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1. Introduction

Consider the optimization problem with equality and nonnegativity constraints

minimize f (x)

subject to h(x) = 0, x ≥ 0,
(1)

where the objective function f : IRn → IR and the constraints mapping h : IRn → IRl are twice
differentiable. As is well known, problems with general inequality constraints can be cast in the
form of (1) introducing auxiliary slack variables.

Let L : IRn × IRl → IR be the (partial) Lagrangian of the problem (1), including only the
equality constraints

L(x, λ) = f (x) + �λ, h(x)�.
Then stationary points and associated Lagrange multipliers of the problem (1) are characterized
by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x, λ) − μ = 0, h(x) = 0, μ ≥ 0, x ≥ 0, �μ, x� = 0, (2)
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with respect to x ∈ IRn, λ ∈ IRl and μ ∈ IRn. By M(x̄) we denote the set of Lagrange multipliers
associated with a stationary point x̄ of the problem (1), that is, the pairs (λ, μ) satisfying (2) for
x = x̄.

Recall that the basic sequential quadratic programming (SQP) method for problem (1) is the
following iterative procedure [2,11]; see also [18, Chapter 4]. Given a current primal–dual iterate
(xk , λk , μk) ∈ IRn × IRl × IRn, the next iterate (xk+1, λk+1, μk+1) is computed as a stationary point
and associated Lagrange multipliers of the quadratic programming (QP) subproblem

minimize �f �(xk), x − xk� + 1

2

�
∂2L

∂x2
(xk , λk)(x − xk), x − xk

�

subject to h(xk) + h�(xk)(x − xk) = 0, x ≥ 0.

(3)

By the perturbed SQP (pSQP) framework we mean a set of relations that consists of certain
structured perturbations of the KKT conditions of the QP subproblem (3); the precise description
will be given in Section 2. This framework has been developed in [7,14,15] and it proved useful for
analysing, in a unified manner, a number of different Newtonian and Newton-related algorithms
for constrained optimization (truncated and augmented Lagrangian modifications of SQP itself,
sequential quadratically constrained quadratic programming and linearly constrained Lagrangian
methods, to mention some of the applications); see [18, Chapter 4]. In this paper we continue
this line of reasoning and show that in addition to the above, local convergence properties of the
inexact restoration methods [1,4,8,10,21–23] and of composite-step SQP methods [6, Section 15.4,
24,26], can also be derived from the pSQP theory.

The paper is organized as follows. In Section 2 we formally state the pSQP framework and
summarize its convergence properties. Section 3 considers an ‘exact restoration’scheme, which is
not a practical algorithm but rather serves as a natural first step to the analysis of inexact restoration
methods, presented in Section 4. Inexact restoration methods have been receiving much attention
in recent years; see [1,4,8,10,21–23]. Our considerations are related to the local framework of [1].
We establish local superlinear convergence of inexact restoration by embedding it within the pSQP
framework of Section 2. The main difference of our results when compared to [1] is the following.
Our analysis requires the strict Mangasarian–Fromovitz constraint qualification (SMFCQ) and
the second-order sufficient optimality condition (SOSC), and as part of the analysis we establish
solvability of the iteration subproblems (i.e. that relevant solutions exist and thus the method is
well-defined). By contrast, the analysis in [1] does not use these assumptions (in fact, does not
use any regularity conditions at all), but solvability of subproblems is not proved but assumed.
Thus our results and those in [1] are different in nature, and can be considered complementary to
each other. That said, in Section 5 we show that without assuming any constraint qualifications
(CQs), the existence of suitable subproblem solutions in the inexact restoration framework is at
least questionable.

Section 6 suggests a similar treatment via pSQP framework of composite-step SQP methods
[6, Section 15.4] (recall that the composite-step approach serves as the basis for the trust-region
globalization strategies of SQP). In comparison with the rate of convergence results in [6, Theo-
rems 15.4.15, 15.4.24], we obtain local superlinear convergence under a weaker CQ, namely, the
SMFCQ instead of the linear independence one. Moreover, in [6, Theorems 15.4.15, 15.4.24] it is
assumed that the pure (exact) SQP step is taken whenever it is accepted by the trust-region rule,
while our analysis demonstrates that superlinear convergence can be preserved even if the SQP
step is computed only approximately, assuming that the inexactness is appropriately controlled.

We conclude this section with some notation and definitions that will be used in our analysis.
Throughout the paper, for a vector y of any dimension and an index set I , the notation yI stands
for the subvector of y with components yi, i ∈ I .
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For a given stationary point x̄ ∈ IRn of the problem (1) and an associated Lagrange multiplier
(λ̄, μ̄) ∈ IRl × IRn, set

A = A(x̄) = {i = 1, . . . , m | x̄i = 0}, N = N(x̄) = {1, . . . , n} \ A(x̄),

A+ = A+(x̄, μ̄) = {i ∈ A(x̄) | μ̄i > 0}, A0 = A0(x̄, μ̄) = {i ∈ A(x̄) | μ̄i = 0}.

As defined in [17], (λ̄, μ̄) ∈ M(x̄) is referred to as a noncritical Lagrange multiplier if there
exists no triple (ξ , η, ζ ) ∈ IRn × IRl × IRn, with ξ 	= 0, satisfying the system

∂2L

∂x2
(x̄, λ̄)ξ + (h�(x̄))Tη − ζ = 0, h�(x̄)ξ = 0, ξA+ = 0,

ζA0
≥ 0, ξA0

≥ 0, ζiξi = 0, i ∈ A0,

ζN = 0.

(4)

We refer the reader to [12,13,16,17, 18, Chapter 7, 19,20] for the role this notion plays in conver-
gence properties of algorithms, stability, error bounds and other issues. Here, we only mention
that noncriticality is equivalent to the local Lipschitzian error bound for the KKT system (2) of the
problem (1) in terms of its natural residual, and to the upper-Lipschitzian behaviour of solutions
of the KKT system (2) under canonical (right-hand side) perturbations. Also, it can be easily seen
that the multiplier is necessarily noncritical if the following SOSC holds:

�
∂2L

∂x2
(x̄, λ̄)ξ , ξ

�
> 0 ∀ ξ ∈ C(x̄) \ {0}, (5)

where

C(x̄) = {ξ ∈ IRn | h�(x̄)ξ = 0, ξA ≥ 0, �f �(x̄), ξ� ≤ 0}
is the critical cone of the problem (1) at x̄. It is also clear that noncriticality of a multiplier is a
weaker assumption than the SOSC (5), i.e. there may well exist (and often do exist) noncritical
multipliers that do not satisfy (5).

