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Abstract The stabilized version of the sequential quadratic programming algorithm
(sSQP) had been developed in order to achieve superlinear convergence in situations
when the Lagrange multipliers associated to a solution are not unique. Within the
framework of Fischer (Math Program 94:91–124, 2002), the key to local superlinear
convergence of sSQP are the following two properties: upper Lipschitzian behavior
of solutions of the Karush-Kuhn-Tucker (KKT) system under canonical perturbations
and local solvability of sSQP subproblems with the associated primal-dual step being
of the order of the distance from the current iterate to the solution set of the unperturbed
KKT system. According to Fernández and Solodov (Math Program 125:47–73, 2010),
both of these properties are ensured by the second-order sufficient optimality condi-
tion (SOSC) without any constraint qualification assumptions. In this paper, we state
precise relationships between the upper Lipschitzian property of solutions of KKT
systems, error bounds for KKT systems, the notion of critical Lagrange multipliers
(a subclass of multipliers that violate SOSC in a very special way), the second-order
necessary condition for optimality, and solvability of sSQP subproblems. Moreover,
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94 A. F. Izmailov, M. V. Solodov

for the problem with equality constraints only, we prove superlinear convergence of
sSQP under the assumption that the dual starting point is close to a noncritical multi-
plier. Since noncritical multipliers include all those satisfying SOSC but are not limited
to them, we believe this gives the first superlinear convergence result for any Newtonian
method for constrained optimization under assumptions that do not include any con-
straint qualifications and are weaker than SOSC. In the general case when inequality
constraints are present, we show that such a relaxation of assumptions is not possi-
ble. We also consider applying sSQP to the problem where inequality constraints are
reformulated into equalities using slack variables, and discuss the assumptions needed
for convergence in this approach. We conclude with consequences for local regulari-
zation methods proposed in (Izmailov and Solodov SIAM J Optim 16:210–228, 2004;
Wright SIAM J. Optim. 15:673–676, 2005). In particular, we show that these methods
are still locally superlinearly convergent under the noncritical multiplier assumption,
weaker than SOSC employed originally.

Keywords Constrained optimization · Degenerate constraints ·
Second-order sufficiency · Critical multipliers · Error bound · Stabilized SQP ·
Superlinear convergence · Local regularization

Mathematics Subject Classification (2000) 90C30 · 90C33 · 90C55 · 65K05

1 Introduction

Consider the mathematical programming (MP) problem

minimizex f (x)

subject to h(x) = 0, g(x) ≤ 0,
(1)

where f : Rn → R is a smooth function and h : Rn → Rl and g : Rn → Rm

are smooth mappings. Specifically, we assume that f, h and g are twice differentiable
near the point of interest x̄ ∈ Rn , and their second derivatives are continuous at x̄ .

Stationary points of problem (1) and the associated Lagrange multipliers are char-
acterized by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x, λ, μ) = 0, h(x) = 0, μ ≥ 0, g(x) ≤ 0, 〈μ, g(x)〉 = 0, (2)

where L : Rn × Rl × Rm → R is the Lagrangian of problem (1), i.e.,

L(x, λ, μ) = f (x) + 〈λ, h(x)〉 + 〈μ, g(x)〉.

We denote by M = M(x̄) the set of Lagrange multipliers associated with x̄ ∈ Rn ,
that is, the pairs (λ, μ) ∈ Rl ×Rm satisfying (2) for x = x̄ . Thus x̄ is a stationary point
of problem (1) if M �= ∅. We say that for a given stationary point x̄ of problem (1) and
for an associated pair (λ̄, μ̄) ∈ M the second-order sufficient optimality condition
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Stabilized SQP revisited 95

(SOSC) holds if

〈
∂2L

∂x2 (x̄, λ̄, μ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C\{0}, (3)

where

C = C(x̄)

= {ξ ∈ Rn | h′(x̄)ξ = 0, g′
A(x̄)ξ ≤ 0, 〈 f ′(x̄), ξ 〉 ≤ 0}

= {ξ ∈ Rn | h′(x̄)ξ = 0, g′
A+(x̄)ξ = 0, g′

A0
(x̄)ξ ≤ 0}

is the critical cone of problem (1) at x̄ , with

A = A(x̄) = {i = 1, . . . , m | gi (x̄) = 0}

being the set of indices of active constraints at x̄ and

A+ = A+(x̄, μ̄) = {i ∈ A | μ̄i > 0}, A0 = A0(x̄, μ̄) = A\A+,

being the sets of indices of strongly active and weakly active constraints, respectively.
Given the current primal-dual iterate (xk, λk, μk) ∈ Rn × Rl × Rm , stabilized

sequential quadratic programming method (sSQP, see [9,11,12,24,25]) generates the
next iterate (xk+1, λk+1, μk+1) as a stationary point of the quadratic programming
(QP) subproblem in the primal-dual space:

minimize(x, λ, μ)

