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Abstract. We consider feasible sets given by conic constraints, where the cone defining the con-
straints is convex with nonempty interior. We study the case where the feasible set is not assumed to
be regular in the classical sense of Robinson and obtain a constructive description of the tangent cone
under a certain new second-order regularity condition. This condition contains classical regularity as
a special case, while being weaker when constraints are twice differentiable. Assuming that the cone
defining the constraints is finitely generated, we also derive a special form of primal-dual optimality
conditions for the corresponding constrained optimization problem. Our results subsume optimality
conditions for both the classical regular and second-order regular cases, while still being meaningful
in the more general setting in the sense that the multiplier associated with the objective function is
nonzero.
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1. Introduction. Let X and Y be normed linear spaces. We consider the sets
given by

D = {x ∈ X | F (x) ∈ K},(1.1)

where the constraint mapping F : X → Y is smooth enough and K is a closed convex
cone in Y with nonempty interior. The problem of an accurate and constructive
description of the tangent cone to a set at a given point is fundamental for many
reasons, one of which is deriving optimality conditions. Recall that a vector h ∈ X is
called tangent to a set D ⊂ X at a point x̄ ∈ D if there exists a mapping r : �+ → X
such that

x̄ + th + r(t) ∈ D ∀ t ∈ �+, ‖r(t)‖ = o(t).(1.2)

The set of all such vectors h in X is the tangent cone to the set D at the point x̄,
which we shall denote by TD(x̄). As is well known,

TD(x̄) ⊂ {h ∈ X | F ′(x̄)h ∈ TK(F (x̄))},(1.3)

which is the first-order necessary condition for tangency. To obtain a precise descrip-
tion of TD(x̄), i.e., a sufficient condition for tangency, some regularity (also called
constraint qualification) condition is needed. One classical condition in this setting is
Robinson’s condition [27]:

0 ∈ int(F (x̄) + ImF ′(x̄) −K).(1.4)
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Note that in (1.4) cone K is not required to have a nonempty interior. If (1.4)
is satisfied, then (1.3) holds as an equality, e.g., [12, Corollary 2.91]. Deriving an
accurate constructive description of the tangent cone without assuming (1.4) and,
more generally, when (1.3) does not necessarily hold as an equality, is one of the
principal goals of this paper. Our approach is based on a certain new notion of
second-order regularity, which in the setting of K with nonempty interior is weaker
than (1.4); see Definition 2.1 and Remark 2.1. An immediate application of this
description is the primal form of necessary optimality conditions for the problem

min {f(x) | x ∈ D},(1.5)

where the objective function f : X → � is smooth enough.
Our second goal is to obtain primal-dual optimality conditions for the irregular

case, with a nonzero multiplier associated to the objective function. If x̄ is a local
solution of (1.5), (1.1), then the classical F. John–type first-order necessary optimality
conditions (e.g., see [11]) state that there exists a generalized Lagrange multiplier
(y0, y

∗) ∈ (�× Y ∗) \ {0} such that

y0f
′(x̄) − (F ′(x̄))∗y∗ = 0,

F (x̄) ∈ K, y∗ ∈ K∗, 〈y∗, F (x̄)〉 = 0, y0 ≥ 0,
(1.6)

where Y ∗ is the dual space of Y , (F ′(x̄))∗ is the adjoint operator of F ′(x̄), and K∗

is the dual cone of K. If y0 = 0, the F. John conditions hold trivially independently
of the objective function and therefore their utility for describing optimality in that
case is very limited (at least without some further developments). Assumptions that
guarantee the existence of a multiplier (y0, y

∗) with y0 �= 0 are again constraint
qualification conditions, such as (1.4). For problems with a finitely generated cone K,
without assuming (1.4) or equality in (1.3), we obtain a special form of primal-dual
optimality conditions under our assumption of second-order regularity. Our optimality
conditions resemble the structure of (1.6), where y0 �= 0 and a certain term involving
the second derivative of F is added to the standard Lagrangian; see Theorem 3.2.
Our optimality conditions subsume those for the classical regular case of (1.4), as well
as those for the more general second-order regular case of [7, 8]; see section 4.

In section 4, we compare our results with other approaches relevant for irregular
inequality-constrained problems. We also provide an example showing that our results
can be used to verify optimality in cases where other known approaches appear not
to be applicable. We note that those cases do not seem pathological or exotic; see
Example 4.1.

Finally, we note that in the case of the nonlinear programming problem, i.e., when
Y = �m × �s and K = �m

− × {0}, Robinson’s regularity condition (1.4) reduces to
the classical Mangasarian–Fromovitz constraint qualification [23], and with y0 �= 0
optimality conditions (1.6) become the classical Karush–Kuhn–Tucker conditions.

