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Abstract For an optimization problem with general equality and inequality
constraints, we propose an algorithm which uses subproblems of the stabilized
SQP (sSQP) type for approximately solving subproblems of the augmented
Lagrangian method. The motivation is to take advantage of the well-known
robust behavior of the augmented Lagrangian algorithm, including on prob-
lems with degenerate constraints, and at the same time try to reduce the
overall algorithm locally to sSQP (which gives fast local convergence rate un-
der weak assumptions). Specifically, the algorithm first verifies whether the
primal-dual sSQP step (with unit stepsize) makes good progress towards de-
creasing the violation of optimality conditions for the original problem, and if
so, makes this step. Otherwise, the primal part of the sSQP direction is used
for linesearch that decreases the augmented Lagrangian, keeping the multiplier
estimate fixed for the time being. The overall algorithm has reasonable global
convergence guarantees, and inherits strong local convergence rate properties
of sSQP under the same weak assumptions. Numerical results on degenerate
problems and comparisons with some alternatives are reported.

Research of the first author is supported by the Russian Foundation for Basic Research
Grant 14-01-00113 and by CNPq Grant PVE 401119/2014-9 (Brazil). The second author
is supported in part by CNPq Grant 302637/2011-7, by PRONEX–Optimization, and by
FAPERJ. The third author is supported by the Russian Foundation for Basic Research
Grant 14-01-00113.

A. F. Izmailov, E. I. Uskov
IO Department, VMK Faculty, Lomonosov Moscow State University (MSU), Uchebniy Ko-
rpus 2, Leninskiye Gory, 119991 Moscow, Russia
E-mail: izmaf@ccas.ru

E. I. Uskov
E-mail: euskov@cs.msu.ru

M. V. Solodov
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1 Introduction

In this work, we consider the optimization problem

minimize f(x)
subject to h(x) = 0, g(x) ≤ 0,

(1)

where the objective function f : Rn → R and the constraints mappings h :
R

n → R
l and g : Rn → R

m are smooth enough. Recall that stationary points
and the associated Lagrangemultipliers for (1) are given by the Karush–Kuhn–
Tucker (KKT) system

∂L

∂x
(x, λ, µ) = 0, h(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0, (2)

where L : Rn × R
l × R

m → R is the Lagrangian of (1), i.e.,

L(x, λ, µ) = f(x) + 〈λ, h(x)〉+ 〈µ, g(x)〉.

(In the above and in the rest of the paper, 〈·, ·〉 stands for the Euclidean inner
product, and ‖ · ‖ is the associated norm.) Of special interest for us would be
the case when the constraints in the problem (1) are degenerate, in the sense
that the multipliers associated to stationary points are not unique.

Given some (xk, λk, µk) ∈ R
n ×R

l ×R
m, which is the current approxima-

tion to a solution of the KKT system (2), the stabilized SQP (sSQP) method
solves the following quadratic program (QP) in the primal-dual space:

minimize(x, λ, µ) 〈f
′(xk), x− xk〉+

1

2

〈

∂2L

∂x2
(xk, λk, µk)(x− xk), x− xk

〉

+
σk
2
(‖λ‖2 + ‖µ‖2)

subject to h(xk) + h′(xk)(x− xk)− σk(λ− λk) = 0,

g(xk) + g′(xk)(x − xk)− σk(µ− µk) ≤ 0,

where σk > 0 is the dual stabilization parameter. We refer to [12,14,22,30,37]
for the origins of the method and developments in this area; see also [31, Chap-
ter 7]. Here, we only mention that sSQP has local superlinear convergence
under the second-order sufficient optimality condition only, without any con-
straints qualification assumptions [12] (for equality-constrained problems, even
the weaker noncriticality condition is enough [29]). This should be contrasted
with the usual SQP method [6,20] (see also [31, Chapter 4]), which in addition
requires relatively strong regularity condition on the constraints (while sSQP
needs nothing at all).

We note that very few globalizations of the local sSQP scheme have been
proposed so far, all very recently. In [11] sSQP is combined with the inexact
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restoration method. In [34], for the equality-constrained case, the algorithm
based on linesearch for the primal-dual two-parameter exact penalty func-
tion of [9] is proposed. Another approach is being developed in the series
of papers [17–19] for problems with equality and nonnegativity constraints,
where sSQP is combined with a certain primal-dual augmented Lagrangian
algorithm. In [19], at each iteration the sSQP step is computed for equality-
constrained problems resulting from identification of active bounds. Another
approach based on identifying active constraints and applying sSQP to the cor-
responding equality-constrained problem has been considered earlier in [38],
but with a generic globally convergent “outer algorithm” instead of a specific
one, as in [19].

In this paper, we consider problems with general inequality constraints, and
our goal is to globalize the sSQPmethod applied to this problem, rather than to
an equality-constrained problem given by some active-set strategy. Essentially,
we combine sSQP with the usual augmented Lagrangian algorithm (Aug-L)
[4, 5]. Roughly speaking, we employ sSQP as inner iterations for solving the
subproblems of the outer algorithm (in this sense, this is the common feature
with [11,17–19]). The hope is that few (ideally one) sSQP subproblem would be
needed per outer iteration, at least asymptotically, thus giving fast convergence
of the overall algorithm. Taking this point of view, it appears very natural to
combine sSQP with the usual augmented Lagrangian algorithm. One reason
is that Aug-L methods are very robust and have good convergence properties
[2, 3, 7], including when applied to degenerate problems [13, 33]. Moreover, it
is known that sSQP and Aug-L methods are related: in a sense, the former
can be considered as linearization of the iterative subproblems of the latter.
Thus, using sSQP for solving the Aug-L subproblems would seem to be a
natural approach, which can be expected to be effective. In fact, the idea of
combining some stabilized Newtonian scheme with the Aug-L method goes
back at least to [21]; see also [4]. Despite that we use the usual augmented
Lagrangian and not the more involved primal-dual augmented Lagrangian as
in [17–19], it is interesting that in the equality-constrained case there are some
close connections between our method and the algorithms in those works;
see Section 3 below. In the general inequality-constrained case, our approach
and that of [17–19] are rather different however. In Section 4, we report on
numerical results for our algorithm on degenerate problems, which are the
main motivation for employing sSQP.

Recall that the augmented Lagrangian for (1) is defined as follows: Lσ :
R

n × R
l × R

m → R,

Lσ(x, λ, µ) = f(x) +
σ

2

(

∥

∥

∥

∥

λ+
1

σ
h(x)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

max

{

0, µ+
1

σ
g(x)

}∥

∥

∥

∥

2
)

, (3)

where σ > 0 is the (inverse) penalty parameter. Then, given the current dual
iterate (λk, µk) ∈ R

l×R
m and the parameter value σk > 0, the next primal it-

erate xk+1 in the Aug-L method is obtained by solving (usually approximately)
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the unconstrained optimization subproblem

minimize Lσk
(x, λk, µk), x ∈ R

n,

and the next dual iterate is then given by

λk+1 = λk +
1

σk
h(xk+1), µk+1 = max

{

0, µk +
1

σk
g(xk+1)

}

.

We refer to [3] and [13,25] for state-of-the-art on global and local convergence
properties of Aug-L methods, respectively. For many other issues, see [5].

