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Abstract It has been previously demonstrated that in the case when a Lagrange
multiplier associated to a given solution is not unique, Newton iterations [e.g., those
of sequential quadratic programming (SQP)] have a tendency to converge to special
multipliers, called critical multipliers (when such critical multipliers exist). This fact
is of importance because critical multipliers violate the second-order sufficient opti-
mality conditions, and this was shown to be the reason for slow convergence typically
observed for problems with degenerate constraints (convergence to noncritical multi-
pliers results in superlinear rate despite degeneracy). Some theoretical and numerical
validation of this phenomenon can be found in Izmailov and Solodov (Comput Optim
Appl 42:231–264, 2009; Math Program 117:271–304, 2009). However, previous stud-
ies concerned the basic forms of Newton iterations. The question remained whether
the attraction phenomenon still persists for relevant modifications, as well as in pro-
fessional implementations. In this paper, we answer this question in the affirmative
by presenting numerical results for the well known MINOS and SNOPT software
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packages applied to a collection of degenerate problems. We also extend previous
theoretical considerations to the linearly constrained Lagrangian methods and to the
quasi-Newton SQP, on which MINOS and SNOPT are based. Experiments also show
that in the stabilized version of SQP the attraction phenomenon still exists but appears
less persistent.

Keywords Constrained optimization · Degenerate constraints · Second-order
sufficiency · Newton method · SQP · MINOS · SNOPT

Mathematics Subject Classification (2000) 90C30 · 90C33 · 90C55 · 65K05

1 Introduction

Consider the problem

minimize f (x)

subject to F(x) = 0,
(1)

where f : Rn → R is a smooth function and F : Rn → Rl is a smooth mapping.
Specifically, we assume that f and F are twice differentiable near the point of interest
x̄ ∈ Rn , and their second derivatives are continuous at x̄ . Stationary points of prob-
lem (1) and the associated Lagrange multipliers are characterized by the Lagrange
optimality system

0 =
(

∂L

∂x
(x, λ), F(x)

)
, (2)

where

L : Rn × Rl → R, L(x, λ) = f (x) + 〈λ, F(x)〉

is the Lagrangian function of problem (1).
The set of Lagrange multipliers Λ(x̄) associated with a stationary point x̄ of (1) is

given by

Λ(x̄) = {λ ∈ Rl | (F ′(x̄))Tλ = − f ′(x̄)}. (3)

We are interested in behavior of the dual part of the sequence generated by numerical
algorithms for solving (1), and its influence on the primal rate of convergence. At
issue, therefore, is the case when there is more than one possible limit for the (reason-
ably behaving) dual sequence, i.e., Λ(x̄) is not a singleton (in particular, the classical
regularity condition rank F ′(x̄) = l does not hold). As had been shown in [10,11],
in such cases properties of the dual limit are much more relevant for the speed of
convergence of Newton-type methods than degeneracy of constraints as such. To this
end, the following definition plays a central role.
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On attraction of Newtonian methods to critical multipliers 233

Definition 1 A multiplier λ̄ ∈ Λ(x̄) is called critical if

∃ ξ ∈ ker F ′(x̄)\{0} such that
∂2L

∂x2 (x̄, λ̄)ξ ∈ im(F ′(x̄))T,

and noncritical otherwise.

Since im(F ′(x̄))T = (ker F ′(x̄))⊥, it is immediate that criticality implies that

∃ ξ ∈ ker F ′(x̄)\{0} such that

〈
∂2L

∂x2 (x̄, λ̄)ξ, ξ

〉
= 0.

In particular, the second-order sufficient condition for optimality (SOSC)

〈
∂2L

∂x2 (x̄, λ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ ker F ′(x̄)\{0} (4)

does not hold for critical multipliers. Evidently, critical multipliers form a special
subclass within the multipliers violating SOSC. We note that an alternative definition
would be to say that λ̄ ∈ Λ(x̄) is a critical multiplier if, and only if, the reduced
Hessian of the Lagrangian at the point (x̄, λ̄) is a singular matrix (see [11] or Sect. 4).

In [11], an iterative scheme was considered that includes the Newton method for
the Lagrange system (2) globalized by a linesearch procedure (in the primal-dual
space) for its squared residual, and the sequential quadratic programming method
(SQP) globalized by a linesearch procedure (in the primal space) for some nonsmooth
penalty function. It was shown in [11] that when critical multipliers exist, the generated
sequence is, in a certain sense, unlikely to approach noncritical multipliers. Moreover,
convergence to critical multipliers is actually the reason for slow convergence—if the
dual limit were to be noncritical then the rate of primal convergence would have been
superlinear. Those conclusions were also confirmed by numerical experiments for a
simple implementation of SQP [10,11].

A natural and important question (mentioned, among others, by one of the referees
of [10]) is whether the attraction phenomenon shows not only for simple implemen-
tations of the basic Newton method but also for its relevant modifications, and for
sophisticated professional implementations. And if so, whether it still causes lack
of superlinear convergence. In this paper, we give an affirmative answer for two well
known and widely used algorithms. One is the linearly constrained Lagrangian method
[5,13,17], on which the MINOS package [14] is based. The other is a class of quasi-
Newton SQP methods related, in particular, to the SNOPT package [6]. For both
packages, convincing numerical results on a collection of degenerate problems from
[10] will be reported. Numerical results also indicate that for the stabilized version of
SQP [2,4,8,19] attraction to critical multipliers still exists but appears to be somewhat
less persistent.

The rest of the paper is organized as follows. In Sect. 2, we show that the linearly
constrained Lagrangian method, as well as quasi-Newton and stabilized SQP, can all
be treated within a unified inexact SQP framework under different assumptions on
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the perturbation terms. Our theoretical analysis starts with Sect. 3, where we consider
pure SQP for a problem with quadratic objective and constraints in the case of full
degeneracy. This is done in order to show what can be considered, in some sense, an
ideal theoretical statement concerning convergence to critical multipliers. Analysis of
the general inexact SQP scheme is given in Sect. 4. It is much more complex and leads
to formally somewhat weaker statements (which are, nevertheless, enough to make
our point). Section 5 explains how the notion of critical multipliers, stated in Defini-
tion 1 for the case of equality constraints, extends to problems that involve inequality
constraints as well. The paper concludes with Sect. 6 that presents numerical results
for MINOS, SNOPT, and stabilized SQP.

In our theoretical analysis, we shall make use of a version of the Implicit Function
Theorem (e.g., [12, Theorem 1.2.2 and Remark 1.2.2]), which we state next for future
reference.

Theorem 1 Let Ψ : Rs × Rn → Rn be a mapping such that Ψ (σ̄ , ξ̄ ) = 0 for some
fixed σ̄ ∈ Rs and ξ̄ ∈ Rn, and suppose that the following assumptions are satisfied:

(a) There exists a linear operator H̄ : Rn → Rn such that for any ε > 0

‖Ψ (σ, ξ1) − Ψ (σ, ξ2) − H̄(ξ1 − ξ2)‖ ≤ ε‖ξ1 − ξ2‖

for all σ ∈ Rs close enough to σ̄ , and all ξ1, ξ2 ∈ Rn close enough to ξ̄ ;
(b) H̄ is nonsingular;
(c) The mapping σ → Ψ (σ, ξ̄ ) : Rs → Rn is continuous at the point σ̄ .

Then there exist neighbourhoods U of σ0 in Rs and U of ξ̄ in Rn, and a constant
c > 0, such that ∀ σ ∈ U there exists the unique ξ = ξ(σ ) ∈ U such that Ψ (σ, ξ) = 0,
and

‖ξ − ξ̄‖ ≤ c‖Ψ (σ, ξ̄ )‖.

Note that, by necessity, under assumption (a) the mapping ξ → Ψ (σ̄ , ξ) : Rn →
Rn is strictly differentiable at ξ̄ , and ∂Ψ

∂ξ
(σ̄ , ξ̄ ) = H̄ .