Our notation is fairly standard. If Σ is a topological linear space, then Σ∗ denotes
its (topologically) dual space and 〈·, ·〉 is the pairing of elements in Σ∗ and Σ, i.e.,
〈σ∗, σ〉 is the value of the linear functional σ∗ ∈ Σ∗ on σ ∈ Σ. For a cone C in
Σ, the positive dual cone (sometimes also referred to as the polar cone) of C is
C∗ := {σ∗ ∈ Σ∗ | 〈σ∗, σ〉 ≥ 0 ∀σ ∈ C}. For an arbitrary set Ω in Σ, the set
orthogonal to Ω is Ω⊥ := {σ∗ ∈ Σ∗ | 〈σ∗, σ〉 = 0 ∀σ ∈ Ω}. If Υ and Σ are
topological linear spaces and Λ : Υ → Σ is a continuous linear operator, then Λ∗ :
Σ∗ → Υ∗ denotes the adjoint operator of Λ. The interior and the closure of a set Ω
(in appropriate topology) are denoted by int Ω and cl Ω, respectively, and linear and
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conic hulls of this set (in appropriate linear space) by lin Ω and cone Ω, respectively.
A cone C in a linear space Σ is referred to as finitely generated if either it is empty
or there exists a positive integer s and some elements σi ∈ Σ, i = 1, . . . , s, such that
clC = cone{σ1, . . . , σs} ∪ {0}. When we write that a mapping F is twice Fréchet-
differentiable at a point x̄, we mean that it is Fréchet-differentiable on a neighborhood
of x̄, and its derivative is Fréchet-differentiable at x̄ (and similarly for higher-order
Fréchet-differentiability).

Some auxiliary facts from convex analysis that are used throughout the paper are
collected in the appendix.

2. Tangent cone description. As is well known [24], [12, Lemma 2.99], in our
setting where intK �= ∅, Robinson’s regularity condition (1.4) is equivalent to

∃ ξ̄ ∈ X such that F (x̄) + F ′(x̄)ξ̄ ∈ intK.(2.1)

This condition implies that for h ∈ TD(x̄) the inclusion

F ′(x̄)h ∈ TK(F (x̄)) = cl(K + lin{F (x̄)})(2.2)

is both necessary and sufficient, e.g., [12, Corollary 2.91]. In the irregular case, TD(x̄)
can be smaller than the set of h ∈ X satisfying (2.2), and a more refined description
is needed. To this end, it is natural to take into account the second-order information
about F at x̄. We proceed with a second-order characterization of the tangent cone,
starting with the following definition.

Definition 2.1. We say that conic constraints in (1.1) are second-order regular
at a feasible point x̄ with respect to a direction h ∈ X if

∃ (ξ̄, h̄) ∈ X ×X such that F (x̄) + F ′(x̄)h̄ ∈ K,

F (x̄) + F ′(x̄)ξ̄ + F ′′(x̄)[h, h̄] ∈ intK.

Remark 2.1. If Robinson’s condition (2.1) is satisfied, then second-order regular-
ity holds with respect to every h ∈ X, including h = 0. (To verify this, just choose ξ̄
satisfying (2.1) and h̄ = 0.)

Observe further that Definition 2.1 is equivalent to saying that

∃ h̄ ∈ X such that F ′(x̄)h̄ ∈ T r
K(F (x̄)) = K + lin{F (x̄)},(2.3)

F ′′(x̄)[h, h̄] ∈ intK + lin{F (x̄)} + ImF ′(x̄),(2.4)

where T r
K(y) stands for the so-called radial tangent cone to K at y ∈ K. This form

of second-order regularity will be used in the subsequent analysis. We are now ready
to state the main result of this section.

Theorem 2.2. Let X and Y be normed linear spaces and let K be a closed convex
cone in Y with a nonempty interior. Let set D be given by (1.1), where F : X → Y
is twice Fréchet-differentiable at a point x̄ ∈ D. Then the following statements hold.

1. Every h ∈ TD(x̄) satisfies (2.2) as well as the following condition:

F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)} + ImF ′(x̄)).(2.5)

2. If h ∈ X satisfies

F ′(x̄)h ∈ K + lin{F (x̄)}(2.6)

and (2.5), and if constraints in (1.1) are second-order regular at x̄ with respect
to this h, then h ∈ TD(x̄).
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Proof. Take an arbitrary h ∈ TD(x̄). Relation (2.2) is standard, so we have to
prove only (2.5). By twice differentiability of F , for every t > 0 we have that

1

2
F ′′(x̄)[th]2 = F (x̄ + th + r(t)) − F (x̄) − F ′(x̄)(th + r(t))

− 1

2
F ′′(x̄)[r(t)]2 − F ′′(x̄)[th, r(t)] + ω2(t),

where ω2 : �+ → Y , ‖ω2(t)‖ = o(t2). Observe that the first term in the right-hand
side is in K due to (1.2), the second is in lin{F (x̄)}, and the third is in ImF ′(x̄).
Dividing by t2 and passing onto the limit as t → 0+, we obtain (2.5).

Assume now that some h ∈ X satisfies (2.6) and (2.5). Then there exist y1 ∈ K
and λ1 ∈ � such that F ′(x̄)h = y1 + λ1F (x̄). Consider first the case where

F ′′(x̄)[h]2 ∈ intK + lin{F (x̄)} + ImF ′(x̄),(2.7)

so that there exist y2 ∈ intK, λ2 ∈ �, and x ∈ X such that F ′′(x̄)[h]2 = y2+λ2F (x̄)+
F ′(x̄)x. In that case, we obtain that

F

(
x̄ + th− t2

2
x

)
= F (x̄) + F ′(x̄)

(
th− t2

2
x

)

+
1

2
F ′′(x̄)

[
th− t2

2
x

]2

+ ω2(t)

= F (x̄) + t(y1 + λ1F (x̄)) − t2

2
F ′(x̄)x

+
t2

2
(y2 + λ2F (x̄) + F ′(x̄)x) + ω2(t)

=

(
1 + tλ1 +

t2

2
λ2

)
F (x̄) + ty1 +

t2

2
y2 + ω2(t)

∈ intK,

where ω2 : �+ → Y , ‖ω2(t)‖ = o(t2), and the inclusion follows from Lemma A.5 for
every t > 0 sufficiently small. In particular, we conclude that if (2.7) holds, then
h ∈ TD(x̄).