{〈
f ′ (xk

)
, x − xk

〉 + 1

2

〈
∂2L

∂x2

(
xk, λk, μk

) (
x − xk

)
, x − xk

〉

+ σk

2

(
‖λ‖2 + ‖μ‖2

)}

subject to h
(
xk

) + h′ (xk
) (

x − xk
) − σk

(
λ − λk

) = 0,

g
(
xk

) + g′ (xk
) (

x − xk
) − σk(μ − μk) ≤ 0, (4)

where σk > 0 is the dual stabilization parameter, the choice of which is based on com-
puting the violation of the KKT optimality conditions (2) by the point (xk, λk, μk).
To be specific, in what follows we choose in (4) σk = σ(xk, λk, μk), where σ :
Rn × Rl × Rm → R+ is the natural residual of the KKT system (2), i.e.,

σ(x, λ, μ) =

∥∥∥∥∥∥∥

⎛
⎜⎝

∂L

∂x
(x, λ, μ)

h(x)

min{μ, −g(x)}

⎞
⎟⎠

∥∥∥∥∥∥∥
, (5)

with the minimum applied componentwise.
An iteration of the classical SQP method [1] can be formally thought as solving

(4) with σk = 0. Thus minimization in the SQP subproblem is in primal variables,
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96 A. F. Izmailov, M. V. Solodov

while dual variables are given by multipliers associated to the primal solution. We
emphasize that the sharpest superlinear convergence result for SQP [2] assumes that
M = {(λ̄, μ̄)} (i.e., that there exists the unique multiplier associated to x̄ , also known
as the strict Mangasarian–Fromovitz constraint qualification [20], SMFCQ) and that
SOSC (3) holds. In particular, superlinear convergence of SQP requires certain regu-
larity of constraints (specifically, SMFCQ, which implies the classical Mangasarian–
Fromovitz constraint qualification [22], MFCQ). To deal with the case of possibly
degenerate constraints, when multipliers associated to the solution are not unique,
the stabilized version of SQP was first proposed in [24] (for inequality-constrained
problems). It was further demonstrated in [21] that the min-max sSQP subproblems
suggested in [24] are equivalent to QP subproblems with respect to the primal-dual
variables stated in (4). Numerical experiments with sSQP are reported in [23]. Some
results on sSQP still required at least MFCQ [24–26] or a strong version of SOSC
[11,12]. Recently [9], superlinear convergence of sSQP had been shown in a more
general framework of a stabilized Newton-type method for variational problems using
an appropriate second-order condition only, which reduces to SOSC (3) in the case
of optimization. In principle, all the previous work on sSQP deals with inequality
constraints. But since [9] does not require constraint qualifications, superlinear con-
vergence for the case when equality constraints are present can be easily derived
from [9] under SOSC (3) by replacing the equality h(x) = 0 by the two inequalities
h(x) ≤ 0 and −h(x) ≤ 0. However, as will be shown in Sect. 2, when there are
only equality constraints sharper results can be obtained by a different analysis. On
the other hand, as will be shown in Sect. 3, the same is not possible when inequality
constraints are present.

Convergence result for sSQP [9, Theorem 5] asserts that if (x0, λ0, μ0) ∈ Rn ×
Rl × Rm is close enough to (x̄, λ̄, μ̄) satisfying SOSC (3), then the sSQP iterates are
well-defined and converge superlinearly to (x̄, λ∗, μ∗), with some (λ∗, μ∗) ∈ M
close to (λ̄, μ̄). The proof is by invoking [11, Theorem 1] after verifying assumptions
of the latter by establishing the two key properties of the given stationary point x̄ and
the associated multiplier (λ̄, μ̄), stated immediately below.

Property 1 (upper Lipschitzian behavior of the solutions of KKT system under canon-
ical perturbations). There exists a neighborhood U of (x̄, λ̄, μ̄), and L > 0 such that
for any p = (a, b, c) ∈ Rn × Rl × Rm close enough to (0, 0, 0), any solution
(x(p), λ(p), μ(p)) ∈ U of the perturbed KKT system

∂L

∂x
(x, λ, μ) = a, h(x) = b, μ ≥ 0, g(x) ≤ c, 〈μ, g(x) − c〉 = 0 (6)

satisfies the estimate

‖x(p) − x̄‖ + dist((λ(p), μ(p)), M) ≤ L‖p‖,

where

dist((λ, μ), M)) = inf
(λ̂, μ̂)∈M

‖(λ, μ) − (λ̂, μ̂)‖.
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Stabilized SQP revisited 97

Property 2 (solvability of sSQP subproblems). There exists M > 0 such that for all
(x̃, λ̃, μ̃) ∈ Rn × Rl × Rm close enough to (x̄, λ̄, μ̄), the QP problem

minimize(x, λ, μ)

{
〈 f ′(x̃), x − x̃〉 + 1

2

〈
∂2L

∂x2 (x̃, λ̃, μ̃)(x − x̃), x − x̃

〉

+σ(x̃, λ̃, μ̃)

2

(
‖λ‖2 + ‖μ‖2

)}

subject to h(x̃) + h′(x̃)(x − x̃) − σ(x̃, λ̃, μ̃)(λ − λ̃) = 0,

g(x̃) + g′(x̃)(x − x̃) − σ(x̃, λ̃, μ̃)(μ − μ̃) ≤ 0,

(7)

has a stationary point (x̂, λ̂, μ̂) satisfying the estimate

‖(x̂ − x̃, λ̂ − λ̃, μ̂ − μ̃)‖ ≤ M(‖x̃ − x̄‖ + dist((λ̃, μ̃), M)).