To conclude this section, we define some further notation, and recall some
facts, to be used in the sequel. Let the function ρ : Rn ×R

l ×R
m → R be the

so-called natural residual of the KKT system (2), i.e.,

ρ(x, λ, µ) =

∥

∥

∥

∥

∂L

∂x
(x, λ, µ)

∥

∥

∥

∥

+ ψ(x, µ),

where ψ : Rn × R
m → R,

ψ(x, µ) = ‖(h(x), min{µ, −g(x)})‖

(here and throughout, the operations min and max are understood compo-
nentwise). By M(x̄) we denote the set of Lagrange multipliers associated to a
stationary point x̄ of problem (1); in particular,

M(x̄) = {(λ, µ) ∈ R
l × R

m | ρ(x̄, λ, µ) = 0}.

We say that the second-order sufficient optimality condition (SOSC) holds at
a stationary point x̄ of problem (1) for a multiplier (λ̄, µ̄) ∈ M(x̄), if it holds
that

〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉

> 0 ∀ ξ ∈ C(x̄) \ {0}, (4)

where

C(x̄) = {ξ ∈ R
n | h′(x̄)ξ = 0, 〈g′i(x̄), ξ〉 ≤ 0 ∀ i ∈ A(x̄), 〈f ′(x̄), ξ〉 = 0},

is the critical cone of (1) at x̄, with A(x̄) = {i ∈ {1, . . . , m} | gi(x̄) = 0} being
the set of inequality constraints active at x̄.

Recall that, according to [23, Lemma 2] and [14, Theorem 2] (see also [31,
Section 1.3.3]), the SOSC (4) implies the following error bound:

‖x− x̄‖+ dist((λ, µ), M(x̄)) = O(ρ(x, λ, µ)) (5)

as (x, λ, µ) → (x̄, λ̄, µ̄). In fact, this error bound is equivalent to the assump-
tion that the multiplier (λ̄, µ̄) ∈ M(x̄) is noncritical, as defined in [30]; see
also [26] and [31, Section 1.3]. As in what follows we would only invoke this
notion for the equality-constrained case, we give here the corresponding sim-
pler definition. If there are no inequality constraints in (1), then λ̄ ∈ M(x̄) is
said to be critical if

∃ ξ ∈ kerh′(x̄) \ {0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T, (6)
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and noncritical otherwise. It can be easily seen that the version of the SOSC
(4), corresponding to the equality-constrained case, implies noncriticality (the
same is also true for general problems).

2 The algorithm and its convergence properties

We next describe our algorithm. As already commented, at each iteration
we first solve the true sSQP subproblem; see (7) in Step 1 of Algorithm 1
below, where we first take Hj as the true Hessian of the Lagrangian. If the
sSQP direction is computed successfully, we next check whether it provides
progress in solving the original problem (1); this is reflected by the test (8) in
Step 2. If it is so, the sSQP step is accepted and we proceed to the next outer
iteration. Otherwise, we check whether the primal part of the sSQP direction
is of descent for the augmented Lagrangian (condition (11) below), and if it is
so, we perform linesearch and decrease the value of the augmented Lagrangian,
keeping the dual variable fixed.

If the true sSQP subproblem is not solvable, or when both tests (8) and
(11) fail, we modify Hj so that solving again the subproblem (7) with the new
Hj and verifying (11) results in a successful linesearch iteration. This is Step 4
of the algorithm. Some options for computing an appropriate Hj would be
commented below, after the statement of the algorithm.

In the case of a linesearch iteration, if it gives an acceptable approximate
stationary point of the augmented Lagrangian, i.e., (13) below does not hold,
we accept this point and update the dual iterates, the penalty parameter, and
the stationarity tolerance the same way as the usual Aug-L methods [5] do,
and proceed to the next outer iteration. Otherwise, we consider the linesearch
step as an inner iteration within the process of solving the current Aug-L
subproblem (i.e., within minimizing the augmented Lagrangian for fixed dual
variables and fixed penalty parameter).

Our algorithm uses the bounds λ̄min < λ̄max and µ̄max > 0 to safeguard
the dual iterates, as does the ALGENCAN solver [1], for example (see [2,
Algorithm 3.1] and also [5]).

Note that in the algorithm that follows, the index k is associated to the
objects that are updated on the outer iterations (referred to as sSQP and
Aug-L iterations), and are fixed over sequences of consecutive inner iterations
(indexed by j).

Algorithm 1 Choose r0, ε0, σ0, γ > 0 and q, θ, τ, ε, κ, δ ∈ (0, 1). Fix λ̄min,
λ̄max ∈ R

l, λ̄min < λ̄max, µ̄max ∈ R
m
+ . Choose (x0, λ0, µ0) ∈ R

n × R
l × R

m,
λ̄0 ∈ [λ̄min, λ̄max] and µ̄

0 ∈ [0, µ̄max]. Set x̂
0 = x0, k = 0 and j = 0.

1. Set

Hj =
∂2L

∂x2
(x̂j , λ̄k, µ̄k)
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and find a stationary point (ξj , ηj , ζj) ∈ R
n × R

l × R
m of the QP

minimize 〈f ′(x̂j), ξ〉+
1

2
〈Hjξ, ξ〉+

σk
2
(‖λ̄k + η‖2 + ‖µ̄k + ζ‖2)

subject to h(x̂j) + h′(x̂j)ξ − σkη = 0, g(x̂j) + g′(x̂j)ξ − σkζ ≤ 0.
(7)

If the problem (7) has no solution, go to step 4.
2. If

λ̄k + ηj ∈ [λ̄min, λ̄max], µ̄k + ζj ∈ [0, µ̄max],
ρ(x̂j + ξj , λ̄k + ηj , µ̄k + ζj) ≤ rk,

(8)

then set

xk+1 = x̂j + ξj , λk+1 = λ̄k+1 = λ̄k + ηj , µk+1 = µ̄k+1 = µ̄k + ζj , (9)

σk+1 = ρ(xk+1, λk+1, µk+1), εk+1 = εk, rk+1 = qrk, (10)

set j = 0, x̂0 = xk+1, increase k by 1, and go to Step 1 (sSQP iteration).
3. If (ξj , ηj , ζj) ∈ R

n × R
l × R

m satisfies
〈

∂Lσk

∂x
(x̂j , λ̄k, µ̄k), ξj

〉

≤ −γ‖ξj‖2, (11)

go to step 5.
4. Compute a symmetric matrix Hj ∈ R

n×n such that the QP (7) has a
stationary point (ξj , ηj , ζj) satisfying (11), and compute such a stationary
point.

5. Compute x̂j+1 = x̂j+τ iξj , where i is the smallest nonnegative integer such
that

Lσk
(x̂j + τ iξj , λ̄k, µ̄k) ≤ Lσk

(x̂j , λ̄k, µ̄k) + ετ i
〈

∂Lσk

∂x
(x̂j , λ̄k, µ̄k), ξj

〉

.

(12)
6. If

∥

∥

∥

∥

∂Lσk

∂x
(x̂j+1, λ̄k, µ̄k)

∥

∥

∥

∥

> εk, (13)

increase j by 1 and go to Step 1 (inner iteration).
7. Set εk+1 = θεk, x

k+1 = x̂j+1 and

λk+1 = λ̄k +
1

σk
h(x̂j+1), µk+1 = max

{

0, µ̄k +
1

σk
g(x̂j+1)

}

.