2 Inexact SQP framework

Our theoretical considerations will concern a perturbation of the Newtonian process
for the Lagrange system (2). Specifically, let (xk, λk) ∈ Rn ×Rl be the current iterate.
The next iterate is then given by

(xk+1, λk+1) = (xk, λk) + (ξ k, ηk), (5)

with the direction of change (ξ k, ηk) satisfying

0 = ∂L

∂x
(xk, λk) + ∂2L

∂x2 (xk, λk)ξ k + (F ′(xk))Tηk + θk, (6)

0 = F(xk) + F ′(xk)ξ k + ωk, (7)
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On attraction of Newtonian methods to critical multipliers 235

where the terms θk ∈ Rn and ωk ∈ Rl correspond to a perturbation of the Newton
equation for the Lagrange system (2). It is worth to mention that the perturbed iterative
process (5)–(7) is closely related to the inexact SQP framework (iSQP) of [18]. How-
ever, our assumptions on the perturbations, and the role of perturbations themselves,
are different.

We shall interpret the linearly constrained Lagrangian methods (e.g., MINOS) and
quasi-Newton SQP methods (e.g., SNOPT) within the framework of (5)–(7), under
two different sets of assumptions on the perturbation term θk (for both of those meth-
ods it holds that ωk = 0). Regarding the modified version of SQP suggested in [3], as
well as the stabilized SQP (sSQP; see [19] and also [2,4,8]), those two methods can
also be put in the framework of (5)–(7), with θk = 0, ωk �= 0 (see [18] for details). As
indicate our numerical experiments for sSQP in Sect. 6, the attraction phenomenon
appears less present for perturbations of this kind.

Let Π be the orthogonal projector onto ker F ′(x̄) in Rn , and let In be the iden-
tity operator in Rn . In Sect. 2.1, we shall show that an iteration of the linearly con-
strained Lagrangian method can be put in the form of iSQP with ωk = 0 and θk =
θ(xk, λk, ξ k), where θ : Rn ×Rl ×Rn → Rn is a mapping such that θ(x̄, λ̄, 0) = 0,
and for all λ̄ ∈ Rl , the following holds:

(LCL1) There exists a constant c > 0 such that the inequality

‖(In − Π)(θ(x, λ, ξ1) − θ(x, λ, ξ2))‖ ≤ c‖ξ1 − ξ2‖

holds for all (x, λ) ∈ Rn × Rl close to (x̄, λ̄) and all ξ1, ξ2 ∈ Rn close to 0,
and ‖(In − Π)θ(x, λ, 0)‖ tends to zero as (x, λ) tends to (x̄, λ̄).

(LCL2) For each ε > 0, the inequalities

‖Π(θ(x, λ, ξ1) − θ(x, λ, ξ2))‖ ≤ ε‖ξ1 − ξ2‖

and

‖Πθ(x, λ, 0)‖ ≤ ε‖x − x̄‖

hold for all (x, λ) ∈ Rn × Rl close enough to (x̄, λ̄) and all ξ1, ξ2 ∈ Rn

close enough to 0.

In Sect. 2.2, we discuss that iterations of quasi-Newton SQP methods can be put in
the form of iSQP with ωk = 0 and θk = Θkξ

k , where Θk : Rn → Rn is a linear oper-
ator for each k, and it is natural to expect that the following assumptions are satisfied,
at least along some appropriate subsequences:

(QN1) The sequence {(In − Π)Θk} is bounded.
(QN2) It holds that ‖ΠΘk‖ → 0 as k → ∞.

Then Sect. 4 shows that under any of the two sets of assumptions on θk , if the dual
part of the sequence satisfying (5)–(7) approaches a noncritical multiplier then the pri-
mal rate of convergence is superlinear. Thus, the lack of superlinear convergence that
is typical for problems with nonunique multipliers is an indication of convergence
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to critical ones. This is confirmed by numerical results for MINOS and SNOPT in
Sect. 6.

2.1 Linearly constrained Lagrangian methods

Given an iterate (xk, λk), linearly constrained Lagrangian methods [5,13,17] generate
the next iterate (xk+1, λk+1) as follows: xk+1 is a stationary point of the subproblem

minimize f (x) + 〈λk, F(x)〉 + ck
2 ‖F(x)‖2

subject to F(xk) + F ′(xk)(x − xk) = 0,
(8)

while λk+1 = λk +ηk , where ηk is a Lagrange multiplier of (8) associated to xk+1. In
the original method [17], ck = 0 for all k. In practice, it is often important to employ
ck > 0 [14]. For asymptotic analysis, one can consider that ck ≥ 0 is fixed for all
k sufficiently large, which happens under natural assumptions (see, e.g., discussion
in [5]).

Let ξ k = xk+1 − xk . By the optimality conditions for (8), we have that

0 = F(xk) + F ′(xk)ξ k, (9)

and

0 = f ′(xk+1) + (F ′(xk+1))Tλk + ck(F ′(xk+1))T F(xk+1) + (F ′(xk))Tηk

= ∂L

∂x
(xk+1, λk) + ck(F ′(xk+1))T F(xk+1) + (F ′(xk))Tηk

= ∂L

∂x
(xk, λk) + ∂2L

∂x2 (xk, λk)ξ k + (F ′(xk))Tηk + θk,

where we have defined

θk = ∂L

∂x
(xk+1, λk) − ∂L

∂x
(xk, λk) − ∂2L

∂x2 (xk, λk)ξ k + ck(F ′(xk+1))T F(xk+1)

= ∂L

∂x
(xk + ξ k, λk) − ∂L

∂x
(xk, λk) − ∂2L

∂x2 (xk, λk)ξ k

+ ck(F ′(xk + ξ k))T(F(xk + ξ k) − F(xk) − F ′(xk)ξ k),

with the last equality following from (9). This shows that the step (ξ k, ηk), given by
solving the subproblem (8), can be written in the iSQP form (6) and (7), with the
specified θk and with ωk = 0.

Assuming that ck = c for all k large enough, we can write θk = θ(xk, λk, ξ k),
where θ : Rn × Rl × Rn → Rn ,

θ(x, λ, ξ) = ∂L

∂x
(x + ξ, λ) − ∂L

∂x
(x, λ) − ∂2L

∂x2 (x, λ)ξ

+ c(F ′(x + ξ))T(F(x + ξ) − F(x) − F ′(x)ξ).
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On attraction of Newtonian methods to critical multipliers 237

By the Mean-Value Theorem, one can directly verify that for any λ̄ ∈ Rl , this
mapping θ(·) satisfies the assumptions (LCL1), (LCL2) (and in particular, it holds
that θ(x, λ, 0) = 0∀ (x, λ) ∈ Rn × Rl ).

2.2 Quasi-Newton SQP

Quasi-Newton SQP methods generate the next iterate (xk+1, λk+1) by computing a
stationary point and an associated Lagrange multiplier of the subproblem

minimize 〈 f ′(xk), x − xk〉 + 1
2 〈Hk(x − xk), x − xk〉

subject to F(xk) + F ′(xk)(x − xk) = 0,
(10)

where Hk is a symmetric matrix approximating the Hessian of the Lagrangian in a
certain sense (e.g., see discussion in [1, Ch. 18]).

Let ξ k = xk+1 − xk and ηk = λk+1 − λk . By the optimality conditions for (10),
we immediately obtain that

0 = F(xk) + F ′(xk)ξ k,

and

0 = f ′(xk) + Hkξ
k + (F ′(xk))Tλk+1

= ∂L

∂x
(xk, λk) + ∂2L

∂x2 (xk, λk)ξ k + (F ′(xk))Tηk + θk,

where

θk =
(

Hk − ∂2L

∂x2 (xk, λk)

)
ξ k .

In particular, the iteration can be put in the iSQP form of (6) and (7), with the specified
θk and with ωk = 0.

Observe that θk depends linearly on ξ k and we can write θk = Θkξ
k , where

Θk : Rn → Rn is a linear operator defined by the relation

Θkξ =
{

(Hk − ∂2 L
∂x2 (xk, λk))ξ, if ξ ∈ span{ξ k},

0, if ξ ∈ (span{ξ k})⊥.
(11)

It is natural to assume that {Hk} is a bounded sequence. Then, along any bounded
subsequence of {(xk, λk)}, it holds that the corresponding subsequence of {Θk} is
bounded. This implies the assumption (QN1). Furthermore, let us assume that the
following Dennis–Moré-type condition holds (cf. [15, (18.62)]):

Π

(
Hk − ∂2L

∂x2 (x̄, λ̄)

)
ξ k = o(‖ξ k‖). (12)
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Evidently, (11) and (12) imply (QN2) along any subsequence of {(xk, λk)} convergent
to (x̄, λ̄).