If (2.7) does not hold, but there exists a sequence {hk} ⊂ X converging to h such
that (2.7) is satisfied for every element of this sequence, then again h ∈ TD(x̄) by the
closedness of TD(x̄). We proceed to explicitly construct the desired sequence {hk}
under the hypothesis of the theorem that there exists an element h̄ ∈ X for which
(2.3), (2.4) are satisfied. Let us take hk = (1 − 1/k)h + h̄/k, k = 1, 2, . . .. For each
index k we then obtain

F ′(x̄)hk =

(
1 − 1

k

)
F ′(x̄)h +

1

k
F ′(x̄)h̄ ∈ K + lin{F (x̄)},

where the inclusion follows from (2.6), (2.3). We further obtain

F ′′(x̄)[hk]2 =

(
1 − 1

k

)2

F ′′(x̄)[h]2

+
1

k

(
2

(
1 − 1

k

)
F ′′(x̄)[h, h̄] +

1

k
F ′′(x̄)[h̄]2

)

∈ intK + lin{F (x̄)} + ImF ′(x̄),



1284 A. F. IZMAILOV AND M. V. SOLODOV

where the inclusion holds for all k sufficiently large, due to (2.4), (2.5) and Lemmas A.2
and A.5. This construction completes the proof.

In section 4, we compare this theorem (as well as the other results of this paper)
with related facts and approaches to irregular inequality constraints and provide an
illustrative example. Here, we note that in the regular case (1.4) implies that

K + lin{F (x̄)} + ImF ′(x̄) = Y,(2.8)

and thus (2.5) holds trivially for every h ∈ X. This observation together with Re-
mark 2.1 show that Theorem 2.2 subsumes (when K has nonempty interior) the
classical result on the tangent cone in the regular case. In the irregular case, the
right-hand side of (2.5) does not coincide with Y (again, in our setting of intK �= ∅),
and therefore condition (2.5) is nontrivial.

Remark 2.2. If K is a finitely generated cone, then (2.6) is equivalent to (2.2), as
the right-hand sides of these relations coincide (this follows from Lemma A.3). But in
the general case, one cannot substitute the weaker condition (2.2) into the sufficiency
part of the theorem, as illustrated by the following example.

Example 2.1. Let X = �, Y = �3, and

K = cone{y ∈ �3 | y1 = 1, y3 = |y2|3/2},
F : � → �3, F (x) = (1, x, x2).

For the point x̄ = 0 ∈ �, we have F (0) ∈ K, cl(K + lin{F (x̄)}) = cl(K + lin{F (x̄)}+
ImF ′(x̄)) = {y ∈ �3 | y3 ≥ 0}, and, as is easy to see, for element h = 1 conditions
(2.3), (2.4) hold with h̄ = h. At the same time, 0 is obviously an isolated point of the
set D given by (1.1), and hence TD(x̄) = {0}.

3. Optimality conditions. We now turn our attention to the optimization
problem (1.5), where the feasible set is given by (1.1). We assume that K is a
closed convex cone with nonempty interior (for primal-dual optimality conditions,
also finitely generated), the objective function f is Fréchet-differentiable at the point
x̄ ∈ D under consideration, and the mapping F is twice Fréchet-differentiable at x̄.

Following the developments of section 2, we first introduce some relevant cones.
Let H2(x̄) be the set of all elements satisfying the second-order necessary conditions
of tangency (2.2), (2.5) stated in Theorem 2.2, i.e.,

H2(x̄) :=

{
h ∈ X

∣∣∣∣ F
′(x̄)h ∈ TK(F (x̄)) = cl(K + lin{F (x̄)})

F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)} + ImF ′(x̄))

}
,

and H̃2(x̄) be the set of elements satisfying the two relations (2.6) and (2.5), which
appear in the sufficiency part:

H̃2(x̄) :=

{
h ∈ X

∣∣∣∣ F
′(x̄)h ∈ T r

K(F (x̄)) = K + lin{F (x̄)}
F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)} + ImF ′(x̄))

}
.

Finally, let H̄2(x̄) consist of all elements satisfying the sufficient conditions of tangency
stated in Theorem 2.2, i.e.,

H̄2(x̄) :=

{
h ∈ H̃2(x̄)

∣∣∣∣ ∃ h̄ ∈ X :
F ′(x̄)h̄ ∈ K + lin{F (x̄)}
F ′′(x̄)[h, h̄] ∈ intK + lin{F (x̄)} + ImF ′(x̄)

}
.

By these definitions,

H̄2(x̄) ∪ {0} ⊂ H̃2(x̄) ⊂ H2(x̄).(3.1)
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Note that if the second-order regularity condition holds with respect to all h ∈ H̃2(x̄)\
{0}, then the first inclusion in (3.1) holds as an equality. If cone K is finitely generated,
then the second inclusion is also an equality (recall Remark 2.2). By Theorem 2.2,
we also have that

H̄2(x̄) ∪ {0} ⊂ TD(x̄) ⊂ H2(x̄).(3.2)

If K is finitely generated and the second-order regularity condition holds with respect
to all h ∈ H̃2(x̄) \ {0}, then we have equalities throughout (3.2).

The left-hand inclusion in (3.2) immediately implies the following primal necessary
optimality condition for our problem.