Remark 1 According to [11, Theorem 2], Property 1 is further equivalent to the fol-
lowing error bound: there exists L > 0 such that for all (x̃, λ̃, μ̃) ∈ Rn × Rl × Rm

close enough to (x̄, λ̄, μ̄), it holds that

‖x̃ − x̄‖ + dist((λ̃, μ̃), M) ≤ Lσ(x̃, λ̃, μ̃). (8)

We note that any assumptions implying the two properties above guarantee local
superlinear convergence of sSQP. In particular, [9] shows that SOSC (3) does the job.

It is worth to clarify whether SOSC in the form of (3) could be relaxed or not; for
example, because of the following considerations. As is well-known, when multipliers
are not unique the existence of a multiplier (λ̄, μ̄) ∈ M satisfying

〈
∂2L

∂x2 (x̄, λ̄, μ̄)ξ, ξ

〉
≥ 0 ∀ ξ ∈ C (9)

is not necessary for optimality of x̄ (for example, in the case when MFCQ holds the
choice of the multiplier that verifies the inequality in (9) depends on ξ in general;
see, e.g., [3, Theorem 3.45]). In particular, when multipliers are not unique, SOSC (3)
does not have any necessary counterpart. Thus, some sort of relaxation of SOSC (3)
would be desirable. We shall show that in the case of equality constraints SOSC can
be relaxed to the assumption that the relevant multiplier is noncritical, while in the
general case such a relaxation is not possible.

To be specific, our objectives in the present paper are as follows. Our principal con-
tribution consists of proving in Sect. 2 that for the problem with equality constraints
only, sSQP converges superlinearly under the single assumption that the dual starting
point is close to a noncritical multiplier. Since noncritical multipliers include all those
satisfying SOSC but are not limited to them, we believe this gives the first superlin-
ear convergence result for any Newtonian method for constrained optimization under
assumptions that do not include constraint qualifications and are weaker than SOSC.
Second, in Sect. 3, for general problems with equality and inequality constraints we
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98 A. F. Izmailov, M. V. Solodov

investigate the relationships between the two principal properties stated above, that
are needed for superlinear convergence of sSQP according to the framework of [11].
In particular, we show that Property 1 does not imply Property 2 in general. But if
x̄ satisfies the second-order necessary optimality condition, we show that the upper
Lipschitzian property is in fact equivalent to SOSC and, thus, implies solvability of
subproblems (this is because SOSC is sufficient for both properties, according to [9]).
Furthermore, we point out that the upper Lipschitzian property is in fact equivalent
to the multiplier being noncritical, as defined below. In Sect. 4, we consider applying
sSQP to the equality-constrained reformulation where inequality constraints are con-
verted into equalities using squared slack variables, and show that the assumptions
for convergence in this case are different from (not related to) SOSC for the original
inequality-constrained problem. In Sect. 5, we discuss consequences of our results for
local regularization methods proposed in [16,27] for dealing with nonunique multi-
pliers. In particular, we show that for both methods SOSC employed originally can be
replaced by the weaker assumption that the relevant multiplier is noncritical.

Some words about our notation. Given the notation for active constraints intro-
duced above, we denote inactive ones by N = N (x̄) = {1, . . . , m}\A. For an index
set J , by yJ we denote the components of the vector y indexed by J . Analogously,
for a matrix H, HJ stands for the matrix composed by rows of H indexed by J .
The identity matrix is denoted by I , and diag y stands for the diagonal matrix with
the entries given by the components of the vector y. We finally note that under our
assumptions, the natural residual σ(·) defined by (5) is Lipschitz-continuous near
{x̄} × Rl × Rm, σ (x̄, λ, μ) = 0 for all (λ, μ) ∈ M, and hence

σ(x, λ, μ) = O(‖x − x̄‖ + dist((λ, μ), M)). (10)

2 Local convergence in the case of equality constraints

Consider the equality-constrained problem

minimizex f (x)

subject to h(x) = 0.
(11)

In this case, the KKT system (2) reduces to the Lagrange optimality system

∂L

∂x
(x, λ) = 0, h(x) = 0, (12)

where L : Rn × Rl → R,

L(x, λ) = f (x) + 〈λ, h(x)〉,

is the Lagrangian of problem (11). Accordingly, M now stands for the set of those
λ ∈ Rl satisfying (12) for x = x̄ , and the critical cone is C = ker h′(x̄). For prob-
lem (11), MFCQ, SMFCQ and LICQ all reduce to the classical regularity condition
rank h′(x̄) = l.
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Stabilized SQP revisited 99

For problem (11), the sSQP subproblem (4) is given by the equality-constrained
QP

minimize(x, λ)