2.3 Stabilized SQP

In sSQP [2,4,8,19], the next iterate (xk+1, λk+1) is computed as a stationary point of
the subproblem

minimize 〈 f ′(xk), x − xk〉 + 1
2

〈
∂2 L
∂x2 (xk, λk)(x − xk), x − xk

〉
+ σk

2 ‖λ‖2

subject to F(xk) + F ′(xk)(x − xk) − σk(λ − λk) = 0,

where σk > 0 is the dual stabilization parameter. The choice of this parameter is
based on computing violation of optimality conditions by the point (xk, λk). It can
be easily checked that this iteration fits the iSQP framework (5)–(7) with θk = 0 and
ωk = −σkη

k .

3 Basic SQP for the quadratic case

We start our theoretical considerations with the simplest case of SQP without perturba-
tion terms, applied to the problem with quadratic objective and quadratic constraints
that are fully degenerate at a solution. This is done in order to derive a statement
which is, in a sense, the strongest possible for our purposes. Specifically, under some
natural assumptions, in this case we can prove that if the dual sequence approaches
a noncritical multiplier then SOSC does not hold at x̄ for any λ ∈ Λ(x̄). Thus, if
SOSC holds for some multiplier, convergence to a noncritical one is simply impos-
sible (under the given assumptions). This statement is stronger than what has been
established previously for this case [11, Proposition 1].

Consider

f (x) = 1

2
〈Ax, x〉, F(x) = 1

2
B[x, x],

where A(= f ′′(0)) is a symmetric n×n-matrix, and B(= F ′′(0)) : Rn ×Rn → Rl is a
symmetric bilinear mapping. The stationary point of interest is x̄ = 0, and Λ(x̄) = Rl .

For each λ ∈ Rl set

H(λ) = ∂2L

∂x2 (0, λ).

Note that in the present setting (since ker F ′(0) = Rn), a multiplier λ̄ ∈ Λ(x̄) is
critical if, and only if, H(λ̄) is a singular matrix.
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On attraction of Newtonian methods to critical multipliers 239

The SQP iteration (i.e., (5)–(7) with θk = 0 and ωk = 0) can be written in the form

H(λk)xk+1 +
(

B[xk]
)T (

λk+1 − λk
)

= 0, (13)

B
[
xk, xk+1

]
= 1

2
B

[
xk, xk

]
, (14)

with B[x] standing for the linear operator from Rn to Rl (l × n matrix), defined by

B[x]ξ = B[x, ξ ], ξ ∈ Rn .

Proposition 1 Let {(xk, λk)} be a sequence satisfying (13) and (14). Suppose further
that there exists an infinite set K ⊂ {0, 1, . . .} possessing the following properties:

(A1) The subsequence {(xk, λk) | k ∈ K } converges to (x̄, λ̄) with x̄ = 0 and some
λ̄ ∈ Λ(x̄).

(A2) The subsequence {λk+1 | k ∈ K } converges to the same λ̄.

Then for k ∈ K it holds that

〈
∂2L

∂x2 (0, λ̄)xk, xk+1
〉

= o(‖xk‖‖xk+1‖), (15)

and if λ̄ is a noncritical multiplier, then

xk+1 = o(‖xk‖), (16)

B[xk, xk] = o(‖xk‖2). (17)

Proof First note that, by (A1) and (A2), we have that

ηk = λk+1 − λk → 0 as k → ∞, k ∈ K . (18)

Multiplying both sides of (13) by xk , we obtain the estimate

〈
H(λk)xk, xk+1

〉
= −

〈
λk+1 − λk, B[xk, xk]

〉

= −2
〈
λk+1 − λk, B[xk, xk+1]

〉

= o
(
‖xk‖‖xk+1‖

)
,

where the second equality is by (14) and the third is by (18). This proves (15).
Furthermore, if λ̄ is noncritical then H(λ̄) is a nonsingular matrix. Then H(λk) is

nonsingular for all k ∈ K large enough, and the tail of the sequence {(H(λk))−1} is
well-defined and bounded. For such k, from (13) we derive

xk+1 = −(H(λk))−1(B[xk])T(λk+1 − λk)

= o(‖xk‖),
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where the last equality is again by (18). This proves (16). By substituting the latter
into (14), we finally obtain (17). ��

The assumptions (A1) and (A2) are natural for the question being investigated —
the influence of the dual limit on the primal convergence rate. Essentially they just
say that there is convergence in some specific sense. They hold trivially if the whole
primal-dual sequence converges. In the latter case, Proposition 1 implies that if the
dual limit λ̄ is noncritical, then the primal trajectory converges to x̄ = 0 superlinearly
(see (16)). In addition, two asymptotic relations (15) and (17) hold. The second rela-
tion implies that {xk} converges to x̄ = 0 tangentially to the null set of the quadratic
mapping corresponding to B.

We next explain why the behaviour characterized by these two relations is highly
unlikely to occur.

Remark 1 The following argument needs an additional technical assumption: Suppose
that there exists an infinite subset K̃ of K such that xk �= 0 and xk+1 �= 0 ∀ k ∈ K̃ ,
the subsequence {xk/‖xk‖ | k ∈ K̃ } converges to some ξ ∈ Rn , and the subsequence
{xk+1/‖xk+1‖ | k ∈ K̃ } converges either to ξ or to −ξ . Note that this is automatic if
the entire sequence {xk} converges to x̄ = 0 tangentially to a direction ξ �= 0, which is
quite reasonable numerical behaviour that we found to be typical in our experiments.
Then (15) and (17) imply that

〈
∂2L

∂x2 (0, λ̄)ξ, ξ

〉
= 0, B[ξ, ξ ] = 0.

We then further obtain that

〈 f ′′(0)ξ, ξ 〉 = 〈 f ′′(0)ξ, ξ 〉 + 〈λ̄, F ′′(0)[ξ, ξ ]〉
=

〈
∂2L

∂x2 (0, λ̄)ξ, ξ

〉

= 0,

and hence,

〈
∂2L

∂x2 (0, λ)ξ, ξ

〉
= 〈 f ′′(0)ξ, ξ 〉 + 〈λ, F ′′(0)[ξ, ξ ]〉
= 0 ∀ λ ∈ Λ(x̄).

The latter means that SOSC (4) does not hold for any multiplier associated with x̄ .
Moreover, the following weaker SOSC also does not hold at x̄ :

∀ ξ ∈ ker F ′(x̄)\{0} ∃ λ ∈ Λ(x̄) such that

〈
∂2L

∂x2 (x̄, λ)ξ, ξ

〉
> 0.

Moreover, the corresponding weak SOSC for maximizers cannot hold as well. The
conclusion is that, under the stated assumptions, if SOSC holds (even in the weaker
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On attraction of Newtonian methods to critical multipliers 241

form than (4)!) then convergence to a noncritical multiplier cannot occur. Of course,
if the assumptions are violated (which therefore must be the case if critical multipli-
ers do not exist, for example) then convergence to noncritical multipliers becomes a
possibility. However, this situation is unlikely and is indeed very rare in practice.

However, if we perturb the data by higher-order terms, the argument given in
Remark 1 becomes less clean. More precisely, asymptotic relations (16) and (17)
in Proposition 1 remain valid (in the case of convergence to a noncritical multiplier),
but (15) takes the cruder form

〈
∂2L

∂x2 (0, λ̄)xk, xk+1
〉

= o(‖xk‖‖xk+1‖) + o(‖xk‖2),

and generally, this does not lead to the needed formal conclusions. The same happens
for other kinds of perturbations, and in particular, for those associated with linearly
constrained Lagrangian methods and quasi-Newton SQP. Furthermore, passing to the
general case of degeneracy leads more-or-less to the same effect, and in our numerical
experiments for random problems with linear-quadratic data (see [11]), some examples
of convergence to noncritical multipliers were indeed encountered beyond the fully
degenerate case. That is why in the analysis of iSQP below, we concentrate mainly on
superlinear rate of primal convergence in the case of dual convergence to a noncritical
multiplier, without attempting the argument along the lines of Remark 1.

