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Abstract We present a local convergence analysis of the method of multipliers for
equality-constrained variational problems (in the special case of optimization, also
called the augmented Lagrangian method) under the sole assumption that the dual
starting point is close to a noncritical Lagrange multiplier (which is weaker than
second-order sufficiency). Local Q-superlinear convergence is established under the
appropriate control of the penalty parameter values. For optimization problems, we
demonstrate in addition local Q-linear convergence for sufficiently large fixed penalty
parameters. Both exact and inexact versions of the method are considered. Contribu-
tions with respect to previous state-of-the-art analyses for equality-constrained prob-
lems consist in the extension to the variational setting, in using the weaker noncriticality
assumption instead of the usual second-order sufficient optimality condition (SOSC),
and in relaxing the smoothness requirements on the problem data. In the context of
optimization problems, this gives the first local convergence results for the augmented
Lagrangian method under the assumptions that do not include any constraint qual-
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112 A. F. Izmailov et al.

ifications and are weaker than the SOSC. We also show that the analysis under the
noncriticality assumption cannot be extended to the case with inequality constraints,
unless the strict complementarity condition is added (this, however, still gives a new
result).

Keywords Variational problem · Karush–Kuhn–Tucker system · Augmented
Lagrangian · Method of multipliers · Noncritical Lagrange multiplier · Superlinear
convergence · Generalized Jacobian

1 Introduction

In this paper we are concerned with local convergence and rate of convergence prop-
erties of the augmented Lagrangian (multiplier) methods for optimization, and their
extensions to the more general variational context. Augmented Lagrangian methods
for optimization date back to [13] and [30]; some other key references are [2,5,7,8].
Methods of this class are the basis for some successful software such as LANCELOT
[28] and ALGENCAN [1] (the latter still under continuous development). Their global
and local convergence properties remain a subject of active research; some significant
theoretical advances rely on novel techniques and are therefore rather recent; see [2–
4,11,15,25], discussions therein, and some comments in the sequel.

Given the mappings F : IRn �→ IRn and h : IRn �→ IRl , consider the variational
problem

x ∈ D, 〈F(x), ξ 〉 ≥ 0 ∀ ξ ∈ TD(x), (1)

where

D = {x ∈ IRn | h(x) = 0},

and TD(x) is the contingent (tangent in the sense of Bouligand) cone to the feasible set
D at x ∈ D (see, e.g., [9,37]). Throughout the paper we assume that h is differentiable
and that F and h′ are Lipschitz-continuous near the point of eventual interest. In
particular, we avoid the differentiability of F and the twice differentiability of h. We
point out that this gives a setting which is rather natural for the multiplier methods,
since the iterative subproblems of those methods do not involve these derivatives of
the problem data (nor any substitutes or approximations of these derivatives). Another
consideration is that problems satisfying our relaxed smoothness hypotheses emerge in
many applications, for example: stochastic programming and optimal control (the so-
called extended linear-quadratic problems [32–34]), semi-infinite programming and
primal decomposition procedures (see [27,31] and references therein), smooth and
lifted reformulations of complementarity constraints [18,19,38], etc.

Associated to (1) is solving the primal-dual system

F(x) + (h′(x))Tλ = 0, h(x) = 0, (2)

in the variables (x, λ) ∈ IRn × IRl . In the context of multiplier methods we naturally
assume this system to have solutions, which is guaranteed under appropriate constraint
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Local convergence of the method of multipliers under noncriticality 113

qualifications (CQs) [37], but may also be the case regardless of any CQs. No CQs
will be assumed in our developments. Any λ ∈ IRl satisfying (2) for some x = x̄ will
be referred to as a Lagrange multiplier associated with the primal solution x̄ ; the set
of all such multipliers will be denoted by M(x̄).

The problem setting (1) covers, in particular, the necessary optimality conditions
for equality-constrained optimization problems

minimize f (x)

subject to h(x) = 0,
(3)

where f : IRn �→ IR is a given function. Specifically, every local solution x̄ ∈ IRn

of the problem (3), such that f is smooth near x̄ , necessarily satisfies (1) with the
mapping F defined by

F(x) = f ′(x) (4)

for all x ∈ IRn close enough to x̄ . We start our discussion with this optimization
setting.

Define the Lagrangian L : IRn × IRl �→ IR of problem (3) by

L(x, λ) = f (x) + 〈λ, h(x)〉,

and the augmented Lagrangian Lσ : IRn × IRl �→ IR by

Lσ (x, λ) = L(x, λ) + 1

2σ
‖h(x)‖2,

where σ > 0 is the (inverse of) penalty parameter. Note that in this setting the first
equation in (2) becomes

∂L

∂x
(x, λ) = 0,

and (2) is then the standard Lagrange optimality system for the optimization problem
(3).

Given the current estimate λk ∈ IRl of Lagrange multipliers and σk > 0, an iteration
of the augmented Lagrangian method applied to (3) consists of computing the primal
iterate xk+1 by solving

minimize Lσk (x, λk)

subject to x ∈ IRn,

perhaps to approximate stationarity only, in the sense that

∥
∥
∥
∥

∂Lσk

∂x
(xk+1, λk)

∥
∥
∥
∥

≤ τk, (5)
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for some error tolerance τk ≥ 0, and then updating the multipliers by the explicit
formula

λk+1 = λk + 1

σk
h(xk+1).

In the optimization setting, the sharpest known results on local convergence of the
augmented Lagrangian method are those in [11] (for problems with twice differen-
tiable data) and in [15] (for problems with Lipschitzian first derivatives). Both these
works establish Q-(super)linear convergence (for general equality and inequality con-
straints) under the sole assumption that the multiplier estimate is close to a multiplier
satisfying an appropriate form of second-order sufficient optimality condition (SOSC).
We point out that the earlier convergence rate statements all assumed, in addition, the
linear independence CQ (and in the presence of inequality constraints, usually also
strict complementarity). Various versions of such statements can be found, e.g., in [5,
Prop. 3.2 and 2.7], [29, Thm. 17.6], [35, Thm. 6.16]. It is interesting to mention that in
the case of twice differentiable data, the so-called stabilized sequential quadratic pro-
gramming (sSQP) method, and its counterpart for variational problems, also require
second-order sufficiency only [10], with no CQs, just like the augmented Lagrangian
method. Moreover, for the special case of equality-constrained optimization, local
convergence of sSQP is established under the assumption that the Lagrange multi-
plier in question is noncritical [23], which is weaker than second-order sufficiency.
(We shall recall definitions of all the relevant notions in Sect. 2 below.) In this paper
we show that for the exact and inexact versions of the multiplier method applied to
problems with equality constraints, second-order sufficiency can also be relaxed to
the noncriticality assumption. In addition, we perform the analysis of the method of
multipliers in the more general variational setting, and relax smoothness assumptions
on the problem data.

We next state our framework of the method of multipliers for the variational setting
of the problem (1). Define the mapping G : IRn × IRl �→ IRn ,

G(x, λ) = F(x) + (h′(x))Tλ, (6)

and consider the following iterative scheme, which we shall refer to as the method of
multipliers for solving the variational problem (1). If the current primal-dual iterate
(xk, λk) ∈ IRn×IRl satisfies (2), stop. Otherwise, choose the inverse penalty parameter
σk > 0 and the error tolerance parameter τk ≥ 0, and compute the next primal-dual
iterate (xk+1, λk+1) ∈ IRn × IRl as any pair satisfying

∥
∥
∥
∥

G(xk+1, λk) + 1

σk
(h′(xk+1))Th(xk+1)

∥
∥
∥
∥

≤ τk, (7)

λk+1 = λk + 1

σk
h(xk+1). (8)

Clearly, in the optimization setting, (7) corresponds to the usual approximate sta-
tionarity condition (5) for the augmented Lagrangian Lσk (·, λk). More generally, the
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iterative scheme given by (7), (8) also makes sense: the constrained variational prob-
lem (1) is replaced by solving (approximately) a sequence of unconstrained equations,
still in the primal space. A similar variational framework for multiplier methods was
used in [3], but in the context of global convergence analysis.

The rest of the paper is organized as follows. In Sect. 2 we briefly review the abstract
iterative framework developed in [12], which is the basis for our convergence analysis.
This section also recalls some notions of generalized differentiation and the definition
of noncritical Lagrange multipliers. In Sect. 3, we establish local Q-superlinear con-
vergence of the method of multipliers for equality-constrained variational problems
under the sole assumption that the dual starting point is close to a Lagrange multiplier
which is noncritical, and provided that the inverse penalty parameter is appropriately
managed. For equality-constrained optimization problems, we also prove local Q-
linear convergence for sufficiently large fixed penalty parameters. As discussed above,
these are the first convergence and rate of convergence results for methods of the type
in consideration which employ an assumption weaker than second-order sufficiency
and do not require any CQs. The analysis under the noncriticality assumption cannot
be extended to the case when inequality constraints are present, as demonstrated in
Sect. 4. However, the assertions hold if the strict complementarity condition is added
to noncriticality. This still gives a new result: compared to [11,15] noncriticality is
used instead of second-order sufficiency (though at the price of adding strict com-
plementarity), while compared to the already cited classical results in [5,29,35] the
linear independence CQ is dispensed with and second-order sufficiency is relaxed to
noncriticality (strict complementarity is needed in both approaches). Finally, in Sect. 5
we compare the obtained results with the related local convergence theory of sSQP,
and summarize some remaining open questions. The Appendix contains lemmas con-
cerning nonsingularity of matrices of certain structure, some of independent interest,
that are used in our analysis.