{〈
f ′ (xk

)
, x − xk

〉 + 1

2

〈
∂2L

∂x2

(
xk, λk

) (
x − xk

)
, x − xk

〉

+ σk

2
‖λ‖2

}

subject to h(xk) + h′(xk)(x − xk) − σk(λ − λk) = 0, (13)

with σk = σ
(
xk, λk

)
, where σ(·) is the residual of the Lagrange system (12), i.e.,

σ : Rn × Rl → R+,

σ(x, λ) =
∥∥∥∥∥
(

∂L

∂x
(x, λ)

h(x)

)∥∥∥∥∥ . (14)

The Lagrange optimality system for subproblem (13) can be written in the form

⎛
⎝ ∂2L

∂x2 (xk, λk) (h′(xk))T

h′(xk) −σk I

⎞
⎠

(
x − xk

λ − λk

)
= −

(
∂L

∂x
(xk, λk)

h(xk)

)
, (15)

and this linear system will now be regarded as the sSQP subproblem for problem (11).
Recall that according to Remark 1, which in the case of equality constraints can

also be easily seen directly, Property 1 is equivalent to the following error bound:

Property 1-ECP. There exists L > 0 such that for any (x̃, λ̃) ∈ Rn ×Rl close enough
to (x̄, λ̄), it holds that

‖x̃ − x̄‖ + dist(λ̃, M) ≤ Lσ(x̃, λ̃). (16)

As for Property 2, in the case of equality constraints it takes the following form:

Property 2-ECP. There exists M > 0 such that for all (x̃, λ̃) ∈ Rn ×Rl close enough
to (x̄, λ̄), the linear system

⎛
⎝ ∂2L

∂x2 (x̃, λ̃) (h′(x̃))T

h′(x̃) −σ(x̃, λ̃)I

⎞
⎠

(
x − x̃
λ − λ̃

)
= −

(
∂L

∂x
(x̃, λ̃)

h(x̃)

)
(17)

has a solution (x̂, λ̂) satisfying the estimate

‖(x̂ − x̃, λ̂ − λ̃)‖ ≤ M(‖x̃ − x̄‖ + dist(λ̃, M)). (18)

For equality-constrained problems, the definition of a critical multiplier was origi-
nally introduced in [14]. Special numerical and analytical properties of critical multi-
pliers were further studied in [15,17–19].
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100 A. F. Izmailov, M. V. Solodov

Definition 1 A multiplier λ̄ ∈ M is called critical if

∃ ξ ∈ ker h′(x̄)\{0} such that
∂2L

∂x2 (x̄, λ̄)ξ ∈ im(h′(x̄))T, (19)

and noncritical otherwise.

Note that since im(h′(x̄))T = (ker h′(x̄))⊥, if λ̄ ∈ M is critical then

∃ ξ ∈ ker h′(x̄)\{0} such that

〈
∂2L

∂x2 (x̄, λ̄)ξ, ξ

〉
= 0.

In particular, SOSC (3) does not hold. Thus critical multipliers form a subclass of
multipliers violating SOSC, while noncritical multipliers include all those that satisfy
SOSC and more.

We first note that it follows from [15, Theorem 2.3] (and the discussion following
that theorem) that Property 1 is actually equivalent to saying that the multiplier in
question is noncritical. For convenience of a reader, in the case of equality constraints
we shall provide a simple proof of this fact.

Proposition 1 For a Lagrange multiplier λ̄ associated with a stationary point x̄ of
problem (11), Property 1-ECP is equivalent to saying that λ̄ is noncritical.

Proof We start with showing that if λ̄ is a noncritical multiplier then Property 1-ECP
holds. To demonstrate that (16) is satisfied with some L > 0 for all (x̃, λ̃) ∈ Rn × Rl

close enough to (x̄, λ̄), we actually need to prove the following two estimates:

‖x̃ − x̄‖ = O(σ (x̃, λ̃)) (20)

and

dist(λ̃, M) = O(σ (x̃, λ̃)) (21)

as (x̃, λ̃) → (x̄, λ̄). Note that if x̃ = x̄ and λ̃ ∈ M then both (20) and (21) hold trivi-
ally. Taking this into account, we now prove (20) by contradiction: suppose that there
exist sequences {x̃ k} ⊂ Rn and {λ̃k} ⊂ Rl such that {x̃ k} → x̄, {λ̃k} → λ̄, x̃ k �= x̄ or
λ̃k �∈ M for each k, and

‖x̃ k − x̄‖
σ(x̃ k, λ̃k)

→ ∞

or, equivalently,

σ(x̃ k, λ̃k) = o(‖x̃ k − x̄‖). (22)
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Stabilized SQP revisited 101

Employing (14), (22) and our smoothness hypothesis, we then derive the estimates

∂2L

∂x2 (x̄, λ̄)(x̃ k − x̄) = ∂L

∂x
(x̃ k, λ̄) − ∂L

∂x
(x̄, λ̄) + o(‖x̃ k − x̄‖)

= ∂L

∂x
(x̃ k, λ̃k) − (h′(x̃ k))T(λ̃k − λ̄) + o(‖x̃ k − x̄‖)

= −(h′(x̄))T(λ̃k − λ̄)

−(h′(x̃ k) − h′(x̄))T(λ̃k − λ̄) + o(‖x̃ k − x̄‖)
= −(h′(x̄))T(λ̃k − λ̄) + o(‖x̃ k − x̄‖),

h′(x̄)(x̃ k − x̄) = h(x̃ k) − h(x̄) + o(‖x̃ k − x̄‖)
= o(‖x̃ k − x̄‖).