Recall that the SMFCQ is said to hold at a stationary point x̄ of the problem (1) if the Lagrange
multiplier (λ̄, μ̄) associated to x̄ exists and is unique. As we shall not need the algebraic charac-
terization of this condition, we do not state it here (the reader may consult [25], for example).
Recall that SMFCQ is implied by the linear independence constraint qualification (LICQ). For the
problem (1), LICQ can be seen to be equivalent to saying that the vectors (h�

j(x̄))N , j = 1, . . . , l,
are linearly independent.

2. The pSQP framework

We can state the iteration subproblem of the basic SQP method (3) for the problem (1) as

minimize f (x) + �f �(x), ξ� + 1

2

�
∂2L

∂x2
(x, λ)ξ , ξ

�

subject to h(x) + h�(x)ξ = 0, x + ξ ≥ 0,

(6)

so that for a current iterate (xk , λk , μk) ∈ IRn × IRl × IRn, the next iterate is (xk+1, λk+1, μk+1),
where xk+1 = xk + ξ k , ξ k is a stationary point of the problem (6) with (x, λ, μ) = (xk , λk , μk),
and (λk+1, μk+1) is an associated Lagrange multiplier.
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Then the iteration subproblem of the pSQP framework [14], when specialized for the problem
setting of (1), has the form of perturbed KKT conditions of the problem (6). Specifically

����f �(x) + ∂2L

∂x2
(x, λ)ξ + (h�(x))T(λ + η) − μ − ζ + ω1((x, λ, μ), (ξ , η, ζ ))

���� ≤ χ1(x, λ, μ),

�h(x) + h�(x)ξ + ω2((x, λ, μ), ξ)� ≤ χ2(x, λ, μ),

μ + ζ ≥ 0, x + ξ ≥ 0, �μ + ζ , x + ξ� = 0.

(7)

Here ω1 : (IRn × IRl × IRn) × (IRn × IRl × IRn) → IRn and ω2 : (IRn × IRl × IRn) × IRn → IRl

are functions characterizing structural perturbations of the KKT system of the basic SQP sub-
problem (6), while χ1 : IRn × IRl × IRn → IR+ and χ2 : IRn × IRl × IRn → IR+ are some forcing
functions controlling additional inexactness allowed when solving the pSQP subproblems. In par-
ticular, if ω1 ≡ 0 and ω2 ≡ 0 then (7) represents solving the usual SQP subproblems (6), perhaps
approximately (exactly if further χ1 ≡ 0 and χ2 ≡ 0). Otherwise, it is the functions ω1 and ω2

that define each specific algorithm within the pSQP framework (they represent ‘the difference’
between the pure SQP iteration and that of the given algorithm). We note that in general, in the
last line of (7) the inequality constraints in primal variables can be perturbed too (in (7) they are
not), see [14,15]; but complementarity relations have to be maintained exactly. We do not need
the extra generality of perturbing inequality constraints for the applications in this paper. Note
also that for simple bounds as in the current setting, exact complementarity can be maintained
employing active-set methods for subproblems, or by using simple ‘purification procedures’,
like the one proposed in [14]. For a current iterate (xk , λk , μk) ∈ IRn × IRl × IRn, the next pSQP
iterate is (xk+1, λk+1, μk+1) = (xk + ξ k , λk + ηk , μk + ζ k), where (ξ k , ηk , ζ k) satisfies (7) with
(x, λ, μ) = (xk , λk , μk).

For a priori local convergence analysis of pSQP (i.e. where the existence of the iterative sequence
and its convergence are not given but have to be proven), one needs to assume that ω2 is smooth with
respect to the last variable, and for all (x, λ, μ) ∈ IRn × IRl × IRn and (ξ , η, ζ ) ∈ IRn × IRl × IRn

it holds that

ω1((x, λ, μ), (ξ , η, ζ )) = ∂	

∂ξ
((x, λ, μ), (ξ , η, ζ )), (8)

where 	 : (IRn × IRl × IRn) × (IRn × IRl × IRn) → IR,

	((x, λ, μ), (ξ , η, ζ )) = ψ((x, λ, μ), ξ) + �λ + η, ω2((x, λ, μ), ξ)�, (9)

with some function ψ : (IRn × IRl × IRn) × IRn → IR which is smooth with respect to the last
variable. Observe that in this case the system (7) with χ1(·) ≡ 0 and χ2(·) ≡ 0 coincides with the
KKT system of the problem

minimize f (x) + �f �(x), ξ� + 1

2

�
∂2L

∂x2
(x, λ)ξ , ξ

�
+ ψ((x, λ, μ), ξ)

subject to h(x) + h�(x)ξ + ω2((x, λ, μ), ξ) = 0, x + ξ ≥ 0,

which is the perturbed version of the SQP subproblem (6).
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Let the mapping � : IRn × IRl × IRn → IRn × IRl × IRn be defined by

�(u) =
�

∂L

∂x
(x, λ, μ), h(x), x

�
,

where u = (x, λ, μ) ∈ IRn × IRl × IRn, and let N(u) stand for the normal cone to IRn × IRl × IRn
+

at u. Furthermore, define the multifunction � from (IRn × IRl × IRn) × (IRn × IRl × IRn) to the
subsets of IRn × IRl × IRn by

�(u, v) = ω(u, v) + (u),

where v = (ξ , η, ζ ),

ω(u, v) = (ω1((x, λ, μ), (ξ , η, ζ )), ω2((x, λ, μ), ξ))

and

(u) = 1(u) × 2(u) × {0},
with

1(u) = {θ1 ∈ IRn | �θ1� ≤ χ1(x, λ, μ)}, 2(u) = {θ2 ∈ IRl | �θ2� ≤ χ2(x, λ, μ)}.