If λk+1 ∈ [λ̄min, λ̄max] and µk+1 ∈ [0, µ̄max], set λ̄
k+1 = λk+1, µ̄k+1 =

µk+1; otherwise, choose some λ̄k+1 ∈ [λ̄min, λ̄max] and µ̄
k+1 ∈ [0, µ̄max]. If

ρ(xk+1, λk+1, µk+1) ≤ rk, (14)

set σk+1 = ρ(xk+1, λk+1, µk+1) and rk+1 = qrk; otherwise, set

σk+1 =

{

σk, if ψ(x
k+1, µk+1) ≤ δψ(xk, µk),

κσk, else,
(15)

and rk+1 = rk. Set j = 0, x̂0 = xk+1, increase k by 1 and go to Step 1
(Aug-L iteration).
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Some comments are in order.
The KKT conditions for subproblem (7), after a straightforward simple

transformation, can be stated in terms of its primal solution (ξ, η, ζ) only. This
is due to the special structure of (7) – it can be easily seen that KKT conditions
of (7) imply that the primal variables η and ζ are equal to the corresponding
multipliers for the equality and inequality constraints, respectively. Taking
this into account, stationary points of (7) are characterized by the following
system:

∂L

∂x
(x̂j , λ̄k, µ̄k) +Hjξ + (h′(x̂j))Tη + (g′(x̂j))Tζ = 0, (16)

h(x̂j) + h′(x̂j)ξ − σkη = 0, (17)

µ̄k + ζ ≥ 0, g(x̂j) + g′(x̂j)ξ − σkζ ≤ 0,
〈µ̄k + ζ, g(x̂j) + g′(x̂j)ξ − σkζ〉 = 0.

(18)

We next discuss the question of how to find a matrix Hj satisfying the
requirements of Step 4 of Algorithm 1, if the attempt to use the true sSQP
step fails. Note that we need to ensure solvability of the sSQP subproblem
(7) and the directional descent condition (11). In what follows, we show that
these requirements are satisfied for any Hj such that

〈(

Hj +
1

σk
(h′(x̂j))Th′(x̂j)

)

ξ, ξ

〉

≥ γ‖ξ‖2 ∀ ξ ∈ R
n, (19)

i.e.,Hj such that the matrix in the left-hand side is sufficiently positive definite.
The condition (19) is, of course, automatic if Hj itself is taken sufficiently

positive definite. For instance, all theoretical conclusions below are valid if
we simply take Hj = I. However, for efficiency of the algorithm, it would be
natural to take Hj as a possibly small modification of the true Hessian, in
particular because the latter is already computed at Step 1.

In the equality-constrained case, the requirement (19) automatically holds
with some γ > 0 for all k large enough under the SOSC (4), if the sequence

approaches such a solution, if σk → 0, and we take Hj = ∂2L
∂x2 (x̂

j , λ̄k) (this
can be easily seen using the Finsler–Debreau Lemma, e.g., [4, Lemma 1.25]).
Note also that (17) is equivalent to

η =
1

σk
(h(x̂j) + h′(x̂j)ξ), (20)

and in the equality-constrained case, the equality (16) takes the form

(

Hj +
1

σk
(h′(x̂j))Th′(x̂j)

)

ξ = −
∂Lσk

∂x
(x̂j , λ̄k). (21)

So, if the matrix in the left-hand side is nonsingular, then the linear sys-
tem (20), (21) has the unique solution (ξj , ηj). Since equations (20), (21) are
equivalent to the Lagrange system of the sSQP subproblem, (ξj , ηj) is also the
unique stationary point of this subproblem. Sufficient positive definiteness of
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the matrix (i.e., the fulfillment of (19)) can be achieved by modifying it in the
process of its Cholesky factorization [36, Section 3.4], if this is the approach
for computing the solution ξj of the linear system (21). Then ηj is given by
the explicit formula (20).

In the inequality-constrained case, the choice Hj = ∂2L
∂x2 (x̂

k, λ̄k, µ̄k) in
principle need not conform to (19), even locally. However, note that positive
definiteness of Hj (and even (19)) is merely sufficient but not necessary for
the existence of stationary points of (7) satisfying (11). The later may well
hold even if Hj is not positive definite. In our numerical experience, quite
often this is indeed the case. When it turns out that modification of the true
Hessian is required, Hj with the needed properties can again be obtained by
the modified Cholesky factorization, or by the “convexification procedure”
from [17–19]. Then no more than two QPs will have to be solved at each
iteration of Algorithm 1, as well as when we simply take Hj = I for the second
QP. Alternatively,Hj can be adjusted sequentially: e.g., one can keep replacing
Hj byHj+ωI with some ω > 0 until a stationary point satisfying (11) is found.
This, of course, may require solving more than two QPs per iteration, but the
“quality” of the resulting step can be better, since the eventually accepted
Hj can be closer to the true Hessian of the Lagrangian. These alternative
strategies will be numerically tested in Section 4.

Given (19), we first show that it guarantees solvability of the sSQP sub-
problems (7).

Lemma 1 Let f : Rn → R, h : Rn → R
l and g : Rn → R

m be differentiable

at the point x̂j ∈ R
n. Let Hj ∈ R

n×n be some symmetric matrix and σk > 0
be such that (19) holds with some γ > 0.

Then, for any λ̄k ∈ R
l, µ̄k ∈ R

m, there exists the unique (ξj , ηj , ζj) ∈
R

n × R
l × R

m solving (7), or equivalently, satisfying (16)–(18).

Proof For any (ξ, η, ζ) ∈ R
n × R

l × R
m satisfying the equation

h′(x̂j)ξ − σkη = 0, (22)

for the quadratic part of the objective function in (7), i.e., ignoring its linear
terms, we have that

〈Hjξ, ξ〉+ σk(‖η‖
2 + ‖ζ‖2) = 〈Hjξ, ξ〉+ σk

(

∥

∥

∥

∥

1

σ2
k

h′(x̂j)ξ

∥

∥

∥

∥

2

+ ‖ζ‖2

)

=

〈(

Hj +
1

σk
(h′(x̂j))Th′(x̂j)

)

ξ, ξ

〉

+ σk‖ζ‖
2

> 0,

where the inequality holds for any (ξ, η, ζ) 6= 0, by (19) and (22). This implies
strong convexity of the objective function in (7) on the subspace defined by
the condition (22). This, in turn, implies strong convexity of this function
on the feasible set of (7) (as is easily seen, strong convexity of a quadratic
function on some subspace implies its strong convexity on any affine manifold
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parallel to this subspace). Further, as for any σk > 0 the feasible set in (7) is
clearly nonempty, it then follows that this problem has the unique solution.
By the linearity of its constraints, we then conclude that this solution also has
the associated Lagrange multipliers; and, as stated above, the solution can be
seen to be given by the system (16)–(18). This system is also sufficient for
optimality, by the convexity of the problem. ⊓⊔

We next show that (19) also implies the directional descent condition (11).
It then also follows that the linesearch procedure on Step 5 of Algorithm 1 is
well-defined.

Lemma 2 Let f : Rn → R, h : Rn → R
l and g : Rn → R

m be differentiable

at the point x̂j ∈ R
n. Let (ξj , ηj , ζj) satisfy (16)–(18) for some λ̄k ∈ R

l,

µ̄k ∈ R
m, some symmetric matrix Hj ∈ R

n×n and σk > 0, such that (19)
holds with some γ > 0.