Assuming that the entire sequence
{(

x̃ k − x̄
)
/‖x̃ k − x̄‖} converges to some ξ ∈

Rn, ‖ξ‖ = 1 (passing onto a subsequence, if necessary), the last two estimates imply
the relations

∂2L

∂x2 (x̄, λ̄)ξ ∈ im(h′(x̄))T, h′(x̄)ξ = 0.

Since ξ �= 0, the latter contradicts the assumption that λ̄ is a noncritical multiplier
(cf. (19)). Therefore, (20) is valid.

Furthermore, since M is defined by a linear system, estimate (21) follows imme-
diately from the Hoffman’s Lemma (see, e.g., [3, Theorem 2.200]), and from (14) and
(20):

dist(λ̃, M) = O

(∥∥∥∥∂L

∂x
(x̄, λ̃)

∥∥∥∥
)

= O

(∥∥∥∥∂L

∂x
(x̃, λ̃)

∥∥∥∥
)

+ O

(∥∥∥∥∂L

∂x
(x̃, λ̃) − ∂L

∂x
(x̄, λ̃)

∥∥∥∥
)

= O(σ (x̃, λ̃)) + O(‖x̃ − x̄‖)
= O(σ (x̃, λ̃)).

This completes the proof of the first implication: if λ̄ is a noncritical multiplier then
Property 1-ECP holds.

To establish the converse implication, we shall assume that the multiplier λ̄ is critical
and explicitly construct (x̃, λ̃) ∈ Rn ×Rl arbitrarily close to (x̄, λ̄) and violating (16)
for any pre-fixed L > 0. Since λ̄ is critical, according to (19) there exist ξ ∈ Rn\{0}
and η ∈ Rl such that

∂2L

∂x2 (x̄, λ̄)ξ + (h′(x̄))Tη = 0, h′(x̄)ξ = 0. (23)

Setting x̃ = x̃(t) = x̄ + tξ, λ̃ = λ̃(t) = λ̄ + tη, t ∈ R, one immediately obtains
from (23) that under out smoothness hypothesis
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102 A. F. Izmailov, M. V. Solodov

∂L

∂x
(x̃, λ̃) = ∂L

∂x
(x̄, λ̄) + t

(
∂2L

∂x2 (x̄, λ̄)ξ + (h′(x̄))Tη

)
+ o(t) = o(t),

h(x̃) = h(x̄) + th′(x̄)ξ + o(t) = o(t).

According to (14), this implies the estimate σ(x̃, λ̃) = o(t), while ‖x̃ − x̄‖ = t‖ξ‖,
where ξ �= 0. Hence, the estimate (16) cannot hold for t close enough to zero. ��

We next prove that for the equality-constrained problem (11), if λ̄ is a noncritical
multiplier then Property 2-ECP holds automatically. This implies that noncriticality
of the multiplier (which, in particular, is weaker than SOSC) is the only assump-
tion needed for the local superlinear convergence of sSQP in the case of equality-
constrained problems.

We first need to prove that the matrix in (17) is locally nonsingular. We believe
this can be done in several ways. One line of proof can be based on introducing
the singular-value decomposition of the constraints Jacobian, along the lines of [24,
Theorem 3.2]; however, we cannot quote [24, Theorem 3.2] since its proof uses the
stronger SOSC assumption. We pursue here a different line of analysis, based on the
following result close in nature to the Finsler–Debreu Lemma [5,10], which states
that if for some matrices H and B it holds that 〈Hξ, ξ 〉 > 0 for all ξ ∈ ker B\{0},
then H + t BT B is positive definite for all t > 0 large enough. We feel that Lemma 1
below is of independent interest and may also find applications other than the one in
this paper.

Lemma 1 Let H be an n × n-matrix, B be an l × n-matrix, and assume that

Hξ �∈ im BT ∀ ξ ∈ ker B\{0}. (24)

Then for any c > 0, any n × n-matrix H̃ close enough to H, and any l × n-matrix
B̃ close enough to B, the matrix H̃ + t (B + Ω)T B̃ is nonsingular for all t ∈ R such
that |t | is large enough, and for all l × n-matrices Ω satisfying ‖Ω‖ ≤ c/|t |.
Proof Suppose the contrary, i.e., that there exist sequences {Hk} of n × n-matrices,
{Bk} and {Ωk} of l × n-matrices, {tk} ⊂ R and {ξ k} ⊂ Rn\{0} such that {Hk} →
H, {Bk} → B, |tk | → ∞, for all k it holds that ‖Ωk‖ ≤ c/|tk | and

Hkξ
k + tk(B + Ωk)

T Bkξ
k = 0. (25)

Clearly, we can assume, without loss of generality, that
∥∥ξ k

∥∥ = 1 for all k, and{
ξ k

} → ξ �= 0. Then it must hold that BT Bξ = 0, since

BT Bkξ
k = − 1

tk
Hkξ

k − ΩT
k Bkξ

k → 0 as k → ∞.

