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We consider the sequential quadratic programming (SQP) algorithm applied to equality-constrained opti-
mization problems, where the problem data is differentiable with Lipschitz-continuous first derivatives.
For this setting, Dennis–Moré-type analysis of primal superlinear convergence is presented. Our main
motivation is a special modification of SQP tailored to the structure of the lifted reformulation of math-
ematical programs with complementarity constraints (MPCC). For this problem, we propose a special
positive definite modification of the matrices in the generalized Hessian, which is suitable for globalization
of SQP based on the penalty function, and at the same time can be expected to satisfy our general Dennis–
Moré-type conditions, thus preserving local superlinear convergence. (Standard quasi-Newton updates in
the SQP framework require twice differentiability of the problem data at the solution for superlinear con-
vergence.) Preliminary numerical results comparing a number of quasi-Newton versions of semismooth
SQP applied to MPCC are also reported.
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1. Introduction

We consider the equality-constrained optimization problem

min f (x) s.t. h(x) = 0, (1)

where f : Rn → R and h : Rn → Rl are differentiable with locally Lipschitz-continuous first
derivatives, but not necessarily twice differentiable. Problems with these smoothness properties
arise in stochastic programming and optimal control (the so-called extended linear-quadratic
problems [26,29,30]), in semi-infinite programming and in primal decomposition procedures
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(see [16,24] and references therein). Once but not twice differentiable functions arise also when
reformulating complementarity constraints as in [13] or in the lifting approach [15,32]. Other
possible sources are subproblems in augmented Lagrangian methods with lower-level equal-
ity constraints (treated directly) and upper-level inequality constraints (treated via Lagrangian
penalization, which gives certain terms that are not twice differentiable in general); see, e.g. [1].

Our main application in this paper, considered in Section 3, is concerned with reformula-
tions of complementarity conditions via the lifting approach [15,32]. To this end, consider the
mathematical program with complementarity constraints (MPCC)

min f (x) s.t. G(x) ≥ 0, H(x) ≥ 0, �G(x), H(x)� = 0, (2)

where f : Rn → R and G, H : Rn → Rm are twice differentiable, with locally bounded second
derivatives. We refer the reader to [7,8,13,14,20,23,28,31] for motivations and theoretical and
computational developments for this problem class. As suggested in [32], the constraints of (2)
can be written as smooth equalities by introducing an auxiliary variable y ∈ Rm and using the
lifted reformulation:

(− min{0, y})s − G(x) = 0, (max{0, y})s − H(x) = 0, s > 1,

where the operations of taking minimum, maximum and applying power are understood
component-wise. In [32], the value s = 3 is employed, which gives a problem with twice con-
tinuously differentiable data but leads to its degeneracy. The approach of [15] uses s = 2, which
converts (2) to

min f (x) s.t. (min{0, y})2 − G(x) = 0, (max{0, y})2 − H(x) = 0. (3)

Under our assumptions, the constraints in (3) are differentiable, with locally Lipschitz-continuous
derivatives, but generally not twice differentiable. The advantage is that the problem (3) has better
regularity properties than when the power s = 3 is used; see the discussion in [15] and also
Remark 4.

In this paper, we consider the semismooth version of the sequential quadratic programming
(SQP) method [2] for problem (1), and its modification tailored specifically to the structure
of lifted MPCC (3). It should be noted that, in local analysis, semismooth SQP for (1) is just
the semismooth Newton method (SNM) applied to the Lagrange optimality system of (1). For
generic systems of nonlinear equations, such methods were developed in [17,18,25,27], with local
superlinear convergence properties established under reasonable regularity assumptions (see the
discussion in Section 2.1). Moreover, local convergence and rate of convergence properties of
semismooth SQP for more general optimization problems with additional inequality constraints
were studied in [9,26]. SNM for the Lagrange system of the lifted reformulation (3) of MPCC (2)
was proposed in [15], with globalization strategy based on linesearch for the squared residual of
the Lagrange system.

In this paper, instead of globalization based on the residual of the Lagrange system of (3),
we shall employ the l1-penalty function in a way that takes into account special structure of the
lifted MPCC (3). This strategy is more in the spirit of classical SQP algorithms [2] and can be
advantageous compared to the use of the residual of the Lagrange system. In particular, it is
natural to expect that globalization using the penalty function, being more optimization-oriented,
should outperform globalization based on the residual in terms of the ‘quality’ of the output: the
former should be much less attracted by nonoptimal stationary points than the latter. This is also
confirmed by our numerical results is Section 4.

It should be emphasized that we do not just apply generic SQP with l1-penalty globalization
to the lifted MPCC (3), and thus our development requires some theoretical analysis as well.
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There are several reasons why we believe SQP should be modified from its generic version
to take into account special structure of lifted MPCC. First, globalization based on linesearch
for a penalty function requires positive definite modifications of the matrices in the generalized
Hessian of the Lagrangian of problem (3). In principle, this can be done by standard quasi-
Newton updates, such as BFGS. However, it is known that for systems of nonlinear equations
quasi-Newton methods with standard updates are guaranteed to preserve superlinear convergence
only when the equation mapping is actually differentiable at the solution, while the Lagrange
optimality system of (3) is not differentiable. For this reason, instead of using standard quasi-
Newton updates to make the matrices positive definite, we suggest a special modification directly
linked to the structure of the problem in hand (the two approaches are also compared numerically
in Section 4, and our results confirm that the proposed special approach does work better). To
show that this modification can be expected to preserve high convergence rate, we need some
general quasi-Newton-type results for problem (1). Since there appears to be no quasi-Newton
theory for semismooth problems that suits our specific needs, our first contribution is developing
such theory. In particular, we give Dennis–Moré-type analysis of primal superlinear convergence
rate for a generic quasi-Newton semismooth SQP method for problem (1), assuming primal–dual
convergence. It should be noted that generic quasi-Newton versions of semismooth SQP methods
for optimization problems with Lipschitzian derivatives were previously discussed in [9,26]. But
these results concern local primal–dual superlinear convergence, assuming that the matrices being
used are close enough to true generalized Hessians. Within the globalization context of this paper,
our a posteriori analysis is more appropriate. We assume primal–dual convergence as induced
by the globalization strategy, but do not require the matrices to be close to the true generalized
Hessians (instead, natural extensions of classical Dennis–Moré conditions are considered).

We next introduce our notation. The Lagrangian of problem (1) is given by

L(x, λ) = f (x) + �λ, h(x)�,
where x ∈ Rn and λ ∈ Rl . Stationary points and the Lagrange multipliers of problem (1) are
characterized by the Lagrange optimality system

∂L

∂x
(x, λ) = 0, h(x) = 0. (4)

As is well known, if x̄ ∈ Rn is a local solution of problem (1) satisfying the regularity condition

rank h�(x̄) = l, (5)

then x̄ is a stationary point of problem (1) in the sense that there exists the (unique) associated
Lagrange multiplier λ̄ ∈ Rl such that (x̄, λ̄) satisfies (4).

Let a mapping � : Rq → Rr be Lipschitz-continuous around a point u ∈ Rq . The B-differential
[6, Section 7.4] of � at u is the set

∂B�(u) = {� ∈ Rr×q | ∃{uk} ⊂ D� such that {uk} → u, {��(uk)} → �},
where D� is the set of points at which � is differentiable (under the stated assumptions, this set
is dense). Then the Clarke generalized Jacobian of � at u is given by

∂�(u) = conv ∂B�(u),

where conv S stands for the convex hull of the set S. Furthermore, for a mapping � : Rp ×
Rq → Rr which is Lipschitz-continuous around a point (u, v) ∈ Rp × Rq , we define the partial
B-differential of � at (u, v) with respect to u as the B-differential of the mapping �(·, v), and
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we denote it by (∂B)u�(u, v). Similarly, the partial Clarke generalized Jacobian of � at (u, v)

with respect to u is the Clarke generalized Jacobian of the mapping �(·, v), which we denote by
∂u�(u, v).

The mapping � : Rq → Rr is said to be semismooth [6, Section 7.4] at u ∈ Rq if it is locally
Lipschitz-continuous around u, directionally differentiable at u in every direction, and satisfies
the condition

sup
�∈∂�(u+v)


�(u + v) − �(u) − �v
 = o(
v
).

If the stronger condition

sup
�∈∂�(u+v)


�(u + v) − �(u) − �v
 = O(
v
2)

holds, then � is said to be strongly semismooth at u.
We will be saying that a mapping � : Rq → Rr is locally Lipschitz-continuous with respect to

a given point ū ∈ Rq if


�(u) − �(ū)
 = O(
u − ū
).
For a given set S ⊂ Rq and any u ∈ Rq , we define

dist(u, S) = inf
w∈S


u − w
.