Our notation is mostly standard, and would be introduced where needed. Here, we
mention that throughout the paper ‖·‖ is the Euclidean norm, and B(u, δ) is the closed
ball of radius δ > 0 centered at u ∈ IRν . The distance from a point u ∈ IRν to a set
U ⊂ IRν is defined by

dist(u, U ) = inf
v∈U

‖u − v‖.

From now on, when talking about (super)linear convergence, we mean the Q-rate
(without saying so explicitly).

2 Preliminaries

In this section, we outline the general iterative framework that would be used to
derive local convergence of the method of multipliers. We also recall some notions
of generalized differentiation, the definition of noncritical Lagrange multipliers, and
their relations with second-order sufficiency conditions.
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2.1 Noncritical Lagrange multipliers

According to [26, (6.6)], for a mapping Ψ : IRp �→ IRr which is locally Lipschitz-
continuous at u ∈ IRp, the contingent derivative of Ψ at u is the multifunction CΨ (u)

from IR p to the subsets of IRr , given by

CΨ (u)(v) = {w ∈ IRr | ∃ {tk} ⊂ IR+, {tk} → 0+ :
{(Ψ (u + tkv) − Ψ (u))/tk} → w}.

In particular, if Ψ is directionally differentiable at u in the direction v then CΨ (u)(v)

is single-valued and coincides with the directional derivative of Ψ at u in the direction
v. The B-differential of Ψ : IRp �→ IRr at u ∈ IRp is the set

∂BΨ (u) = {J ∈ IRr×p | ∃ {uk} ⊂ SF such that {uk} → u, {Ψ ′(uk)} → J },

where SΨ is the set of points at which Ψ is differentiable. Then the Clarke generalized
Jacobian (see [6]) of Ψ at u is given by

∂Ψ (u) = conv ∂BΨ (u),

where conv V stands for the convex hull of the set V . Observe that according to [26,
(6.5), (6.6), (6.16)],

∀w ∈ CΨ (u)(v) ∃ J ∈ ∂Ψ (u) such that w = Jv. (9)

Furthermore, for a mapping Ψ : IRp × IRq �→ IRr , the partial contingent derivative
(partial Clarke generalized Jacobian) of Ψ at (u, v) ∈ IRp × IRq with respect to u is
the contingent derivative ( Clarke generalized Jacobian) of the mapping Ψ (·, v) at u,
which we denote by CuΨ (u, v) ( by ∂uΨ (u, v)).

Let (x̄, λ̄) ∈ IRn×IRl be a solution of the system (2). As defined in [16], a multiplier
λ̄ ∈ M(x̄) is called noncritical if

Cx G(x̄, λ̄)(ξ) ∩ im(h′(x̄))T = ∅ ∀ ξ ∈ ker h′(x̄) \ {0}. (10)

We shall call λ̄ a strongly noncritical multiplier if

∀ J ∈ ∂x G(x̄, λ̄) it holds that Jξ /∈ im(h′(x̄))T ∀ ξ ∈ ker h′(x̄) \ {0}. (11)

From (9) it is evident that the property (11) is no weaker than noncriticality (10), and in
fact it is strictly stronger; see [16, Remark 3]. If the mappings F and h′ are differentiable
near x̄ , with their derivatives continuous at x̄ , then the above two properties become
the same, and can be stated as

∂G

∂x
(x̄, λ̄)ξ /∈ im(h′(x̄))T ∀ ξ ∈ ker h′(x̄) \ {0},
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Local convergence of the method of multipliers under noncriticality 117

which corresponds to the definition of a noncritical multiplier in [14,21]. We refer
the reader to [16,20–23] for the role this notion plays in convergence properties of
algorithms, stability, error bounds, and other issues.

Here, we emphasize that as can be easily seen, essentially observing that
im(h′(x̄))T = (ker h′(x̄))⊥, the strong noncriticality property (11) (and hence non-
criticality (10)) is implied by the second-order condition

∀ J ∈ ∂x G(x̄, λ̄) it holds that 〈Jξ, ξ 〉 > 0 ∀ ξ ∈ ker h′(x̄) \ {0}, (12)

but not vice versa. In the optimization setting, i.e., when (4) holds, the condition (12) is
the SOSC introduced in [27]. Moreover, for sufficiently smooth problem data, (12) is
just the usual SOSC for equality-constrained optimization. It should be stressed again,
however, that SOSC is much stronger than noncriticality. For example, in the case
when f and h are twice differentiable near x̄ , with their second derivatives continuous
at x̄ , noncritical multipliers, if they exist, form a relatively open and dense subset of the
multiplier set M(x̄), which is of course not the case for multipliers satisfying SOSC.

2.2 Fischer’s iterative framework

We next recall the abstract iterative framework from [12] (see also [24, Chapter 7])
for superlinear convergence in case of non-isolated solutions. This framework was
designed for generalized equations; here we present the restriction of this theory to the
usual equations, which is sufficient for our purposes. At the same time, we also make
a modification to include the linear rate of convergence in addition to superlinear.

To this end, defining the mapping Φ : IRn × IRl �→ IRn × IRl ,

Φ(u) = (G(x, λ), h(x)), (13)

where u = (x, λ), the system (2) can be written in the form

Φ(u) = 0. (14)

Note also that by (6) and (7), (8), it follows that in the exact case of τk = 0, the iterate
uk+1 = (xk+1, λk+1) of the method of multipliers satisfies the system of equations

Φσk (λ
k, u) = 0, (15)

where Φσ : IRl × (IRn × IRl) �→ IRn × IRl is the family of mappings defined by

Φσ (λ̃, u) = (G(x, λ), h(x) − σ(λ − λ̃)), (16)

with σ ≥ 0. Observe that Φσ (λ̃, ·) can be regarded as a perturbation of Φ defined
in (13). Therefore, the iteration subproblem (15) of the method of multipliers is a
perturbation of the original system (14) to be solved.
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Consider the class of methods for (14) that, given the current iterate uk ∈ IRν ,
generate the next iterate uk+1 ∈ IRν as a solution of the subproblem of the form

A(uk, u) � 0, (17)

where for any ũ ∈ IRν , the multifinction A(ũ, ·) from IRν to the subsets of IRν is some
kind of approximation of Φ around ũ. For each ũ ∈ IRν define the set

U (ũ) = {u ∈ IRν | A(ũ, u) � 0}, (18)

so that U (uk) is the solution set of the iteration subproblem (17). Of course, without
additional (extremely strong) assumptions this set in principle may contain points arbi-
trarily far from relevant solutions of the original problem (14), even for uk arbitrarily
close to those solutions. As usual in local convergence studies, such far away solutions
of subproblems must be discarded from the analysis. In other words, it must be speci-
fied which of the solutions of (17) are allowed to be the next iterate. Specifically, one
has to restrict the distance from the current iterate uk to the next one, i.e., to an element
of U (uk) that can be declared to be uk+1 (the so-called localization condition). To this
end, define

U c(ũ) = {u ∈ U (ũ) | ‖u − ũ‖ ≤ c dist(ũ, Ū )}, (19)

where c > 0 is arbitrary but fixed, and Ū is the solution set of the Eq. (14). Consider
the iterative scheme

uk+1 ∈ U c(uk), k = 0, 1, . . . . (20)

The following statement is essentially [12, Theorem 1], modified to include the case of
linear convergence in addition to superlinear. A proof can be obtained by a relatively
straightforward modification of that of [12, Theorem 1].

Theorem 1 Let a mapping Φ : IRν �→ IRν be continuous in a neighborhood of ū ∈
IRν . Let Ū be the solution set of the Eq. (14), and let ū ∈ Ū . Let A be a set-valued
mapping from IRν × IRν to the subsets of IRν . Assume that the following properties
hold with some fixed c > 0

(i) (Upper Lipschitzian behavior of solutions under canonical perturbations) There
exists � > 0 such that for r ∈ IRν , any solution u(r) ∈ IRν of the perturbed
equation

Φ(u) = r,

close enough to ū, satisfies the estimate

dist(u(r), Ū ) ≤ �‖r‖.

(ii) (Precision of approximation of Φ in subproblems) There exists ε̄ > 0 and a
function ω : IRν × IRν �→ IR+ such that for

q = � sup{ω(ũ, u) | ũ ∈ B(ū, ε̄), ‖u − ũ‖ ≤ c dist(ũ, Ū )}
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Local convergence of the method of multipliers under noncriticality 119

it holds that

q <
1

1 + c
,

and the estimate

sup{‖w‖ | w ∈ Φ(u) − A(ũ, u)} ≤ ω(ũ, u) dist(ũ, Ū )

holds for all (ũ, u) ∈ IRν × IRν satisfying ũ ∈ B(ū, ε̄) and ‖u − ũ‖ ≤ c dist(ũ, Ū ).
(iii) (Solvability of subproblems with localization condition) For any ũ ∈ IRν close

enough to ū the set U c(ũ) defined by (18), (19) is nonempty.