We thus proved that Bξ ∈ ker BT, and since Bξ ∈ im B = (ker BT)⊥, this shows
that Bξ = 0. Thus, ξ ∈ ker B\{0}.
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On the other hand, (25) implies that the inclusion

Hkξ
k + tkΩ

T
k Bkξ

k = −tk BT Bkξ
k ∈ im BT

holds for all k, where the second term in the left-hand side tends to zero as k → ∞
because {tkΩk} is bounded and

{
Bkξ

k
} → Bξ = 0. Hence, Hξ ∈ im BT by closed-

ness of im BT. This completes a contradiction with (24). ��
Lemma 2 If λ̄ is a noncritical Lagrange multiplier associated with a stationary point
x̄ of problem (11) then the matrix in the left-hand side of (17) is nonsingular for all(

x̃, λ̃
)

∈ Rn × Rl close enough to (x̄, λ̄), such that x̃ �= x̄ or λ̃ �∈ M.

Proof By Proposition 1, the assumption that λ̄ is noncritical in the sense of Defini-

tion 1 is equivalent to Property 1-ECP. It is then evident that σ
(

x̃, λ̃
)

> 0 if x̃ �= x̄

or λ̃ �∈ M.

Suppose that there exist sequences
{(

x̃ k, λ̃k
)}

⊂ (Rn × Rl)\({x̄} × M) and{(
ξ k, ηk

)}
such that

{(
x̃ k, λ̃k

)}
→ (x̄, λ̄), and for each k,

(
ξ k, ηk

)
belongs to the

null space of the matrix in question, that is,

∂2L

∂x2

(
x̃ k, λ̃k

)
ξ k +

(
h′ (x̃ k

))T
ηk = 0, h′ (x̃ k

)
ξ k − σ

(
x̃ k, λ̃k

)
ηk = 0.

The second equation implies that

ηk = 1

σ
(

x̃ k, λ̃k
)h′ (x̃ k

)
ξ k, (26)

and by substituting this into the first equation, we obtain

⎛
⎝∂2L

∂x2

(
x̃ k, λ̃k

)
+ 1

σ
(

x̃ k, λ̃k
) (

h′ (x̃ k
))T

h′ (x̃ k
)⎞
⎠ ξ k = 0. (27)

Set H = ∂2L

∂x2

(
x̄, λ̄

)
, B = h′(x̄), Hk = ∂2L

∂x2

(
x̃ k, λ̃k

)
, Bk = h′ (x̃ k

)
,Ωk =

h′ (x̃ k
)

− h′(x̄), tk = 1/σ
(

x̃ k, λ̃k
)

. Observing that, by Property 1-ECP (see 16), it

holds that

Ωk = O
(
‖x̃ k − x̄‖

)
= O

(
σ

(
x̃ k, λ̃k

))
= O(1/tk),

and applying Lemma 1 with H̃ = Hk, B̃ = Bk,Ω = Ωk and t = tk , we obtain that
for all k large enough, the matrix in the left-hand side of (27) is nonsingular. Then
(27) implies that ξ k = 0. By (26), we then have that ηk = 0.
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We have thus established that the null space of the matrix in the left-hand side of
(17) contains the zero vector only. The conclusion follows. ��

It remains to establish the estimate (18).

Proposition 2 If λ̄ is a noncritical Lagrange multiplier associated with a stationary
point x̄ of problem (11) then Property 2-ECP holds.

Proof If x̃ = x̄ and λ̃ ∈ M then the right-hand side of system (17) is equal to zero,
and hence, this system has a solution of the form (x̂, λ̂) = (x̃, λ̃), trivially satisfying
(18) with any M ≥ 0.

Now, according to Lemma 2, for all (x̃, λ̃) ∈ Rn × Rl close enough to (x̄, λ̄) and
such that x̃ �= x̄ or λ̃ �∈ M, the linear system (17) has the (unique) solution (x̂, λ̂). Sup-
pose that there exists no M > 0 such that the estimate (18) is valid. The latter means that

there exist sequences
{(

x̃ k, λ̃k
)}

⊂ Rn × Rl and
{(

x̂ k, λ̂k
)}

⊂ Rn × Rl such that

for each k, x̃ k �= x̄ or λ̃k �∈ M,
(

x̂ k, λ̂k
)

solves system (17) with
(

x̃, λ̃
)

=
(

x̃ k, λ̃k
)

,

and
∥∥∥(

x̂ k − x̃ k, λ̂k − λ̃k
)∥∥∥

∥∥x̃ k − x̄
∥∥ + dist

(
λ̃k, M

) → ∞ as k → ∞.