By πS we denote the Euclidian projector onto S. For a linear operator �, ker � is its kernel (the
null space) and im � is its image (the range space). For a given u ∈ Rq , by diag(u) we mean
the q × q-matrix with the components of the vector u on the diagonal and zeroes elsewhere. The
derivative of a function ϕ : Rq → R at u ∈ Rq in a direction ν ∈ Rq will be denoted by ϕ�(u; ν).

2. Semismooth SQP

In this section, we start with discussing the known primal–dual convergence properties of SQP
applied to the general equality-constrained problem (1) with the stated smoothness assump-
tions. After that, we consider the quasi-Newton modifications and formulate Dennis–Moré-type
conditions for primal superlinear convergence rate.

2.1 The basic algorithm and its local convergence

Given the current iterate (xk, λk) ∈ Rn × Rl , an iteration of the SQP algorithm [2] for problem
(1) consists of computing a stationary point xk+1 and an associated Lagrange multiplier λk+1 of
the subproblem

min�f �(xk), x − xk� + 1

2
�Hk(x − xk), x − xk� s.t. h(xk) + h�(xk)(x − xk) = 0, (6)

where Hk is a symmetric n × n-matrix. Equivalently, this iteration can be stated in the form of
solving the linear system

Hk(x − xk) + (h�(xk))T(λ − λk) = −∂L

∂x
(xk, λk), h�(xk)(x − xk) = −h(xk). (7)

In the case of twice differentiable data, the basic form of the method corresponds to taking Hk

as the Hessian of the Lagrangian with respect to the primal variable x. Accordingly, under our
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smoothness assumptions the natural choice is

Hk ∈ ∂x

∂L

∂x
(xk, λk). (8)

We shall refer to the iterative process defined by (6) (or (7)) with the choice of Hk given by (8) as
semismooth SQP. As mentioned above, methods of this kind were considered, e.g. in [9,26].

As is well known, semismooth SQP can be interpreted as the SNM (see [17,18,25,27] and [6,
Chapter 7]) applied to the Lagrange optimality system (4). Specifically, define � : Rn × Rl →
Rn × Rl by

�(u) =
�

∂L

∂x
(x, λ), h(x)

�
, u = (x, λ), (9)

and consider the equation

�(u) = 0. (10)

An iteration of the SNM for (10) consists of solving the equation

�(uk) + �k(u − uk) = 0,

for the current iterate uk ∈ Rn × Rl and some matrix �k ∈ ∂�(uk). It can be seen [11] that for
any u = (x, λ) ∈ Rn × Rl it holds that

∂�(u) =
��

H (h�(x))T

h�(x) 0

� ����H ∈ ∂x

∂L

∂x
(x, λ)

�
. (11)

Hence, if the matrix Hk is chosen as in (8), the matrix of the iteration system (7) satisfies the
inclusion �

Hk (h�(xk))T

h�(xk) 0

�
∈ ∂�(uk).

Therefore, local convergence properties of semismooth SQP follow from the corresponding gen-
eral results for SNM (see [17,18,25,27] and [6, Chapter 7]). Specifically, primal–dual local
superlinear convergence of semismooth SQP is obtained under the following assumptions:

(i) The derivatives of f and h are semismooth at a stationary point x̄ of problem (1) (hence, the
mapping � defined in (9) is semismooth at the solution ū = (x̄, λ̄) of Equation (10), where
λ̄ is the Lagrange multiplier associated with x̄).

(ii) � is CD-regular at ū, i.e.

all � ∈ ∂�(ū) are nonsingular. (12)

From (11) it easily follows that (12) holds if the regularity condition (5) is satisfied at x̄ and

�H ξ, ξ� > 0 ∀ξ ∈ ker h�(x̄) \ {0}, ∀H ∈ ∂x

∂L

∂x
(x̄, λ̄). (13)

Condition (13) can be regarded as a natural counterpart of the standard second-order sufficient
optimality condition for problem (1) with Lipschitzian derivatives, originally established in [16].

Remark 1 Condition (13) can be replaced by a seemingly weaker but actually equivalent
condition

�H ξ, ξ� > 0 ∀ξ ∈ ker h�(x̄) \ {0}, ∀H ∈ (∂B)x
∂L

∂x
(x̄, λ̄). (14)

(The equivalence holds because the set of matrices involved in (13) is the convex hull of the set
of matrices involved in (14).)
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The CD-regularity condition (12) can be relaxed when more specific choices of Hk are
employed, as is often the case in applications (when there is more than one element in the Clarke
generalized Jacobian, the choice is usually not arbitrary but follows some rule tailored to the given
problem structure). To this end, let 
 : Rn × Rl → 2Rn×n

be a multifunction such that


(x, λ) ⊂ ∂x

∂L

∂x
(x, λ) ∀x ∈ Rn, ∀λ ∈ Rl , (15)

and consider the process with iteration systems of the form (7), where

Hk ∈ 
(xk, λk) (16)

for all k. The multifunction 
 accounts for the specific rules to choose the matrix Hk when there
is more than one possibility. Set


̄ = 
̄(x̄, λ̄) =
⎧
⎨
⎩H ∈ Rn×n

������

∃{(xk, λk)} ⊂ Rn × Rl , {Hk} ⊂ Rn×n such that
Hk ∈ 
(xk, λk)∀k, {(xk, λk)} → (x̄, λ̄),

{Hk} → H

⎫
⎬
⎭ . (17)

From (15), by the upper semicontinuity of the generalized Jacobian and the results in [11], it
follows that


̄ ⊂ ∂x

∂L

∂x
(x̄, λ̄). (18)

In the local convergence analysis we can then replace the CD-regularity condition (12) by the
assumption that �

H (h�(x̄))T

h�(x̄) 0

�
is nonsingular ∀H ∈ 
̄. (19)

According to (11) and (18), (19), the set of such matrices is generally smaller than ∂�(ū).
Therefore, (19) is generally weaker than CD-regularity.

One obvious general possibility is to take


(x, λ) = (∂B)x
∂L

∂x
(x, λ), x ∈ Rn, λ ∈ Rl . (20)

Different (for example, problem-related) choices of 
(·) can also be useful; see Section 3. Similar
in spirit structure-related constructions in the context of SNM for complementarity problems were
employed in [12].

According to the discussion above, in the following theorem on primal–dual local superlinear
convergence we replace the condition (19) by the cruder but ‘optimization-related’conditions that
are sufficient for it (cf. (13)).

Theorem 2.1 Let the derivatives of f and h be semismooth at a stationary point x̄ of problem
(1). Let λ̄ be Lagrange multiplier associated to x̄. Assume that the regularity condition (5) is
satisfied at x̄, and

�H ξ, ξ� > 0 ∀ξ ∈ ker h�(x̄) \ {0}, ∀H ∈ 
̄, (21)

where 
̄ is defined in (17) for some fixed multifunction 
 : Rn × Rl → 2Rn×n

satisfying (15).
Then for any rule of choosing Hk satisfying (16), any starting point (x0, λ0) ∈ Rn × Rl close

enough to (x̄, λ̄) uniquely defines the sequence {(xk, λk)} ⊂ Rn × Rl such that for all k the
point (xk+1, λk+1) satisfies (7), and this sequence converges to (x̄, λ̄) at a superlinear rate.
Moreover, the rate of convergence is quadratic provided the derivatives of f and h are strongly
semismooth at x̄.
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2.2 Quasi-Newton versions and primal superlinear convergence

While in some applications the problem structure admits calculus rules that allow to compute
an element Hk of the generalized Hessian exactly, this may not be the case in general. It is
therefore meaningful to ask ‘how much’ the inclusion (8) can be violated without destroying the
primal superlinear rate (assuming convergence, i.e. in a posteriori analysis). Another motivation
for considering possible violation of the inclusion (8) is related to globalization of SQP via
linesearch for a penalty function. Indeed, as is well known, the matrices in ∂x(∂L/∂x)(xk, λk)

need not be positive definite under any natural assumptions, while to obtain a descent direction
for the penalty function Hk has to be positive definite. This again motivates considering Hk that
possibly does not satisfy (8).

In this section, we give an exact characterization of how (8) can be violated while still preserving
the superlinear rate of primal convergence. Specifically, we introduce the following Dennis–Moré-
type condition:

max
W∈∂x

∂L
∂x

(xk,λk)


πker h�(x̄)((Hk − W)(xk+1 − xk))
 = o(
xk+1 − xk
). (22)

Note that in the case of twice continuously differentiable data, this condition reduces to the
standard Dennis–Moré condition for quasi-Newton SQP; see, e.g. [22, (18.63)].