Then the inequality (11) holds true. In particular, the Armijo condition

(12) on Step 5 of Algorithm 1 is satisfied for some nonnegative integer i.

Proof As is easily seen from (3), for any (x, λ, µ) ∈ R
n ×R

l × R
m and σ > 0

it holds that

∂Lσ

∂x
(x, λ, µ) = f ′(x) + (h′(x))T

(

λ+
1

σ
h(x)

)

+(g′(x))T max

{

0, µ+
1

σ
g(x)

}

=
∂L

∂x
(x, λ, µ) +

1

ρ
(h′(x))Th(x) + (g′(x))T max

{

−µ,
1

σ
g(x)

}

.

(23)

Hence, for any (ξj , ηj , ζj) satisfying (16)–(18) we obtain that

〈

∂Lσk

∂x
(x̂j , λ̄k, µ̄k), ξj

〉

=

〈

∂L

∂x
(x̂j , λ̄k, µ̄k), ξj

〉

+
1

σk
〈h(x̂j), h′(x̂j)ξj〉

+

〈

max

{

−µ̄k,
1

σk
g(x̂j)

}

, g′(x̂j)ξj
〉

= −〈Hjξ
j , ξj〉 − 〈ηj , h′(x̂j)ξj〉 − 〈ζj , g′(x̂j)ξj〉

+
1

σk
〈h(x̂j), h′(x̂j)ξj〉

+

〈

max

{

−µ̄k,
1

σk
g(x̂j)

}

, g′(x̂j)ξj
〉

= −

〈(

Hj +
1

σk
(h′(x̂j))Th′(x̂j)

)

ξj , ξj
〉

−

〈

ζj −max

{

−µ̄k,
1

σk
g(x̂j)

}

, g′(x̂j)ξj
〉

.
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Using the latter relation and (19), we then obtain that

〈

∂Lσk

∂x
(x̂j , λ̄k, µ̄k), ξj

〉

≤ −γ‖ξj‖2 −
m
∑

i=1

Ri, (24)

where we set

Ri =

(

ζji −max

{

−µ̄k
i ,

1

σk
gi(x̂

j)

})

〈g′i(x̂
j), ξj〉

= min

{

µ̄k
i + ζji , ζ

j
i −

1

σk
gi(x̂

j)

}

〈g′i(x̂
j), ξj〉, i = 1, . . . , m.

Note that for each i = 1, . . . , m, if µ̄k
i ≤ −gi(x̂

j)/σk then

Ri = (µ̄k
i + ζji )〈g

′

i(x̂
j), ξj〉.

And if µ̄k
i + ζji = 0 then Ri = 0. In addition, by (18), in the remaining case of

µ̄k
i + ζji > 0, it holds that

gi(x̂
j) + 〈g′i(x̂

j), ξj〉 − σkζ
j
i = 0, (25)

and therefore,

〈g′i(x̂
j), ξj〉 = −gi(x̂

j) + σkζ
j
i = −σk

(

µ̄k
i +

1

σk
gi(x̂

j)

)

+ σk(µ̄
k
i + ζji ) > 0,

i.e., Ri > 0 in this case.
On the other hand, if µ̄k

i > −gi(x̂
j)/σk then

Ri =

(

ζji −
1

σk
gi(x̂

j)

)

〈g′i(x̂
j), ξj〉.

If µ̄k
i + ζji = 0, then

ζji −
1

σk
gi(x̂

j) = −

(

µ̄k
i +

1

σk
gi(x̂

j)

)

< 0,

and using also (18), it follows that

〈g′i(x̂
j), ξj〉 ≤ σk

(

ζji −
1

σk
gi(x̂

j)

)

< 0,

and thus Ri > 0. Moreover, by (18), in the remaining case of µ̄k
i + ζji > 0,

again (25) holds, and hence,

Ri =
1

σk
(〈g′i(x̂

j), ξj〉)2 ≥ 0.

We conclude that, in all the cases, Ri ≥ 0 for all i = 1, . . . , m. This and
(24) imply (11). ⊓⊔
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The next result is, in a sense, intermediate. It shows that the number of
consecutive inner iterations must be finite, in the usual situations (for example,
if level sets of the augmented Lagrangian in the primal space are bounded).

Proposition 1 Let f : Rn → R, h : Rn → R
l and g : Rn → R

m be contin-

uously differentiable on R
n. Suppose that for some index k, the Steps 1–6 of

Algorithm 1 generate an infinite sequence {x̂j}, where {Hj} is chosen bounded.

Then ‖x̂j‖ → ∞ as j → ∞.

Proof The sequence {x̂j} is generated by a descent scheme for Lσk
(·, λ̄k, µ̄k),

with λ̄k, µ̄k and σk fixed. The assertion follows by showing that the sequence
{ξj} is “uniformly gradient-related” with respect to {x̂j}, in the terminology
of [4].

Let J ⊂ {0, 1, . . .} be an infinite set of indices such that the subsequence
{x̂j | j ∈ J} converges to some x̂ satisfying

∂Lσk

∂x
(x̂, λ̄k, µ̄k) 6= 0. (26)

From (11) and (26), we conclude that {ξj | j ∈ J} is bounded.
Suppose {ξj | j ∈ J} has the zero accumulation point. Without loss of

generality, we can assume that {ξj | j ∈ J} converges to zero. By (17), for
each j ∈ J it holds that

ηj =
1

σk
(h(x̂j) + h′(x̂j)ξj).

Thus, {ηj | j ∈ J} → h(x̂)/σk. On the other hand, by (18) and the fact that
the number of subsets of {1, . . . , m} is finite, we can consider that there exists
some set I ⊂ {1, . . . , m} such that, for each j ∈ J ,

µ̄k
i + ζji > 0, gi(x̂

j) + 〈g′i(x̂
j), ξj〉 − σkζ

j
i = 0 ∀ i ∈ I,

µ̄k
i + ζji = 0, gi(x̂

j) + 〈g′i(x̂
j), ξj〉 − σkζ

j
i ≤ 0 ∀ i ∈ {1, . . . , m} \ I.

In particular,

−µ̄k
i < ζji =

1

σk
(gi(x̂

j) + 〈g′i(x̂
j), ξj〉) ∀ i ∈ I,

−µ̄k
i = ζji ≥

1

σk
(gi(x̂

j) + 〈g′i(x̂
j), ξj〉) ∀ i ∈ {1, . . . , m} \ I.

It then follows that {ζji | j ∈ J} → gi(x̂)/σk ≥ −µ̄k
i for all i ∈ I, and

ζji = −µ̄k
i ≥ gi(x̂)/σk for all i ∈ {1, . . . , m} \ I. Combining those two cases,

we conclude that {ζj | j ∈ J} → max{−µ̄k, g(x̂)/σk}. Using this fact, passing
onto the limit in (16) and also taking into account (23), we obtain that

0 =
∂L

∂x
(x̂, λ̄k, µ̄k) +

1

σk
(h′(x̂))Th(x̂) + (g′(x̂))T max

{

−µ̄k,
1

σk
g(x̂)

}

=
∂Lσk

∂x
(x̂, λ̄k, µ̄k),
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in contradiction with (26).
Thus, the sequence {ξj | j ∈ J} cannot have the zero accumulation point.