Setting ξ k = x̂ k − x̃ k, ηk = λ̂k − λ̃k , the last relation above can be written as

‖x̃ k − x̄‖ + dist
(
λ̃k, M

)
‖ (

ξ k, ηk
) ‖ → 0 as k → ∞, (28)

and from (17) we obtain that

∂2L

∂x2

(
x̃ k, λ̃k

)
ξ k +

(
h′ (x̃ k

))T
ηk = −∂L

∂x

(
x̃ k, λ̃k

)
,

h′ (x̃ k
)

ξ k − σ
(

x̃ k, λ̃k
)

ηk = −h
(

x̃ k
)
. (29)

Furthermore, employing (10), (28) implies that

∥∥∥∥
(

∂L

∂x
(x̃ k, λ̃k), h(x̃ k)

)∥∥∥∥
‖(ξ k, ηk)‖ = σ(x̃ k, λ̃k)

‖(ξ k, ηk)‖ → 0 as k → ∞. (30)

Passing onto a convergent subsequence if necessary, we can assume that
{(ξ k, ηk)/‖(ξ k, ηk)‖} → (ξ, η) �= 0. Then dividing the relations in (29) by
‖(ξ k, ηk)‖, passing onto the limit and using also (30), we obtain that

∂2L

∂x2 (x̄, λ̄)ξ + (h′(x̄))Tη = 0, h′(x̄)ξ = 0. (31)
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If ξ �= 0 then the latter contradicts the assumption that λ̄ is noncritical. Thus ξ = 0,
and the first equation in (31) reduces to

(h′(x̄))Tη = 0. (32)

Furthermore, denote by P the orthogonal projector onto (im h′(x̄))⊥. Observe that
Ph′(x̄) = 0. Then by the second equation in (29), by twice differentiability of h at x̄ ,
and by Lipschitz-continuity of h′(·) near x̄ , we obtain

σ(x̃ k, λ̃k)Pηk = P
(

h
(

x̃ k
)

+ h′ (x̃ k
)

ξ k
)

= P(h(x̄) + h′(x̄)(x̃ k − x̄) + O

(∥∥∥x̃ k − x̄
∥∥∥2

)

+h′(x̄)ξ k + (h′(x̃ k) − h′(x̄))ξ k)

= O(‖x̃ k − x̄‖2) + O(‖x̃ k − x̄‖‖ξ k‖)
= O((σ (x̃ k, λ̃k))2) + O(σ (x̃ k, λ̃k)‖ξ k‖),

where the last equality is by Property 1-ECP (equivalent to the assumption that λ̄ is
noncritical). Thus,

Pηk = O
(
σ

(
x̃ k, λ̃k

))
+ O

(∥∥∥ξ k
∥∥∥)

.

Dividing both sides of the latter relation by
∥∥(

ξ k, ηk
)∥∥ and passing onto the limit,

we obtain that

Pη = 0,

where (30) and the fact that ξ = 0 were used. This shows that η ∈ ker P = im h′(x̄).
At the same time, (32) means that η ∈ ker(h′(x̄))T = (im h′(x̄))⊥. Hence, η = 0,
which gives a contradiction with (ξ, η) �= 0. ��

By Proposition 2, the discussion above, and [11, Theorem 1], we finally obtain the
following result.

Theorem 1 Let λ̄ be a noncritical Lagrange multiplier associated with a stationary
point x̄ of problem (11).

If (x0, λ0) ∈ Rn × Rl is close enough to (x̄, λ̄), then the sSQP iterates {(xk, λk)}
given by (15), with σk = σ(xk, λk) defined according to (14), are well-defined and
converge superlinearly to (x̄, λ∗) for some λ∗ ∈ M such that λ∗ → λ̄ as (x0, λ0) →
(x̄, λ̄).

3 Equality and inequality constraints

We now turn our attention to the general problem (1) and proceed to investigate the
relationships between the properties relevant for sSQP convergence, second-order
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necessary/sufficient optimality conditions, critical multipliers (and some others) in
more detail.

It is worth to point out that Properties 1 and 2 have natural counterparts in the anal-
ysis of SQP and, more generally, of (Josephy–)Newton-type methods for generalized
equations in [2]. Specifically, Property 1 is a weakened version of semistability of a
solution [2] (the latter subsumes that (x̄, λ̄, μ̄) is an isolated solution of the KKT sys-
tem (2), in which case semistability and Property 1 are the same). The property of semi-
stability has various equivalent characterizations; see [2,4,7] for details. Property 2 is
related to the so-called hemistability [2] (although the latter concerns solvability of
subproblems of the usual SQP rather than sSQP). Note that solvability of subproblems
is, of course, a necessary condition for the corresponding iterates to be well-defined.
In [2] it was shown that generally, semistability does not imply hemistability, and that
both assumptions are needed for the analysis of Newton-type methods for generalized
equations. However, [2] also shows that semistability implies hemistability provided x̄
is a local solution of problem (1). Our primary goal in this section is to clarify whether
similar relationships can be derived in the context of sSQP, i.e., for Properties 1 and 2
above, and establish their connections to other relevant concepts.