4 Theoretical analysis of inexact SQP

We can assume, without loss of generality, that x̄ = 0 and f (x̄) = 0. Since conver-
gence to x̄ = 0 is part of our setting and we are investigating properties at the limit,
we can locally represent f and F in the following form:

f (x) = 〈a, x〉 + 1

2
〈Ax, x〉 + r(x), F(x) = B1x + 1

2
B2[x, x] + R(x),

where a ∈ Rn ; A is a symmetric n×n matrix; B1 is an l×n matrix; B2 : Rn×Rn → Rl

is a symmetric bilinear mapping; function r : Rn → R and mapping R : Rn → Rl are
twice differentiable near 0, their second derivatives are continuous at 0, and r(0) = 0,
r ′(0) = 0, r ′′(0) = 0, R(0) = 0, R′(0) = 0, R′′(0) = 0. For this setting, the Lagrange
system (2) takes the form

a + BT
1 λ+H(λ)x+r ′(x)+(R′(x))Tλ = 0, B1x + 1

2
B2[x, x] + R(x) = 0. (19)

In what follows, we consider a ∈ im BT
1 , so that the point (x̄, λ) with x̄ = 0 is a

solution of the system (19) for any λ ∈ Λ(x̄), where Λ(x̄) is an affine set parallel to
ker BT

1 .
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The step (ξ k, ηk) in the iSQP framework (6) and (7) is then given by the following
relations:

Hkξ
k + BT

1 ηk + (B2[xk])Tηk + r ′′(xk)ξ k + (R′′(xk)[ξ k])Tλk + (R′(xk))Tηk

= −a − BT
1 λk − Hk xk − r ′(xk) − (R′(xk))Tλk − θk, (20)

B1ξ
k + B2[xk, ξ k] + R′(xk)ξ k = −B1xk − 1

2
B2[xk, xk] − R(xk) − ωk, (21)

where Hk = H(λk).
For each x ∈ Rn , define the decomposition x = x1 + x2, x1 ∈ (ker B1)

⊥ = im BT
1 ,

x2 ∈ ker B1. Similarly, for each y ∈ Rl , define the decomposition y = y1 + y2,
y1 ∈ im B1, y2 ∈ (im B1)

⊥ = ker BT
1 . Along with the orthogonal projector Π onto

ker B1 in Rn , define the orthogonal projector P onto ker BT
1 in Rl . For each λ ∈ Rl ,

define Ĥ(λ) as the (symmetric) matrix of the quadratic form

x2 → ∂2L

∂x2 (x̄, λ)[x2, x2] = 〈Ax2, x2〉 + 〈λ, B2[x2, x2]〉 : ker B1 → R,

that is,

Ĥ(λ)x2 = Π H(λ)x2, x2 ∈ ker B1. (22)

The matrix Ĥ(λ) can be regarded as the reduced Hessian of the Lagrangian function.
In particular, SOSC (4) means precisely that Ĥ(λ) is positive definite. With this nota-
tion, λ̄ ∈ Λ(x̄) is a critical multiplier according to Definition 1 if, and only if, the
matrix Ĥ(λ̄) is singular.

We note that the assumption of minimality of the primal step in Theorem 2 below
(or, more generally, sufficient closeness of the next iterate to the current one) is com-
pletely standard (and unavoidable) in local analysis of any SQP-type method (e.g., [15,
Theorem 18.1], [1, Theorems 15.2 and 15.4]). In practice, it is essentially ignored, of
course (it is natural to expect that if the solver applied to the subproblem takes the
current iterate as its starting point, then the next iterate should not be too far from it).

Theorem 2 Let {θk} ⊂ Rn. Let {(xk, λk)} be a trajectory generated by the iterative
process (5) where, for each k, the primal-dual step (ξ k, ηk) is computed as a solution
of (20) and (21) with ωk = 0, and with minimal-norm primal component. Suppose
further that there exists an infinite set K ⊂ {0, 1, . . .} satisfying (A1), (A2) and

(A3) For each k ∈ K , either θk = θ(xk, λk, ξ k), where θ : Rn × Rl × Rn → Rn

is a mapping such that θ(0, λ̄, 0) = 0 and assumptions (LCL1), (LCL2) hold
(with x̄ = 0 and λ̄ from (A1), (A2)), or θk = Θkξ

k , where Θk : Rn → Rn is a
linear operator satisfying assumptions (QN1), (QN2).

Then if λ̄ is a noncritical multiplier, for k ∈ K it holds that

xk+1 = o(‖xk‖) (23)
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and

P B2[xk, xk] = o(‖xk‖2). (24)

Proof We provide the proof for the case when r(·) ≡ 0 and R(·) ≡ 0, strictly in order
to simplify the presentation, as it is rather cumbersome even with this simplification.
The assertions remain true under the general assumptions regarding r and R that are
stated above.

Suppose that λ̄ is a noncritical multiplier, that is, Ĥ(λ̄) is nonsingular. For each k set
Ĥk = Ĥ(λk). Evidently, {Hk | k ∈ K } converges to H(λ̄), and hence, {Ĥk | k ∈ K }
converges to Ĥ(λ̄), and the tail of the sequence {Ĥ−1

k | k ∈ K } is correctly defined
and bounded. From now on, we consider k ∈ K large enough.

In order to estimate (ξ k, ηk), we shall make use of the Liapunov–Schmidt proce-
dure, well-known in the bifurcation theory (e.g., [7, Ch. VII]). Applying (In −Π) and
Π to both sides of (20), and taking into account the inclusion a ∈ im BT

1 , we obtain

BT
1 ηk

1+(In −Π)

(
Hkξ

k +
(

B2[xk]
)T

ηk
)

=−a−BT
1 λk

1−(In −Π)(Hk xk +θk), (25)

Π

(
Hkξ

k +
(

B2[xk]
)T

ηk
)

= −Π
(

Hk xk + θk
)
. (26)

Furthermore, applying (Il − P) and P to both sides of (21), we obtain that

B1ξ
k
1 + (Il − P)B2[xk, ξ k] = −B1xk

1 − 1

2
(Il − P)B2[xk, xk], (27)

P B2[xk, ξ k] = −1

2
P B2[xk, xk]. (28)

Clearly, the linear operators B : (ker B1)
⊥ = im BT

1 → im B1, defined by Bx1 =
B1x1, and B∗ : im B1 → im BT

1 = (ker B1)
⊥, defined by B∗y1 = BT

1 y1, are invert-
ible. It follows that for each k large enough, the linear operators

Bk : im BT
1 → im B1, Bk x1 = B1x1 + (Il − P)B2[xk, x1],

and

B∗
k : im B1 → im BT

1 , B∗
k y1 = BT

1 y1 + (In − Π)(B2[xk])T y1,

are invertible, and

B−1
k = B−1 + O(‖xk‖), (B∗

k )−1 = (B∗)−1 + O(‖xk‖). (29)

The relation (27) evidently implies that

Bkξ
k
1 + (Il − P)B2[xk, ξ k

2 ] = −Bk xk
1 − 1

2
(Il − P)B2[xk, xk].
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Applying B−1
k to both sides of the latter equality, we now obtain that, for a fixed ξ k

2 ,
there exists the unique ξ k

1 satisfying (27), and

ξ k
1 = −xk

1 + M̃kξ
k
2 + O(‖xk‖2), (30)

where we defined the linear operator

M̃k = M̃(xk) = −B−1
k (Il − P)B2[xk].

Note that ‖M̃(x)‖ = O(‖x‖). Note also that one can write ξ k
1 = ξ1(xk, ξ k

2 ), where
ξ1 : Rn × ker B1 → (ker B1)

⊥ is the affine mapping such that

ξ1(x, ξ1) − ξ1(x, ξ2) = M̃(x)(ξ1 − ξ2) (31)

holds for all x ∈ Rn and ξ1, ξ2 ∈ ker B1, and

ξ1(x, 0) = O(‖x‖). (32)

Furthermore, the relation (25) can be written in the form

B∗
k ηk

1 + (In − Π)(Hkξ
k + (B2[xk])Tηk

2) = −a − BT
1 λk

1 − (In − Π)(Hk xk + θk).