It should be mentioned that for systems of equations, quasi-Newton versions of SNM based
on classical matrix updates (e.g. BFGS, Broyden, etc.) actually require differentiability at the
solution for superlinear convergence (see, e.g. the discussions in [10,21]). In other words, without
differentiability at the solution, the relevant Dennis–Moré condition cannot be expected to hold,
and superlinear convergence rate can be lost. This fact is well known as folklore, of course. But we
could not find in the literature a formal justification we could cite. We thus provide the following
example.

Example 2.2 Let � : R → R be given by

�(u) =

u

2
+ u2 if u ≤ 0,

u − u2 if u > 0.

The solution of interest of the equation �(u) = 0 is ū = 0; � is locally Lipschitz-continuous at
ū and differentiable everywhere except at ū. Evidently, ∂B�(0) = {1/2, 1}, ∂�(0) = [1/2, 1].
In particular, � is CD-regular at 0.

The secant method (which is the one-dimensional instance of Broyden’s quasi-Newton method;
see, e.g. [22, (Section A.2)]) works in this example as follows: started from u0 > 0 small enough,
it generates u1 > 0, then u2 < 0 and u3 < 0, then u4 > 0, then u5 < 0 and u6 < 0, etc. (see
Figure 1). After computing two subsequent iterates corresponding to the same smooth piece,
namely, uk−2 < 0 and uk−1 < 0 for some k ≥ 4, the method generates good secant approximation
of the function, and the next iterate uk > 0 is ‘superlinearly closer’ to the solution compared to
uk−1, i.e. uk = o(uk−1). Then, according to [22, (A.60)], we derive the estimate

uk+1 = uk − �(uk)(uk − uk−1)

�(uk) − �(uk−1)

= uk − (uk − (uk)2)(uk − uk−1)

uk − (uk)2 − uk−1/2 − (uk−1)2

= uk − −ukuk−1 + o(ukuk−1)

−uk−1/2 + o(uk−1)
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Figure 1. Broyden’s iterates in Example 2.2.

= uk − 2uk + o(uk)

= −uk + o(uk),

and superlinear decrease of the distance to the solution is lost.

It is natural to say that the situation is likely the same for semismooth SQP if classical matrix
updates were to be used. For this reason, when talking about quasi-Newton versions of semismooth
SQP, we have in mind not so much standard matrix updates but rather other possible types of
approximations. One example would be given in Section 3.2, where the structure of lifted MPCC
is used to modify an element of the generalized Hessian of the Lagrangian to force the resulting
matrix to be positive definite, and at the same time we have reasons to expect that this modification
would satisfy the Dennis–Moré condition.

We start with necessary conditions for primal superlinear convergence of a general perturbed
version of semismooth SQP. After that, we apply the obtained result to perturbations associated
to quasi-Newton modifications and establish sufficient conditions for primal superlinear rate of
convergence.

Proposition 1 Let the derivatives of f and h be semismooth at a stationary point x̄ of problem
(1). Let λ̄ be a Lagrange multiplier associated with x̄. Suppose the sequence {(xk, λk)} ⊂ Rn × Rl

is such that for all k the relations

∂L

∂x
(xk, λk) + Wk(x

k+1 − xk) + (h�(xk))T(λk+1 − λk) + ωk
1 = 0,

h(xk) + h�(xk)(xk+1 − xk) + ωk
2 = 0

(23)

hold with some Wk ∈ ∂x(∂L/∂x)(xk, λk) and some ωk
1 ∈ Rn and ωk

2 ∈ Rl . Assume that {(xk, λk)}
converges to (x̄, λ̄).
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Then if the rate of convergence of {xk} is superlinear, it holds that

πker h�(x̄)(ω
k
1) = o(
xk − x̄
), (24)

ωk
2 = o(
xk − x̄
). (25)

Proof First, from the calculus of the Clarke generalized Jacobians [4] and from semismoothness
of the derivatives of f and h at x̄, one can easily derive the estimate

∂L

∂x
(xk, λk) − ∂L

∂x
(x̄, λk) − Wk(x

k − x̄) = o(
xk − x̄
). (26)

From (23), employing (26), convergence of {λk} to λ̄ and superlinear convergence of {xk} to x̄,
we obtain that

ωk
1 = −∂L

∂x
(xk, λk) − Wk(x

k+1 − xk) − (h�(xk))T(λk+1 − λk)

= −
�

∂L

∂x
(xk, λk) − ∂L

∂x
(x̄, λk) − Wk(x

k − x̄)

�
−

�
∂L

∂x
(x̄, λk) − ∂L

∂x
(x̄, λ̄)

�

− Wk(x
k+1 − x̄) − (h�(xk))T(λk+1 − λk)

= −(h�(x̄))T(λk − λ̄) − (h�(xk))T(λk+1 − λk) + o(
xk − x̄
)
= −(h�(x̄))T(λk+1 − λ̄) − ((h�(xk))T − (h�(x̄))T)(λk+1 − λk) + o(
xk − x̄
)
= −(h�(x̄))T(λk+1 − λ̄) + o(
xk − x̄
),

where it was also taken into account that by local uniform boundedness of generalized Jacobians
of Lipschitzian mappings, the sequence {Wk} is bounded. Applying the projector onto ker h�(x̄) to
both sides of the equality above, using linearity of this projector and the fact that πker h�(x̄)(x) = 0
for any x ∈ im(h�(x̄))T, we obtain (24).

Similarly,

ωk
2 = −h(xk) − h�(xk)(xk+1 − xk)

= −(h(xk) − h(x̄) − h�(x̄)(xk − x̄))

+ (h�(xk) − h�(x̄))(xk − x̄) − h�(xk)(xk+1 − x̄)

= o(
xk − x̄
),
which gives (25). �

We now apply the above result to perturbations of semismooth SQP induced specifically by the
quasi-Newton modifications. We show that the Dennis–Moré-type condition (22) is necessary for
primal superlinear convergence, and it is also sufficient under the second-order condition (27).
Simpler sufficient conditions for (27) are discussed in Remark 3, after the proof of the theorem.

Theorem 2.3 Let the derivatives of f and h be semismooth at a stationary point x̄ of problem
(1). Let λ̄ be a Lagrange multiplier associated with x̄. Suppose the sequence {(xk, λk)} ⊂ Rn × Rl

is such that for all k the point (xk+1, λk+1) satisfies (7) with some symmetric n × n-matrix Hk .
Assume that {(xk, λk)} converges to (x̄, λ̄).

If the rate of convergence of {xk} is superlinear then the Dennis–Moré-type condition (22)

holds.
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Conversely, if

lim inf
k→∞

max
W∈∂x

∂L
∂x

(xk,λk)

�Wξ, ξ� > 0 ∀ξ ∈ ker h�(x̄) \ {0}, (27)

and the Dennis–Moré-type condition (22)holds, then the rate of convergence of {xk} is superlinear.

Proof The first assertion follows immediately from Proposition 1. Indeed, {(xk, λk)} satisfies
(23) with

ωk
1 = (Hk − Wk)(x

k+1 − xk), ωk
2 = 0,

and with any choice of Wk ∈ ∂x
∂L
∂x

(xk, λk). Hence, by (24), it holds that

max
W∈∂x

∂L
∂x

(xk,λk)


πker h�(x̄)((Hk − W)(xk+1 − xk))
 = o(
xk − x̄
).

Taking into account superlinear convergence of {xk} to x̄, the last estimate is equivalent to (22).
We next prove the second assertion. By the second equation in (7), by Hoffman’s error bound

for linear systems [6, Lemma 3.2.3], and by the Mean Value Theorem, it holds that

dist(xk+1 − x̄, ker h�(x̄)) = O(
h�(x̄)(xk+1 − x̄)
)
= O(
h(xk) + h�(xk)(xk+1 − xk) − h�(x̄)(xk+1 − x̄)
)
= O(
h(xk) − h(x̄) − h�(x̄)(xk − x̄)
)

+ O(
h�(xk) − h�(x̄)

xk+1 − xk
)
= o(
xk − x̄
).