Then for any starting point u0 ∈ IRν close enough to ū there exists a sequence
{uk} ⊂ IRν satisfying (20); every such sequence converges to some u∗ ∈ Ū , and for
all k the following estimates are valid:

‖uk+1 − u∗‖ ≤ c�ω(uk, uk+1)

1 − q
dist(uk, Ū ) ≤ cq

1 − q
dist(uk, Ū ),

dist(uk+1, Ū ) ≤ �ω(uk, uk+1) dist(uk, Ū ) ≤ q dist(uk, Ū ).

In particular, the rates of convergence of {uk} to u∗ and of {dist(uk, Ū )} to zero are
linear. Moreover, they are superlinear provided that ω(uk, uk+1) → 0 as k → ∞. In
addition, for any ε > 0 it holds that ‖u∗ − ū‖ < ε provided u0 is close enough to ū.

To use the above theorem for the analysis of the multiplier method, we set ν = n+l
and define Φ by (6), (13). Furthermore, suppose that the inverse penalty parameter σk

and the tolerance parameter τk in (7), (8) are chosen depending on the current iterate
only:

σk = σ(xk, λk), τk = τ(xk, λk), (21)

with some functions σ : IRn ×IRl �→ IR+ and τ : IRn ×IRl �→ IR+. Then the multiplier
method can be viewed as a particular case of the iterative scheme (20) with A given
by

A(ũ, u) = (G(x, λ) + B(0, τ (x̃, λ̃)), h(x) − σ(x̃, λ̃)(λ − λ̃)), (22)

where ũ = (x̃, λ̃).
Let (x̄, λ̄) ∈ IRn × IRl be a solution of the system (2). It follows from [16, Corol-

lary 1] that assumption (i) of Theorem 1 with ū = (x̄, λ̄) is implied by noncriticality
of the multiplier λ̄, i.e., by the property defined in (10). Hence, the same implication
holds also under the strong noncriticality property defined in (11). Moreover [16],
noncriticality is equivalent to the error bound

dist((x, λ), {x̄} × M(x̄)) = O(ρ(x, λ)) (23)

as (x, λ) → (x̄, λ̄), where the residual function ρ : IRn × IRl �→ IR of the system (2)
is given by

ρ(x, λ) = ‖(G(x, λ), h(x))‖. (24)
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In particular, in this case the solution set Ū of (14) locally (near ū) coincides with
{x̄} × M(x̄).

Concerning assumption (ii), suppose that the function τ(·) satisfies

τ(x, λ) = o(dist((x, λ), {x̄} × M(x̄))) (25)

as (x, λ) → (x̄, λ̄). In this case, for any function σ(·) such that σ(x, λ) is sufficiently
small when (x, λ) is close to (x̄, λ̄), and for A defined in (22), assumption (ii) of
Theorem 1 holds, at least when Ū locally coincides with {x̄} × M(x̄). As discussed
above, the latter is automatic when λ̄ is a noncritical multiplier. Note that constructive
and practically relevant choices of a function τ(·) with the needed properties can be
based on the residual ρ. Specifically, if

τ(x, λ) = o(ρ(x, λ))

as (x, λ) → (x̄, λ̄), then (25) holds.
As usual (see [10,23], where this framework of analysis is used in the context of

sSQP), the main difficulties are concerned with verification of assumption (iii). This
will be the central issue in Section 3, where in particular we have to consider more
specific rules for choosing the penalty parameters σk .

3 Main results

In this section we prove local convergence of the method of multipliers under the
assumption of the dual starting point being close to a noncritical multiplier. For the gen-
eral case of variational problems, we establish superlinear convergence if the inverse
penalty parameter σk is controlled in a special way suggested below. Restricting our
attention to the case of equality-constrained optimization, we prove in addition local
convergence at a linear rate assuming that the inverse penalty parameter is fixed at a
sufficiently small value.

Our developments use results concerning nonsingularity of matrices of certain struc-
ture, that are collected in the Appendix.

Lemma 1 Let F : IRn �→ IRn be locally Lipschitz-continuous at x̄ ∈ IRn, and let
h : IRn �→ IRl be differentiable in some neighbourhood of x̄ with its derivative being
locally Lipschitz-continuous at x̄ . Let λ̄ ∈ M(x̄) be a strongly noncritical multiplier.

Then for every M > 0 there exists γ > 0 such that for every sufficiently small
σ > 0, every λ ∈ IRl close enough to λ̄, and every x ∈ IRn satisfying ‖x − x̄‖ ≤ σ M,
it holds that

∀ J ∈ ∂x G(x, λ)

∥
∥
∥
∥

(

J + 1

σ
(h′(x))Th′(x)

)

ξ

∥
∥
∥
∥

≥ γ ‖ξ‖ ∀ ξ ∈ IRn,

where the mapping G : IRn × IRl �→ IRn is defined according to (6).
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Local convergence of the method of multipliers under noncriticality 121

Proof Assume the contrary, i.e., that for some M > 0 there exist sequences {σk} ⊂ IR
of positive reals, {(xk, λk)} ⊂ IRn × IRl , {Jk} of n × n-matrices, and {ξ k} ⊂ IRn such
that ‖xk − x̄‖ ≤ σk M and Jk ∈ ∂x G(xk, λk) for all k, {σk} → 0, {λk} → λ̄, and

(

Jk + 1

σk
(h′(x̄) + (h′(xk) − h′(x̄)))Th′(xk)

)

ξ k = Jkξ
k

+ 1

σk
(h′(xk))Th′(xk)ξ k

= o(‖ξ k‖)

as k → ∞. Since F and h′ are locally Lipschitz-continuous at x̄ , the mapping G(·, λk)

is locally Lipschitz-continuous at xk for all sufficiently large k, and moreover, due to
the boundedness of {λk}, the corresponding Lipschitz constant can be chosen the same
for all such k. Since the norms of all matrices in the generalized Jacobian are bounded
by the Lipschitz constant of the mapping in question, it then follows that the sequence
{Jk} is bounded, and therefore, we can assume that it converges to some n×n-matrix J .
Then by means of [17, Lemma 2], and by the upper-semicontinuity of the generalized
Jacobian, we conclude that J ∈ ∂x G(x̄, λ̄). (For the properties of Clarke’s generalized
Jacobian see [6]).

Furthermore, due to local Lipschitz-continuity of h′ at x̄ ,

‖h′(xk) − h′(x̄)‖ = O(‖xk − x̄‖) = O(σk),

implying, in particular, that the sequence {(h′(xk) − h′(x̄))/σk} is bounded.
A contradiction now follows from Lemma 3 (in the Appendix) applied with H =

J, B = h′(x̄), H̃ = Jk, B̃ = h′(xk),Ω = (h′(xk) − h′(x̄)), and t = 1/σk . ��
Lemma 1 says, in particular, that if λ ∈ IRl is close enough to λ̄, then for any

sufficiently small σ > 0 there exists a neighbourhood of x̄ such that

∀ J ∈ ∂x G(x, λ) it holds that det

(

J + 1

σ
(h′(x))Th′(x)

)

�= 0 (26)

for all x in this neighborhood. The following simple example demonstrates that, gen-
erally, this neighbourhood indeed depends on σ .

Example 1 Let n = l = 1, h(x) = x2/2, and let F : IR �→ IR be an arbitrary function
differentiable in some neighbourhood of x̄ = 0, with its derivative being continuous at
this point, and such that F(0) = 0. Then M(0) = IR, and any λ̄ ∈ M(0) \ {−F ′(0)}
is (strongly) noncritical.

Fix any λ̄ < −F ′(0) and an arbitrary sequence {xk} ⊂ IR convergent to 0, and set
σk = −(xk)2/(F ′(xk) + λ̄) > 0 for all k large enough. Clearly, σk → 0. However,
(26) does not hold with λ = λ̄, σ = σk , and x = xk for all k. Therefore, the radius of
the neighbourhood in which (26) is valid cannot be chosen the same for all sufficiently
small σ > 0 even if λ = λ̄.
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Fig. 1 Nonsingularity areas

1/σ

x − x̄

σM1

σM2
σM3

In contrast, as can be easily shown by contradiction, if λ̄ satisfies the SOSC (12),
then (26) holds for all sufficiently small σ > 0 and for all (x, λ) ∈ IRn × IRl close
enough to (x̄, λ̄). The situation is illustrated by Fig. 1. The black dots correspond to a
sequence of points from Example 1. Vertically hatched are the areas of nonsingularity
(i.e. where (26) holds provided that λ is close enough to λ̄) given by Lemma 1 applied
with three different values of M : M1 < M2 < M3. Finally, the slope hatching
demonstrates the rectangular nonsingularity area that would exist if λ̄ were to satisfy
the SOSC (12).

3.1 Superlinear convergence

We first consider the case of the penalty parameter controlled as in (21), where the
function σ(·) = σθ (·) is of the form

σθ (x, λ) = (ρ(x, λ))θ , (27)

with ρ(·) being the problem residual defined in (24), and θ ∈ (0, 1] being fixed.