Theorem 3.1. Let X and Y be normed linear spaces, and let K be a closed
convex cone in Y with a nonempty interior. Assume that f : X → � is Fréchet-
differentiable, and F : X → Y is twice Fréchet-differentiable at a point x̄ ∈ D, where
D is given by (1.1). If x̄ is a local solution of (1.5), (1.1), then

〈f ′(x̄), h〉 ≥ 0 ∀h ∈ H̄2(x̄).(3.3)

If X is finite-dimensional, the right-hand inclusion in (3.2) implies that the fol-
lowing condition is sufficient for x̄ to be a strict local solution of our problem:

〈f ′(x̄), h〉 > 0 ∀h ∈ H2(x̄) \ {0}.(3.4)

Dualizing (3.3), we can write that

f ′(x̄) ∈ (H̄2(x̄))∗,

which is the primal-dual form of necessary optimality conditions. Explicit evaluation
of the dual cone in the right-hand side of the above relation in full generality is an
extremely difficult problem. However, we are able to give some meaningful results
under additional assumptions. Specifically, if cone K is finitely generated and for
some h ∈ H̄2(x̄) the inequality in (3.3) holds as an equality, we derive an explicit
primal-dual form of necessary optimality conditions. Note that further study of such
“critical direction” h is of particular importance in view of the violation of the suffi-
cient optimality condition (3.4). Assumptions of this type are quite common in the
literature [7, 8, 25].

In the proof below, we shall also need the following generalization of the tangent
cone description in the regular case. Let, in addition to our standard assumptions, C
be a closed finitely generated cone in a normed linear space Z, and let A : X → Z be
a continuous linear operator. Consider the set ∆ = D∩E, where E = {x ∈ X | Ax ∈
C}, and a point x̄ ∈ ∆. If there exists ξ̄ ∈ X satisfying Aξ̄ ∈ TC(Ax̄) and Robinson’s
condition (2.1), then

T∆(x̄) = {h ∈ X | Ah ∈ TC(Ax̄), F ′(x̄)h ∈ TK(F (x̄))}.(3.5)

This generalization is essentially based on the well-known fact that linearity of con-
straints can be regarded as a special regularity-type assumption.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Let
K be a finitely generated cone, and let the point x̄ be a local minimizer for problem
(1.5), (1.1). Assume that

∃ h ∈ H̄2(x̄) such that 〈f ′(x̄), h〉 = 0.(3.6)
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Then there exist two functionals

y∗1 = y∗1(h) ∈ K∗ ∩ {F (x̄)}⊥ ∩ {F ′(x̄)h}⊥(3.7)

and

y∗2 = y∗2(h) ∈ K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥(3.8)

such that

f ′(x̄) = (F ′(x̄))∗y∗1 + (F ′′(x̄)[h])∗y∗2 .(3.9)

Proof. It can be easily seen that there exists a neighborhood U of h in X such
that

H2(x̄) ∩ U ⊂ H̄2(x̄).

(Just recall that since cone K is finitely generated, the second inclusion in (3.1) holds
as an equality, and observe that for a neighborhood U small enough, one can choose
the same h̄ in the definition of H̄2(x̄) for all h ∈ U .) Hence, by Theorem 3.1, we have
that

〈f ′(x̄), ξ〉 ≥ 0 ∀ ξ ∈ H2(x̄) ∩ U.

The latter relation and (3.6) imply that h is a local solution of the optimization
problem

min { 〈f ′(x̄), ξ〉 | ξ ∈ H2(x̄)}.
By the classical necessary optimality conditions, it then follows that

〈f ′(x̄), ξ〉 ≥ 0 ∀ ξ ∈ TH2(x̄)(h),

or, equivalently,

f ′(x̄) ∈ (TH2(x̄)(h))∗.(3.10)

We now have to evaluate the cone TH2(x̄)(h) and its dual. The latter problem
is now solvable with the help of Lemma A.4, because our second-order regularity
condition with respect to h implies that the cone TH2(x̄)(h) is actually given by the
linearized model of constraints defining H2(x̄). Indeed, using the assumption that
cone K is closed and finitely generated, and applying Lemma A.3 and relation (3.5)
to appropriate data, we obtain

TH2(x̄)(h) =

{
ξ ∈ X

∣∣∣∣F
′(x̄)ξ ∈ K + lin{F (x̄)} + lin{F ′(x̄)h}

F ′′(x̄)[h, ξ] ∈ cl(K + lin{F (x̄)} + ImF ′(x̄) + lin{F ′′(x̄)[h]2})

}
.

(3.11)

Note that cone K + lin{F (x̄)} + lin{F ′(x̄)h} is closed and finitely generated. Also,
dimY < ∞. (This is implied by our assumption that a finitely generated cone K has
nonempty interior.) In particular, it follows that dim(ImF ′(x̄)) < ∞. Hence, cone
K + lin{F (x̄)}+ ImF ′(x̄) + lin{F ′′(x̄)[h]2} is also closed and finitely generated. Now
applying Lemma A.4 to (3.11), we obtain the equality

(TH2(x̄)(h))∗ = (F ′(x̄))∗(K∗ ∩ {F (x̄)}⊥ ∩ {F ′(x̄)h}⊥)

+ (F ′′(x̄)[h])∗(K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥),

from which the conclusion of the theorem follows immediately.
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Theorem 3.2 subsumes classical first-order necessary optimality conditions for the
regular case. Indeed, suppose that h in the requirements of Theorem 3.2 satisfies (2.7).
Note that this will always be so in the regular case because, by (2.8) and Lemma A.2,
the right-hand side of (2.7) coincides with the entire space Y . Then, using Lemma A.1,
we have that