With these mappings at hand, the iteration subproblem (7) of pSQP can be seen as the generalized
equation (GE)

�(uk) + ��(uk)(u − uk) + �(uk , u − uk) + N(u) � 0,

which is the iteration subproblem of the inexact Josephy–Newton method for GEs developed in
[15]. Then, under the appropriate assumptions on the perturbation terms ψ and ω2, the following
local superlinear convergence result for pSQP can be derived from [15, Theorem 2.1]; see [18,
Chapter 4] for details. We note that Theorem 2.1 below is similar to the statement in [14], but
with somewhat weaker smoothness requirements on perturbation terms. Its proof is also similar
to [14]; see [18].

Theorem 2.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighbourhood of
x̄ ∈ IRn, with their second derivatives being continuous at x̄. Let x̄ be a solution of the problem (1),
satisfying the SMFCQ and the SOSC (5) for the associated Lagrange multiplier (λ̄, μ̄) ∈ IRl × IRn.
Furthermore, let a function ψ : (IRn × IRl × IRn) × IRn → IR and a mapping ω2 : (IRn × IRl ×
IRn) × IRn → IRl possess the following properties:

(i) ψ is continuous at ((x̄, λ̄, μ̄), ξ) and ω2(·, ξ) is continuous at (x̄, λ̄, μ̄), for every ξ ∈ IRn close
enough to 0.

(ii) ψ and ω2 are differentiable with respect to ξ in a neighbourhood of ((x̄, λ̄, μ̄), 0) and twice
differentiable with respect to ξ at this point.

(iii) ∂ψ

∂ξ
and ∂ω2

∂ξ
are continuous at ((x̄, λ̄, μ̄), 0), and there exists a neighbourhood of 0 in IRn such

that ∂ω2

∂ξ
((x, λ, μ), ·) is continuous on this neighbourhood for all (x, λ, μ) ∈ IRn × IRl × IRn

close enough to (x̄, λ̄, μ̄).
(iv) The equalities

ω2((x̄, λ̄, μ̄), 0) = 0,
∂ψ

∂ξ
((x̄, λ̄, μ̄), 0) = 0,

∂ω2

∂ξ
((x̄, λ̄, μ̄), 0) = 0
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hold, and for the function 	 defined by (9) it holds that

�
∂2	

∂ξ 2
((x̄, λ̄, μ̄), (0, 0, 0))ξ , ξ

�
≥ 0 ∀ξ ∈ C(x̄).

Assume further that the following estimates hold as (x, λ, μ) ∈ IRn × IRl × IRn tends to (x̄, λ̄, μ̄)

and as (ξ , η, ζ ) ∈ IRn × IRl × IRn tends to zero:

ω2((x, λ, μ), ξ) = o(�ξ� + �(x − x̄, λ − λ̄, μ − μ̄)�), (10)

∂	

∂ξ
((x, λ, μ), (ξ , η, ζ )) = o(�(ξ , η, ζ )� + �(x − x̄, λ − λ̄, μ − μ̄)�), (11)

χj(x, λ, μ) = o(�(x − x̄, λ − λ̄, μ − μ̄)�), j = 1, 2. (12)

Then there exist ε > 0 and δ > 0 such that for any starting point (x0, λ0, μ0) ∈ IRn × IRl × IRn

satisfying

�(x0 − x̄, λ0 − λ̄, μ0 − μ̄)� ≤ ε, (13)

if a sequence {(xk , λk , μk)} ⊂ IRn × IRl × IRn satisfies, for each k = 0, 1, . . . , the system (7) with
ω1 defined in (8) and 	 defined in (9), and also satisfies

�(xk+1 − xk , λk+1 − λk , μk+1 − μk)� ≤ δ, (14)

then this sequence converges to (x̄, λ̄, μ̄), and the rate of convergence is superlinear. More-
over, under the stated assumptions, ε > 0 and δ > 0 can be chosen in such a way that for any
(x0, λ0, μ0) ∈ IRn × IRl × IRn satisfying (13) there exists at least one sequence satisfying, for each
k = 0, 1, . . . , the relations (7) and (14).

In addition, the rate of convergence is quadratic if the second derivatives of f and h are locally
Lipschitz-continuous with respect to x̄, and if (10)–(12) can be replaced by the estimates

ω2((x, λ, μ), ξ) = O(�ξ�2 + �(x − x̄, λ − λ̄, μ − μ̄)�2),

∂	

∂ξ
((x, λ, μ), (ξ , η, ζ )) = O(�(ξ , η, ζ )�2 + �(x − x̄, λ − λ̄, μ − μ̄)�2),

χj(x, λ, μ) = O(�(x − x̄, λ − λ̄, μ − μ̄)�2), j = 1, 2.

Theorem 2.1 is, of course, a rather general technical statement. For its applications to spe-
cific algorithms, such as truncated and augmented Lagrangian modifications of SQP, sequential
quadratically constrained quadratic programming, and linearly constrained Lagrangian methods,
see [14,15]. In the next sections, we shall proceed to inexact restoration and composite-step SQP,
the subjects of the present paper. But before that, we state an a posteriori primal rate of con-
vergence result for pSQP, established in [7]. Here, convergence of the iterative (primal–dual)
sequence is given (or already established via Theorem 2.1), and at issue is the rate of convergence
of the primal part of the sequence. Recall that in general, superlinear convergence of primal–dual
sequence does not imply any rate for the primal sequence separately [3, Exercise 14.8].
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We are now given iterative sequences linked by the perturbed KKT conditions of SQP
subproblems (3) as follows:

f �(xk) + ∂2L

∂x2
(xk , λk)(xk+1 − xk) + (h�(xk))Tλk+1 − μk+1 + ωk

1 = 0,

h(xk) + h�(xk)(xk+1 − xk) + ωk
2 = 0,

μk+1 ≥ 0, xk+1 ≥ 0, �μk+1, xk+1� = 0,

(15)

where ωk
1 ∈ IRn and ωk

2 ∈ IRl are the perturbation terms. Again, in general the part involving
inequality constraints (here represented by xk+1 ≥ 0) can be perturbed too, but we do not need
this generality for applications to algorithms in this paper. The following statement is an adaptation
of the results in [7] to the problem setting of (1), i.e. to the set of relations (15).