Hence, by (11), the sequence {〈
∂Lσ

k

∂x
(x̂j , λ̄k, µ̄k), ξj〉 | j ∈ J} also cannot have

the zero accumulation point.
We have thus shown that {ξj} is “uniformly gradient-related”, and [4,

Theorem 1.8] then implies that every accumulation point x̂ of {x̂j}, if any
exist, satisfies

∂Lσk

∂x
(x̂, λ̄k, µ̄k) = 0.

Then the test (13) in Step 6 of Algorithm 1 means that {x̂j} cannot have
accumulation points, which completes the proof. ⊓⊔

The next theorem establishes the key global convergence properties of Al-
gorithm 1. We note that the theoretical possibility of convergence to infeasible
points is something standard for augmented Lagrangian methods [5], and thus
carries over also to related techniques, including what is presented here. Specif-
ically, when all iterations from some point on are of Aug-L type, every primal
accumulation point is stationary for the infeasibility minimizing problem

minimize ‖h(x)‖2 + ‖max{0, g(x)}‖2, x ∈ R
n,

and if this point is feasible and satisfies some weak constraints qualifications,
then it is necessarily stationary in the original problem (1).

Theorem 1 Let f : Rn → R, h : Rn → R
l and g : Rn → R

m be contin-

uously differentiable on R
n. Let {(xk, λk, µk)} be any sequence generated by

Algorithm 1.

Then for every accumulation point (x̄, λ̄, µ̄) of {(xk, λk, µk)}, the follow-

ing holds true:

∂L

∂x
(x̄, λ̄, µ̄) = 0, µ̄ ≥ 0, (h′(x̄))Th(x̄) + (g′(x̄))T max{0, g(x̄)} = 0, (27)

and either x̄ is a stationary point of (1) with the associated Lagrange multiplier

(λ̄, µ̄), or for any subsequence of {(xk, λk, µk)} converging to (x̄, λ̄, µ̄), all its
elements with sufficiently large indices are generated by the Aug-L iterations

of Algorithm 1. Moreover, if the sequence {σk} generated by Algorithm 1 is

separated from zero, then x̄ is a stationary point of (1) with the associated

Lagrange multiplier (λ̄, µ̄).

Proof Let K ⊂ {1, 2, . . .} be an arbitrary index set for which the subsequence
{(xk, λk, µk) | k ∈ K} converges to (x̄, λ̄, µ̄). Note that for each k ∈ K, it
either holds that

ρ(xk, λk, µk) ≤ rk−1, (28)

or (xk, λk, µk) is generated by an Aug-L iteration with σk given by (15).
If for k ∈ K the condition (28) holds infinitely often, then rk → 0, since

rk = qrk−1 for all such k and since {rk} is nonincreasing. But then (28) implies
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ρ(x̄, λ̄, µ̄) = 0, i.e., x̄ is a stationary point of (1) with associated Lagrange
multipliers (λ̄, µ̄) (in particular, (27) holds).

We now consider the case when (28) does not hold for all k ∈ K sufficiently
large. Then, according to the above, for all k ∈ K large enough it holds that
εk = θεk−1,

∥

∥

∥

∥

∂Lσk−1

∂x
(xk, λ̄k−1, µ̄k−1)

∥

∥

∥

∥

≤ εk−1, (29)

and

λk = λ̄k−1 +
1

σk−1
h(xk), µk = max

{

0, µ̄k−1 +
1

σk−1
g(xk)

}

. (30)

The nonnegativity of µ̄ in (27) is implied by the second equality in (30). By
the fact that {εk} is nonincreasing, it holds that εk → 0. By (23) and (30), we
obtain that

∂Lσk−1

∂x
(xk, λ̄k−1, µ̄k−1) = f ′(xk) + (h′(xk))T

(

λ̄k−1 +
1

σk−1
h(xk)

)

+(g′(xk))T max

{

0, µ̄k−1 +
1

σk−1
g(xk)

}

=
∂L

∂x
(xk, λk, µk).

Using (29) and passing onto the limit along the corresponding subsequence,
we obtain the first equality in (27). If it also holds that ψ(x̄, µ̄) = 0, then
ρ(x̄, λ̄, µ̄) = 0.

Note now that for any k, σk+1 can be larger than σk only if (14) holds.
Also, (8) implies (14) for the corresponding (xk+1, λk+1), and in this case,
σk+1 ≤ rk and rk+1 = qrk. Therefore, if (14) holds for an infinite number of
indices k, then σk → 0. If (14) holds only a finite number of times, then there

exists k̂ such that for all k ≥ k̂ all the outer iterations of the algorithm are
of the Aug-L type, the sequence {σk} is nonincreasing, and for all k ≥ k̂ the
value of σk+1 is set according to (15). In particular, {σk} can be separated
from zero only if ψ(xk+1, µk+1) ≤ δψ(xk, µk) for all k large enough. From
this, it follows that ψ(xk, µk) → 0, so that ρ(x̄, λ̄, µ̄) = 0.

In particular, the above shows that if ψ(x̄, µ̄) 6= 0, then σk → 0. From (23)
and (29),

∥

∥σk−1

(

f ′(xk) + (h′(xk))Tλ̄k−1 + (g′(xk))Tµ̄k−1
)

+ (h′(xk))Th(xk) + (g′(xk))T max{−σk−1µ̄
k−1, g(xk)}

∥

∥ ≤ εk−1σk−1

for all k ∈ K. Taking into account the boundedness of {(λ̄k, µ̄k) | k ∈ K},
and passing onto the limit in the last relation above along the corresponding
subsequence, we obtain the second equality in (27). ⊓⊔
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As already mentioned, in the case when the inverse penalty parameter is
not separated from zero, the presented result allows the possibility of conver-
gence to infeasible accumulation points satisfying (27). However, any subse-
quence with this property must be generated by Aug-L iterations (at least
from some point on), and in particular, the iterative process then reduces to
the augmented Lagrangian algorithm. More specifically, to the version used in
the ALGENCAN [1] ( [2, Algorithm 3.1]; see also [5]). Therefore, the tendency
of Algorithm 1 to converge to infeasible points cannot be stronger than that
of ALGENCAN. In our experience on feasible degenerate problems in [33],
convergence of ALGENCAN to infeasible points is actually quite rare, even
though it cannot be excluded theoretically.

The rate of convergence of Algorithm 1 is established in the following
theorem. In particular, it shows that all the desirable local properties of sSQP
are preserved. The nature and the necessity of the “localization” condition
(31) below are discussed immediately after the proof.

Theorem 2 Let f : R
n → R, h : R

n → R
l and g : R

n → R
m be twice

differentiable in a neighborhood of x̄ ∈ R
n, with their second derivatives being

continuous at x̄. Let x̄ be a stationary point of the problem (1), and let the

SOSC (4) hold with an associated Lagrange multiplier (λ̄, µ̄) ∈ R
l × R

m,

satisfying also λ̄ ∈ (λ̄min, λ̄max), µ̄ < µ̄max. Let the sequence {(xk, λk, µk)}
generated by Algorithm 1 converge to (x̄, λ̄, µ̄). Assume finally that for all k
large enough, if the point (x̂0, λ̄k, µ̄k) used at Step 1 of the algorithm is close

enough to (x̄, λ̄, µ̄), then (ξ0, η0, ζ0) satisfies

‖(ξ0, η0, ζ0)‖ ≤ c dist((x̂0, λ̄k, µ̄k), {x̄} ×M(x̄)) (31)

for some c > 0 independent of k.
Then all iterations, from some index on, are sSQP iterations, and the rate

of convergence of {(xk, λk, µk)} is superlinear.