K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥ = {0}.(3.12)

Therefore in that case y∗2 = 0, and representation (3.7)–(3.9) reduces to

f ′(x̄) = (F ′(x̄))∗y∗1 ,(3.13)

with y∗1 satisfying (3.7). Furthermore, by Remark 2.1, in the regular case Theorem 3.2
can be applied by choosing h = 0. With this choice, (3.7) takes the form

y∗1 ∈ K∗ ∩ {F (x̄)}⊥.(3.14)

Combined with feasibility condition F (x̄) ∈ K, relations (3.13), (3.14) coincide with
the classical optimality conditions (1.6), where the nonsingular multiplier y0 = 1 is
chosen. In terms of the nonlinear programming problem, the inclusion y∗1 ∈ K∗ is the
nonnegativity condition for the Lagrange multipliers, and the inclusion y∗1 ∈ {F (x̄)}⊥
is the condition of complementary slackness.

As will be shown in section 4, Theorem 3.2 also contains optimality conditions
under the second-order regularity of [7, 8] but can be applicable when the latter is
not.

4. Comparisons and an example. In this section, we provide a comparison of
the results obtained above with known approaches to irregular problems, and illustrate
our development by an example.

First, we mention Abadie’s and Kuhn–Tucker’s constraint qualifications (CQs)
for nonlinear programming (see [22]; there are also some other CQs of similar type).
These are weaker than the Mangasarian–Fromovitz constraint qualification (MFCQ)
but still guarantee that the tangent cone is given by the linearized model of the
constraints; e.g., see [23, 22]. From the point of view of the problem data, these CQs
are less constructive than MFCQ, which is closer to our development. (MFCQ is
subsumed by our framework.) Such CQs of nonalgebraic nature are usually rather
difficult to verify directly. Perhaps even more importantly, we deal here with a more
general case in which the tangent cone does not necessarily coincide with the linearized
cone.

The next issue that deserves to be discussed is reformulating inequality constraints
as equalities, with the aim of subsequently using results available for the latter. This
technique is known to be useful for regular inequality-constrained problems; e.g., see
[9]. Analogously, one might try to apply known optimality conditions for (irregular)
equality-constrained problems to reformulations of irregular inequality constraints.
For example, the theory of 2-regularity [29, 4, 6, 5, 16, 1, 13, 20, 17, 15] offers opti-
mality conditions for the case in which irregularity of the problem is induced only by
equality constraints, with inequality constraints being either absent or regular. We
next show that in our context, applicability of this approach is very limited.

For simplicity, let us take Y = �m, K = �m
− , and F (x̄) = 0, and reformulate the

inequality-constrained set D by introducing slacks:

∆ = {(x, u) ∈ X ×�m | F (x) + u = 0, u ≥ 0}.
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The new set ∆ is given by equality and “simple” inequality constraints. Clearly, the
equality constraint in ∆ is regular at every point, but MFCQ is still violated at (x̄, 0).
Hence, the classical results for the regular case are not applicable. Results from the
theory of 2-regularity are obviously also not useful, as there are simply no irregular
equality constraints in ∆.

Another possibility is a purely equality-constrained reformulation:

∆ = {(x, u) ∈ X ×�m | F (x) + u2 = 0},

where the square is componentwise. Here, the equality constraint is irregular at (x̄, 0),
and 2-regularity theory is applicable, at least formally. However, this application leads
to something meaningful only when kerF ′(x̄) �= {0}, which is an unnatural require-
ment for inequality constraints. Our approach is certainly free of this restriction.
Moreover, even if kerF ′(x̄) �= {0}, for inequality constraints this subspace can have
little to do with the tangent cone, as in Example 4.1 below. Without going into de-
tail, we shall mention that there are also some other limitations in the “brute force”
approach of applying results known for irregular equality constraints to equation re-
formulations of irregular inequality constraints. It seems that developing a special
approach specifically designed for inequality constraints is really necessary. An initial
step in the direction pursued in the present paper was made in [14].

Another known approach to irregular problems consists of second-order neces-
sary and sufficient optimality conditions of Levitin–Milyutin–Osmolovskii type, e.g.,
[21, 18, 7, 8, 1, 2] (see also recent work in [10, 25]), which employ F. John first-order
necessary conditions (with undefined multiplier corresponding to the objective func-
tion). This approach is effective when applied to inequality-constrained problems, but
it leads to results of a completely different nature, which makes comparison with the
present paper difficult. We note that this approach is not principally associated with
precise description of the tangent cone, i.e., it does not deal with sufficient conditions
for tangency beyond the regular case.

Next, we discuss the well-known second-order CQ [7, 8], which was introduced
using second-order parabolic tangent sets, and which is especially relevant for irregular
inequality-constrained problems. In our setting, this CQ can be stated as follows:

∃ h ∈ X such that 〈f ′(x̄), h〉 = 0,(4.1)

F ′(x̄)h ∈ K + lin{F (x̄)},(4.2)

F ′′(x̄)[h]2 ∈ intK + lin{F (x̄)} + ImF ′(x̄).(4.3)