Theorem 2.2 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighbourhood
of x̄ ∈ IRn, with their second derivatives being continuous at x̄. Let a sequence {(xk , λk , μk)} ⊂
IRn × IRl × IRn satisfy, for each k, the system (15) with some ωk

1 ∈ IRn, ωk
2 ∈ IRl; let this sequence

be convergent to (x̄, λ̄, μ̄) where x̄ is a stationary point of the problem (1), with an associated
Lagrange multiplier (λ̄, μ̄) ∈ IRl × IRn being noncritical.

If

πC+(x̄,μ̄)(ω
k
1) = o(�xk+1 − xk� + �xk − x̄�),

where

C+(x̄, μ̄) = {ξ ∈ IRn | h�(x̄)ξ = 0, ξ �
A+ = 0}

and

ωk
2 = o(�xk+1 − xk� + �xk − x̄�),

as k → ∞, then the rate of convergence of {xk} is superlinear.

3. Exact restoration

It is instructive to consider first an ‘exact restoration’ method; it is not a practical algorithm but
rather a motivation for inexact restoration methods and a natural first step to their analysis. In
particular, it is the exact restoration that defines the associated class of methods within the pSQP
framework (i.e. it defines structural pertubations relative to SQP), while inexact restoration can
be regarded simply as solving the subproblems of the method approximately in some sense.

Algorithm 3.1 Choose (x0, λ0, μ0) ∈ IRn × IRl × IRn and set k = 0.

1. If (xk , λk , μk) satisfies the KKT system (2), stop.
2. (Feasibility phase) Compute π k as a projection of xk onto the feasible set of the problem (1),

i.e. a global solution of the subproblem

minimizeπ �π − x�
subject to h(π) = 0, π ≥ 0

(16)

for x = xk.
3. If (π k , λk , μk) satisfies the KKT system (2), stop.
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4. (Optimality phase) Compute xk+1 and (ηk , μk+1) as a stationary point and an associated
Lagrange multiplier of the subproblem

minimizex L(x, λ)

subject to h�(π)(x − π) = 0, x ≥ 0
(17)

for π = π k , λ = λk.
5. Set λk+1 = λk + ηk.
6. Increase k by 1 and go to step 1.

For a given x ∈ IRn, let π̄(x) be a projection of x onto the feasible set of the problem (1),
computed as at the feasibility phase of Algorithm 3.1 solving the problem (16). In order to
formally apply Theorem 2.1, we need to assume that π̄(·) is a fixed single-valued function. As
the feasible set is not convex, the projection onto it need not be unique, in general. However, an
algorithm used to solve (16) follows its internal patterns and computes one specific projection. It
is further reasonable to assume that, if at some future iteration a projection of the same point needs
to be computed again (however unlikely this might be from a practical viewpoint), the algorithm
would return the same result. With this in mind, considering that π̄(·) is a single-valued function is
justified for all practical purposes. In Theorem 3.1 below this assumption is stated more formally.

Then the next primal iterate xk+1 can be seen as xk + ξ k , where ξ k is a stationary point of the
following counterpart of the problem (17):

minimizeξ L(x + ξ , λ)

subject to h�(π̄(x))(x + ξ − π̄(x)) = 0, x + ξ ≥ 0,
(18)

with x = xk , λ = λk . For the next dual iterate (λk+1, μk+1) it holds that λk+1 = λk + ηk , where
(ηk , μk+1) is a Lagrange multiplier associated with ξ k .

To place the exact restoration scheme above within the pSQP framework so that the needed
assumptions on the perturbation terms be satisfied, we shall replace (18) by the (related)
subproblem

minimizeξ L(x + ξ , λ) − �λ, h�(π̄(x))ξ�
subject to h�(π̄(x))(x + ξ − π̄(x)) = 0, x + ξ ≥ 0,

(19)

still with x = xk , λ = λk . It can be directly verified that stationary points ξ k+1 of the problems
(18) and (19) coincide, and the associated multipliers are of the form (ηk , μk+1) and (λk+1, μk+1),
with λk+1 = λk + ηk , respectively. Thus, for the purposes of convergence analysis, we can deal
with the modified subproblems (19). It turns out that this allows to apply Theorem 2.1 if for
(x, λ, μ) ∈ IRn × IRl × IRn and ξ ∈ IRn we take

ψ((x, λ, μ), ξ) = ψ((x, λ), ξ)

= L(x + ξ , λ) − �λ, h�(π̄(x))ξ� − f (x) − �f �(x), ξ� − 1

2

�
∂2L

∂x2
(x, λ)ξ , ξ

�

= L(x + ξ , λ) −
�
∂L

∂x
(x, λ), ξ

�
− 1

2

�
∂2L

∂x2
(x, λ)ξ , ξ

�

− �λ, (h�(π̄(x)) − h�(x))ξ� − f (x), (20)

ω2((x, λ, μ), ξ) = ω2(x, ξ) = h�(π̄(x))(x + ξ − π̄(x)) − h(x) − h�(x)ξ . (21)
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Let x̄ ∈ IRn be a stationary point of the problem (1), and (λ̄, μ̄) ∈ IRl × IRn be an associated
Lagrange multiplier. Evidently, �π̄(x) − x� ≤ �x − x̄� for any x ∈ IRn and any solution π̄(x) of
the problem (16). In particular, π̄(x) → x̄ = π̄(x̄) as x → x̄. Employing the mean-value theorem,
one can directly verify that under the appropriate smoothness assumptions on f and h, the function
ψ and the mapping ω2 defined by (20), (21) possess all the properties required in Theorem 2.1
with χj(·) ≡ 0, j = 1, 2. We omit the technical details as they are completely routine, and only
mention that for 	((x, λ, μ), (ξ , η, ζ )) = 	((x, λ), (ξ , η)) defined according to (9) it holds that