Remark 1 For any σ > 0, any λ̃ ∈ IRl , and any u = (x, λ) ∈ IRn × IRl such that
F and h′ are locally Lipschitz-continuous at x , for the mapping Φσ defined in (16) it
holds that

∂uΦσ (λ̃, u) =
{(

J (h′(x))T

h′(x) −σ I

)∣
∣
∣
∣

J ∈ ∂x G(x, λ)

}

,

where I is the l × l identity matrix. Indeed, from [17, Lemma 2] it follows that the
left-hand side is contained in the right-hand side. The converse inclusion is by the fact
that a mapping of two variables, which is differentiable with respect to one variable
and affine with respect to the other, is necessarily differentiable with respect to the
aggregated variable (cf. [17, Remark 1]).

Making use of Lemma 1, we obtain the following

Corollary 1 Under the assumptions of Lemma 1, for any c > 0 and any θ ∈ (0, 1],
for the function σθ (·) defined in (27) it holds that all matrices in ∂uΦσθ (x̃, λ̃)(λ̃, u) are
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nonsingular if (x̃, λ̃) ∈ IRn × IRl is close enough to (x̄, λ̄), x̃ �= x̄ or λ̃ �∈ M(x̄), and
if u = (x, λ) ∈ IRn × IRl satisfies

‖(x − x̃, λ − λ̃)‖ ≤ c(dist((x̃, λ̃), {x̄} × M(x̄))). (28)

Proof Fix any c > 0 and θ ∈ (0, 1]. According to the error bound (23) which is valid
under (strong) noncriticality, for all (x̃, λ̃) ∈ IRn × IRl close enough to (x̄, λ̄) and
such that x �= x̄ or λ �∈ M(x̄) it holds that ρ(x̃, λ̃) > 0, and hence, according to (27),
σθ (x̃, λ̃) > 0. Moreover, σθ (x̃, λ̃) → 0 as (x̃, λ̃) → (x̄, λ̄).

Furthermore, employing again the error bound (23), for any (x, λ) ∈ IRn × IRl

satisfying (28) we obtain the estimate

‖x − x̄‖ ≤ ‖x − x̃‖ + ‖x̃ − x̄‖
= O(ρ(x̃, λ̃))

= O
(

σθ (x̃, λ̃)(ρ(x̃, λ̃))1−θ
)

= O(σθ (x̃, λ̃))

as (x̃, λ̃) → (x̄, λ̄). Finally, (28) implies that λ → λ̄ as (x̃, λ̃) → (x̄, λ̄).
Then, applying Lemma 1, we conclude that whenever (x̃, λ̃) ∈ IRn × IRl is close

enough to (x̄, λ̄) and x̃ �= x̄ or λ̃ �∈ M(x̄), for any u = (x, λ) ∈ IRn × IRl satisfying
(28) the matrix

J + 1

σθ (x̃, λ̃)
(h′(x))Th′(x)

is nonsingular for all J ∈ ∂x G(x, λ). According to Remark 1, the latter implies that
every matrix in ∂uΦσθ (x̃, λ̃)(λ̃, u) has a nonsingular submatrix of the form −σθ (x̃, λ̃)I
with nonsingular Schur complement, and hence, it is nonsingular (see, e.g., [36,
Prop. 3.9]). Therefore, all matrices in ∂uΦσθ (x̃, λ̃)(λ̃, u) are nonsingular. ��

For a given c > 0, define the function δc : IRn × IRl �→ IR+,

δc(x, λ) = c(dist((x, λ), {x̄} × M(x̄))). (29)

For any λ ∈ IRl , let π(λ) be the orthogonal projection of λ onto the affine set M(x̄).

Lemma 2 Let F : IRn �→ IRn be locally Lipschitz-continuous at x̄ ∈ IRn, and let
h : IRn �→ IRl be differentiable in some neighbourhood of x̄ with its derivative being
locally Lipschitz-continuous at x̄ . Let λ̄ ∈ M(x̄) be a noncritical multiplier.

Then for any c > 0, any θ ∈ (0, 1], and any γ ∈ (0, 1), there exists ε > 0 such
that for the function σθ (·) defined in (27) and for all (x̃, λ̃) ∈ IRn × IRl satisfying

‖(x̃ − x̄, λ̃ − λ̄)‖ ≤ ε, (30)
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the inequality

‖Φσθ (x̃, λ̃)(λ̃, u) − Φσθ (x̃, λ̃)(λ̃, (x̄, π(λ̃)))‖ ≥ γ σθ (x̃, λ̃)‖(x − x̄, λ − π(λ̃))‖ (31)

holds for all u = (x, λ) ∈ IRn × IRl satisfying

‖(x − x̃, λ − λ̃)‖ ≤ δc(x̃, λ̃),

with δc(·) defined in (29).

Proof Arguing by contradiction, suppose that there exist c > 0, θ ∈ (0, 1], γ ∈
(0, 1), and sequences {(x̃ k, λ̃k)} ⊂ IRn × IRl and {(xk, λk)} ⊂ IRn × IRl such that
{(x̃ k, λ̃k)} → (x̄, λ̄), and for each k it holds that (xk, λk) ∈ B((x̃ k, λ̃k), δk) and

‖Φσk (λ̃
k, (xk, λk)) − Φσk (λ̃

k, (x̄, π(λ̃k)))‖ < γσk‖(xk − x̄, λk − π(λ̃k))‖, (32)

where σk = σθ (x̃ k, λ̃k), δk = δc(x̃ k, λ̃k).
Set tk = ‖(xk − x̄, λk − π(λ̃k))‖. The inequality (32) implies that σk > 0 and

tk > 0. Observe further that σk → 0 as k → ∞, and according to (6) and (16), it
holds that

‖Φσk (λ̃
k, (xk, λk)) − Φσk (λ̃

k, (x̄, π(λ̃k)))‖ =
∥
∥
∥
∥

(

G(xk, λk)

h(xk) − σk(λ
k − π(λ̃k)))

)∥
∥
∥
∥
.

Therefore, (32) implies that

‖G(xk, λk)‖ < γσk tk = o(tk) (33)

and
‖h(xk) − h(x̄) − σk(λ

k − π(λ̃k))‖ < γσk tk = o(tk), (34)

as k → ∞.
Set ξ k = (xk − x̄)/tk and ηk = (λk − π(λ̃k))/tk . Without loss of generality, we

may assume that the sequence {(ξ k, ηk)} converges to some (ξ, η) ∈ IRn × IRl such
that

‖(ξ, η)‖ = 1. (35)

From (34) it then easily follows that

ξ ∈ ker h′(x̄). (36)
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Moreover, again taking into account (6), we obtain that

G(xk, λk) = G(xk, π(λ̃k)) − G(x̄, π(λ̃k)) + G(xk, λk) − G(xk, π(λ̃k))

= G(xk, λ̄) − G(x̄, λ̄) + (h′(xk) − h′(x̄))T(π(λ̃k) − λ̄)

+ (h′(xk))T(λk − π(λ̃k))

= G(x̄ + tkξk, λ̄) − G(x̄, λ̄) + tk(h
′(xk))Tηk + o(tk‖ηk‖)

= G(x̄ + tkξ, λ̄) − G(x̄, λ̄) + tk(h
′(xk))Tηk + O(tk‖ξ k − ξ‖)

+ o(tk‖ηk‖), (37)

where in the last transition we have taken into account that under our assumptions the
mapping G(·, λ̄) is locally Lipschitz-continuous at x̄ . Combining (33) and (37) we
derive the existence of d ∈ Cx G(x̄, λ̄)(ξ) satisfying

d + (h′(x̄))Tη = 0. (38)

Since λ̄ possesses the property (10), relations (36) and (38) imply that ξ = 0, and in
particular, {ξ k} → 0.

Furthermore, from (34) we have that

ηk = 1

σk tk
(h(xk) − h(x̄)) + ζ k, (39)

where ζ k ∈ IRl satisfies ‖ζ k‖ ≤ γ . Note also that since it holds that (xk, λk) ∈
B((x̃ k, λ̃k), δk), by (29) we obtain that

‖xk − x̄‖ ≤ ‖xk − x̃ k‖ + ‖x̃ k − x̄‖ ≤ (c + 1)(dist((x̃ k, λ̃k), {x̄} × M(x̄))).

Employing again the error bound (23), we then obtain the estimate

‖xk − x̄‖ = O(ρ(x̃ k, λ̃k)). (40)

Let P be the orthogonal projector onto (im h′(x̄))⊥ in IRl . Applying P to both sides of
(39), making use of the mean-value theorem and taking into account the assumption
that h′ is locally Lipschitz-continuous at x̄ and (27), (40), we obtain that

‖Pηk‖ ≤ 1

σk
sup

τ∈[0, 1]
‖P(h′(x̄ + τ(xk − x̄)) − h′(x̄))‖‖ξ k‖ + ‖Pζ k‖

= ‖Pζ k‖ + O

(‖xk − x̄‖‖ξ k‖
σk

)

= ‖Pζ k‖ + O((ρ(x̃ k, λ̃k))1−θ‖ξ k‖). (41)

As ‖ζ k‖ ≤ γ for all k, passing onto a subsequence if necessary, we can assume that the
sequence {ζ k} converges to some ζ ∈ IRl satisfying ‖ζ‖ ≤ γ . Then, since {ξ k} → 0,
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passing onto the limit in (41) yields

‖Pη‖ ≤ ‖Pζ‖ ≤ ‖ζ‖ ≤ γ < 1. (42)

However, since ξ = 0 it follows that d ∈ Cx G(x̄, λ̄)(0), and hence, d = 0. Then by
(38) it holds that η ∈ ker(h′(x̄))T = (im h′(x̄))⊥. Therefore, Pη = η and hence, by
(42), ‖η‖ < 1. Since ξ = 0, this contradicts (35). ��

We are now in position to prove that the subproblems (15) of the exact (and hence,
of the inexact) multiplier method have solutions possessing the needed localization
properties if the inverse penalty parameter is chosen according to (21) with σ(·) =
σθ (·) defined in (27), and if the current point is close enough to a solution (x̄, λ̄) of
the system (2), such that λ̄ is a strongly noncritical multiplier.