Hence, for each k there exists ξ k ∈ ker h�(x̄) such that

xk+1 − x̄ = ξ k + o(
xk − x̄
). (28)

From the first equality in (7), employing (26) and convergence of {λk} to λ̄, we obtain that for
any choice of Wk ∈ ∂x(∂L/∂x)(xk, λk) it holds that

−Hk(x
k+1 − xk) = ∂L

∂x
(xk, λk) + (h�(xk))T(λk+1 − λk)

= ∂L

∂x
(xk, λk) − ∂L

∂x
(x̄, λk) − Wk(x

k − x̄)

+ ∂L

∂x
(x̄, λk) − ∂L

∂x
(x̄, λ̄) + Wk(x

k − x̄) + (h�(xk))T(λk+1 − λk)

= Wk(x
k − x̄) + (h�(x̄))T(λk − λ̄) + (h�(xk))T(λk+1 − λk)

+ o(
xk − x̄
)
= Wk(x

k − x̄) + (h�(x̄))T(λk+1 − λ̄) + o(
xk − x̄
).

Hence,

Wk(x
k+1 − x̄) = −(Hk − Wk)(x

k+1 − xk) − (h�(x̄))T(λk+1 − λ̄) + o(
xk − x̄
).
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By (28), by the inclusion ξ k ∈ ker h�(x̄), by the fact that �x, ξ� = �πker h�(x̄)(x), ξ� for any x ∈ Rn

and any ξ ∈ ker h�(x̄), and by (22), we then further obtain

�Wkξ
k, ξ k� = �Wk(x

k+1 − x̄), ξ k� + o(
xk − x̄

ξ k
)
= −�(Hk − Wk)(x

k+1 − xk), ξ k� − �λk+1 − λ̄, h�(x̄)ξ k� + o(
xk − x̄

ξ k
)
= −�(Hk − Wk)(x

k+1 − xk), ξ k� + o(
xk − x̄

ξ k
)
= −�πker h�(x̄)((Hk − Wk)(x

k+1 − xk)), ξ k� + o(
xk − x̄

ξ k
)
= o(
xk+1 − xk

ξ k
) + o(
xk − x̄

ξ k
). (29)

From (27) it follows that for any k, one can choose Wk ∈ ∂x(∂L/∂x)(xk, λk) in such a way that
there exists γ > 0 satisfying

�Wkξ
k, ξ k� ≥ γ 
ξ k
2

for all k large enough. Then (29) implies

γ 
ξ k
2 = o(
xk+1 − xk

ξ k
) + o(
xk − x̄

ξ k
),

and hence,


ξ k
 = o(
xk+1 − xk
) + o(
xk − x̄
).
Recalling (28), we then obtain the estimate


xk+1 − x̄
 = o(
xk+1 − xk
) + o(
xk − x̄
),

which by the standard argument implies that 
xk+1 − x̄
 = o(
xk − x̄
). �

Remark 2 From the proof of the sufficiency part of Theorem 2.3 it is evident that for any sequence
{
k} of sets such that 
k ⊂ ∂x(∂L/∂x)(xk, λk) for all k, the condition (22) can be replaced by
the formally weaker condition

sup
W∈
k


πker h�(x̄)((Hk − W)(xk+1 − xk))
 = o(
xk+1 − xk
), (30)

provided the condition (27) is replaced by the formally stronger condition

lim inf
k→∞

max
W∈
k

�Wξ, ξ� > 0 ∀ξ ∈ ker h�(x̄) \ {0}. (31)

Combined with the other assumptions of Theorem 2.3, these two conditions still imply superlinear
rate of convergence of {xk} to x̄. But by the necessity part of Theorem 2.3, the stronger condition
(22) must hold anyway. Thus, such a modification actually would not make Theorem 2.3 any
sharper.

Remark 3 The condition (27) is automatically satisfied provided SOSC (13) holds (or (14),
which is equivalent to (13), according to Remark 1).
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Another example when (27) admits a more ‘verifiable’ sufficient counterpart is the following.
Suppose that

inf
W∈
(xk, λk)


πker h�(x̄)((Hk − W)(xk+1 − xk))
 = o(
xk+1 − xk
),

where 
 : Rn × Rl → 2Rn×n

is a given multifunction satisfying (15), and that (21) holds with 
̄

defined according to (17). Then for each k there exists Wk ∈ 
(xk, λk) such that


πker h�(x̄)((Hk − Wk)(x
k+1 − xk))
 = o(
xk+1 − xk
),

which further implies (30) with 
k = {Wk}. On the other hand, taking into account (15), local
uniform boundedness of generalized Jacobians of Lipschitzian mappings, (17), and the inclusion
Wk ∈ 
(xk, λk), condition (21) implies (31). Therefore, superlinear rate of convergence of {xk}
follows from Remark 2.

2.3 Globalization of convergence

Since the usual globalization strategies for SQP do not require twice differentiability of the data,
the local semismooth SQP discussed above can be globalized by standard techniques. For example,
by linesearch for the l1-penalty function (e.g. [3, Section 17]). This approach requires the matrices
Hk in (7) to be bounded and uniformly positive definite, i.e. there must exist γ > 0 such that for
all k

�Hkξ, ξ� ≥ γ 
ξ
2 ∀ξ ∈ Rn. (32)

This is enough for reasonable global convergence properties of the linesearch algorithm.
For specific problem classes, it may make sense to consider special choices of Hk that take into

account structure. In Section 3, this would be done in the context of lifted MPCC. Furthermore,
as already mentioned, in the semismooth case special choices of Hk may have better chances to
satisfy the Dennis–Moré conditions than standard quasi-Newton updates.

3. Semismooth SQP for lifted MPCC

In this section, we first review relevant properties of MPCC and its lifted reformulation. We
proceed to consider applying semismooth SQP to the lifted MPCC, and propose some special
modification to the generalized Hessian of the Lagrangian which is attractive both for global
convergence (it is positive definite) and for local convergence (it can be expected to satisfy the
Dennis–Moré-type condition).

3.1 Preliminaries

In this subsection, we collect some facts concerning MPCC (2) and its lifted reformulation (3).
Our notation and definitions are standard in MPCC literature, e.g. [8,14,31].

Let x̄ ∈ Rn be a feasible point of problem (2). We define the sets of indices

IG = IG(x̄) = {i = 1, . . . , m | Gi(x̄) = 0},
IH = IH (x̄) = {i = 1, . . . , m | Hi(x̄) = 0},
I0 = IG ∩ IH .
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The special MPCC-Lagrangian for problem (2) is defined as

L(x,μ) = f (x) − �μG, G(x)� − �μH , H(x)�,
where x ∈ Rn and μ = (μG, μH ) ∈ Rm × Rm.

A point x̄ which is feasible in (2) is called weakly stationary if there exists μ̄ = (μ̄G, μ̄H ) ∈
Rm × Rm such that

∂L
∂x

(x̄, μ̄) = 0, (μ̄G)IH \IG
= 0, (μ̄H )IG\IH

= 0. (33)

The point x̄ is called strongly stationary if, in addition to (33),

(μ̄G)I0 ≥ 0, (μ̄H )I0 ≥ 0. (34)

When conditions (33) and (34) hold, μ̄ is called an MPCC-multiplier associated to the strongly
stationary point x̄ of problem (2).

It is said that the MPCC linear independence constraint qualification (MPCC-LICQ) holds at
a feasible point x̄ if

G�
i (x̄), i ∈ IG, H �

i (x̄), i ∈ IH are linearly independent. (35)

If a local solution x̄ of problem (2) satisfies MPCC-LICQ, then x̄ is a strongly stationary point
and the associated MPCC-multiplier μ̄ is unique [31, Theorem 2].

We say that the upper-level strict complementarity condition (ULSCC) holds for some MPCC-
multiplier μ̄ associated to x̄ if

(μ̄G)I0 > 0, (μ̄H )I0 > 0. (36)

Under ULSCC, various relevant second-order sufficient optimality conditions (see [14]) at a
strongly stationary point x̄ of problem (2) for an associated MPCC-multiplier μ̄ reduce to the
following: �

∂2L
∂x2

(x̄, μ̄)ξ, ξ

�
> 0 ∀ξ ∈ K(x̄) \ {0}, (37)

where

K(x̄) = {ξ ∈ Rn | G�
IG

(x̄)ξ = 0, H �
IH

(x̄)ξ = 0}. (38)

Let us now turn our attention to the lifted MPCC reformulation (3). Note first that the value ȳ

of the auxiliary variable y that corresponds to any given feasible point x̄ of the original problem
(2) is uniquely defined: the point (x̄, ȳ) is feasible in (3) if and only if

ȳIH \IG
= −(GIH \IG

(x̄))1/2, ȳIG\IH
= (HIG\IH

(x̄))1/2, ȳI0 = 0. (39)

The usual Lagrangian of the lifted problem (3) is given by

L(x, y, λ) = f (x) + �λG, (min{0, y})2 − G(x)� + �λH , (max{0, y})2 − H(x)�,
where (x, y) ∈ Rn × Rm and λ = (λG, λH ) ∈ Rm × Rm. Then the Lagrange optimality system
characterizing stationary points of (3) and the associated Lagrange multipliers is given by

∂L

∂x
(x, y, λ) = 0,

∂L

∂y
(x, y, λ) = 0,

(min{0, y})2 − G(x) = 0, (max{0, y})2 − H(x) = 0. (40)
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Observe that

∂L

∂x
(x, y, λ) = ∂L

∂x
(x, λ), (41)

∂L

∂yi

(x, y, λ) = 2(λG)i min{0, yi} + 2(λH )i max{0, yi}, i = 1, . . . , m. (42)

At any point (x, y, λ) ∈ Rn × Rm × (Rm × Rm), the right-hand side in (42) is not differentiable
for any i ∈ {1, . . . , m} such that yi = 0. Therefore, the system (40) is nonsmooth. But under our
assumptions, it is locally Lipschitz-continuous.