∂2	

∂ξ 2
((x̄, λ̄), (0, 0)) = 0,

and

∂	

∂ξ
((x, λ), (ξ , η)) = ∂L

∂x
(x + ξ , λ) − ∂L

∂x
(x, λ) − ∂2L

∂x2
(x, λ)ξ + (h�(π̄(x)) − h�(x))Tη

= o(�ξ�) + O(�η��x − x̄�), (22)

ω2(x, ξ) = (h�(π̄(x)) − h�(x))ξ + h(π̄(x)) − h(x) − h�(π̄(x))(π̄(x) − x)

= O(�ξ��x − x̄� + �x − x̄�2) (23)

as (x, λ) → (x̄, λ̄) and (ξ , η) → (0, 0). Moreover, under stronger smoothness assumptions, the
first estimate can be sharpened as follows:

∂	

∂ξ
((x, λ), (ξ , η)) = O(�ξ�2 + (�ξ� + �η�)�x − x̄�). (24)

Applying Theorem 2.1, we now obtain conditions for local superlinear convergence of
Algorithm 3.1.

Theorem 3.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighbourhood of
x̄ ∈ IRn, with their second derivatives continuous at x̄. Let x̄ be a stationary point of the problem (1),
satisfying SMFCQ and the SOSC (5) for the associated Lagrange multiplier (λ̄, μ̄) ∈ IRl × IRn.
Assume that if xk = xj for any two iteration indices k and j, then step 2 of Algorithm 3.1 computes
π k = π j .

Then there exist ε > 0 and δ > 0 such that for any starting point (x0, λ0, μ0) ∈ IRn × IRl × IRn

satisfying

�(x0 − x̄, λ0 − λ̄, μ0 − μ̄)� ≤ ε, (25)

if a sequence {(xk , λk , μk)} ⊂ IRn × IRl × IRn generated by Algorithm 3.1 satisfies

�(xk+1 − xk , λk+1 − λk , μk+1 − μk)� ≤ δ (26)

for each k = 0, 1, . . . , then this sequence converges to (x̄, λ̄, μ̄), and the rate of convergence is
superlinear. Moreover, ε > 0 and δ > 0 can be chosen in such a way that for any starting point
(x0, λ0, μ0) ∈ IRn × IRl × IRn satisfying (25), there exists at least one sequence conforming, for
each k = 0, 1, . . . , to Algorithm 3.1 and the condition (26).

In addition, the rate of convergence is quadratic provided the second derivatives of f and h are
locally Lipschitz-continuous with respect to x̄.

Also, an a posteriori result regarding primal superlinear convergence of Algorithm 3.1 now fol-
lows readily from Theorem 2.2. Note that the needed assumption is noncriticality of the multiplier,
weaker than the SOSC (5).
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Theorem 3.2 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighbourhood of
x̄ ∈ IRn, with their second derivatives being continuous at x̄. Let x̄ be a stationary point of problem
(1), and let (λ̄, μ̄) ∈ IRl × IRn be an associated noncritical Lagrange multiplier. Let an iterative
sequence {(xk , λk , μk)} ⊂ IRn × IRl × IRn generated by Algorithm 3.1 be convergent to (x̄, λ̄, μ̄).

Then the rate of convergence of {xk} is superlinear.

Proof According to the discussion above, for each k it holds that (xk+1, λk+1, μk+1) = (xk +
ξ k , λk + ηk , μk + ζ k), where (ξ k , ηk , ζ k) satisfies the system (7) with ω1((x, λ, μ), (ξ , η, ζ )) =
ω1((x, λ), (ξ , η)) defined by (8) and the first equality in (22), with ω2 defined by (21), and with
χ1(·) ≡ 0 and χ2(·) ≡ 0. Therefore, the set of relations (15) holds for each k, where according to
(22) and (23)

ωk
1 = ω1((x

k , λk), (xk+1 − xk , λk+1 − λk))

= o(�xk+1 − xk�) + O(�λk+1 − λk��xk − x̄�)
= o(�xk+1 − xk� + �xk − x̄�),

ωk
2 = ω2(x

k , xk+1 − xk)

= O(�xk+1 − xk��xk − x̄� + �xk − x̄�2)

= o(�xk+1 − xk� + �xk − x̄�)
as k → ∞. Theorem 2.2 now implies the assertion. �

4. Inexact restoration

Clearly, solving the subproblems (16) and (17) in Algorithm 3.1 exactly would be too costly, in
most cases simply impossible. The main question of this section is what kind of inexactness can be
allowed when solving these subproblems, so that the local convergence and rate of convergence
properties of Algorithm 3.1 would remain valid. To that end, we now consider the following
framework which we refer to as the inexact restoration method.

Algorithm 4.1 Choose functions ϕ0, ϕ1, ϕ2 : IR+ → IR+. Choose (x0, λ0, μ0) ∈ IRn × IRl ×
IRn and set k = 0.

1. If (xk , λk , μk) satisfies the KKT system (2), stop.
2. (Feasibility phase) Compute π k ∈ IRn satisfying

�h(π)� ≤ ϕ0(�h(x)�), π ≥ 0 (27)

for x = xk.
3. If (π k , λk , μk) satisfies the KKT system (2), stop.
4. (Optimality phase) Compute xk+1 and (ηk , ζ k) satisfying

����
∂L

∂x
(x, λ) + (h�(π))Tη − μ − ζ

���� ≤ ϕ1

�����
∂L

∂x
(π , λ) − μ

����
�

, (28)

�h�(π)(x − π)� ≤ ϕ2

�����
∂L

∂x
(π , λ) − μ

����
�

, (29)

μ + ζ ≥ 0, x ≥ 0, �μ + ζ , x� = 0 (30)

for π = π k, λ = λk and μ = μk.
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5. Set λk+1 = λk + ηk , μk+1 = μk + ζ k.
6. Increase k by 1 and go to step 1.