For any δ ≥ 0, σ ≥ 0, x̃ ∈ IRn , and λ̃ ∈ IRl , let Uδ(σ, x̃, λ̃) stand for the solution
set of the optimization problem

minimize ‖Φσ (λ̃, u)‖2

subject to ‖(x − x̃, λ − λ̃)‖ ≤ δ,
(43)

in the variable u = (x, λ) ∈ IRn × IRl . Note that the solution set of (43) is evidently
nonempty, since this is a problem of minimizing a continuous function over a nonempty
compact set.

Proposition 1 Under the assumptions of Lemma 1, for any c > 3, any θ ∈ (0, 1],
and each (x̃, λ̃) ∈ IRn × IRl sufficiently close to (x̄, λ̄), the equation

Φσθ (x̃, λ̃)(λ̃, u) = 0 (44)

with the function σθ (·) defined in (27) has a solution u = (x, λ) ∈ IRn × IRl satisfying
(28).

Proof Observe first that if x̃ = x̄ and λ̃ ∈ M(x̄), then the needed assertion is evidently
valid taking x = x̃ and λ = λ̃. In the rest of the proof we assume that x̃ �= x̄ or
λ̃ �∈ M(x̄).

Fix any γ ∈ (2/(c − 1), 1). From Lemma 2 it follows that there exists ε > 0
such that for all (x̃, λ̃) ∈ IRn × IRl satisfying (30), the inequality (31) holds for
all u = (x, λ) ∈ Uδc(x̃, λ̃)(σθ (x̃, λ̃), x̃, λ̃) with δc(·) defined in (29). According to

Corollary 1, reducing ε if necessary we can assure that the set ∂uΦσθ (x̃, λ̃)(λ̃, u) does

not contain singular matrices. We now show that for all (x̃, λ̃) ∈ IRn × IRl satisfying
(30) with the specified ε, any u = (x, λ) ∈ Uδc(x̃, λ̃)(σθ (x̃, λ̃), x̃, λ̃) is a solution

of (44). From the definition of Uδc(x̃, λ̃)(σθ (x̃, λ̃), x̃, λ̃) it then will follow that (28)
holds as well.
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If ‖(x − x̃, λ − λ̃)‖ = δc(x̃, λ̃), then by (29) it holds that

‖(x − x̄, λ − π(λ̃))‖ ≥ ‖(x − x̃, λ − λ̃)‖ − ‖(x̃ − x̄, λ̃ − π(λ̃))‖
= (c − 1)‖(x̃ − x̄, λ̃ − π(λ̃))‖
≥ (c − 1)‖λ̃ − π(λ̃)‖
= (c − 1) dist(λ̃, M(x̄)).

Employing (31), we then derive

‖Φσθ (x̃, λ̃)(λ̃, u) − Φσθ (x̃, λ̃)(λ̃, (x̄, π(λ̃)))‖ ≥ γ σθ (x̃, λ̃)‖(x − x̄, λ − π(λ̃))‖
≥ γ (c − 1)σθ (x̃, λ̃) dist(λ̃, M(x̄))

> 2σθ (x̃, λ̃) dist(λ̃, M(x̄)), (45)

where the choice of γ was taken into account.
On the other hand, by (29), ‖(x̄ − x̃, π(λ̃) − λ̃)‖ ≤ δc(x̃, λ̃), and since u is a

solution of the problem (43) with σ = σθ (x̃, λ̃) and δ = δc(x̃, λ̃), it holds that

‖Φσθ (x̃, λ̃)(λ̃, u) − Φσθ (x̃, λ̃)(λ̃, (x̄, π(λ̃)))‖ ≤ ‖Φσθ (x̃, λ̃)(λ̃, u)‖
+ ‖Φσθ (x̃, λ̃)(λ̃, (x̄, π(λ̃)))‖

≤ 2‖Φσθ (x̃, λ̃)(λ̃, (x̄, π(λ̃)))‖
= 2σθ (x̃, λ̃)‖λ̃ − π(λ̃)‖
= 2σθ (x̃, λ̃) dist(λ̃, M(x̄)),

which contradicts (45).
Therefore, ‖(x − x̃, λ − λ̃)‖ < δc(x̃, λ̃), and hence, u is an unconstrained local

minimizer of the objective function in (43). According to [6, Proposition 2.3.2], this
implies that

0 ∈ ∂u

(

‖Φσθ (x̃, λ̃)(λ̃, u)‖2
)

,

and according to the chain rule in [6, Theorem 2.6.6], the latter means the existence
of J ∈ ∂uΦσθ (x̃, λ̃)(λ̃, u) such that

J TΦσθ (x̃, λ̃)(λ̃, u) = 0.

By the choice of ε, the matrix J is nonsingular, and hence, u is a solution of (44). ��
Combining Proposition 1 with the considerations in Section 2 concerning assump-

tions (i) and (ii) of Theorem 1, we conclude that all the assumptions of Theorem 1 are
satisfied. This gives the main result of this section.

Theorem 2 Under the assumptions of Lemma 1, let τ : IRn × IRl �→ IR+ be any
function satisfying (25).
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Then for any c > 3 and any θ ∈ (0, 1], for any starting point (x0, λ0) ∈ IRn × IRl

close enough to (x̄, λ̄) there exists a sequence {(xk, λk)} ⊂ IRn × IRl generated by
the multiplier method with σk and τk computed according to (21), (27), satisfying

‖(xk+1 − xk, λk+1 − λk)‖ ≤ c dist((xk, λk), Ū ) (46)

for all k; every such sequence converges to (x̄, λ∗) with some λ∗ ∈ M(x̄), and the
rates of convergence of the sequences {(xk , λk)} to (x̄, λ∗)and of {dist((xk, λk), {x̄}×
M(x̄))} to zero are superlinear. In addition, for any ε > 0 it holds that ‖λ∗ − λ̄‖ < ε

provided (x0, λ0) is close enough to (x̄, λ̄).

3.2 Fixed penalty parameters, optimization case

We now turn our attention to the optimization setting of (4), and consider the case
when the parameter σk is fixed at some value σ > 0, that is,

σ(x, λ) = σ ∀ (x, λ) ∈ IRn × IRl .

The motivation for this additional study of the optimization case is that in com-
putational implementations, boundedness of the penalty parameters is considered
important to avoid ill-conditioning in the subproblems of minimizing augmented
Lagrangians.

Proposition 2 Let f : IRn �→ IR and h : IRn �→ IRl be differentiable in some neigh-
bourhood of x̄ with their derivatives being locally Lipschitz-continuous at x̄ . Let x̄ be
a solution of the problem (1) with the mapping F : IRn �→ IRn given by (4), and let
λ̄ ∈ M(x̄) be a strongly noncritical multiplier.

Then for any c > 2 it holds that for any sufficiently small σ > 0 there exists a
neighbourhood of (x̄, λ̄) such that if (x̃, λ̃) ∈ IRn ×IRl belongs to that neighbourhood,
the equation

Φσ (λ̃, u) = 0 (47)

has a solution u = (x, λ) ∈ IRn × IRl satisfying (28).

Proof For any σ > 0 the point ū = (x̄, λ̄) is a solution of the equation

Φσ (λ̄, u) = 0.

Furthermore, by Remark 1 and Lemma 1 we conclude that if σ is small enough, then
every matrix in the set ∂uΦσ (λ̄, ū) has a nonsingular submatrix with nonsingular
Schur complement, and therefore, every matrix in ∂uΦσ (λ̄, ū) is nonsingular. Then
Clarke’s inverse function theorem [6, Theorem 7.1.1] guarantees that for any such σ

there exist neighbourhoods Uσ of ū and Vσ of zero such that for every r ∈ Vσ the
equation

Φσ (λ̄, u) = r (48)
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has in Uσ the unique solution uσ (r), and the function uσ (·) : Vσ �→ Uσ is Lipschitz-
continuous with some constant �σ .

Define r(λ̃) ∈ IRn × IRl by

r(λ̃) =
(

0
−σ(λ̃ − λ̄)

)

.