Furthermore, the following facts are known [15,32] or are easy to verify:

(i) The point x̄ is a (local) solution of the original problem (2) if, and only if, (x̄, ȳ) with ȳ given
by (39) is a (local) solution of the lifted MPCC reformulation (3).

(ii) If x̄ is a strongly stationary point of (2) and μ̄ = (μ̄G, μ̄H ) is an associated MPCC-multiplier,
then the point (x̄, ȳ) with ȳ given by (39) is a stationary point of problem (3) and λ̄ = μ̄ is
an associated Lagrange multiplier.

(iii) Conversely, if (x̄, ȳ) is a stationary point of problem (3), then x̄ is a weakly stationary point
of problem (2). In addition, if there exists a Lagrange multiplier λ̄ = (λ̄G, λ̄H ) associated
to (x̄, ȳ) and such that (λ̄G)I0 ≥ 0 and (λ̄H )I0 ≥ 0, then x̄ is a strongly stationary point of
problem (2) and μ̄ = λ̄ is an associated MPCC-multiplier.

(iv) If the derivatives of G and H are semismooth at x̄ (in particular, if the second derivatives of
these mappings are continuous at x̄), then the derivatives of the constraints functions in (3)
are semismooth at (x̄, ȳ).

(v) MPCC-LICQ at a point x̄ feasible in (2) is equivalent to the regularity condition for the
constraints of (3) at the point (x̄, ȳ).

(vi) For a feasible point x̄ of (2), if (ξ, η) belongs to the null space of the constraints’ Jacobian
of (3) at (x̄, ȳ) then necessarily ξ ∈ K(x̄).

(vii) For a strongly stationary point x̄ of (2), for an associated MPCC-multiplier μ̄ = (μ̄G, μ̄H ),
and for ȳ given by (39), the set (∂B)(x,y)(∂L/∂(x, y))(x̄, ȳ, μ̄) is comprised by all the matrices
of the form

H =
⎛
⎝

∂2L
∂x2

(x̄, μ̄) 0

0 2 diag(a)

⎞
⎠ ,

with the vector a ∈ Rm given by

ai =



0 if i ∈ {1, . . . , m} \ I0,

(μ̄G)i or (μ̄H )i if i ∈ I0.

(This follows from (33), (39) and (42).) The representation above then implies that the
counterpart of the second-order sufficient optimality condition (14) (or equivalently, (13))
holds for problem (3) if, and only if, ULSCC (36) and second-order sufficient condition (37)
hold.

We complete this section with the following observation.

Remark 4 The discussion in [32, Example 4.2] puts in evidence the following deficiency of the
lifted MPCC reformulation with s > 2. In such reformulation, the objective function is constant
along the ‘vertical’ tangent subspace to the feasible set at (x̄, ȳ), i.e. the subspace consisting
of (ξ, η) ∈ Rn × Rm satisfying ξ = 0, ηIH \IG

= 0, ηIG\IH
= 0. Moreover, when s > 2, the con-

straints of the lifted problem cannot contribute to the Hessian of its Lagrangian along this subspace.
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These two facts mean that no reasonable second-order sufficient optimality condition can hold
for this problem at (x̄, ȳ). However, in the lifted MPCC reformulation with s = 2, the constraints
can appropriately contribute to (generalized) Hessians, and (14) (or equivalently, (13)) can hold
in this case.

3.2 Local convergence of semismooth SQP for lifted MPCC

For the current iterate (xk, yk, λk) ∈ Rn × Rm × (Rm × Rm), with λk = (λk
G, λk

H ), an iteration of
semismooth SQP (6) applied to the lifted MPCC (3) consists of solving the subproblem

min �f �(xk), x − xk� + 1

2

�
Hk

�
x − xk

y − yk

�
,

�
x − xk

y − yk

��

s.t. (min{0, yk})2 − G(xk) − G�(xk)(x − xk) + 2Bmin(y
k)(y − yk) = 0,

(max{0, yk})2 − H(xk) − H �(xk)(x − xk) + 2Bmax(y
k)(y − yk) = 0.

(43)

In the above, Hk is a symmetric (n + m) × (n + m)-matrix, and for y ∈ Rm we denote

Bmin(y) = diag(min{0, y}), Bmax(y) = diag(max{0, y}). (44)

Furthermore, the counterpart of the iteration system (7), characterizing stationary points of
problem (43) and the associated Lagrange multipliers, has the form

Hk

�
x − xk

y − yk

�
+

�−(G�(xk))T

2Bmin(y
k)

�
(λG−λk

G)+
�−(H �(xk))T

2Bmax(y
k)

�
(λH−λk

H )= −

⎛
⎜⎝

∂L
∂x

(xk, λk)

∂L

∂y
(xk, yk, λk)

⎞
⎟⎠,

(45)− G�(xk)(x − xk) + 2Bmin(y
k)(y − yk) = −((min{0, yk})2 − G(xk)),

− H �(xk)(x − xk) + 2Bmax(y
k)(y − yk) = −((max{0, yk})2 − H(xk)).

By direct calculations, employing (41) and (42), it can be seen that the basic choice of Hk

(corresponding to (16) and (20)), is of the form

Hk =
⎛
⎝

∂2L
∂x2

(xk, λk) 0

0 2 diag(a(yk, λk))

⎞
⎠ , (46)

where for y ∈ Rm and λ = (λG, λH ) ∈ Rm × Rm the vector a(y, λ) ∈ Rm is defined by

ai(y, λ) =
⎧
⎨
⎩

(λG)i if yi < 0,

(λG)i or (λH )i if yi = 0,

(λH )i if yi > 0,

i = 1, . . . , m. (47)

Specifically, (∂B)(x,y)(∂L/∂(x, y))(xk, yk, λk) is comprised by all such matrices Hk . Local con-
vergence properties of semismooth SQP for lifted MPCC follow directly from [15], where SNM
for lifted MPCC was considered (recall that for the purposes of local analysis SQP for equality-
constrained problems is just a Newton method). The same result can, of course, be derived from
Theorem 2.1 by figuring out what is needed for semismoothness of the derivatives of the con-
straints in (3), and what are the counterparts for problem (3) of the regularity condition (5) and of
the second-order condition (13) (or equivalently (14)). Specifically, the convergence statement is
the following (see [15] for a proof).
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Theorem 3.1 Let f, G and H be twice differentiable, with their second derivatives continuous
at a strongly stationary point x̄ of problem (2). Let MPCC-LICQ (35) be satisfied at x̄, and let
μ̄ be the (unique) MPCC-multiplier associated to x̄. Assume, finally, that ULSCC (36) and the
second-order sufficient optimality condition (37) are satisfied.

Then for any rule for choosing Hk satisfying (46) and (47), any starting point (x0, y0, λ0) ∈
Rn × Rm × (Rm × Rm) close enough to (x̄, ȳ, μ̄) uniquely defines the sequence {(xk, yk, λk)} ⊂
Rn × Rm × (Rm × Rm) such that for all k the point (xk+1, yk+1, λk+1) satisfies (45), and this
sequence converges to (x̄, ȳ, μ̄) at a superlinear rate. Moreover, if the second derivatives of f, G

and H are locally Lipschitz-continuous with respect to x̄ then the rate of convergence is quadratic.

A discussion of relations of the local convergence result in Theorem 3.1 with local convergence
of other Newton-type methods for MPCC (2) can be found in [15].