Applying (B∗
k )−1 to both sides of the latter equality, and taking into account (18), the

second relation in (29), and (30), we derive that for fixed ξ k
2 and ηk

2, there exists the
unique ηk

1 satisfying (25) (with uniquely defined ξ k
1 = ξ1(xk, ξ k

2 )), and

ηk
1 = −(B∗

k )−1(a + BT
1 λk

1)−(B∗
k )−1(In − Π)

((
B2[xk]

)T
ηk

2 + Hk(xk + ξ k) + θk
)

= −(B∗
k )−1B∗ ((B∗)−1

a + λk
1

)

−(B∗
k )−1(In − Π)

((
B2[xk]

)T
ηk

2 + Hk(xk + ξ k) + θk
)

= λ̂ − λk
1 − (B∗

k )−1(In − Π)
(

Hk(xk
2 + ξ k

2 + M̃kξ
k
2 ) + θk

)
+ o(‖xk‖), (33)

where λ̂ = −(B∗)−1a ∈ Λ(x̄) ∩ im B1 is the uniquely defined normal multiplier (the
one with the smallest norm), and that by assumption (A1), {λk

1} → λ̂. We then further
obtain that

ηk
1 =−(λk

1−λ̂)−(B∗
k )−1(In −Π)(Hk((In + M̃k)(xk

2 + ξ k
2 )−M̃k xk

2 )

+ θk) + o(‖xk‖)
= −(λk

1 − λ̂) + Ck(xk
2 + ξ k

2 ) − (B∗
k )−1(In − Π)θk + o(‖xk‖), (34)
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where we defined the linear operator

Ck = −(B∗
k )−1(In − Π)Hk(In + M̃k).

Note that the sequence {Ck | k ∈ K } is bounded.
By substituting (30) and (34) into (26) we obtain

Π(Hk(ξ
k
2 − xk

1 + M̃kξ
k
2 ) + (B2[xk])T(ηk

2 − (λk
1 − λ̂) + Ck(xk

2 + ξ k
2 )

−(B∗
k )−1(In − Π)θk))

= −Π(Hk xk + θk + o(‖xk‖)),

and hence, taking into account (18),

Π((Hk(In + M̃k) + (B2[xk])TCk))ξ
k
2 = −Π(Hk(xk − xk

1 ) − (B2[xk])T(B∗
k )−1

× (In − Π)θk + θk + o(‖xk‖)),

which can be written in the form

Π(Hk +M̂k)ξ
k
2 =−Π

(
Hk xk

2 −(B2[xk])T(B∗
k )−1(In − Π)θk +θk +o(‖xk‖)

)
, (35)

where we defined the linear operator

M̂k = Hk M̃k + (B2[xk])TCk .

Note that ‖M̂k‖ = O(‖xk‖).
Observe that for each k large enough, the linear operator

Hk : ker B1 → ker B1, Hk x2 = Π(Hk + M̂k)x2,

is invertible, and

H−1
k = Ĥ−1

k + O(‖xk‖),

where (22) was taken into account.
Consider first the case when the perturbation term θk = θ(xk, λk, ξ k), where

θ : Rn × Rl × Rn → Rn , satisfies the assumptions (LCL1), (LCL2). We next show
that for all k large enough, Eq. (26) uniquely defines ξ k

2 , and

ξ k
2 = O(‖xk‖). (36)

Observe that by the first equality in (33), one can write ηk
1 = η1(xk, λk, ξ k

2 , ηk
2),

where η1 : Rn × Rl × ker B1 × (im B1)
⊥ → im B1 is the affine mapping such that

η1(x, λ, ξ1, η2) − η1(x, λ, ξ2, η2) = O(‖ξ1 − ξ2‖)
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holds for all (x, λ) close enough to (0, λ̄), all ξ1, ξ2 ∈ ker B1 close enough to 0, and
all η2 ∈ (im B1)

⊥, and the value ‖η1(x, λ, 0, η2)‖ is bounded (by an independent
constant) for all (x, λ) close to (x̄, λ̄) and all η2 ∈ (im B1)

⊥ close to 0. (Here, we
have employed the assumption (LCL1) and (31).)

Consider the mapping Ψ : Rn × Rl × (im B1)
⊥ × ker B1 → ker B1,

Ψ (x, λ, η2, ξ2) = Π(H(λ)ξ2 + H(λ)(x + ξ1(x, ξ2)) + (B2[x])T(η1(x, λ, ξ2, η2)

+ η2) + θ(x, λ, ξ1(x, ξ2) + ξ2)).

Then (25) is equivalent to

Ψ (x, λ, η2, ξ2) = 0 (37)

with x = xk , λ = λk , η2 = ηk
2, ξ2 = ξ k

2 . Note that (0, λ̄, 0, 0) is a solution of (37).
We shall apply Theorem 1 to (37) at this point, treating (x, λ, η2) as a parameter.

Let H̄ = Ĥ(λ̄). Employing the assumption (LCL2) and the above-established
properties of ξ1(·) and η1(·), we derive that for each ε > 0

‖Ψ (x, λ, η2, ξ1) − Ψ (x, λ, η2, ξ2) − H̄(ξ1 − ξ2)‖
≤ ‖(Ĥ(λ) − H̄)(ξ1 − ξ2)‖ + ‖Π H(λ)(ξ1(x, ξ1) − ξ1(x, ξ2))‖

+‖Π(B2[x])T(η1(x, λ, ξ1, η2) − η1(x, λ, ξ2, η2))‖
+‖θ(x, λ, ξ1(x, ξ1) + ξ1) − θ(x, λ, ξ1(x, ξ2) + ξ2)‖

≤ ε‖ξ1 − ξ2‖
holds for all (x, λ) close enough to (0, λ̄), all η2 ∈ (im B1)

⊥, and all ξ1, ξ2 ∈ ker B1
close enough to 0. Thus, Ψ satisfies near (0, λ̄, 0, 0) assumption (a) of Theorem 1.
Moreover,

∂Ψ

∂ξ2
(0, λ̄, 0, 0) = H̄

is nonsingular, which is assumption (b) of Theorem 1. Finally, the mapping
(x, λ, η2) → Ψ (x, λ, η2, 0) : Rn ×Rl ×(im B1)

⊥ → Rn is continuous at (0, λ̄, 0),
which is assumption (c) of Theorem 1.

Theorem 1 now implies that for all (x, λ, η2) ∈ Rn ×Rl × (im B1)
⊥ close enough

to (0, λ̄, 0), there exists the unique ξ2 = ξ2(x, λ, η2) close enough to 0 and satisfying
(37), and

‖ξ2‖ = O(‖Ψ (x, λ, η2, 0)‖)
= O(Π(H(λ)(x + ξ1(x, 0)) + (B2[x])T(η1(x, λ, 0, η2) + η2)

+ θ(x, λ, ξ1(x, 0))))

= O(‖x‖),
where we have again employed assumption (LCL2) and the above-established prop-
erties of ξ1(·) and η1(·). Since (ξ k, ηk) = ((ξ1(xk, ξ k

2 ), ξ k
2 ), ηk) is a solution of (20),
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(21) with a minimal-norm ξ k-component, it follows that ξ k
2 is uniquely defined, and

satisfies (36).
Applying now the linear operator H−1

k to both sides of (35) and using assumptions
(LCL1), (LCL2) and (30), (36), we obtain that

ξ k
2 = −xk

2 + Ĥ−1
k Π((B2[xk])T(B∗

k )−1(In − Π)θ(xk, λk, ξ k) − θ(xk, λk, ξ k))

+ o(‖xk‖)
= −xk

2 + O(‖xk‖‖ξ k‖) + o(‖ξ k‖) + o(‖xk‖)
= −xk

2 + o(‖xk‖). (38)

Before proceeding, we prove the same relation (38) under the second set of assump-
tions on θk , i.e., when θk = Θkξ

k , where Θk : Rn → Rn is a linear operator for each k,
satisfying (QN1), (QN2).