If λ̃ ∈ IRl is close enough to λ̄, the vector r(λ̃) belongs to Vσ , and therefore, the Eq.
(48) with r = r(λ̃) has in Uσ the unique solution uσ (r(λ̃)). Observe that

u = uσ (r(λ̃)) (49)

satisfies (47). Moreover, since uσ (0) = ū, it holds that

‖u − ū‖ = ‖uσ (r(λ̃)) − uσ (0)‖ ≤ �σ ‖r(λ̃)‖ = �σ σ‖λ̃ − λ̄‖. (50)

We now show that for any sufficiently small σ > 0 there exists a neighbourhood of
(x̄, λ̄) such that for every ũ = (x̃, λ̃) ∈ IRn × IRl from that neighbourhood, u defined
by (49) satisfies the estimate (28). Suppose that this is not the case. Then there exist
c > 2, M > 0, and sequences {σk} of positive reals and {ũk} ⊂ IRn × IRl , ũk =
(x̃ k, λ̃k), such that σk → 0, {ũk} → ū, and for all k it holds that �σk ‖ũk − ū‖ ≤ M ,
and uk = uσk (r(λ̃k)) violates (28), that is,

‖uk − ũk‖ > c dist(ũk, {x̄} × M(x̄)). (51)

Observe that (50) then implies that for all k

‖xk − x̄‖ ≤ σk M. (52)

Furthermore, taking into account that Φσk (λ̃
k, uk) = 0 and Φ(x̄, π(λ̃k)) = 0 (recall

that π is a projector onto M(x̄)), we can write

Φσk (λ̃
k, uk) − Φσk (λ̃

k, (x̄, π(λ̃k))) =
(

0, −σk(λ̃
k − π(λ̃k))

)

.

Employing the mean-value theorem (see, e.g., [9, Proposition 7.1.16]) and Remark 1,
we derive the existence of uk, i in the line segment connecting uk and (x̄, π(λ̃k)),

αk, i ≥ 0, and matrices Jk, i ∈ ∂x G(xk, i , λk, i ), i = 1, . . . , n, such that
∑n

i=1 αk, i =
1 and

⎛

⎜
⎜
⎜
⎜
⎝

n
∑

i=1

αk, i Jk, i

(
n

∑

i=1

αk, i h′(xk, i )

)T

n
∑

i=1

αk, i h′(xk, i ) −σk I

⎞

⎟
⎟
⎟
⎟
⎠

(

xk − x̄
λk − π(λ̃k)

)

=
(

0
−σk(λ̃

k − π(λ̃k))

)
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for all sufficiently large k. Since {σk} → 0, {uk} → ū, and (52) holds, from Lemma 1
it follows that for all sufficiently large k the matrix in the left-hand side of the above
equation is nonsingular (as a matrix containing a nonsingular submatrix with nonsin-
gular Schur complement). Then

(

xk − x̄
λk − π(λ̃k)

)

=
(

Jk BT
k

Bk −σk I

)−1 (
0

−σk(λ̃
k − π(λ̃k))

)

,

where Jk and Bk stand for
∑n

i=1 αik Jik and
∑n

i=1 αikh′(xik), respectively. Writing the
inverse matrix in the above formula in terms of the inverse of the Schur complement
of −σk I (see, e.g., [5, Section 1.2]), we obtain that

(

xk − x̄
λk − π(λ̃k)

)

=

⎛

⎜
⎜
⎝

(

Jk + 1

σk
BT

k Bk

)−1

BT
k

−I + 1

σk
Bk

(

Jk + 1

σk
BT

k Bk

)−1

BT
k

⎞

⎟
⎟
⎠

(

λ̃k − π(λ̃k)
)

. (53)

For each i = 1, . . . , n we have that, since f ′ and h′ are locally Lipschitz-continuous
at x̄ , the mapping G(·, λk, i ) is locally Lipschitz-continuous at xk, i for all sufficiently
large k, and moreover, due to the boundedness of {λk, i } the corresponding Lipschitz
constant can be chosen the same for all such k. Since the norms of all matrices in the
generalized Jacobian are bounded by the Lipschitz constant of the mapping in question,
it then follows that the sequences {Jk, i } are bounded, and therefore, we can assume
that they converge to some n × n-matrices Ji as k → ∞ (passing onto a subsequence
if necessary). Then by means of [17, Lemma 2], and by the upper-semicontinuity of
the generalized Jacobian, we conclude that Ji ∈ ∂x G(x̄, λ̄). Furthermore, without
loss of generality we may assume that αk, i tend to some αi ≥ 0. Then

∑n
i=1 αi = 1,

and setting J = ∑n
i=1 αi Ji , we have that {Jk} → J and J ∈ ∂x G(x̄, λ̄).

Furthermore, due to the fact that h′ is locally Lipschitz-continuous at x̄ , and using
also (52), we obtain that

‖Bk − h′(x̄)‖ =
∥
∥
∥
∥
∥

n
∑

i=1

αik(h
′(xk, i ) − h′(x̄))

∥
∥
∥
∥
∥

≤
n

∑

i=1

αk, i‖h′(xk, i ) − h′(x̄)‖

= O

(
n

∑

i=1

αk, i‖xk, i − x̄‖
)

= O

(
n

∑

i=1

αk, i‖xk − x̄‖
)

= O(σk)
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as k → ∞. Now, applying Lemma 4 (in the Appendix) with H = J, B = h′(x̄), H̃ =
Jk, B̃ = Bk,Ω = Bk − h′(x̄), and t = 1/σk , we conclude that

{(

Jk + 1

σk
BT

k Bk

)−1

BT
k

}

→ 0. (54)

Finally, note that since (4) holds, the matrices J and Jk for all k are symmetric. Then
employing Lemma 5 (in the Appendix) with H, B, H̃ ,Ω and t set the same as for the
application of Lemma 4, we obtain that

∥
∥
∥
∥
∥

1

σk
Bk

(

Jk + 1

σk
BT

k Bk

)−1

BT
k

∥
∥
∥
∥
∥

→ 1. (55)

Combining (53) with (54) and (55), we conclude that for any constant c̃ > 1 it holds
that

‖uk − (x̄, π(λ̃k))‖ ≤ c̃‖λ̃k − π(λ̃k)‖ ≤ c̃‖ũk − (x̄, π(λ̃k))‖

for all sufficiently large k. Then due to the error bound (23), we conclude that for all
k large enough

‖uk − ũk‖ ≤ ‖uk − (x̄, π(λ̃k))‖ + ‖ũk − (x̄, π(λ̃k))‖
≤ (1 + c̃) dist((x̃ k, λ̃k), {x̄} × M(x̄)).

This gives a contradiction with (51), completing the proof. ��

We mention, in passing, that if f and h are twice differentiable with their second
derivatives being continuous at x̄ , it can be shown that the assertion of Proposition 2
holds for any c > 1 (instead of c > 2).

Assumption (iii) of Theorem 1 is therefore verified for the augmented Lagrangian
method with fixed penalty parameter, under the stated conditions. Combining this with
the discussion in Sect. 2 of assumptions (i) and (ii), we obtain the following.

Theorem 3 Under the assumptions of Proposition 2, let τ : IRn × IRl �→ IR+ be any
function satisfying (25).

Then for any c > 2 there exists σ̄ > 0 such that for any σ ∈ (0, σ̄ ) the following
assertion is valid: for every starting point (x0, λ0) ∈ IRn × IRl close enough to (x̄, λ̄)

there exists a sequence {(xk, λk)} ⊂ IRn × IRl generated by the multiplier method
with σk = σ for all k, and with τk computed according to (21), satisfying (46) for all
k; every such sequence converges to (x̄, λ∗) with some λ∗ ∈ M(x̄), and the rates of
convergence of {(xk, λk)} to (x̄, λ∗) and of {dist((xk, λk), {x̄} × M(x̄))} to zero are
linear. In addition, for any ε > 0 it holds that ‖λ∗ − λ̄‖ < ε provided (x0, λ0) is close
enough to (x̄, λ̄).
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4 Inequality constraints

In this section we exhibit that the results above under the noncriticality assumption
cannot be extended to problems with inequality constraints, even in the optimization
case with arbitrarily smooth data. That said, the extension is possible if the strict
complementarity condition is added.
Consider the variational problem (1) with D defined by

D = {x ∈ IRn | h(x) = 0, g(x) ≤ 0}, (56)

where g : IRn �→ IRm and h as specified before. If h and g are smooth, associated to
this problem is the primal dual Karush–Kuhn–Tucker (KKT) system

F(x) + (h′(x))Tλ + (g′(x))Tμ = 0, h(x) = 0,

μ ≥ 0, g(x) ≤ 0, 〈μ, g(x)〉 = 0
(57)

in the variables (x, λ, μ) ∈ IRn × IRl × IRm . Define G : IRn × IRl × IRm �→ IRn by

G(x, λ, μ) = F(x) + (h′(x))Tλ + (g′(x))Tμ.