This condition is also weaker than Robinson’s regularity (in the regular case, (4.1)–
(4.3) hold with h = 0), yet it guarantees that if x̄ is a local solution of (1.5), (1.1), then
F. John-necessary conditions are satisfied with a nonzero multiplier corresponding to
the objective function. Note that relations (4.2) and (4.3) already appear in Theo-
rem 2.2 (see (2.6) and (2.7)), where they are used to explicitly construct a parabolic
feasible arc tangent to h. But observe that in Theorem 2.2 we consider a larger set
of directions. Namely, for an element h satisfying second-order necessary conditions
of tangency, this theorem gives constructive sufficient conditions for h to be a limit
point of elements satisfying (4.2), (4.3). This is important, because it is certainly
possible that (4.1) does not hold for any h satisfying (4.2), (4.3), but that it does hold
for some limit point of such elements. Moreover, Example 4.1 below illustrates that
this situation (i.e., the second-order CQ (4.1)–(4.3) is violated, but our Theorem 3.2
is applicable) is in fact quite likely to occur.
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Finally, note that if h is an element satisfying (4.1)–(4.3), then (3.6) also holds,
and the assumptions of Theorem 3.2 are satisfied. Moreover, in this case, (3.12) holds.
Hence, relation (3.8) in Theorem 3.2 implies that y∗2 = 0. We conclude that optimality
conditions under the second-order CQ (4.1)–(4.3) are a particular case of Theorem 3.2
(under the additional assumption that K is finitely generated).

To complete this section, we present an example illustrating all the results de-
rived above, and showing that they can be applicable when the F. John-optimality
conditions and optimality conditions based on classical (first- and second-order) CQs
are not useful. Note that our example is not pathological or exotic.

Example 4.1. Let X = Y = �2, K = �2
−, and consider a family of functions

f : �2 → �, f(x) = ax1 + bx2 + ω1(x)

and the mapping

F : �2 → �2, F (x) =

(
−x1, −1

2
(x2

1 − x2
2)

)
+ ω2(x),

where ω1 : �2 → �, |ω1(x)| = o(‖x‖), and ω2 : �2 → �2, ‖ω2(x)‖ = o(‖x‖2).
Consider the point x̄ = 0 in �2. We have that F (0) = 0, so that 0 ∈ D, where D

is given by (1.1). It can be easily seen that MFCQ does not hold here, and so classical
theory does not apply. By direct computations, we obtain that

H2(0) = H̃2(0) = {h ∈ R2 | h1 ≥ 0, h2
1 − h2

2 ≥ 0},
H̄2(0) = {h ∈ H2(0) | ∃ h̄ ∈ R2 : h̄1 ≥ 0, h1h̄1 − h2h̄2 > 0} = H2(0).

Hence, by Theorem 2.2,

TD(0) = H2(0) = {h ∈ R2 | h1 ≥ |h2|},

which is actually geometrically obvious. Observe further that the linearized cone is
given by

{h ∈ R2 | F ′(x̄)h ∈ TK(F (x̄))} = {h ∈ R2 | h1 ≥ 0},

which is different from TD(0). Hence, the Kuhn–Tucker, Abadie, and any other
CQs guaranteeing that the tangent and linearized cones coincide are violated in this
example. Note that in this case, the tangent cone is actually polyhedral, just different
from the linearized one. This shows that our description can be useful even when the
tangent cone is “simple.”

It is easy to see that for all values of parameters a and b, the F. John conditions
(1.6) for problem (1.5), (1.1) hold at 0 with y0 = 0. Furthermore, y0 can be nonzero
only if b = 0 and a ≤ 0. For all other values of the parameters, F. John conditions
are not meaningful for describing optimality.

As is easy to see, the set of elements satisfying (4.2), (4.3) is {h ∈ R2 | h1 >
|h2|}. Clearly, if 0 is a local minimizer, conditions (4.1)–(4.3) can hold for some h
simultaneously only if a = b = 0. Hence, for all other values of the parameters, the
classical second-order CQ (4.1)–(4.3) does not hold, and the corresponding results are
not applicable.

We next illustrate our approach, considering several characteristic values of the
parameters.
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If a = 1, b = −1, then 0 is a (nonisolated) local minimizer for problem (1.5),
(1.1). As is easy to see,

〈f ′(0), h〉 ≥ 0 ∀h ∈ H2(0),(4.4)

which illustrates Theorem 3.1. Note that for h = (1, 1) ∈ H2(0), the latter inequality
holds as equality, and our primal-dual optimality conditions (3.7)–(3.9) are satisfied
with the multipliers

y∗1 = (0, α) ∈ �2, α ∈ �−, y∗2 = (0, −1) ∈ �2 .

This gives an illustration for Theorem 3.2. Note that for h ∈ H2(0) \ lin{(1, 1)}, a
similar representation does not hold. The reason is that for such h, strict inequality
holds in (4.4).

If a = 1, b = 0, then (4.4) holds as a strict inequality for every h ∈ H2(0) \ {0},
and 0 is an isolated local minimizer. This illustrates sufficient optimality condition
(3.4).

Finally, if a = 0, b = 1, then it is easy to see that (4.4) does not hold for those
elements h ∈ H2(0) for which h2 < 0. Theorem 3.1 implies that 0 is not a local
minimizer in this case. We could similarly use Theorem 3.2 to verify this conclusion.
Indeed, for the element h = (1, 0) ∈ H2(0), (4.4) holds as an equality, but there exist
no multipliers y∗1 , y

∗
2 ∈ �2 for which (3.9) holds.

5. Some further developments. In conclusion, we present some further de-
velopments of the optimality conditions obtained above. The first one has to do with
a certain form of second-order (in terms of the objective function) necessary opti-
mality conditions, and the second outlines an extension to mixed equality–inequality-
constrained problems.