Applying H−1
k to both sides of (35) and using (18), (30) and assumptions (QN1)

and (QN2), we now obtain

ξ k
2 = −xk

2 + Ĥ−1
k Π((B2[xk])T((B∗

k )−1(In − Π)Θkξ k) − Θkξ k) + o(‖xk‖)
= −xk

2 − Ĥ−1
k Π(In − (B2[xk])T(B∗

k )−1(In − Π))Θk(ξ k
2 − xk

1 + M̃kξ
k
2 )

+ o(‖xk‖)
= −xk

2 + Skξ
k
2 + o(‖xk‖),

where we defined the linear operator

Sk = Ĥ−1
k Π(In − (B2[xk])T(B∗

k )−1(In − Π)(In + M̃k)Θ
k .

Note that ‖Sk‖ → 0 as k → ∞, k ∈ K . Applying now the linear operator (I − Sk)
−1

to both sides in

(In − Sk)ξ
k
2 = −xk

2 + o(‖xk‖),
we obtain (38), and in particular, (36) holds as well.

To conclude the proof (now, for both sets of assumptions on θk), combining (5),
(30), (36) and (38), we obtain that

xk+1 = xk + ξ k

= (xk
1 + ξ k

1 ) + (xk
2 + ξ k

2 )

= M̃kξ
k
2 + (xk

2 + ξ k
2 ) + O(‖xk‖2)

= o(‖xk‖),
which is (23). Moreover, by (5), we drive from (28), (30) and (36) that

1

2
P B2[xk, xk] = P B2[xk, xk+1].

Combined with (23), this implies the estimate (24). ��
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Assumption (A3) on the perturbation term θk has been justified in Sect. 2 for the
methods under consideration. Theorem 2 says that under the given assumptions, if
the dual limit λ̄ is noncritical then, according to (23), primal steps from the points of
the subsequence {xk | k ∈ K } give superlinear decrease of the distance to the primal
solution. Since we usually do not observe superlinear convergence in practice, the
reason must be precisely convergence to critical multipliers.

The following considerations also show that convergence to a noncritical multi-
plier can only be possible for a rather special behaviour of the iterative process, which
should not be common.

Remark 2 Estimate (24) means that the primal trajectory approaches x̄ tangentially
to the null set of the quadratic mapping associated to P B2, which is a rather special
behaviour. Moreover, assuming that r(·) and R(·) are three times differentiable at 0,
we can derive the estimate

1

2
PB2[xk, xk] = PB2[xk, xk+1] + O(‖xk‖3). (39)

Imposing again the additional technical assumption stated in Remark 1, by (24), we
obtain that

PB2[ξ, ξ ] = 0, (40)

and by the continuity of B2 it then follows that for k ∈ K̃

PB2

[
xk

‖xk‖ ,
xk+1

‖xk+1‖
]

→ 0 as k → ∞.

Combining the latter with (39), we derive the following improvement of estimate (24)
for k ∈ K̃ :

PB2[xk, xk] = o(‖xk‖‖xk+1‖) + O(‖xk‖3). (41)

This shows behaviour that is even more special than (24): relation (41) implies that
{xk/‖xk‖ | k ∈ K̃ } must not only converge to some ξ �= 0 satisfying (40), but also
the rate of this convergence must be rather high.

Theorem 2 highlights one of the two possible reasons for lack of superlinear con-
vergence of the Newton-type methods in the degenerate case. The first reason is fairly
obvious: the dual sequence may not converge at all. However, in our experience, con-
vergence of the dual sequence is much more common than nonconvergence. And
when the dual sequence converges, the reason for loss of superlinear rate becomes
indeed attraction to critical multipliers: if the dual sequence were to converge to
noncritical multipliers, the rate of primal convergence would have been superlinear.
But, according to the discussion above, dual convergence to a noncritical multiplier
can happen only for a very special behavior of the process, and numerical results in
Sect. 6 demonstrate that this behaviour is completely atypical for MINOS and SNOPT.
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We conclude with the analysis of sSQP [2,4,8,19]. We note that the assumption
(42) below on the choice of the regularization parameters σk can be satisfied by a
number of computable choices of measures of violation of optimality conditions that
are based on so-called error bounds [16] (see also [9] for a detailed comparison of
error bounds for optimality systems).

Theorem 3 Let {(xk, λk)} be a trajectory generated by the iterative process (5) where,
for each k, the primal-dual step (ξ k, ηk) satisfies (20) and (21) with θk = 0, ωk =
−σkη

k , and

σk = O(dist(λk, Λ(x̄))). (42)

Suppose further that there exists an infinite set K ⊂ {0, 1, . . .} satisfying (A1), (A2).
Then if λ̄ is a noncritical multiplier, for k ∈ K it holds that

‖xk+1‖ + dist(λk+1, Λ(x̄)) = o(‖xk‖) + o(dist(λk, Λ(x̄))). (43)

Proof Again, we provide the proof for the case when r(·) ≡ 0 and R(·) ≡ 0. Suppose
that λ̄ is a noncritical multiplier, and let k ∈ K be large enough.

The argument follows the lines of the proof of Theorem 2. From (20) and (21) we
obtain

BT
1 ηk

1 + (In − Π)(Hkξ
k + (B2[xk])Tηk) = −a − BT

1 λk
1 − (In − Π)Hk xk, (44)

Π(Hkξ
k + (B2[xk])Tηk) = −Π Hk xk, (45)

B1ξ
k
1 + (Il − P)B2[xk, ξ k] = −B1xk

1 − 1

2
(Il − P)B2[xk, xk] + σkη

k
1. (46)

From (46) it can be derived that

ξ k
1 = −xk

1 + M̃kξ
k
2 + O(‖xk‖2) + O(σk‖ηk

1‖)
= −xk

1 + M̃kξ
k
2 + O(‖xk‖2) + o(σk), (47)

where the last equality is by (18). Furthermore, from (18) and the relations (44) and
(47) it can be derived that

ηk
1 = −(λk

1 − λ̂) + Ck(xk
2 + ξ k

2 ) + o(‖xk‖) + o(σk). (48)

Finally, by substituting (47) and (48) into (45), we then obtain

ξ k
2 = −xk

2 + o(‖xk‖) + o(σk). (49)
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Combining (5), (47)–(49), we obtain that

xk+1 = xk + ξ k

= (xk
1 + ξ k

1 ) + (xk
2 + ξ k

2 )

= M̃kξ
k
2 + (xk

2 + ξ k
2 ) + O(‖xk‖2) + o(σk)

= o(‖xk‖) + o(σk),

dist(λk+1, Λ(x̄)) = λk+1
1 − λ̂

= λk
1 + ηk

1 − λ̂

= Ck(xk
2 + ξ k

2 ) + o(‖xk‖) + o(σk)

= o(‖xk‖) + o(σk).

Employing (42), we thus obtain (43). ��

5 Extensions to mixed constraints

We next explain how the notion of critical multipliers extends to the case of problems
with equality and inequality constraints. We shall follow the view of critical multi-
pliers for mixed-constrained problems suggested in [10,11] in the context of SQP.
Here we explain how this definition applies to the specific solvers we deal with in
this paper, and why the analysis for equality-constrained problems provided above
remains relevant in the mixed-constrained case as well.

Consider, for simplicity, the purely inequality-constrained problem

minimize f (x)

subject to G(x) ≤ 0,
(50)

where G : Rn → Rm is a smooth mapping. Let x̄ be a stationary point of this problem,
that is, there exists a Lagrange multiplier μ̄ ∈ Rm satisfying the Karush–Kuhn–Tucker
optimality conditions

∂L

∂x
(x̄, μ̄) = 0,

μ̄ ≥ 0, G(x̄) ≤ 0, 〈μ̄, G(x̄)〉 = 0,

where

L : Rn × Rm → R, L(x, μ) = f (x) + 〈μ, G(x)〉

is the Lagrangian function of problem (50). Define the set of indices of inequality
constraints active at x̄ : I (x̄) = {i = 1, . . . , m | Gi (x̄) = 0}. The following notion
was suggested in [10, Definition 2.2].