In the analysis below it will be further assumed that π k computed at the feasibility phase of
Algorithm 4.1 is within a controllable distance from xk . Specifically, in addition to (27), we shall
require that

�π − x� ≤ K�(x − x̄, λ − λ̄, μ − μ̄)� (31)

for some K > 0 independent of (x, λ, μ). In practice, this can be achieved, e.g. by approximately
solving the subproblem (16), or by other feasibility restoration strategies. In [1], instead of (31)
the following stronger condition is employed

�π − x� ≤ K̃�h(x)�, (32)

with some K̃ > 0, which certainly implies (31) with K = �K̃ if h is Lipschitz-continuous with
respect to x̄ with constant � > 0. Moreover, as a practical implementation of (32), in [1] it is
suggested to fix K̃ > 0 as a parameter of the algorithm, and to compute π k as an approximate
solution of the subproblem

minimizeπ �h(π)�2

subject to �π − x� ≤ K̃�h(x)�, π ≥ 0

for x = xk . The approximate solution is supposed to satisfy the constraints of this subproblem and
the condition (27) . However, the difficulty with this approach is that for a given K̃ , the approximate
solution of this kind does not necessarily exist, in which case the algorithm in [1] simply declares
failure at the feasibility phase. To that end, below we do not employ (32) as an actual constraint
of the feasibility subproblem of the algorithm, but rather use (31) as an ingredient of the analysis.

In [1] it is also assumed that (xk+1, ηk , ζ k) computed at the optimality phase of Algorithm 4.1
lies within a controllable distance from (π k , 0, 0): in addition to (28), (29), it is required that

�(x − π , η, ζ )� ≤ K̃

����
∂L

∂x
(π , λ) − μ

���� (33)

(in [1] Lagrange multipliers for nonnegativity constraints are not used, but otherwise (33) essen-
tially corresponds to the constructions in [1]). In practice, this can be achieved by approximately
solving the subproblem (17), perhaps with some additional constraints; see [1]. However, this
additional control can be needed under the relaxed or removed CQs only. Under the assumptions
of Theorem 3.1, it will be enough to assume that (xk+1, ηk , ζ k) is simply not too far from (π k , 0, 0).

Employing (27)–(30), by the same transformations as in Section 3, an iteration ofAlgorithm 4.1
can be seen as solving (7) with ω1 defined by (8), where ψ is given by (20), with ω2 defined by
(21), and with

χ1(x, λ, μ) = ϕ1

�����
∂L

∂x
(π(x, λ, μ), λ) − μ

����
�

, (34)

χ2(x, λ, μ) = ϕ2

�����
∂L

∂x
(π(x, λ, μ), λ) − μ

����
�

, (35)

where π(x, λ, μ) is the point selected at the feasibility phase of the algorithm. Observe that for any
(x, λ, μ) ∈ IRn × IRl × IRn, the point x̄ satisfies both (27) and (31) with any K ≥ 1, and hence,
can be selected as π(x, λ, μ) at the feasibility phase of the algorithm. Therefore, π(x, λ, μ) with
the needed properties always exists.



472 A.F. Izmailov et al.

Similarly to the case of exact restoration, we can reasonably assume that if step 2 of
Algorithm 4.1 is applied at equal primal–dual points on different iterations then the same result
is produced. In particular, π(·) is a fixed single-valued function.

By differentiability of h at x̄, we conclude that

h(x) = h(x) − h(x̄) = O(�x − x̄�) (36)

as x → x̄. Moreover, by twice differentiability of f and h at x̄, taking into account (31), we obtain
that

����
∂L

∂x
(π(x, λ, μ), λ) − μ

���� ≤ �μ − μ̄� +
����
∂L

∂x
(π(x, λ, μ), λ) − ∂L

∂x
(x̄, λ̄)

����

= �μ − μ̄� + O(�(π(x, λ, μ) − x̄, λ − λ̄)�)
= �μ − μ̄� + O(�x − x̄�) + O(�(π(x, λ, μ) − x, λ − λ̄)�)
= O(�(x − x̄, λ − λ̄, μ − μ̄)�) (37)

as (x, λ, μ) → (x̄, λ̄, μ̄).

Theorem 4.1 Under the assumptions of Theorem 3.1, suppose that if (xk , λk , μk) = (xj, λj, μj)

for any two iteration indices k and j, then step 2 of Algorithm 4.1 computes π k = π j .
Then for any functions ϕ0, ϕ1, ϕ2 : IR+ → IR+ such that ϕ0(t) = o(t), ϕ1(t) = o(t) and ϕ2(t) =

o(t) as t → 0, and any K ≥ 1, there exist ε > 0 and δ > 0 such that for any starting point
(x0, λ0, μ0) ∈ IRn × IRl × IRn satisfying (25), if an iterative sequence {(xk , π k , λk , μk)} ⊂ IRn ×
IRn × IRl × IRn generated by Algorithm 4.1 satisfies, for each k = 0, 1, . . ., the relations

�π k − xk� ≤ K�(xk − x̄, λk − λ̄, μk − μ̄)� (38)

and (26), then this sequence converges to (x̄, λ̄, μ̄), and the rate of convergence is superlin-
ear. Moreover, ε > 0 and δ > 0 can be chosen in such a way that for any starting point
(x0, λ0, μ0) ∈ IRn × IRl × IRn satisfying (25), there exists at least one sequence conforming, for
each k = 0, 1, . . . , to Algorithm 4.1 and satisfying (26) and (38).

In addition, the rate of convergence is quadratic if the second derivatives of f and h are locally
Lipschitz-continuous with respect to x̄, and if ϕ0(t) = O(t2), ϕ1(t) = O(t2) and ϕ2(t) = O(t2) as
t → 0.

Proof Combining (34), (35) with (36), (37), and taking into account the assumptions regarding
ϕ0, ϕ1 and ϕ2, we obtain that

χj(x, λ, μ) = o(�(x − x̄, λ − λ̄, μ − μ̄)�), j = 1, 2

as (x, λ, μ) → (x̄, λ̄, μ̄). Moreover, if ϕ0(t) = O(t2), ϕ1(t) = O(t2) and ϕ2(t) = O(t2), then

χj(x, λ, μ) = O(�(x − x̄, λ − λ̄, μ − μ̄)�2), j = 1, 2.