Proof By the construction of the algorithm, the sequence {rk} is nonincreas-
ing, and for each k the inequality rk+1 < rk holds if and only if (14) is
satisfied (as a result of sSQP iteration or of Aug-L iteration). But then, since
ρ(xk, λk, µk) → 0, the condition (14) much be satisfied for infinitely many
indices k. Note that for each such k, we also have that σk+1 = ρ(xk+1, λk+1,
µk+1) and rk+1 ≥ qρ(xk+1, λk+1, µk+1).

Moreover, under the assumptions of the theorem, convergence of {(λk, µk)}
to (λ̄, µ̄) implies that for all k large enough it holds that λk ∈ [λ̄min, λ̄max],
µk ∈ [0, µ̄max]. This means that if for some k large enough holds (14), then
λ̄k+1 = λk+1, µ̄k+1 = µk+1.

Therefore, there exists an infinite number of indices k for which on Step 1
Algorithm 1 computes (ξ0, η0, ζ0) as a solution of the system (16)–(18) for
x̂0 = xk, λ̄k = λk, µ̄k = µk, σk = ρ(xk, λk, µk) and

H0 =
∂2L

∂x2
(xk, λk, µk), (32)
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i.e., it computes sSQP direction at the point (xk, λk, µk). Also, rk ≥ qρ(xk,
λk, µk) holds. Denote byK ⊂ {0, 1, . . .} the set of all such indices. Taking into
account the convergence of {(xk, λk, µk)} to (x̄, λ̄, µ̄), using the result on local
convergence of sSQP [12] (with a certain quantitative improvement using [14,
Theorem 1 (b)]; see also [31, Chapter 7]) and employing the error bound (5), we
conclude that for all k ∈ K large enough it holds that λ̄k + η0 ∈ [λ̄min, λ̄max],
µ̄k + ζ0 ∈ [0, µ̄max] and

ρ(x̂0 + ξ0, λ̄k + η0, µ̄k + ζ0) = O(‖x̂0 + ξ0 − x̄‖

+dist((λ̄k + η0, µ̄k + ζ0), M(x̄)))

= o(‖x̂0 − x̄‖+ dist((λ̄k, µ̄k), M(x̄)))

= o(ρ(x̂0, λ̄k, µ̄k))

≤ qρ(x̂0, λ̄k, µ̄k)

= qρ(xk, λk, µk)

≤ rk,

i.e., the test (8) is satisfied for j = 0. In particular, for such k the corresponding
iteration is of sSQP type, and from (9), (10) for j = 0, it follows that k+1 ∈ K.

It then follows that all iterations, from some index on, are of sSQP type.
Applying again the result on local convergence of sSQP [12], we obtain that
the rate of convergence of {(xk, λk, µk)} is superlinear. ⊓⊔

We emphasize that the localization condition (31) in Theorem 2, or some
condition of this nature, cannot be avoided in convergence rate analyses in the
general inequality-constrained case, for any algorithm which solves inequality-
constrained subproblems, and does not make strong assumptions implying the
uniqueness of subproblems’ solutions. We refer to the discussion in [32] and, in
particular, Example 5.2 therein which illustrates the issue for the usual SQP.
Similar examples can be constructed for sSQP and other methods. That said,
in the simpler equality-constrained case, or when an algorithm reduces the
problem locally to an equality-constrained phase, localization conditions can
be avoided. This is also so for our algorithm, since for equality constraints the
sSQP subproblems have unique solutions under natural assumptions; see [30].
In fact, in the equality-constrained case not only the localization condition (31)
can be removed but also the SOSC (4) in Theorem 2 can be weakened to the
assumption that the Lagrange multiplier is noncritical (recall (6) in Section 1).
This is due to the fact that, for the equality-constrained case, noncriticality
is sufficient for local superlinear convergence of sSQP [30, Theorem 1] (see
also [34, Theorem 4.1] for an improved version of this result, which is also
needed in the present context).

Note finally that according to the local convergence theory for sSQP [12],
for any point (xk, λk, µk) close enough to a solution (x̄, λ̄, µ̄) satisfying SOSC
there exists a stationary point (ξ0, η0, ζ0) of the subproblem (7) with x̂0 = xk,
λ̄k = λk, µ̄k = µk, σk = ρ(xk, λk, µk), and H0 defined according to (32), and
such that (31) holds with some fixed c > 0. In particular, this requirement is
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automatically satisfied for the stationary point (ξ0, η0, ζ0) with the smallest
norm. In practice, one can facilitate satisfying this requirement by using a
QP solver which seeks for solutions “not too far” from the current iterate
(e.g., using warm-starts). At the same time, we emphasize that (31) is merely
an ingredient of the analysis rather than something that has to be actually
verified in practice. As already commented above, it is simply indispensable for
proving superlinear convergence in the general inequality-constrained case and
under natural assumptions. As natural assumptions do not imply uniqueness
of subproblems’ solutions, “far away” solutions must be discarded from any
local analysis; this is precisely the role of (31).

3 On the relations between Algorithm 1 and the primal-dual SQP

method

In this section we analyze the relation between Algorithm 1 above and Algo-
rithm 2.1 in [17], called therein primal-dual SQP (pdSQP). We emphasize that
pdSQP was further developed in [18, 19], where it was transformed into the
algorithm called pdSQP2, possessing some important new features, like the
use of directions of negative curvature, identification of active bounds, and
applying sSQP with true Hessian and appropriate control of stabilization pa-
rameter to the identified equality-constrained problem. As we use stabilization
for the original inequality-constrained problem, in that setting our strategy is
clearly different from [18,19], and a comparison is hardly possible. But in the
equality-constrained case, despite using different augmented Lagrangians, the
methods actually turn out to be closely related. We show this next.

According to [16, 17], we define the family of primal-dual augmented La-
grangians Mσ : R

n × R
l × R

l → R as follows:

Mσ(x, λ; λE) = Lσ(x, λE) +
νσ

2

∥

∥

∥

∥

λ−

(

λE +
1

σ
h(x)

)∥

∥

∥

∥

2

,

where λE is an estimate of the Lagrange multiplier λ̄, σ > 0 is the inverse
penalty parameter, and ν > 0 is a certain additional fixed parameter. Then
pdSQP is the following iterative procedure. At an iteration indexed by k, for
given xk ∈ R

n, λk ∈ R
l, λkE ∈ R

l and σk > 0, a primal-dual search direction
dk = (ξk, ηk) is computed as a stationary point of the subproblem

minimize 〈f ′(xk), ξ〉+
1

2
〈Hkξ, ξ〉+

σk
2
‖λk + η‖2

subject to h(xk) + h′(xk)ξ − σk(λ
k + η − λkE) = 0.