Definition 2 A multiplier μ̄ associated with a stationary point x̄ of problem (50)
is referred to as critical with respect to a given index set I ⊂ I (x̄), if μ̄i = 0
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On attraction of Newtonian methods to critical multipliers 251

∀ i ∈ {1, . . . , m}\I , and the multiplier μ̄I associated with stationary point x̄ of the
equality-constrained problem

minimize f (x)

subject to G I (x) = 0
(51)

is critical for this problem in the sense of Definition 1.

When a problem contains inequality constraints, both MINOS and SNOPT refor-
mulate them into equality constraints and simple bounds using slack variables. We
therefore consider the problem in the following format:

minimize f (x)

subject to G(x) + u = 0, u ≥ 0.
(52)

Given (xk, λk) ∈ Rn × Rl , the subproblem of the linearly constrained Lagrangian
method applied to (52) is

minimize f (x) + 〈λk, G(x) + u〉 + ck
2 ‖G(x) + u‖2

subject to G(xk) + G ′(xk)(x − xk) + u = 0, u ≥ 0,
(53)

with optimality conditions given by

f ′(xk+1)+(G ′(xk+1))Tλk +ck(G
′(xk+1))T(G(xk+1)+uk+1)+(G ′(xk))Tηk =0,

(54)

λk + ck(G(xk+1) + uk+1) + ηk − μk+1 = 0, (55)

G(xk) + G ′(xk)(xk+1 − xk) + uk+1 = 0, (56)

μk+1 ≥ 0, uk+1 ≥ 0, 〈μk+1, uk+1〉 = 0. (57)

Suppose that the primal trajectory {xk} converges to a solution x̄ of (52). It is quite
natural to assume that the set

Ik = {i = 1, . . . , m | uk+1
i = 0}

of indices of nonnegativity constraints active at the computed stationary points of sub-
problems (53) remains unchanged for k sufficiently large. This is actually automatic
when {μk} tends to a multiplier μ̄ satisfying strict complementarity, i.e., such that
μ̄I (x̄) > 0. In other cases, the assumption that the set Ik is asymptotically unchanged
may not hold, but this still seems to be reasonable numerical behaviour, which should
not be unusual, and this is confirmed by our numerical experiments. Note also that
if this stabilization property does not hold, one should hardly expect convergence of
the dual trajectory {(λk, μk)}, and this situation falls into the other scenario of slow
primal convergence.
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Assuming that Ik = I for all k large enough, by (57) we have that μk
i = 0

∀ i ∈ {1, . . . , m}\I . Then, as can be seen from (54)–(57), a stationary point of sub-
problem (53) gives rise to a stationary point of the equality-constrained subproblem

minimize f (x) + 〈λk, G(x) + u〉 − 〈μk
I , uI 〉 + ck

2 (‖G(x) + u‖2 + ‖uI ‖2)

subject to G(xk) + G ′(xk)(x − xk) + u = 0, uI = 0.
(58)

Indeed, setting ζ k
i = 0 for i ∈ {1, . . . , m}\I , optimality conditions for (58) can be

written as

f ′(xk+1)+(G ′(xk+1))Tλk +ck(G
′(xk+1))T(G(xk+1) + uk+1) + (G ′(xk))Tηk =0,

λk − μk + ck(G(xk+1) + uk+1) + ηk − ζ k = 0,

G(xk) + G ′(xk)(xk+1 − xk) + uk+1 = 0, uk+1
I = 0,

which are satisfied by a solution of (54)–(57) with ζ k
I = μk+1

I − μk
I .

Observe now that (58) is the subproblem of the linearly constrained Lagrangian
method applied to the equality-constrained problem

minimize f (x)

subject to G(x) + u = 0, uI = 0.
(59)

Thus, the trajectory {(xk, λk, μk
I )} can be thought of as generated by the linearly con-

strained Lagrangian method for (59). Note finally that any critical with respect to I (in
the sense of Definition 2) multiplier μ̄ of problem (50), associated with the stationary
point x̄ , corresponds to the critical multiplier (μ̄, μ̄I ) of problem (59), associated with
the stationary point (x̄, −G(x̄)).

For SNOPT, the reduction to equality constraints goes the same way. The subprob-
lems are of the form

minimize 〈 f ′(xk), x − xk〉 + 1
2 〈Hk(x − xk), x − xk〉

subject to G(xk) + G ′(xk)(x − xk) + u = 0, u ≥ 0,

with optimality conditions given by

f ′(xk) + Hk(xk+1 − xk) + (G ′(xk))Tλk+1 = 0,

λk+1 = μk+1

G(xk) + G ′(xk)(xk+1 − xk) + uk+1 = 0,

μk+1 ≥ 0, uk+1 ≥ 0, 〈μk+1, uk+1〉 = 0.

By the same reasoning as above, if the index set Ik = I is the same for all k
sufficiently large, then the point (xk+1, λk+1, μk+1

I ) satisfies optimality conditions
for

minimize 〈 f ′(xk), x − xk〉 + 1
2 〈Hk(x − xk), x − xk〉

subject to G(xk) + G ′(xk)(x − xk) + u = 0, uI = 0.
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Evidently, the latter is the subproblem of SQP method applied to the equality-
constrained problem (59).

Regarding sSQP [19], in our implementation in Sect. 6 it does not employ any
transformation of the original problem. Given (xk, μk) ∈ Rn × Rm , the subproblem
of sSQP applied to (50) is

minimize 〈 f ′(xk), x − xk〉 + 1
2

〈
∂2 L
∂x2 (xk, μk)(x − xk), x − xk

〉
+ σk

2 ‖μ‖2

subject to G(xk) + G ′(xk)(x − xk) − σk(μ − μk) ≤ 0.
(60)

The optimality system for (60) can be written in the form

f ′(xk) + ∂2L

∂x2 (xk, μk)(xk+1 − xk) + (G ′(xk))Tμk+1 = 0,

μk+1 ≥ 0, G(xk) + G ′(xk)(x − xk) − σk(μ
k+1 − μk) ≤ 0,

〈μk+1, G(xk) + G ′(xk)(x − xk) − σk(μ
k+1 − μk)〉 = 0.

Assuming that the set

Ik = {i = 1, . . . , m | Gi (xk) + G ′
i (xk)(xk+1 − xk) − σk(μ

k+1
i − μk

i ) = 0}

stabilizes, i.e., that Ik = I for all k sufficiently large, we observe that the point
(xk+1, μk+1

I ) satisfies optimality conditions for

minimize 〈 f ′(xk), x − xk〉 + 1
2

〈
∂2 L
∂x2 (xk, μk)(x − xk), x − xk

〉
+ σk

2 ‖μI ‖2

subject to G I (xk) + G ′
I (xk)(x − xk) − σk(μI − μk

I ) = 0.

The latter is the subproblem of sSQP method applied to the equality-constrained prob-
lem (51).

6 Numerical results

In this section, we report on numerical results for MINOS, SNOPT and sSQP for prob-
lems with degenerate constraints collected in [10], as well as some additional examples
presented below. In order to avoid confusion, examples from [10] will be referred to
as “Tests” (rather than “Examples”), but with their numbers exactly corresponding to
those in [10].

In our experiments, we use the default versions of MINOS and SNOPT that come
with AMPL [20] student edition; default values of parameters are used, except for
some special cases specified below. Regarding sSQP, it was implemented in Matlab,
and supplied with the globalization strategy based on linesearch for a nonsmooth exact
penalty function. We refer the reader to [10] for details of the globalization strategy
and the values of parameters; those details are not central for the questions at hand in
any case. In our implementation, the use of the stabilization term of sSQP is allowed
only when the residual of the KKT system becomes small enough (less then 1). In
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our experience, attempts to use this term globally (far from solution) usually result in
failure of convergence. We stop the process when either the distance from the current
primal iterate to the solution of interest, or the residual of the KKT system, become
smaller than 1e–6.

For each test problem, we performed 10 runs from randomly generated starting
points such that the absolute value of each component is no greater than 20 (except for
some special cases, as discussed below), and with the additional nonnegativity restric-
tions for multipliers corresponding to inequality constraints. Failures and the cases of
convergence to stationary points distinct from those of interests were disregarded.