For a solution (x̄, λ̄, μ̄) ∈ IRn × IRl × IRm of the KKT system (57) define the index
sets

A = A(x̄) = {i = 1, . . . , m | gi (x̄) = 0},
A+ = A+(x̄, μ̄) = {i ∈ A(x̄) | μ̄i > 0},
A0 = A0(x̄, μ̄) = {i ∈ A(x̄) | μ̄i = 0},

of active, strongly active and weakly active constraints, respectively.
Using again the terminology introduced in [16], a multiplier (λ̄, μ̄) is said to be

noncritical if there is no triple (ξ, η, ζ ) ∈ IRn × IRl × IRm , with ξ �= 0, satisfying the
system

d + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′
A+(x̄)ξ = 0,

ζA0 ≥ 0, g′
A0

(x̄)ξ ≤ 0, ζi 〈g′
i (x̄), ξ 〉 = 0, i ∈ A0, ζ{1, ..., m}\A = 0

(58)

with some d ∈ Cx G(x̄, λ̄, μ̄)(ξ). The multiplier (λ̄, μ̄) is said to be strongly non-
critical if for each matrix J ∈ ∂x G(x̄, λ̄, μ̄), there is no triple (ξ, η, ζ ), with ξ �= 0,
satisfying (58) with d = Jξ . In the case when there are no inequality constraints,
these properties are equivalent to their counterparts stated previously; see (10) and
(11). Again, it can be easily verified that (strong) noncriticality is strictly weaker than
second-order sufficiency for the problem at hand.

An iteration of the multiplier method for the problem (1) with D defined in
(56) is the following procedure. If the current primal-dual iterate (xk, λk, μk) ∈
IRn × IRl × IRm satisfies (57), stop. Otherwise, choose the inverse penalty parameter
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σk > 0 and the tolerance parameter τk ≥ 0, and compute the next primal-dual iterate
(xk+1, λk+1, μk+1) ∈ IRn × IRl × IRm as any triple satisfying

∥
∥
∥
∥

F(xk+1) + (h′(xk+1))T
(

λk + 1

σk
h(xk+1)

)

+ (g′(xk+1))T max

{

0, μk + 1

σk
g(xk+1)

}∥
∥
∥
∥

≤ τk, (59)

λk+1 = λk + 1

σk
h(xk+1), μk+1 = max

{

0, μk + 1

σk
g(xk+1)

}

, (60)

where maximum is taken componentwise. In the optimization case, this is again the
usual augmented Lagrangian method with approximate solution of subproblems.

Similarly to the previous interpretations for the equality-constrained case it can be
seen that if σk and τk are computed as functions of the current iterate, the method
in question can be embedded into the framework of [12]. Moreover, it satisfies the
counterparts of assumptions (i) and (ii) of Theorem 1, provided the multiplier in
question is noncritical. However, no reasonable counterpart of assumption (iii) holds
for the exact multiplier method in the inequality-constrained case (in general). Local
solvability of subproblems is not guaranteed by noncriticality, as demonstrated by the
following example. The problem in this example is taken from [23, Example 2].

Example 2 Let n = 1, l = 0, m = 2, f (x) = −x2/2, g(x) = (−x, x3/6). The
corresponding KKT system (57) with F defined according to (4) has the unique primal
solution x̄ = 0, and the associated multipliers are μ ∈ IR2 such that μ1 = 0, μ2 ≥ 0.
The multiplier μ̄ = 0 is noncritical.

For a current dual iterate μk = μ̃ and for σk = σ > 0, from (59), (60) it can be
seen that the next iterate (xk+1, μk+1) must satisfy the system

−x − μ1 + 1

2
x2μ2 = 0,

μ1 ≥ 0, x + σ(μ1 − μ̃1) ≥ 0, μ1 (x + σ(μ1 − μ̃1)) = 0,

μ2 ≥ 0,
1

6
x3 − σ(μ2 − μ̃2) ≤ 0, μ2

(
1

6
x3 − σ(μ2 − μ̃2)

)

= 0.

(61)

Let μ̃1 > 0 and μ̃2 = 0.

1. If μ1 = μ2 = 0 then from the first relation in (61) it follows that x = 0. But then
the second line in (61) contradicts the assumption μ̃1 > 0.

2. If μ1 > 0, μ2 = 0, then the first relation in (61) implies that x = −μ1, and
therefore, by the second line in (61),

−μ1(1 − σ) = σμ̃1 > 0,

which can not be true if σ ≤ 1.
3. If μ1 = 0, μ2 > 0, then by the first relation in (61) either x = 0 or xμ2 = 2. In

the former case, the second line in (61) yields −σμ̃1 ≥ 0, which again contradicts
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the assumption μ̃1 > 0. On the other hand, the latter case is not possible whenever
(x, μ) is close enough to (x̄, μ̄).

4. Finally, if μ1 > 0 and μ2 > 0, then by the third line in (61), μ2 = x3/(6σ), and
hence x > 0. Moreover from the first line in (61) it follows that μ1 = −x+x2μ2/2,
and therefore, μ1 ≤ −x + x2/2 < 0 whenever μ2 ≤ 1 and x ∈ (0, 2).

Therefore, in every neighbourhood of μ̄ there exists a point μ̃ such that the system
(61) does not have solutions in some fixed neighbourhood of (x̄, λ̄) if σ > 0 is small
enough. Consequently, assumption (iii) of Theorem 1 cannot hold with any c > 0 for
the exact multiplier method, neither if the penalty parameter σk is chosen in such a
way that it tends to zero as the current primal-dual iterate tends to (x̄, μ̄), nor if it is
fixed at a sufficiently small value.

Observe, however, that in Example 2 the strict complementarity condition is vio-
lated: μ̄ = 0, and in fact, all Lagrange multipliers have a zero component correspond-
ing to an active constraint. Assuming the strict complementarity condition μ̄A > 0,
the phenomenon exhibited in Example 2 would not be possible, as we discuss next.

Under the strict complementarity assumption, the KKT system (57) reduces locally
(near (x̄, λ̄, μ̄)) to the system of equations

F(x) + (h′(x))Tλ + (g′
A(x))TμA = 0, h(x) = 0, gA(x) = 0, (62)

with the additional equation μ{1, ..., m}\A = 0. This primal-dual system corresponds to
the equality-constrained variational problem (1) with

D = {x ∈ IRn | h(x) = 0, gA(x) = 0}. (63)

Observe that under strict complementarity, the multiplier (λ̄, μ̄) is (strongly) noncrit-
ical for the original problem (1), (56) if, and only if, the multiplier (λ̄, μ̄A) associated
to the primal solution x̄ of the system (62) is (strongly) noncritical.

Furthermore, under strict complementarity, iteration (59), (60) equipped with a
reasonable localization condition not allowing (xk+1, λk+1, μk+1) to be too far from
(xk, λk, μk), evidently subsumes that if the latter is close enough to (x̄, λ̄, μ̄), and
if σk > 0 is small enough, then

μk+1
A = μk

A + 1

σk
gA(xk+1), μk+1

{1, ..., m}\A = 0.

This means that the multiplier method for the general problem (1), (56) locally reduces
to the multiplier method for the equality-constrained problem (1), (63). Employing this
reduction, Theorems 2 and 3 can be extended to the case when inequality constraints
are present, assuming strict complementarity, and with an appropriate control of σk .
A formal exposition of this development and formal convergence statements would
require certain technicalities, which we prefer to omit here.

We finish with recalling that even adding strict complementarity to noncriticality
of the multiplier still gives new and meaningful results, as discussed in Sect. 1.
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5 Concluding remarks and open questions

As mentioned in Sect. 1, contemporary local convergence theory of the augmented
Lagrangian methods is closely related to that of sSQP. This is actually not surprising,
as the two methods are indeed related: in some sense, sSQP can be regarded as a “lin-
earization” of the exact augmented Lagrangian method. That said, there are also some
subtle but remarkable differences in the results currently available. We highlight these
next. For simplicity, we shall refer to the equality-constrained optimization problem
(3) only.

Under the SOSC (12) and without any CQs, the (apparent) “ideal” for local con-
vergence of the augmented Lagrangian methods for optimization was achieved in
[11,15]: the linear rate if the inverse penalty parameter σk is small enough, becoming
superlinear if it tends to zero (in an arbitrary way!). For sSQP, Example 1 can be used
to show that σk (for sSQP it plays the role of a stabilization parameter) cannot be
driven to zero arbitrarily fast: if done so, iteration subproblems may have no solutions
satisfying the localization condition of the kind (28). In other words, the augmented
Lagrangian subproblem may possess some “good” solutions whose “counterparts” are
missing for the sSQP subproblem.

The same Example 1 can be used to show that assuming noncriticality instead of
SOSC, the iteration subproblems of sSQP may have no solutions at all if σk is driven
to zero too fast, and that for a fixed sufficiently small value of this parameter, the
neighborhood of appropriate starting points can be shrinking as this value tends to
zero. We are not aware of such examples for the augmented Lagrangian methods.
In particular, it is an open question whether the local superlinear convergence result
of Theorem 2 remains valid if the inverse penalty parameter is driven to zero in an
arbitrary way, and whether the local linear convergence result of Theorem 3 actually
requires the neighborhood of appropriate starting points to be dependent on the fixed
inverse penalty parameter value.

Finally, unlike for the augmented Lagrangian methods, all the existing results for
sSQP assume twice differentiability of the problem data, and attempts to relax smooth-
ness were not successful so far. The reason is that under the weaker smoothness
hypotheses (Lipschitz-continuity of the first derivatives, for example), assumption (ii)
of Theorem 1 (precision of approximation) cannot be established for sSQP. Possible
relaxations for this assumption that might do the job are not clear.

Acknowledgments The authors thank E. I. Uskov for a useful discussion on the relations between results
obtained in this work and other existing local convergence theories for multiplier methods.