Globalization strategy suggested in [15] relies on linesearch for the squared residual of the
Lagrange system (40), which happens to be differentiable even though the Lagrange system itself
is not. This strategy has some theoretical advantages, but it is aimed at solving the Lagrange system
rather than the original optimization problem. From the optimization point of view, it may be more
promising to employ the linesearch procedure for the l1-penalty function, as is common when
solving general optimization problems (see the discussion in Section 2.3). However, matrices Hk

defined according to (46) and (47) are not necessarily positive definite, and their direct use in
the globalization scheme is hardly possible: the direction pk = (x̃k+1 − xk, ỹk+1 − yk), where
(x̃k+1, ỹk+1) is a stationary point of problem (43) with this Hk , is not necessarily a direction of
descent for the l1-penalty function. Thus, Hk must be appropriately modified. One possibility
is to use standard quasi-Newton approximations of Hk; see [3, Section 18.2], [22, p. 538]. But
this would destroy the diagonal structure in (46). Moreover, standard quasi-Newton schemes do
not achieve local superlinear convergence in the nonsmooth case, in general. It thus seems more
reasonable to preserve and employ the special lifted MPCC structure. Observe that the upper-left
block in (46) corresponds to twice continuously differentiable data, while all the nonsmoothness is
contained in the lower-right diagonal block. The idea is to use some usual quasi-Newton updates
on the smooth part only, at the same time modifying the nonsmooth part to make the matrix
positive definite. Specifically, we re-define Hk as follows:

Hk =
�

Hk 0
0 2 diag(ak)

�
, (48)

where Hk is some symmetric positive definite approximation of (∂2L/∂x2)(xk, λk) (say, built
by BFGS updates with Powell’s modification; see, e.g. [22, pp. 536, 537]), and for y ∈ Rm and
λ = (λG, λH ) ∈ Rm × Rm the vector ak ∈ Rm is defined by

ak
i = max{ai(y

k, λk), ρ(σ (xk, yk, λk))}, i = 1, . . . , m, (49)

where ai is defined by (47), ρ : R+ → R+ is some continuous function such that ρ(0) = 0 and
ρ(t) is separated from 0 when t is separated from 0, and σ : Rn × Rm × (Rm × Rm) is the residual
of the Lagrange system (40) of problem (3):

σ (x, y, λ) =

�������������

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂L
∂x

(x, λ)

∂L

∂y
(x, y, λ)

(min{0, y})2 − G(x)

(max{0, y})2 − H(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�������������

. (50)
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As is easy to see, if Hk is positive definite and σ (xk, yk, λk) > 0, then it follows from (32), (48)
and (49) that Hk constructed above is also positive definite. The obtained SQP direction is then
a direction of descent for the l1-penalty function and can be used in globalization via linesearch
(see Section 3.3). At the same time, as we show next, primal superlinear convergence of this
specific version of quasi-Newton semismooth SQP holds under what appears to be a natural
Dennis–Moré-type condition on the smooth part of the problem. We thus have reasons to expect
this condition to hold.

Theorem 3.2 Let the derivatives of f , G and H be semismooth at a strongly stationary point
x̄ of problem (2), with an associated MPCC-multiplier μ̄. Let the sequence {(xk, yk, λk)} ⊂
Rn × Rl × (Rm × Rm) be such that for each k the point (xk+1, yk+1, λk+1) satisfies (45), where
the matrix Hk is of the form (48) with some symmetric n × n-matrix Hk , and with ak ∈ Rm defined
by (49), (47) and (50) for some function ρ : R+ → R+ such that ρ(t) → 0 as t → 0+. Assume
that {(xk, yk, λk)} converges to (x̄, ȳ, μ̄).

If the rate of convergence of {(xk, yk)} is superlinear then the Dennis–Moré-type condition
����πK(x̄)

��
Hk − ∂2L

∂x2
(xk, λk)

�
(xk+1 − xk)

����� = o

�����
�

xk+1 − xk

yk+1 − yk

�����
�

(51)

holds.
Conversely, if ULSCC (36), the second-order sufficient optimality condition (37) and the

Dennis–Moré-type condition (51) hold, then the rate of convergence of {(xk, yk)} is superlinear.

Proof Since {yk} converges to ȳ, from (39) it follows that for all k large enough

yk
IH \IG

< 0, yk
IG\IH

> 0,

and hence, by (47),

aIH \IG
(yk, λk) = (λk

G)IH \IG
, aIG\IH

(yk, λk) = (λk
H )IG\IH

.

By convergence of {λk} to μ̄ and by (33), this implies that

{aIH \IG
(yk, λk)} → (μ̄G)IH \IG

= 0, {aIG\IH
(yk, λk)} → (μ̄H )IG\IH

= 0. (52)

On the other hand, for i ∈ I0 from (47) it follows that, for each k, ai(y
k, λk) equals either (λk

G)i
or (λk

H )i . Note that according to (34),

{(λk
G)I0} → (μ̄G)I0 ≥ 0, {(λk

H )I0} → (μ̄H )I0 ≥ 0,

and hence, we conclude that

lim inf
k→∞

ai(y
k, λk) ≥ 0 ∀i ∈ I0.

Combining the last relation with (52), we get

lim inf
k→∞

ai(y
k, λk) ≥ 0 ∀i = 1, . . . , m. (53)

We next show that

lim
k→∞

(ak
i − ai(y

k, λk)) = 0 ∀i = 1, . . . , m. (54)

Fix any i ∈ {1, . . . , m}. If ak
i = ai(y

k, λk) for all k large enough, (54) is obvious. Otherwise,

define the subsequence {kj } collecting all the indices such that a
kj

i �= ai(y
kj , λkj ). By (49), it
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evidently holds that

lim inf
k→∞

(ak
i − ai(y

k, λk)) ≥ 0, (55)

and

lim sup
k→∞

(ak
i − ai(y

k, λk)) = lim sup
j→∞

(a
kj

i − ai(y
kj , λkj ))

= lim sup
j→∞

(ρ(σ (xkj , ykj , λkj )) − ai(y
kj , λkj ))

= lim sup
j→∞

(−ai(y
kj , λkj ))

= − lim inf
j→∞

ai(y
kj , λkj )

≤ 0,

where the third equality holds since σ (xk, yk, λk) → 0, and the inequality is by (53). Combining
the latter relation with (55), we obtain (54).

With (54) in hand, according to (46) condition (51) is equivalent to the following:

����πK(x̄)×Rm

�
(Hk − Wk)

�
xk+1 − xk

yk+1 − yk

������ = o

�����
�

xk+1 − xk

yk+1 − yk

�����
�

,

where

Wk =
⎛
⎝

∂2L
∂x2

(xk, λk) 0

0 2 diag(a(yk, λk))

⎞
⎠ ∈ (∂B)(x,y)

∂L

∂(x, y)
(xk, yk, λk).

The result now follows from Theorem 2.3 and Remark 3, and from the above-mentioned fact that
ULSCC (36) and second-order sufficient condition (37) imply the counterpart of the second-order
sufficient optimality condition (14) for problem (3). �

3.3 Globalization of convergence of SQP for lifted MPCC

Let ψ : Rn × Rm → R+ be the l1-penalty for the constraints in (3), i.e.

ψ(x, y) =
����
�

(min{0, y})2 − G(x)

(max{0, y})2 − H(x)

�����
1

.

Define the corresponding family of penalty functions: ϕc : Rn × Rm → R,

ϕc(x, y) = f (x) + cψ(x, y),

where c > 0 is the penalty parameter.
The following is the usual linesearch SQP method, but with the specific choice of the matrix

in the objective function of subproblems, tailored to the lifted MPCC structure.

Algorithm 1 Choose the parameters c̄ > 0 and ε, θ ∈ (0, 1), and a continuous function ρ :
R+ → R+ such that ρ(0) = 0 and ρ(t) is separated from 0 when t is separated from 0. Choose
(x0, y0, λ0) ∈ Rn × Rm × (Rm × Rm) and set k = 0.
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(1) If σ (xk, yk, λk) = 0, stop. Otherwise, choose a symmetric positive definite matrix Hk ∈ Rn×n

and define Hk according to (47)–(50). Compute (x̃k+1, ỹk+1) ∈ Rn × Rm as a stationary
point of problem (43), and an associated Lagrange multiplier λk+1 ∈ Rm × Rm. Set ξ k =
x̃k+1 − xk, ηk = ỹk+1 − yk, pk = (ξ k, ηk).

(2) Choose

ck ≥ 
λk+1
∞ + c̄

and compute

ϕ�
ck
((xk, yk); pk) = �f �(xk), ξ k� − ckψ(xk, yk)

(see, e.g. [22, (18.29)] for the formula of this directional derivative).
(3) Set α = 1. If the inequality

ϕck
((xk, yk) + αpk) ≤ ϕck

(xk, yk) + εαϕ�
ck
((xk, yk); pk) (56)

is satisfied, set αk = α. Otherwise, replace α by θα, check the inequality (56) again, etc.,
until (56) becomes valid.