(33)

Then, (xk+1, λk+1) = (xk, λk) + αkd
k is obtained, where αk is computed by

so-called flexible linesearch for the family of functions Mσ(·; λ
k
E). After that,

λkE and σk are updated (along with some other parameters), and the method
proceeds to the next iteration.
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The update procedure for λkE is as follows. Define the functions ϕV , ϕO :
R

n × R
l → R,

ϕV (x, λ) = β

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

+ ‖h(x)‖, ϕO(x, λ) =

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

+ β‖h(x)‖,

where β > 0 is fixed. If ϕV (x
k+1, λk+1) ≤ ϕmax

V /2 or ϕO(x
k+1, λk+1) ≤

ϕmax
O /2, where ϕmax

V and ϕmax
O are the current “record values” of the functions

ϕV and ϕO respectively, then λk+1
E = λk+1 is taken (in which case the iteration

is referred to as V- or O-iteration, respectively). Otherwise, if it holds that
∥

∥

∥

∥

∂Mσk

∂(x, λ)
(xk+1, λk+1;λkE)

∥

∥

∥

∥

≤ εk, (34)

where εk > 0 is another parameter (playing the same role of approximate
stationarity as in our Algorithm 1), then λk+1

E is taken as the projection of

λk+1 onto [λ̄min, λ̄max] (M-iteration). If (34) is not satisfied, then λk+1
E = λkE

is taken (F-iteration).
Note that stationary points of the subproblem (33) are characterized by

the linear system

Hkξ + (h′(xk))Tη = −
∂L

∂x
(xk, λk), h′(xk)ξ − σkη = −h(xk) + σk(λ

k − λkE).

From the second equation, we obtain that

η =
1

σk
(h(xk) + h′(xk)ξ)− (λk − λkE). (35)

Then using also the first equality is the system above, it follows that
(

Hk +
1

σk
(h′(xk))Th′(xk)

)

ξ = −
∂Lσk

∂x
(xk, λkE). (36)

Assuming that the matrix in the left-hand side of (36) is nonsingular, from
(35), (36) it follows that the subproblem (33) has the unique stationary point.
Further, comparing (35), (36) with (20), (21), we obtain the following relations
between the search directions in Algorithm 1 and in pdSQP.

Proposition 2 Let (ξ1, η1) be the unique solution of the system (20), (21)
for x̂j = xk, λ̄k = λkE and Hj = Hk, where the matrix Hk is such that

Hk +(h′(xk))Th′(xk)/σk is nonsingular. Let (ξ2, η2) be the unique solution of

the system (35), (36).
Then ξ1 = ξ2 and λkE + η1 = λk + η2.

The above implies, in particular, that for fixed xk, λkE and Hk, the values
of ξ and λk + η, where (ξ, η) is given by (35), (36), do not depend on λk.
Therefore, if on some iteration (whether inner or outer) it holds that x̂j = xk,
λ̄k = λkE and Hj = Hk, then Algorithm 1 will attempt a step to the same point
as would pdSQP, regardless of current value of λk. The connection between
the search directions of the two algorithms is shown in Fig. 1.
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xxk

λk
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(ξ1, η1)

(ξ2, η2)

Fig. 1: Illustration of Proposition 2.

The relations exhibited above explain why Algorithm 1 and pdSQP are
closely related. The multiplier approximations λkE in pdSQP play the same
role as λ̄k in Algorithm 1. Since

∂Mσ

∂(x, λ)
(x, λ; λE) =









∂Lσ

∂x
(x, λE)− ν(h′(x))T

(

λ−

(

λE +
1

σ
h(x)

))

νσ

(

λ−

(

λE +
1

σ
h(x)

))









,

the condition
∂Mσk

∂(x, λ)
(xk+1, λk+1; λkE) = 0

is equivalent to the two equations

∂Lσk

∂x
(xk+1, λkE) = 0, λk+1 = λkE +

1

σk
h(xk+1),

which correspond to the pure (exact) iteration of the Aug-L method (for
the current multiplier estimate λkE). Therefore, in both methods global con-
vergence guarantees are based on approximately minimizing augmented La-
grangian for a fixed multiplier estimate. Indeed, this estimate (λ̄k in Algo-
rithm 1, λkE in pdSQP) can only change in the following cases:

– in Algorithm 1, if the record target rk has been sufficiently improved (giving
sSQP iteration); in pdSQP, if the record values ϕmax

V or ϕmax
O have been

improved (giving V- or O-iteration);
– if a sufficiently good approximation to a stationary point of the augmented
Lagrangian is computed, for the current fixed multiplier estimate (Aug-L
iteration in Algorithm 1, M-iteration in pdSQP).

Otherwise, the multiplier estimates do not change; in particular, F-iteration
of pdSQP is essentially an inner iteration in the terminology of Algorithm 1.

To summarize, despite of Algorithm 1 being based on the usual augmented
Lagrangian and pdSQP being based on the more involved primal-dual version,
in certain cases (and for the equality-constrained problems) the methods make
the same or quite similar steps. In particular, if x̂j = xk, λ̄k = λkE and Hj =
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Hk, then sSQP iteration of Algorithm 1 and V- or O-iteration of pdSQP with
αk = 1 produce the same point (xk+1, λk+1). Moreover, if we suppose that
εk = 0, then Aug-L iteration of Algorithm 1 and M-iteration of pdSQP also
produce the same (xk+1, λk+1). We emphasize, however, that despite these
interesting relations, there are also some differences in other aspects and the
overall behavior of the algorithms may differ even in the equality-constrained
setting. The inequality-constrained case is a whole different story altogether.

4 Computational experiments

In this section, we present numerical results for our Algorithm 1 and some
alternatives. According to the theoretical results above, close to a solution
satisfying SOSC, we can expect Algorithm 1 to possess a fast convergence
rate. That said, the following important issue should be kept in mind. In the
case of degenerate problems it is known [24, 29, 35] that, for both sSQP and
for Aug-L methods, often there still exist rather large areas of attraction to
critical multipliers (thus violating SOSC). Granted, the tendency of attraction
to such multipliers is much weaker for sSQP than for the usual SQP and SQP-
related methods [28,29]; see also [31, Chapter 7]. Nevertheless, this attraction
can still be observed with certain frequency, and in such cases the convergence
rate of sSQP is also usually only linear. Therefore, it would be important to
support the theoretical results obtained above by some numerical evidence of
reasonable overall behavior of Algorithm 1 on degenerate problems, and this
is our goal here.

Algorithm 1 was implemented in Matlab environment, using the solver
quadprog from Matlab Optimization Toolbox with default parameters to solve
QPs. Our experiments were performed on the AMPL DEGEN [8] collection
(the first version of which is described in [27], and as the name suggests, it con-
sists of various types of degenerate optimization problems, mostly small). We
used 98 problems from DEGEN. The following problem instances we excluded:
20205, 20223, 30204, 40207 (they are unbounded though they have degen-
erate stationary points), 2DD01-50h, 2DD01-50v, 2DD01-500h, 2DD01-500v,
2DD01-5000h and 2DD01-5000v (they are too large with respect to the other
problems in the collection, and our simple Matlab implementation of Al-
gorithm 1 does not involve any special tools for tackling large-scale prob-
lems), and 20201, 40210, 40211 (they have only bound constraints). For
each problem instance, we performed 20 runs from random starting points
(x0, λ0, µ0) ∈ R

n ×R
l ×R

m
+ , such that ‖(x0, λ0, µ0)‖1 ≤ 100. (In our experi-

ence, the average results stabilize with 20 starting points, so that adding more
points does not significantly change the comparisons.) A run was declared a
success if for some k ≤ 500 the stopping test ρ(xk, λk, µk) ≤ 10−6 has been
achieved.

