi are affine. Thus, particularly in that case Condition 5 holds. From this result
[8, Theorem 8] can be recovered. Moreover, in our setting the full row rank of the matrix in
Condition 6 implies the full row rank assumption in [8, Theorem 9] where strict complementarity
is additionally required. Hence, Theorem 7.1 improves [8, Theorem 9] since we do not require
strict complementarity.

8. An error bound result for another reformulation of the KKT system of a

GNEP. We still consider a GNEP with N players where the optimization problem of the
ν-th player is given by (7.1). However, in this section the following smooth and constrained
reformulation of the KKT system (7.2) is considered:

(8.1) H(z) := H(x, λ, w) :=










Θ(x) +B(x)λ
g(x) + w
w ◦ λ1

...
w ◦ λN










= 0 s.t. z = (x, λ, w) ∈ Ω,

where w ◦λν denotes the Hadamard product of the vectors w ∈ R
m and λν ∈ R

m, i.e., w ◦λν =
(wiλ

ν
i )

m
i=1, and Ω is defined by Ω := R

n×R
Nm
+ ×R

m
+ . A reformulation similar to (8.1) was used

in [5]. In contrast to (8.1), different slack variables for repeated constraints were introduced
there. Throughout this section, z∗ = (x∗, λ∗, w∗) denotes again an arbitrary but fixed solution
of (8.1). In [5], a hybrid algorithm for the solution of (8.1) is described which, under appropriate
assumptions, is both globally and locally quadratically convergent. The local part of this hybrid
method is the LP-Newton method from [7] which we recalled in section 1. The advantage of
the smooth reformulation (8.1) of the KKT system is that Assumption 4 is satisfied at z∗ and
Assumption 3 holds if Assumption 2 is valid. This follows from [7, Corollary 1]. Therefore,
Assumption 2 is the only assumption which is left to guarantee. Assumption 2 for system (8.1)
at z∗ says that there are δ > 0 and ω > 0 such that

dist[s, Z] ≤ ω‖H(s)‖

holds for all s = (x, λ, w) ∈ Bδ(z
∗)∩Ω. Of course, Z denotes the solution set of the constrained

system (8.1).
In [5], a condition implying Assumption 2 is provided. However, this condition is in general

even stronger than Condition 6 from the last section. The aim of this section is to present
a weaker condition which is related to Condition 5 and which is sufficient for Assumption 2
to hold. Let the index sets N ,A,A+,A0,A

ν
0 , and Aν

+ depending on the fixed solution z∗ be
defined as in section 7.

Condition 8. The set A0 is empty, i.e., for each active constraint the multiplier of at least
one player is strictly positive.
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Assuming that Condition 8 is satisfied, we will show that Assumption 2 for system (8.1)
is equivalent to Assumption 2 for the constrained system Hmin(z) = 0 s.t. z ∈ Ω with Hmin

defined by

Hmin(z) := Hmin(x, λ, w) :=










Θ(x) +B(x)λ
g(x) + w

min{w, λ1}
...

min{w, λN}










.

Obviously, (8.1) and Hmin(z) = 0 s.t. z ∈ Ω have the same solution set Z.
Proposition 8.1. Let Condition 8 be satisfied. Then, the following assertions are equiva-

lent.

(i) There exist δ > 0 and ω > 0 such that

dist[s, Z] ≤ ω‖H(s)‖

holds for all s = (x, λ, w) ∈ Bδ(z
∗) ∩ Ω.

(ii) There exist δ̃ > 0 and ω̃ > 0 such that

dist[s, Z] ≤ ω̃‖Hmin(s)‖

holds for all s = (x, λ, w) ∈ Bδ̃(z
∗) ∩ Ω.