5.1. Second-order optimality conditions. To derive second-order optimality
conditions, we need the following notion. Let X and Σ be normed linear spaces, and
let a mapping Φ : X → Σ be twice Fréchet-differentiable at a point x̄ ∈ X. Suppose
that Σ1 = Im Φ′(x̄) is closed and has a closed complementary subspace Σ2 in Σ. Let
P be a projector onto Σ2 parallel to Σ1 in Σ. (By assumptions above, this projector
is continuous.) In this setting, the mapping Φ is referred to as 2-regular at the point
x̄ with respect to an element h ∈ X (see [29, 4, 6, 5, 16, 1, 13, 20, 17]) if

Im(Φ′(x̄) + PΦ′′(x̄)[h]) = Σ.

We note that the 2-regularity property of Φ does not depend on a choice of the
complementary subspace Σ2.

The following generalization of the classical Lyusternik’s theorem can be found
in [29, 5, 16, 20, 17].

Proposition 5.1. Let X and Σ be Banach spaces. Assume that a mapping
Φ : X → Σ is three times Fréchet-differentiable at a point x̄ ∈ X such that Φ(x̄) = 0.
Assume further that Φ is 2-regular at x̄ with respect to an element h ∈ X such that

h ∈ Ker Φ′(x̄), Φ′′(x̄)[h]2 ∈ Im Φ′(x̄).

Then there exist a number δ > 0 and a mapping r : (−δ, δ) → X such that

Φ(x̄ + th + r(t)) = 0 ∀ t ∈ (−δ, δ) , ‖r(t)‖ = O(t2).
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We next derive a special form of higher-order necessary optimality conditions
using the results obtained in section 3.

Theorem 5.2. Let X and Y be Banach spaces, let K be a closed finitely generated
cone in Y with a nonempty interior, and let f : X → � be twice and F : X → Y be
three times Fréchet-differentiable at the point x̄, which is a local minimizer for problem
(1.5), (1.1). Assume that (3.6) holds, and let Π̃ be a (continuous) projector onto some
closed complementary subspace Ỹ of lin{F (x̄), F ′(x̄)h} in Y. Assume finally that

Π̃F ′′(x̄)[h]2 ∈ Π̃ ImF ′(x̄)(5.1)

and that the mapping Φ : X → Ỹ , Φ(x) = Π̃F (x), is 2-regular at the point x̄ with
respect to h. Then for every y∗1 , y

∗
2 ∈ Y ∗ satisfying (3.7)–(3.9), it holds that

f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉 ≥ 0.(5.2)

Proof. By the definition of Π̃, we have

Φ′(x̄)h = Π̃F ′(x̄)h = 0.

Hence, taking into account (5.1), Proposition 5.1 is applicable (with Σ = Ỹ ). So for
some number δ > 0 and some mapping r : (−δ, δ) → X, we have that ∀ t ∈ (−δ, δ)

Π̃F (x̄ + th + r(t)) = 0, ‖r(t)‖ = O(t2),

where the first equality means that

F (x̄ + th + r(t)) ∈ lin{F (x̄), F ′(x̄)h}.(5.3)

By (3.7), y∗1 ∈ (lin{F (x̄), F ′(x̄)h})⊥. Hence, ∀ t ∈ (−δ, δ) we have

0 = 〈y∗1 , F (x̄ + th + r(t))〉
= 〈y∗1 , F ′(x̄)r(t)〉 +

1

2
〈y∗1 , F ′′(x̄)[th]2〉 + o(t2).(5.4)

Similarly, by (3.8), y∗2 ∈ (lin{F (x̄), F ′(x̄)h})⊥ and also y∗2 ∈ (ImF ′(x̄))⊥, which
implies that

0 = 〈y∗2 , F (x̄ + th + r(t))〉
= 〈y∗2 , F ′′(x̄)[th, r(t)]〉 +

1

6
〈y∗2 , F ′′′(x̄)[th]3〉 + o(t3).(5.5)

By (5.3), there exist λ1, λ2 : (−δ, δ) → � such that

F (x̄ + th + r(t)) = λ1(t)F (x̄) + λ2(t)F ′(x̄)h.

On the other hand, by differentiability of F ,

F (x̄ + th + r(t)) = F (x̄) + tF ′(x̄)h + o(t).

Therefore, we can take λ1(t) = 1 + o(t), λ2(t) = t + o(t). Since h ∈ H̃2(x̄), we have
that F ′(x̄)h = y + λF (x̄) for some y ∈ K, λ ∈ �. We further obtain

F (x̄ + th + r(t)) = (1 + o(t))F (x̄) + (t + o(t))(y + λF (x̄))

= (1 + λt + o(t))F (x̄) + (t + o(t))y.
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Taking into account that F (x̄) ∈ K and y ∈ K, it is clear now that if δ > 0 is small
enough, then x̄ + th + r(t) ∈ D ∀ t ∈ (0, δ), and since x̄ is a local minimizer, by
differentiability of f it follows that ∀ t ∈ (0, δ)

0 ≤ f(x̄ + th + r(t)) − f(x̄) = 〈f ′(x̄), r(t)〉 +
1

2
f ′′(x̄)[th]2 + o(t2),

where we have also used (3.6). Combining the latter relation with (5.4) and (5.5)
(divided by −1 and −t, respectively), we obtain

0 ≤ 〈f ′(x̄), r(t)〉 − 〈y∗1 , F ′(x̄)r(t)〉 − 〈y∗2 , F ′′(x̄)[h, r(t)]〉
+

1

2
f ′′(x̄)[th]2 − 1

2
〈y∗1 , F ′′(x̄)[th]2〉 − 1

6t
〈y∗2 , F ′′′(x̄)[th]3〉 + o(t2)

= 〈f ′(x̄) − (F ′(x̄))∗y∗1 − (F ′′(x̄)[h])∗y∗2 , r(t)〉
+

t2

2

(
f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉

)
+ o(t2)

=
t2

2

(
f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉

)
+ o(t2),

where the last equality follows from (3.9). Dividing by t2/2 and passing onto the limit
as t → 0, we obtain (5.2).