In Algorithm 1 the parameters were set in order to minimize, to the extent
possible, the number of inner iterations for fixed k. In particular, this led us
to use r0 = 104, ε0 = 102, q = 0.5 and θ = 0.5. According to our experi-
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ence, the weaker the tests are for accepting sSQP and Aug-L iterations, the
faster is convergence. Apparently, the reason for this is that on inner iterations
the multiplier estimate is not updated, and so only (the primal) part of the
information obtained from solving sSQP subproblems is employed.

In the Armijo linesearch rule (12), we used τ = 0.5, ε = 0.1. On Aug-L
iterations, the parameters are δ = 0.5, κ = 0.1. The other parameters were
γ = 1, λ̄min = −1010, λ̄max = µ̄max = 1010. In all the runs, x̂0 = x0, λ̄0 = λ0,
µ̄0 = µ0, and σ0 = 10−4.

We tried two strategies for computing the matrix Hj on Step 4 of Algo-
rithm 1 (which happens when the Hessian of the Lagrangian does not provide
a satisfactory outcome). The first strategy consisted of sequentially applying
the following rule, until problem (7) has a solution with the needed properties:

replace Hj by Hj + ωI, (37)

where ω = 10, 100, . . .. The alternative strategy was a direct “convexification”

by modifying the matrix ∂2L
∂x2 (x̂

j , λ̄k, µ̄k) + (h′(x̂j))Th′(x̂j)/σk accordingly in
the process of its Cholesky factorization [36, Section 3.4]. We note that this
strategy may not be practical for large-scale problems, since the second term
is usually a dense matrix even when h′(x̂j) is sparse. For a more practical
“convexification procedure” suitable for matrices of the specified form, see
[17–19].

Finally, in the cases when the test (8) or the test (14) were satisfied, we
used the following slightly modified rule to update σk:

σk+1 = min{ρ(xk+1, λk+1, µk+1), σ̄},

where σ̄ > 0 is a fixed number (we used σ̄ = 10−4). Evidently, all theoretical
results established in Section 2 remain valid for this version as well.

In what follows we compare Algorithm 1 with well-established implemen-
tations of SQP and Aug-L algorithms, namely, with SNOPT [15] and AL-
GENCAN [1], respectively. We used ALGENCAN 2.3.7 with AMPL interface,
and SNOPT 7.2-8 coming with AMPL, both with the default values of all the
parameters.

To present our numerical experience, we adopt a modification of perfor-
mance profiles in [10], which takes into account that multiple starting points
are used for every problem. Specifically, for each algorithm a we plot the func-
tion πa : [1, +∞) → [0, 1] defined as follows. Let kap be the average of some
measure of efficiency of algorithm a on problem p, where the average is taken
over the number sap of successful runs of algorithm a on problem p. Let rp be
the best (for example, smallest) value of kap among all the algorithms. Then
for each t ∈ [1, +∞) we set

πa(t) =
1

P

∑

p∈Ra(t)

sap,
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Fig. 2: Sequential updating of Hj .

where P the number of problems in the test set, and Ra(t) is the subset of
problems for which the performance of algorithm a is no more than t times
worse than that of the best algorithm:

Ra(t) = {p ∈ {1, . . . , P} | kap ≤ trp}.

In particular, πa(0) corresponds to the portion of problems on which the aver-
age performance of the given algorithm over successful runs is the best among
all algorithms being tested, while πa(t) for large t corresponds to the portion
of successful runs.

As iterations of the three algorithms are very different by nature and have
different costs, we do not compare the algorithms by iteration counts. As a
measure of efficiency of all the algorithms (defining the values kap above) we
use the number of evaluations of constraints (which is always the same as the
number of evaluations of the objective function). Observe also that the default
versions of SNOPT and ALGENCAN do not require computation of second
derivatives, while our algorithm computes the Hessian of the Lagrangian at
each iteration, which certainly restricts its areas of application.

Fig. 2 shows comparisons of the specified algorithms, where Algorithm 1
is implemented with the sequential update (37) of Hj at Step 4.

Performance profile in Fig. 2a demonstrates that Algorithm 1 is slightly
more robust on DEGEN than the two other methods, and significantly more
efficient than ALGENCAN. In the majority of cases, the improvement is in-
deed due to the sSQP iterations. Moreover, Algorithm 1 is at least not less
efficient than SNOPT. These results are in fact quite encouraging, taking into
account that both SNOPT and ALGENCAN are well-established profession-
ally implemented solvers, supplied with useful heuristics not present in our
simple Matlab implementation of Algorithm 1 (like scaling, for instance).

Furthermore, the graph in Fig. 2b demonstrates which portion of problems
required solving no more than t QPs per iteration on the average. In particular,
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Fig. 3: Direct “convexification”.
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Fig. 4: Failures and cases of convergence to nonoptimal points.

for 70% of problems no more than 1.5 QPs had to be solved per iteration on
average, and for 90% of problems no more than 2 QPs were needed.

Fig. 3 provides the same kind of information as Fig. 2, but for Algorithm 1
computing Hj at Step 4 by the direct “convexification”. Behavior of this ver-
sion of Algorithm 1, demonstrated by the performance profile in Fig. 3a, is
slightly worse than what is seen in Fig. 2a. However, as it must be the case,
the number of QPs solved per iteration is no greater than 2, which can be seen
from Fig. 3b.

Finally, we compare Algorithm 1 with the other solvers by the number of
failures and the number of cases of “successful” convergence but to nonop-
timal points (KKT conditions are satisfied but the point is not the global
solution). The objective function value at termination is regarded nonoptimal
if its difference with the (known) optimal value exceeds 10−2.
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The diagram in Figure 4a reports on the percentage of runs which were
failures (black color) or cases of convergence to nonoptimal points (grey color).
The variants of Algorithm 1 with sequential updating of Hj and with direct
“convexification” are marked as “Alg 1 (seq)” and “Alg 1 (conv)”, respectively.

The diagram in Figure 4b reports in a similar way on the number of prob-
lems for which more than 40% of runs were failures (black color) or cases
of convergence to nonoptimal points (grey color). The threshold of 40% was
taken without any special reason; it is just a relatively large portion of runs,
exceeding 1/3. However, the relative picture in Figure 4b does not depend
significantly on this choice.

The diagrams show that Algorithm 1 has somewhat better robustness than
both SNOPT and ALGENCAN, and that it has fewer cases of convergence to
nonoptimal points than SNOPT, though somewhat more than ALGENCAN.

5 Concluding remarks

We proposed an algorithm combining stabilized SQP (sSQP) with the aug-
mented Lagrangian method. Specifically, the primal-dual sSQP step is tried
first. If it provides progress for solving the problem, it is accepted. If not,
linesearch along the primal direction is used to decrease the augmented La-
grangian, keeping the dual (multiplier) estimate and the penalty parameter
fixed. Satisfactory global convergence guarantees are established, as well as
fast local convergence under the same (weak) assumptions as those for sSQP.
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