Proof. We show that constants ε > 0, C1 > 0, and C2 > 0 exist such that

(8.2) C1‖H(s)‖∞ ≤ ‖Hmin(s)‖∞ ≤ C2‖H(s)‖∞

holds for all s ∈ Bε(z
∗) ∩ Ω. Obviously, this suffices to prove the proposition. We first set

µ :=
1

2
min

{
{w∗

i | i ∈ N} ∪
{
λ∗,ν
i | i ∈ Aν

+, ν ∈ {1, . . . , N}
}}

,

µ̂ := 2max
{
{w∗

i | i ∈ N} ∪
{
λ∗,ν
i | i ∈ Aν

+, ν ∈ {1, . . . , N}
}}

,

and choose some ε > 0 which is small enough such that the following relations hold for all
s = (x, λ, w) ∈ Bε(z

∗) ∩ Ω:

µ̂ ≥ wi ≥ µ > 0, for all i ∈ N ,
wi ≤ µ, for all i ∈ A,
µ̂ ≥ λν

i ≥ µ > 0, for all i ∈ Aν
+ and all ν ∈ {1, . . . , N},

λν
i ≤ µ, for all i ∈ Aν

0 ∪ N and all ν ∈ {1, . . . , N}.

Now, let s = (x, λ, w) ∈ Bε(z
∗)∩Ω be arbitrarily chosen. At first, we prove the right inequality

in (8.2) by considering the components of Hmin(s). Obviously,

(8.3) |Θi(x) + (B(x)λ)i| ≤ ‖H(s)‖∞

holds for all i = 1, . . . , n and

(8.4) |gi(x) + wi| ≤ ‖H(s)‖∞

is valid for all i = 1, . . . ,m. Let some i ∈ N and ν ∈ {1, . . . , N} be given. Taking into account
the choice of ε, we have

(8.5) |min{wi, λ
ν
i }| = |λν

i | =
1

|wi|
|wiλ

ν
i | ≤

1

µ
‖H(s)‖∞.
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Moreover, for i ∈ A we know from Condition 8 and the choice of ε that there is ν(i) such that

λ
ν(i)
i ≥ µ > 0. Therefore, due to w, λν ∈ R

m
+ ,

(8.6) |min{wi, λ
ν
i }| = min{wi, λ

ν
i } ≤ |wi| =

1

|λ
ν(i)
i |

|wiλ
ν(i)
i | ≤

1

µ
‖H(s)‖∞

holds for i ∈ A and all ν ∈ {1, . . . , N}. By (8.3)–(8.6), we obtain

(8.7) ‖Hmin(s)‖∞ ≤ max

{

1,
1

µ

}

‖H(s)‖∞.

Next, we show that the left inequality of (8.2) is valid. First, note that

(8.8) |Θi(x) + (B(x)λ)i| ≤ ‖Hmin(s)‖∞

holds for i = 1, . . . , n and that

(8.9) |gi(x) + wi| ≤ ‖Hmin(s)‖∞

is valid for i = 1, . . . ,m. Taking into account the choice of ε, we obtain

(8.10) |wiλ
ν
i | ≤ µ̂|min{wi, λ

ν
i }| ≤ µ̂‖Hmin(s)‖∞.

for i ∈ {1, . . . ,m} and ν ∈ {1, . . . , N}. Combining (8.8)–(8.10) yields

(8.11) ‖H(s)‖∞ ≤ max{1, µ̂}‖Hmin(s)‖∞.

Since s was arbitrarily chosen, (8.7) and (8.11) show that (8.2) holds with C1 := min{1, 1/µ̂}
and C2 := max{1, 1/µ}. This completes the proof.

Proposition 8.1 tells us that, if Condition 8 holds, any condition implying item (ii) of
this proposition also yields that Assumption 2 is satisfied for system (8.1). This significantly
generalizes Theorem 2 in [4], at least for GNEPs with shared constraints. Taking into account
the results of the last sections, we know that item (ii) of Proposition 8.1 is implied by Condition 5
or its equivalent formulation in the context of GNEPs from the last section. In fact, we showed
that Condition 5 does not only imply Assumption 2 but also the counterpart of Assumption 2
for the constrained system with slack variables; see the discussion at the end of section 5.
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