Note that the mapping Φ defined in Theorem 5.2 could be regular (rather than
2-regular) only if the Robinson’s regularity condition were to be satisfied at x̄.

The next example illustrates that Theorem 5.2 provides additional information
that can be used to eliminate candidates for optimality.

Example 5.1. Consider the setting of Example 4.1, where a = 1, b = −1,
ω2(·) ≡ 0 on �2, and ω1 : �2 → � is a quadratic form negative on h = (1, 1). Then the
first-order necessary conditions given by Theorems 3.1 and 3.2 are satisfied at 0 (see
Example 4.1), but by direct inspection it can be seen that the second-order necessary
optimality conditions given by Theorem 5.2 are violated. Indeed, F ′(x̄)h = (−1, 0),
and so one can take Ỹ = lin{(0, 1)}. Then Φ can be considered as a scalar-valued
function

Φ : �2 → �, Φ(x) = −1

2
(x2

1 − x2
2).

This function is certainly 2-regular at 0 with respect to every nonzero element. (For
scalar-valued functions, the latter property is equivalent to saying that 0 is a nonde-
generate critical point [3].) In particular, Φ is 2-regular at 0 with respect to h, which
obviously satisfies (5.1.) We further have that

f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉 = 2ω1(h) < 0,

which is in contradiction with (5.2). We conclude that 0 is not a local minimizer for
problem (1.5), (1.1).

5.2. Mixed equality and inequality constraints. In contrast to the regular
case, it appears very difficult (if not impossible) to extend the results for irregular
equality- or inequality-constrained problems to the case with mixed inequality and
equality constraints, except for some special cases. (For a complete modification
of this kind, one would have to avoid the condition that cone K has a nonempty



IRREGULAR INEQUALITY-CONSTRAINED PROBLEMS 1293

interior.) One special case, specifically where the singularity/irregularity is due to
equality-type constraints only, is studied thoroughly in [5, 20] (those results were
already mentioned in section 4). Let us consider briefly the opposite case, i.e., where
irregularity is induced by inequality constraints, while equality constraints are regular.
Let set D now be given by

D = {x ∈ X | F (x) ∈ K, G(x) = 0}.(5.6)

Assume G : X → Z is three times continuously differentiable, where X and Z are
Banach spaces. Suppose G is regular at a point x̄ ∈ D, i.e.,

ImG′(x̄) = Z,

and there exists a continuous projector Π on KerG′(x̄) in Z. According to the classical
facts of nonlinear analysis (see, e.g., [3, 13]), under those assumptions there exist a
neighborhood U of 0 in X and a mapping ρ : U → X such that ρ(0) = x̄, ρ(U) is a
neighborhood of x̄ in X, ρ is a C3-diffeomorphism from U onto ρ(U), and

G(ρ(x)) = G′(x̄)x ∀x ∈ U,

ρ′(x) = (R(x))−1R(0) ∀x ∈ U,
(5.7)

where

R(x) : X → Y × KerG′(x̄), R(x)ξ = (G′(ρ(x))ξ, Πξ), x ∈ U.

Now instead of a feasible point x̄ of problem (1.5), (5.6), we can consider for local
analysis the feasible point 0 of the inequality-constrained problem

min {ϕ(x) | x ∈ ∆}, ∆ = {x ∈ X̃ ∩ U | Φ(x) ∈ K},
where X̃ = KerG′(x̄),

ϕ(x) = f(ρ(x)), Φ(x) = F (ρ(x)), x ∈ U.

Note that taking advantage of (5.7), it is easy to obtain explicit formulas for the first
three derivatives of ϕ and Φ, and so the analysis developed in this paper is applicable
to the derivation of optimality conditions for problem (1.5), (5.6).

Appendix. Auxiliary results. All results in this section can be found in stan-
dard books on convex analysis [28, 3, 19, 26] or follow from results contained therein.

Lemma A.1. Let Σ be a topological linear space, L be a linear subspace in Σ, and
C be a convex cone in Σ such that intC �= ∅. Then

intC ∩ L = ∅ ⇔ C∗ ∩ L⊥ �= {0}.
Lemma A.2. Let Σ be a topological linear space and Ω1, Ω2 be convex sets in Σ,

with int Ω1 �= ∅. Then
int(Ω1 + Ω2) = int Ω1 + Ω2.

Lemma A.3. Let Σ be a normed linear space and C1, C2 be finitely generated
cones in Σ. Then

cl(C1 + C2) = clC1 + clC2.
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Lemma A.4. Let Υ and Σ be normed linear spaces, dim Σ < ∞, Λ : Υ → Σ be a
continuous linear operator, and C be a nonempty closed finitely generated cone in Σ.
Then for a cone Γ = {ξ ∈ Υ | Λξ ∈ C} it holds that

Γ∗ = Λ∗C∗.

Lemma A.5. Let Σ be a locally convex topological linear space, and C be a convex
cone in Σ. Then

σ1 ∈ clC , σ2 ∈ intC ⇒ σ1 + σ2 ∈ intC.
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