Observe now that all the considerations in Section 3 remain valid if we replace π̄(x)byπ(x, λ, μ)

(with the evident modifications of estimates (22)–(24), where one should replace �x − x̄� by
�(x − x̄, λ − λ̄, μ − μ̄)�). This follows from (27), (31) and (36), implying, in particular, that
π(x, λ, μ) → x̄ = π(x̄, λ̄, μ̄) and

h(π(x, λ, μ)) = o(�h(x)�) = o(�x − x̄�)
as (x, λ, μ) → (x̄, λ̄, μ̄).

The needed results now follow by applying Theorem 2.1. �
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5. Inexact restoration and degenerate problems

As already mentioned in Section 1, the analysis in [1] does not assume any CQ, and the primal–dual
solution (even the primal part) does not have to be isolated. In fact, the analysis in [1] is actually
quite similar to that in [9] for the abstract Newtonian framework for GE problems with nonisolated
solutions. In particular, relations (3)–(7) in [1] give a version of the inexact restoration method
subproblem, combined with the stabilizing localization conditions (32) and (33). However, in
[1] solvability of subproblems is not established—it is assumed that subproblems have solutions
satisfying the needed localization conditions; see [1, Theorem 2.3]. The discussion that follows
is intended to demonstrate that without CQs, this property of subproblems’ solvability with the
required localization of solutions is at least questionable.

To apply the general convergence result from [9], we need the conditions (27) and the set of
relations

����
∂L

∂x
(x + ξ , λ) + (h�(π))Tη − μ − ζ

���� ≤ ϕ1

�����
∂L

∂x
(π , λ) − μ

����
�

, (39)

�h�(π)(x + ξ − π)� ≤ ϕ2

�����
∂L

∂x
(π , λ) − μ

����
�

, (40)

μ + ζ ≥ 0, x + ξ ≥ 0, �μ + ζ , x + ξ� = 0 (41)

(cf. (28)–(30)) to have a solution (π , ξ , η, ζ ) satisfying

�(ξ , η, ζ )� = O(�x − x̄� + dist((λ, μ), M(x̄))). (42)

In particular, the above at least must hold, as it is implied by (32) and (33). Quite remarkably,
such a triple always exists—just take π = x̄, ξ = x̄ − x and (η, ζ ) such that (λ + η, μ + ζ ) is the
projection of (λ, μ) onto M(x̄). Therefore, the inexact restoration scheme actually admits one-
step termination at an exact primal–dual solution even when localization conditions are imposed.
The problem, of course, is that this view of the inexact restoration scheme would not have much
to do with reality, as finite termination cannot be expected for any reasonable algorithm. In the
case of inexact restoration perhaps even more so, as the method consists of the two subsequent
phases, and for finite termination one has to obtain the exact primal solution x̄ as π k at the
feasibility phase, which does not even involve the objective function f ! Also, it appears that in
order to formally apply the iterative framework of [9], one has to follow the line of the analysis
giving Theorem 4.1. Specifically, it is more practical to consider any π(x, λ, μ) satisfying (27)
and (31), and to ask whether there exists (ξ , η, ζ ) satisfying (39)–(42), with π = π(x, λ, μ). The
next example demonstrates that without any CQ, the answer to this question is in general negative.
More precisely, by means of sensitivity theory for optimization problems it can be shown that
under some reasonable assumptions, the primal estimate in (42) can be achieved, but the dual one
is problematic.

Example 5.1 Let n = 2, l = 1, f (x) = (x2
1 + x2

2)/2, h(x) = (x1 − x2
2)x

2
2. Then x̄ = 0 is a solution

of the problem (1), M(x̄) = IR × {0}, all the multipliers are noncritical and even satisfy the SOSC.
Let x = π = μ = (t2, t) with t > 0 (observe that this x = π is feasible), and let λ = 0. Then

∂L

∂x
(π , λ) − μ = 0,
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and (28)–(30) take the form

ξ1 + ηt2 − ζ1 = 0, ξ2 − 2ηt3 − ζ2 = 0, t2 + ξ1 − 2t(t + ξ2) + t2 = 0, (43)

t2 + ζ1 ≥ 0, t2 + ξ1 ≥ 0, (t2 + ζ1)(t
2 + ξ1) = 0,

t + ζ2 ≥ 0, t + ξ2 ≥ 0, (t + ζ2)(t + ξ2) = 0. (44)

If t + ξ2 = 0 then, by (44), the last equality in (43) cannot hold, and therefore, t + ξ2 > 0,
t + ζ2 = 0.

If t2 + ξ1 = 0, then from (43) we derive that ξ2 = −t/2, η = 1/(4t2) → ∞ as t → 0, and
hence, (42) cannot hold.

If t2 + ξ1 > 0 then, by (44), t2 + ζ1 = 0, and by (44), η = 1/(1 + 4t2) → 1 as t → 0, and (42)
cannot hold again.

6. Composite-step SQP

As is well known (see, e.g. [6]), the exact SQP step defined by the subproblem (6) can be decom-
posed into the following two phases. The normal phase consists of finding π k as a point satisfying
the linearized equality constraints

h(x) + h�(x)(π − x) = 0 (45)

for x = xk . This is followed by the tangential phase, where one computes xk+1 and (λk+1, μk+1)

as a stationary point and an associated Lagrange multiplier of the QP subproblem

minimizez

�
f �(x) + ∂2L

∂x2
(x, λ)(π − x), z − π

�
+ 1

2

�
∂2L

∂x2
(x, λ)(z − π), z − π

�

subject to h�(x)(z − π) = 0, z ≥ 0

for x = xk , π = π k and λ = λk .
One can readily see that the result of this two-phase iteration is exactly the same as that of