(4) Set

xk+1 = xk + αkξ
k, yk+1 = yk + αkη

k, (57)

adjust k by 1, and go to step 1.

It is interesting to observe that constraints in the SQP subproblems (43) for the lifted MPCC
have a certain ‘elastic mode’ feature, which allows us to expect that the subproblems may be
feasible without any special modifications. Specifically, if we define the index sets

J k
+ = {i = 1, . . . , m | yk

i > 0}, J k
− = {i = 1, . . . , m | yk

i < 0},
J k

0 = {1, . . . , m} \ (J k
+ ∪ J k

−),

then the constraints in (43) have the form

Gi(x
k) + G�

i (x
k)(x − xk) = 0, i ∈ J k

+ ∪ J k
0 ,

Hi(x
k) + H �

i (x
k)(x − xk) = 0, i ∈ J k

− ∪ J k
0 ,

Gi(x
k) + G�

i (x
k)(x − xk) + (yk

i )
2 − 2yk

i yi = 0, i ∈ J k
−,

Hi(x
k) + H �

i (x
k)(x − xk) + (yk

i )
2 − 2yk

i yi = 0, i ∈ J k
+.

Note that if the first group of constraints (the one not involving the variable y) is consistent
then all the constraints of the subproblem are consistent (for each x satisfying the first group of
constraints there are the uniquely defined yi , i ∈ J k

+ ∪ J k
−, such that (x, y) satisfies the second

group of constraints). In particular, if the m + |J k
0 | gradients in the first group of constraints are

linearly independent, the SQP subproblem (43) is feasible. The latter can be expected to happen,
since usually m is smaller than n.

We next show that Algorithm 1 has reasonable global convergence properties. Even though
the algorithm looks rather standard, some special analysis is needed. The reason is that while the
matrices Hk (tailored to the lifted MPCC structure) are positive definite, they are not uniformly
positive definite as required in standard convergence analysis of SQP. As already commented,
our motivation for constructing special matrices is two-fold. First, usual quasi-Newton updates
would destroy the diagonal structure in the lifted MPCC formulation. Second, usual quasi-Newton
updates are unlikely to yield superlinear convergence, because of nonsmoothness.
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Theorem 3.3 Let the derivatives of f, G and H be Lipschitz-continuous on Rn. Assume that
the matrices Hk are chosen in Algorithm 1 in such a way that the sequence {Hk} is bounded, and
there exists γ > 0 such that (32) holds for all k. Let {(xk, yk, λk)} be a sequence generated by
Algorithm 1, and suppose that

ck = c > 0 (58)

holds for all k large enough.
Then either the algorithm stops on some iteration k with (xk, yk, λk) satisfying the Lagrange

optimality system (40), or at least one of the following occurs:
(1) It holds that

ϕc(x
k, yk) → −∞ as k → ∞. (59)

(2) There exists a subsequence {(xkj , ykj , λkj )} such that

σ (xkj , ykj , λkj ) → 0 as j → ∞, (60)

and in particular, every accumulation point of {(xkj , ykj , λkj )} satisfies the Lagrange
optimality system (40). Moreover, for any subsequence {(xkj , ykj , λkj )} such that

lim inf
j→∞

σ (xkj , ykj , λkj ) > 0, (61)

it holds that

{ξ kj } → 0, {ηkj } → 0, σ (xkj , ykj , λkj +1) → 0 as j → ∞,

and in particular, for every accumulation point (x̄, ȳ, λ̄) of {(xkj , ykj , λkj )} it holds that
{(xkj +1, ykj +1)} converges to (x̄, ȳ), and every accumulation point of the subsequence
{(xkj +1, ykj +1, λkj +1)} satisfies the Lagrange optimality system (40).

Proof We consider the case when σ (xk, yk, λk) �= 0 for all k. In this case, it follows from
(32), (48) and (49) that Hk is positive definite. Then, by the standard analysis of linesearch SQP
(e.g. [3, Theorem 17.2]), it follows that (x̃k+1, ỹk+1, λk+1) (and hence, pk) is well defined,

ϕ�
ck
((xk, yk); pk) ≤ −�Hkp

k, pk� − c̄ψ(xk, yk) < 0, (62)

and the linesearch procedure terminates with some αk > 0.
If there is no subsequence {(xkj , ykj , λkj )} satisfying (60) then there exists δ > 0 such that

σ (xk, yk, λk) ≥ δ (63)

for all k. Hence, there exists δ̃ > 0 such that ρ(σ (xk, yk, λk)) ≥ δ̃ for all k. From (32), (48) and
(49) it then follows that

∀(ξ, η) ∈ Rn × Rm �Hk(ξ, η), (ξ, η)� ≥ �Hkξ, ξ� + 2ρ(σ (xk, yk, λk))
η
2

≥ min{γ , 2δ̃}
(ξ, η)
2.

In this case, the matrices Hk are uniformly positive definite, and by the standard analysis (e.g. [3,
Theorem 17.2]), there exists ᾱ > 0 such that αk ≥ ᾱ for all k, and

ϕc(x
k+1, yk+1) ≤ ϕc(x

k, yk) + ᾱεϕ�
c((x

k, yk); pk).
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Then either {ϕc(x
k, yk)} is unbounded below (i.e. (59) holds) or it follows that {ϕc(x

k, yk)}
converges and hence,

ϕ�
c((x

k, yk); pk) → 0 as k → ∞,

in which case (62) implies that

{ξ k} → 0, {ηk} → 0, σ (xk, yk, λk+1) → 0 as k → ∞.

(The last relation is passing onto the limit in the first relation in (45) and in (62).)
Note that the fact that ck = c for all k large enough implies that the sequence {λk} is bounded.

Then taking into account (57) and uniform Lipschitz-continuity of σ (·, ·, λk), we conclude that


xk+1 − xk
 → 0, 
yk+1 − yk
 → 0, σ (xk+1, yk+1, λk+1) → 0 as k → ∞,

where the last asymptotic relation contradicts (63). We thus established that if (59) does not hold
then there exists a subsequence {(xkj , ykj , λkj )} satisfying (60).

Finally, for any subsequence {(xkj , ykj , λkj )} satisfying (61), the assertions of the theorem
follow by repeating the argument above for the subsequence {(xkj , ykj , λkj )}. �

The convergence result stated above gives reasons to expect that an accumulation point (x̄, ȳ)

of the sequence {(xk, yk)} would be stationary for problem (3), which further implies that x̄ would
be a weakly stationary point of (2).

4. Numerical results

This section presents some preliminary numerical results comparing the algorithm proposed above
with some alternative quasi-Newton approaches on a set of MPCC test problems derived from
MacMPEC [19]. Our selection of test problems is the same as in [14,15]. Specifically, we select all
the problems in MacMPEC which have no more than 10 variables and do not have any inequality
constraints apart from complementarity constraints. We ignore simple bounds, which of course
sometimes changes solutions and stationary points of these problems. We end up with the set of
38 problems that fit the format considered in this paper.

In what follows, we use the abbreviation Lifted ssSQP BFGS for Algorithm 1 with Hk

computed according to the BFGS rule with Powell’s modification (see, e.g. [22, pp. 536, 537]). We
compare this method with its direct alternative, which can be formally described asAlgorithm 1 but
with the full matrix Hk (including the part corresponding to nonsmoothness) computed by BFGS
with Powell’s modification, instead of our proposal (47)–(50). We call this algorithm Lifted
ssSQP full BFGS. Another alternative we implement is called Lifted SNM SR1, which
is a quasi-Newton version of SNM for lifted MPCC suggested in [15, Algorithm 4.1], where
true Hessians are replaced by SR1 approximations [22, p. 538]. The fourth algorithm chosen for
comparison is SQP slacks BFGS, which is also the quasi-Newton SQP (BFGS with Powell’s
modification) with linesearch for the l1-penalty function, but applied to the following (non-lifted)
slack reformulation of the original MPCC (2):

min f (x) s.t. G(x) = u, H(x) = v, u ≥ 0, v ≥ 0, �u, v� ≤ 0.

It is known that introducing slacks can be advantageous for numerical solution by SQP [7,8]
(see [14] for details of our implementation of this algorithm). The SQP methods were implemented
without any tools for tackling possible infeasibility of subproblems, and without any tools for
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avoiding the Maratos effect. These are issues not related to our proposal, and they should be dealt
with as in the usual (but more sophisticated) SQP implementations.

The parameters of Algorithm 1 were chosen as follows: ε = 10−4, θ = 0.5, and c̄ = 1. At each
iteration, we define ck by the simplest rule:

ck = 
λk+1
∞ + c̄.