6 Appendix

This appendix contains lemmas concerning nonsingularity of matrices of certain struc-
ture, used in the analysis above. The first one is a refined version of [23, Lemma 1].

Lemma 3 Let H be an n × n-matrix, B be an l × n-matrix, and assume that

Hξ �∈ im BT ∀ ξ ∈ ker B \ {0}. (64)
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Then for any M > 0 there exists γ > 0 such that

∥
∥
∥

(

H̃ + t (B + Ω)T B̃
)

ξ

∥
∥
∥ ≥ γ ‖ξ‖ ∀ ξ ∈ IRn

for every n × n-matrix H̃ close enough to H, every l × n-matrix B̃ close enough to B,
every t ∈ IR such that |t | is sufficiently large, and for every l × n-matrix Ω satisfying
‖Ω‖ ≤ M/|t |.
Proof Suppose the contrary, i.e., that for some M > 0 there exist sequences {Hk} of
n ×n-matrices, {Bk} and {Ωk} of l ×n-matrices, {tk} ⊂ IR, and {ξ k} ⊂ IRn \ {0}, such
that {Hk} → H, {Bk} → B, |tk | → ∞, ‖Ωk‖ ≤ M/|tk | for all k, and

Hkξ
k + tk(B + Ωk)

T Bkξ
k = o(‖ξ k‖) (65)

as k → ∞. Without loss of generality we may assume that ‖ξ k‖ = 1 for all k and that
{ξ k} → ξ �= 0. Then (65) means the existence of a sequence {wk} ⊂ IRn such that
{wk} → 0 and

Hkξ
k + tk(B + Ωk)

T Bkξ
k = wk (66)

for all k. Therefore, it must hold that BT Bξ = 0, since

BT Bkξ
k = − 1

tk
Hkξ

k − ΩT
k Bkξ

k + 1

tk
wk

tends to 0 as k → ∞. Consequently, ξ ∈ ker B.
On the other hand, (66) implies that

Hkξ
k + tkΩ

T
k Bkξ

k − wk = −tk BT Bkξ
k ∈ im BT

for all k, where the second term in the left-hand side tends to zero as k → ∞ because
{tkΩk} is bounded and {Bkξ

k} → Bξ = 0. Hence, Hξ ∈ im BT by the closedness of
im BT. This completes a contradiction with (64). ��
Lemma 4 Under the assumptions of Lemma 3, for any M > 0 and any ε > 0 it
holds that for every n × n-matrix H̃ close enough to H, every l × n-matrix B̃ close
enough to B, every real t such that |t | is sufficiently large, and for all l × n-matrices
Ω satisfying ‖Ω‖ ≤ M/|t |, the matrix H̃ + t (B + Ω)T B̃ is nonsingular and

∥
∥
∥
∥

(

H̃ + t (B + Ω)T B̃
)−1

(B + Ω)T
∥
∥
∥
∥

≤ ε. (67)

Proof Fix arbitrary M > 0 and ε > 0. The assertion regarding nonsingularity of the
matrix H̃ + t (B + Ω)T B̃ follows directly from Lemma 3. Therefore, we only have to
prove that (possibly by making H̃ closer to H, B̃ closer to B, and |t | larger) one can
additionally ensure (67).

By contradiction, suppose first that there exist sequences {Hk} of n × n-matrices,
{Bk} and {Ωk} of l × n-matrices, {tk} of reals, and {ηk} ⊂ IRn , such that {Hk} →
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H, {Bk} → B, |tk | → ∞, ‖Ωk‖ ≤ M/|tk |, ‖ηk‖ = 1 and det(Hk+tk(B+Ωk)
T Bk) �=

0 for all k, and for

ξ k = (Hk + tk(B + Ωk)
T Bk)

−1(B + Ωk)
Tηk (68)

it holds that
‖ξ k‖ > ε (69)

for all k. By (68) we have that

(B + Ωk)
Tηk = Hkξ

k + tk(B + Ωk)
T Bkξ

k . (70)

Due to (69), the sequence {ηk/‖ξ k‖} is bounded. Without loss of generality we may
assume that the sequence {ξ k/‖ξ k‖} converges to some ξ ∈ IRn such that ‖ξ‖ = 1.
Then dividing both sides of (70) by tk‖ξ k‖ and passing onto the limit as k → ∞, we
obtain that BT Bξ = 0, and hence, ξ ∈ ker B.

Furthermore, by (70), it holds that

Hk
ξ k

‖ξ k‖ − ΩT
k

ηk

‖ξ k‖ + tkΩ
T
k Bk

ξ k

‖ξ k‖ = 1

‖ξ k‖ BT(ηk − tk Bkξ
k) ∈ im BT

for all k. The second term in the left-hand side tends to zero because {‖Ωk‖} → 0
while the sequence {ηk/‖ξ k‖} is bounded. Moreover, the third term in the left-hand
side tends to zero as well, because {tkΩk} is bounded while {Bkξ

k/‖ξ k‖} → Bξ = 0.
Therefore, by closedness of im BT, it follows that Hξ ∈ im BT, which contradicts
(64). ��

Lemma 5 In addition to the assumptions of Lemma 3, let H be symmetric.
Then for any M > 0 and any ε > 0 it holds that for every symmetric n × n-

matrix H̃ close enough to H, every real t such that |t | is sufficiently large, and for all
l × n-matrices Ω satisfying ‖Ω‖ ≤ M/|t |, the matrix H̃ + t (B + Ω)T(B + Ω) is
nonsingular and the following estimate is valid

∥
∥
∥
∥

t (B + Ω)
(

H̃ + t (B + Ω)T(B + Ω)
)−1

(B + Ω)T
∥
∥
∥
∥

≤ 1 + ε. (71)

Proof Again, nonsingularity of H̃ + t (B + Ω)T(B + Ω) is given by Lemma 3. If
at the same time the estimate (71) does not hold, there must exist sequences {Hk}
of symmetric n × n-matrices, {Ωk} of l × n-matrices, {tk} of reals, and {ηk} ⊂ IRn ,
such that {Hk} → H, |tk | → ∞, and for all k it holds that ‖Ωk‖ ≤ M/|tk |, ‖ηk‖ =
1, det(Hk + tk(B + Ωk)

T(B + Ωk)) �= 0, and

∥
∥
∥
∥

tk(B + Ωk)
(

Hk + tk(B + Ωk)
T(B + Ωk)

)−1
(B + Ωk)

Tηk
∥
∥
∥
∥

> 1 + ε. (72)
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For each k set

Wk = (B + Ωk)
(

Hk + tk(B + Ωk)
T(B + Ωk)

)−1

=
((

Hk + tk(B + Ωk)
T(B + Ωk)

)−1
(B + Ωk)

T
)T

, (73)

where the symmetry of Hk was taken into account. Due to Lemma 4 we have that
{Wk} → 0.

Furthermore, for each k the vector ηk can be decomposed into the sum

ηk = ηk
1 + ηk

2,

where ηk
1 ∈ ker BT = (im B)⊥ and ηk

2 ∈ im B. Observe that tk Wk(B + Ωk)
Tηk

1 =
Wk(tkΩT

k )×ηk
1, and since the sequences {ηk

1} and {tkΩk} are bounded, and {Wk} → 0,
we conclude that {tk Wk(B + Ωk)

Tηk
1} → 0. On the other hand, as ηk

2 ∈ im B, there
exists ξ k

2 ∈ IRn such that Bξ k
2 = ηk

2 and the sequence {ξ k
2 } is bounded. Therefore,

employing (73),

∥
∥
∥tk Wk(B + Ωk)

Tηk
2

∥
∥
∥ =

∥
∥
∥Wk(tk(B + Ωk)

T)Bξ k
2

∥
∥
∥

≤
∥
∥
∥Wk(Hk + tk(B + Ωk)

T(B + Ωk))ξ
k
2

∥
∥
∥

+
∥
∥
∥Wk(Hk + tk(B + Ωk)

TΩk)ξ
k
2

∥
∥
∥

=
∥
∥
∥(B + Ωk)ξ

k
2

∥
∥
∥ +

∥
∥
∥Wk(Hk + tk(B + Ωk)

TΩk)ξ
k
2

∥
∥
∥

≤ ‖ηk
2‖ + ‖Ωkξ

k
2 ‖ +

∥
∥
∥Wk(Hk + tk(B + Ωk)

TΩk)ξ
k
2

∥
∥
∥

≤ 1 + ‖Ωkξ
k
2 ‖ +

∥
∥
∥Wk(Hk + tk(B + Ωk)

TΩk)ξ
k
2

∥
∥
∥ .

The last two terms in the right-hand side tend to zero because the sequences {ξ k
2 } and

{Hk + tk(B + Ωk)
TΩk} are bounded, while {Ωk} → 0 and {Wk} → 0. Therefore,

lim sup
k→∞

∥
∥
∥tk Wk(B + Ωk)

Tηk
∥
∥
∥ ≤ lim

k→∞

∥
∥
∥tk Wk(B + Ωk)

Tηk
1

∥
∥
∥

+ lim sup
k→∞

∥
∥
∥tk Wk(B + Ωk)

Tηk
2

∥
∥
∥

≤ 1,

which contradicts (72). ��
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