the SQP iteration, so this is merely an interpretation of the latter. However, this decomposition is
crucially useful in the context of trust-region globalization strategies for SQP, as it allows to avoid
possible infeasibility of subproblems when an additional trust-region constraint is added in (3) (i.e.
when (3) itself is feasible but its solutions may lie outside of the trust-region around the current
iterate xk , imposed for globalization purposes). We refer the reader to [6, Section 15.4] for details.
We also note that some extra requirements may appear at the normal phase, such as nonnegativity
of π , or the requirement that π is the projection of x onto the set given by the linearized constraints
(thus the name ‘normal phase’; see [6, Section 15.4.4]). These requirements can be needed for
designing globally convergent algorithms, but they are not needed for the local convergence
analysis via the pSQP framework given below. Note also that the subproblems of both phases
need not be solved exactly; moreover, solving them exactly would certainly be wasteful. In fact,
satisfying some appropriate mild model reduction conditions does the job for establishing global
convergence [6, Section 15.4]. As for local convergence, the conditions and rules for updating
the trust-region parameter allow to expect that under some natural assumptions, and perhaps
employing second-order corrections, the trust-region radius is locally constant for the tail of the
sequence [6, Section 15.4.4]. Then, under the assumptions in question, the trust-region constraint
is locally inactive and thus does not interfere with the local convergence analysis of composite-
step SQP without trust-region. Implicitly assuming this, we next study which perturbations in both
phases of this two-phase interpretation of SQP do not destroy its local superlinear convergence.
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We now state the inexact composite-step SQP method, allowing for inexactness in both the
normal and the tangential phases.

Algorithm 6.1 Choose functions ϕ0, ϕ1, ϕ2 : IR+ → IR+. Choose (x0, λ0, μ0) ∈ IRn × IRl ×
IRn and set k = 0.

1. If (xk , λk , μk) satisfies the KKT system (2), stop.
2. (Normal phase) Compute π k ∈ IRn satisfying

�h(x) + h�(x)(π − x)� ≤ ϕ0

�����
�

∂L

∂x
(x, λ) − μ, h(x)

�����
�

(46)

for x = xk , λ = λk and μ = μk.
3. (Tangential phase) Compute z = xk+1 and (u, v) = (λk+1, μk+1) satisfying

����f �(x) + ∂2L

∂x2
(x, λ)(z − x) + (h�(x))Tu − v

���� ≤ ϕ1

�����
�

∂L

∂x
(x, λ) − μ, h(x)

�����
�

, (47)

�h�(x)(z − π)� ≤ ϕ2

�����
�

∂L

∂x
(x, λ) − μ, h(x)

�����
�

, (48)

v ≥ 0, z ≥ 0, �v, z� = 0 (49)

for x = xk, π = π k, λ = λk and μ = μk.
4. Increase k by 1 and go to step 1.

Observe further that all the derivatives in Algorithm 6.1 are computed at xk , unlike for exact
and inexact restoration schemes, where all the derivatives are computed at π k produced by the
feasibility phase. One consequence of this is that the inexact composite-step SQP method does
not give rise to any structural perturbations of the basic SQP, other than those coming from (46):
as will be seen below, all the other perturbations can be naturally interpreted as truncations of the
SQP iteration.

Indeed, for (x, λ, μ) ∈ IRn × IRl × IRn set

ω2(x, λ, μ) = −h(x) − h�(x)(π(x, λ, μ) − x), (50)

where π(x, λ, μ) is the point selected at the normal phase of the algorithm. Observe that π

satisfying (45) (and even more so (46)) always exists if rank h�(x) = l.
Comparing (47)–(49) with the corresponding relations in (7) it is now evident that an iteration

of Algorithm 6.1 can be seen as solving (7) with ω1 identically equal to zero, and ω2 defined in
(50) (which agrees with taking ψ identically equal to zero as well), and with

χ1(x, λ, μ) = ϕ1

�����
�

∂L

∂x
(x, λ) − μ, h(x)

�����
�

,

χ2(x, λ, μ) = ϕ2

�����
�

∂L

∂x
(x, λ) − μ, h(x)

�����
�

.

Moreover, the needed properties of ω2 readily follow from (46) and (50), and similarly to
Theorem 4.1, we immediately obtain the following local superlinear convergence result for the
inexact composite-step SQP method.
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Theorem 6.1 Under the assumptions of Theorem 3.1, suppose that if (xk , λk , μk) = (xj, λj, μj)

for any two iteration indices k and j, then step 2 of Algorithm 6.1 computes π k = π j .
Then for any functions ϕ0, ϕ1, ϕ2 : IR+ → IR+ such that ϕ0(t) = o(t), ϕ1(t) = o(t) and ϕ2(t) =

o(t) as t → 0, there exist ε > 0 and δ > 0 such that for any starting point (x0, λ0, μ0) ∈ IRn ×
IRl × IRn satisfying (25), if an iterative sequence {(xk , λk , μk)} ⊂ IRn × IRl × IRn is generated by
Algorithm 6.1 and satisfies (26) for each k = 0, 1, . . . , then this sequence converges to (x̄, λ̄, μ̄),
and the rate of convergence is superlinear. Moreover, ε > 0 and δ > 0 can be chosen in such a
way that for any starting point (x0, λ0, μ0) ∈ IRn × IRl × IRn satisfying (25), there exists at least
one sequence conforming, for each k = 0, 1, . . . , to Algorithm 6.1 and satisfying the condition
(26).

In addition, the rate of convergence is quadratic if the second derivatives of f and h are locally
Lipschitz-continuous with respect to x̄, and if ϕ0(t) = O(t2), ϕ1(t) = O(t2) and ϕ2(t) = O(t2) as
t → 0.

Algorithm 6.1 covers both the Vardi-like approach [26] to composite-step trust-region SQP
methods (where ϕ0 is supposed to be identically equal to zero; see [6, Section 15.4.1]), as well as
Byrd–Omojokun-like methods (where ϕ0 is allowed to be nonzero; see [6, Section 15.4.2, 24]).
The corresponding rate-of-convergence results in [6, Theorems 15.4.15, 15.4.24] assume that the
pure SQP step is taken whenever possible (i.e. whenever it can be accepted by the trust-region
and model reduction rules). Theorem 6.1 demonstrates that in fact there is no need to perform the
SQP step exactly in order to preserve superlinear convergence. As for Celis–Dennis–Tapia-like
approaches (see [5, 6, Section 15.4.3]), these are not really composite-step methods: they only
involve truncation in the linearized equality constraints part; therefore, they can be embedded into
the pSQP framework directly.
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