Note that this choice may violate condition (58) in Theorem 3.3 on global convergence, but it
is attractive because of its simplicity. It also works well in our experiments, as it allows for
a decrease of the penalty parameter. The latter is particularly useful when large values of this
parameter arise on early iterations. Allowing to decrease the penalty parameter can be combined
with the need for (58) using some more involved updating rules for ck (see, e.g. [22, Section 18.3]
and [3, Section 17.1]).

The function ρ in (49) was defined as follows:

ρ(t) =



t if t < 0.1,

0.1 if t ≥ 0.1.

All computations were performed in Matlab environment. For SQP slacks BFGS, the QP-
subproblems were solved by the built-in Matlab QP-solver. For Lifted ssSQP BFGS,
Lifted ssSQP full BFGS and Lifted SNM SR1, we used the same stopping criterion
of the form

σ (xk, yk, λk) < 10−6,

where σ is defined in (50). SQP slacks BFGSwas stopped when the residual of the first-order
optimality conditions of the original MPCC (2) becomes smaller than 10−6.

Failure was declared when the needed accuracy was not achieved after 500 iterations, or when
the method in question failed to make the current step, for whatever reason.

We performed 100 runs of each algorithm from the same sample of randomly generated starting
points. Primal starting points were generated in a cubic neighborhood around the solution (solu-
tions were found in the course of our experiments), with the edge of the cube equal to 20. In the
cases of Lifted ssSQP BFGS, Lifted ssSQP full BFGS and Lifted SNM SR1
algorithms, we defined the starting value y0 of the auxiliary variable as follows:

y0
i =


�|Hi(x0)| if Hi(x
0) ≥ Gi(x

0),

−�|Gi(x0)| if Hi(x
0) < Gi(x

0),
i = 1, . . . , m,

where x0 is the primal starting point. Dual starting points for all algorithms were generated the
same way as primal ones but around 0 (for SQP slacks BFGS, with additional nonnegativity
restriction for the components corresponding to inequality constraints). Convergence to solution
was declared when the distance from the last primal iterate to the solution was smaller than 10−3.

Figure 2 reports on the average numbers of major and minor iteration counts for all the algo-
rithms over successful runs, in the form of a performance profile [5]. ForLifted ssSQP BFGS,
Lifted ssSQP full BFGS andLifted SNM SR1, minor and major iterations counts are
the same, since these algorithms are QP-free: each major iteration consists of solving one linear
system, followed by linesearch. At the same time, SQP slacks BFGS subproblems are general
QPs with inequality constraints. Solving each of these subproblems by the active set QP-solver
usually requires more than one minor iteration, and each minor iteration includes solving a linear
system. For each algorithm, the value of the plotted function at τ ∈ [1,+∞) corresponds to the
part of the problems in the test set for which the achieved result (the average iteration count in
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Figure 2. Number of iterations.
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Figure 3. Evaluations of constraints/derivatives values.

Figure 2; the constraint/derivative evaluation count in Figure 3) was no more than τ times worse
(bigger) than the best result among the four algorithms. Failure is regarded as infinitely many
times worse than the best result. Thus, the value at τ = 1 characterizes ‘pure efficiency’ of the
algorithm (i.e. the part of problems for which the given algorithm demonstrated the best result),
while the value at τ = +∞ characterizes robustness of the algorithm (that is, the part of problems
which were successfully solved by the given algorithm).

One can see from Figure 2 that in terms of efficiency, Lifted ssSQP BFGS and Lifted
SNM SR1 are outperformed by SQP slacks BFGS by major iteration count, but for minor
iterations the picture is opposite.Also,Lifted ssSQP full BFGS is an evident loser in these
comparisons, which supports the intuition behind our special construction. At the same time, all
methods demonstrate similar robustness. For Lifted ssSQP BFGS, many failures (more than
33% of the runs) were observed for problems ex9.1.2, ex9.1.4, ralph1, scholtes5; in
most cases, failures were due to infeasibility of subproblems.

Figure 3 reports on the average numbers of evaluations of constraint functions and their deriva-
tives, and the picture is quite similar to the one with major iterations. However, here we can see
that Lifted ssSQP BFGS outperforms Lifted SNM SR1.

Figure 4(a) reports on the average numbers of evaluations of the objective function (Lifted
SNM SR1 is not presented in this figure since it does not compute objective function values).
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Figure 4. Evaluations of the objective function and convergence to solution.

Apart from robustness and efficiency, another important characteristic of any algorithm is the
quality of its outcome, i.e. the percentage of the cases when the algorithm converges to a true solu-
tion rather than to some nonoptimal stationary point. Figure 4(b) reports on this aspect of behavior
of the algorithms. Here, the ‘result’ of each algorithm is the inverse number of convergences to
the solution. Note that this result equals to +∞ when the given algorithm never converged to the
solution for a given problem, and this adds to the cases of failure. This is why the values on the
right end are smaller than they are in the other figures. One can see that Lifted ssSQP BFGS,
Lifted ssSQP full BFGS andSQP slacks BFGS behave comparably and they all have
a stronger tendency of convergence to the solution than Lifted SNM SR1.

Figure 5 gives information about the ability of the algorithms to achieve smaller values of
the objective function in the cases of successful runs (in these cases the last iterate is feasible
or nearly feasible; therefore, it makes sense to look at the objective function values as another
performance indicator). These diagrams were obtained as follows. For each algorithm and each
problem, we compute the average objective function value achieved over successful runs. The
given algorithm was classified into ‘best’ category when this value was the smallest among the
four algorithms, and into ‘worst’ category when it was the largest. The average objective function
value was regarded as equal to the smallest or to the largest when the difference was less than
10−3. Note that for some particular problems an algorithm can fall into both ‘best’ and ‘worst’

Lifted SNM SR1 9%

Lifted ssSQP BFGS 26%

(a) (b)

SQP slacks BFGS 40%

Lifted ssSQP full BFGS 25%

Best objective value achieved
Lifted SNM SR1 4%

Lifted ssSQP BFGS 32%

SQP slacks BFGS 30%

Lifted ssSQP full BFGS 34%

Non−worst objective value achieved

Figure 5. Objective value achieved.
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categories, if all the four algorithms give the same average objective function value. Once we
know how many times each algorithm falls into each category, we sum up these numbers for each
category, and show the portion of this sum corresponding to each algorithm in Figure 5. Somewhat
surprisingly,Lifted ssSQP BFGS andLifted ssSQP full BFGS are comparable with
SQP slacks BFGS by these characteristics. And as expected, they all seriously outperform
Lifted SNM SR1.

For test problems dempe, desilva, outrata31, outrata32, outrata33,
outrata34, scholtes1 and scholtes2, the version Lifted ssSQP BFGS signifi-
cantly outperforms SQP slacks BFGS in terms of robustness and in terms of the minor
iterations count. For dempe, desilva, scholtes1, scholtes2, the same tendency is
observed in terms of convergence to solution. The opposite tendency is observed for test problems
ex9.1.2, ex9.1.4, ex9.2.1, ex9.2.7, ex9.2.8, ex9.2.9, scholtes5, for which
SQP slacks BFGS significantly outperforms Lifted ssSQP BFGS in terms of robustness
and in terms of convergence to solution.

We complete our numerical results by considering [32, Example 6.1]. Correcting some mis-
prints, this problem is of the form (2) with n = 3, m = 2, f (x) = 0.1x1 + 0.1x2 + 0.8x3,
G(x) = (x1, −x1 − x2 − x3 + 1), H(x) = (x2, −x1 − x2 + x3 + 1). Then x̄ = (0, 0,−1) is the
unique global minimizer (and a strongly stationary point), while (1, 0, 0), (0, 1, 0) and (0, 0, 1)

are nonoptimal weakly stationary points.
When started from x0 = (0, 0, 1), all three lifted methods are not able to leave this nonop-

timal weakly stationary point. Another ‘difficult’ feasible starting point suggested in [32] is
x0 = (0.5, 0, 0.5). Starting from this point, Lifted SNM SR1 converges to the nonoptimal
weakly stationary point (1, 0, 0), while Lifted ssSQP BFGS successfully converges to the
solution x̄. Finally, when started from random starting points generated as described above,
Lifted SNM SR1 converges to x̄ for 45% of runs, while Lifted ssSQP BFGS converges
to x̄ for 98% of runs. Therefore, the latter algorithm does not experience any serious difficul-
ties with getting stuck at nonoptimal weakly stationary points. Lifted ssSQP full BFGS
behaves similarly to Lifted ssSQP BFGS on this problem.
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