We start with examples where critical multipliers do exist; these are Tests 2.1–2.4,
3.2–3.5, 4.16–4.22, and the following two additional examples:

Example 1 (communicated by C. Sagastizábal) The equality-constrained problem

minimize 1
2 (x2

1 + x2
2 )

subject to 1
2 (x2

1 + x2
2 ) − x2 = 0, 1

2 (x2
1 + x2

2 ) + x2 = 0

has the unique feasible point (hence, the unique solution) x̄ = 0, with M(x̄) = {λ ∈
R2 | λ1 − λ2 = 0}. The unique critical multiplier is λ̄ = (−1/2, −1/2).

Example 2 (modified Test 3.5) The inequality-constrained problem

minimize x2
1 + x2

2 − 4x1x2 + x3
2

subject to x1 + 1
2 x2

2 ≥ 0, x2 − x2
1 ≥ 0, (x1 + 1

2 x2
2 )(x2 − x2

1 ) ≤ 0

has the unique solution x̄ = 0, with M(x̄) = {μ̄ ∈ R3 | μ̄1 = μ̄2 = 0, μ̄3 ≥ 0}. The
critical with respect to I = {3} multipliers are μ̄ = (0, 0, 2) and μ̄ = (0, 0, 6).

Numerical results for this set of test problems are reported in Table 1. For each
problem and each solver, we report three indicators, separated by slashes: the number
of times superlinear convergence (of major iterates) to a noncritical multiplier was
detected; the number of times superlinear convergence to a critical multiplier was
detected; the number of times convergence to a critical multiplier was detected but it
was not superlinear.

Table 1 puts in evidence that attraction of MINOS and SNOPT to critical multipli-
ers is typical and, as a consequence, convergence is slow. Results for sSQP are more
mixed.

We proceed with comments on the behavior of solvers for some specific test prob-
lems, where warranted. Test 2.2 has a nonisolated solution at 0; nonzero solutions are
nondegenerate. Quite often MINOS major iterates converge superlinearly to nonzero
solutions; since those solutions are nondegenerate, these cases were not analyzed. Oth-
erwise, typical behavior is as follows: major iterates are attracted by 0, and approach
it slowly up to the order 1e–4; then the process jumps in one step to a nearby nonzero
solution (probably due to some heuristics). Anyway, the multiplier produced is very
close to a critical one. SNOPT does not demonstrate any tendency of convergence to 0
for this problem: major iterates converge superlinearly to nonzero solutions, and that
is why the results for this problem/solver are missing in Table 1. For Tests 2.4 and 4.20,
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Table 1 Examples where there
exist critical multipliers

The entries show, out of 10
random runs: superlinear
convergence to a noncritical
multiplier; superlinear
convergence to a critical
multiplier; nonsuperlinear
convergence to a critical
multiplier

Test problems Algorithm

MINOS SNOPT sSQP

Test 2.1 0/0/10 0/0/10 5/0/5

Test 2.2 0/0/10 3/0/5

Test 2.3 0/0/10 0/0/10 7/0/3

Test 2.4 0/0/10 0/0/10 6/0/4

Test 3.2 0/0/10 0/0/10 6/0/4

Test 3.3 0/0/10 0/0/10 2/0/8

Test 3.4 0/0/10 0/0/10 3/0/7

Test 3.5 10/0/0 9/0/1 8/0/2

Test 4.16 0/0/10 0/0/10 6/0/4

Test 4.17 0/10/0 0/10/0 4/0/6

Test 4.18 0/0/10 0/0/10 6/0/4

Test 4.19 0/0/10 0/0/10 8/0/2

Test 4.20 2/0/8 1/0/9 4/0/6

Test 4.21 0/0/10 0/0/10 10/0/0

Test 4.22 1/2/5 8/0/2 9/0/0

Example 1 0/0/10 0/0/10 2/0/8

Example 2 0/0/10 4/0/6 0/0/0

the optimality tolerance of MINOS and SNOPT was reduced (from 1e–6 to 1e–8) in
order to better separate the cases of criticality and noncriticality. Test 3.5: this is just
finite termination, a very special case not appropriate for any conclusions concerning
asymptotic behaviour. However, for SNOPT there are some rare cases of slow con-
vergence to a critical multiplier. Test 4.17 is a very special problem, with nonisolated
solution at 0, and with all solutions (including nonzero ones) being degenerate and
possessing critical multipliers. Each time the primal solution produced by MINOS
or SNOPT is different, and convergence to a critical multiplier is detected; however,
convergence rate of major iterates is superlinear. For Tests 4.21 and 4.22, the size of
the box where starting points are generated was reduced (from 20 to 2) to enforce
convergence to the primal solution of interest. The cases of superlinear convergence
for Test 4.22 look more like finite termination. There are also some cases of slow con-
vergence of major iterates to the noncritical multiplier (1, 2, 0, 0, 0). For Example 2,
the size of the box where starting points are generated was reduced (from 20 to 0.2)
to enforce convergence to the primal solution of interest. Otherwise MINOS usually
fails, or declares that the problem is unbounded. Regarding SNOPT for this problem,
there are multiple cases of superlinear convergence to noncritical multipliers.

The results for sSQP in Table 1 demonstrate that the effect of attraction to critical
multipliers still exists (when evaluating the numbers, recall that critical multipliers are
typically few; the usual situation is that they form a set of measure zero within the set of
all multipliers), but the attraction is much less persistent. The runs clearly split into two
groups. Sometimes the (globalized) process manages to enter the “good” primal-dual
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Table 2 Examples with no
critical multipliers: number of
times superlinear convergence
was detected (out of 10 random
runs)

Examples Algorithm

MINOS SNOPT sSQP

Test 3.1 10 10 10

Test 4.1 10 10 10

Test 4.2 5 5 10

Test 4.3 10 8 10

Test 4.4 10

Test 4.5 10 10 10

Test 4.6 10 10 10

Test 4.7 10 10 10

Test 4.8 10 10 10

Test 4.9 10 10 10

Test 4.11 10 10 10

Test 4.12 10 10 10

Test 4.13 10 10 10

Test 4.14 10 10 10

Test 4.15 10 10 10

region, where the stabilization term starts working properly (has the needed “size”),
and then it converges superlinearly to a noncritical multiplier. However, in many cases,
this does not happen, and then the process still converges slowly to a critical multi-
plier. Thus, by itself, sSQP does not seem to be a reliable tool for avoiding the effect
of attraction.

Some comments on the behavior of sSQP for specific test problems are in order.
For Test 4.16, the size of the box where starting points are generated was reduced
(from 20 to 2) to enforce convergence (otherwise the primal trajectory gets stuck far
from solution). For Example 2, the size of the box where starting points are gener-
ated was reduced (from 20 to 0.2) to enforce convergence to the primal solution of
interest; otherwise the method usually fails. However, even for this reduced size, dual
trajectories diverge to infinity (that is why there is 0/0/0 in Table 1).

We continue with test problems where there are no critical multipliers; these are
Tests 3.1, 4.1–4.9, 4.11–4.15. Numerical results for these problems are reported in
Table 2. For each problem and each solver, we report on the number of times superlin-
ear convergence (of major iterates) was detected. Recall the the number of runs from
different starting points for each problem and solver is 10.

Table 2 puts in evidence that when there are no critical multipliers, all three solvers
usually converge superlinearly, despite degeneracy of constraints.

We conclude with comments on the behavior of solvers on some specific test prob-
lems. For Tests 3.1, 4.1, 4.3, and 4.5, superlinear rate of convergence of major iterates
of MINOS and SNOPT shows up only on a small number of last steps. The same
applies to some runs of MINOS for Tests 4.13 and 4.14: sometimes the superlinear
rate of convergence shows up only after a very long slow run. For Test 4.4, superlin-
ear convergence to local minimizers distinct from 0 is observed (not reported). For
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Test 4.15, there are some strange cases of one-step termination of MINOS after a long
slow run (immediately after singularity is encountered, resulting in severe violation
of optimality criterion).

Regarding sSQP, for Test 4.14 the set of indices of active constraints of subprob-
lems does not stabilize, and the dual sequence does not converge. For Test 4.15, the
size of the box where starting points are generated was reduced (from 20 to 2) to avoid
failures.
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