We first extend the notion of critical/noncritical multipliers to the problem with
equality and inequality constraints. To this end, observe that the definition (19) of a
critical multiplier for equality-constrained problems is equivalent to saying that the
linear system (23) has a solution (ξ, η) ∈ Rn × Rl , with ξ �= 0. An extension of
this definition to problem (1) when inequality constraints are present is given by the
following.

Definition 2 A multiplier (λ̄, μ̄) ∈ M is called critical if there exists a triple
(ξ, η, ζ ) ∈ Rn × Rl × Rm , with ξ �= 0, satisfying the system

∂2L

∂x2 (x̄, λ̄, μ̄)ξ + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′
A+(x̄)ξ = 0,

(33)

ζA0 ≥ 0, g′
A0

(x̄)ξ ≤ 0, ζi 〈g′
i (x̄), ξ 〉 = 0, i ∈ A0, ζN = 0, (34)

and noncritical otherwise.

As can be easily seen, (33)–(34) is the KKT system for the QP problem

minimizeξ

1

2

〈
∂2L

∂x2 (x̄, λ̄, μ̄)ξ, ξ

〉

subject to ξ ∈ C.

(35)

Thus, (λ̄, μ̄) being noncritical is equivalent to saying that ξ = 0 is the unique
stationary point of problem (35). It follows that the multiplier (λ̄, μ̄) being noncritical
is further equivalent to saying that the pair (C, ∂2 L

∂x2 (x̄, λ̄, μ̄)) has the so-called R0
property; see the discussion following (3.3.18) in [7].

Moreover, multiplying the first equality in (33) by ξ and using the second equality in
(33) and the relations in (34), it can be seen that a sufficient condition for (λ̄, μ̄) to be
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Fig. 1 Critical multipliers

SOSC (3) SOC (37)

noncritical (i.e., for (33)–(34) not to possess any solution with nonzero ξ component)
is the following:

〈
∂2L

∂x2 (x̄, λ̄, μ̄)ξ, ξ

〉
�= 0 ∀ ξ ∈ C\{0}. (36)

Note that, by the convexity of the cone C , the condition above means that the qua-
dratic form in question has either the positive sign or the negative sign on C , i.e., either
SOSC (3) holds or the following second-order condition (SOC) holds:

〈
∂2L

∂x2 (x̄, λ̄, μ̄)ξ, ξ

〉
< 0 ∀ ξ ∈ C\{0}. (37)

Thus, all multipliers satisfying SOSC (3) are noncritical, as well as those satisfying
SOC (37) (or, in other words, any critical multiplier necessarily violates SOSC (3)
and SOC (37)). However, it is important to emphasize that there may exist noncritical
multipliers that do not satisfy either (3) or (37), as (36) is evidently merely a sufficient
condition, not an equivalent definition of noncriticality. See also Example 3.

Figure 1 is intended to provide some intuition regarding the structure of the set of
critical multipliers. Gray oval represents the set M of all multipliers, while two cir-
cles represent the sets of multipliers satisfying SOSC (3) and SOC (37). The boundary
of these circles corresponds to critical multipliers (but there may exist other critical
multipliers as well).

As already mentioned, it follows from the analysis in [15] that Property 1 is actu-
ally equivalent to saying that the multiplier in question is noncritical. In the case when
inequality constraints are present the proof is rather involved when compared to the
proof for the equality constrained case given above. We shall not give details here,
referring the reader to [15].

Proposition 3 For a Lagrange multiplier (λ̄, μ̄) associated with a stationary point x̄
of problem (1), Property 1 is equivalent to saying that (λ̄, μ̄) is noncritical.

Remark 2 It is worth to point out that, according to Remark 1 and Proposition 3, the
error bound property (8) is equivalent to the assumption that the multiplier in question
is noncritical. Consequently, the weaker noncriticality assumption could be employed
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everywhere where SOSC (3) had been invoked for purposes of the error bound (8).
Some examples are [13,16,27]; see also the discussion in Sect. 5.

We next point out that Property 1 does not imply Property 2 in general. To show this,
we shall employ the example that was used in [2] to illustrate that semistability does
not imply hemistability (even in the simplest nondegenerate case). Example 1 shows,
in particular, that for problems with inequality constraints the weaker assumption that
the multiplier is noncritical cannot replace SOSC (3) in [9, Theorem 5] to establish
superlinear convergence of sSQP. However, for problems with equality constraints
only such a relaxation is possible, as was shown in Sect. 2.

Example 1 Let n = 1, l = 0, m = 1, f (x) = −x2/2 + x3/6, g(x) = −x . Problem
(1) with this data has a global minimizer x∗ = 2, but it also has a stationary point
x̄ = 0, which is not even a local minimizer. The point x̄ satisfies LICQ, and the asso-
ciated unique multiplier is μ̄ = 0. Thus, A = A0, A+ = ∅, and system (33), (34)
takes the form

−ξ − ζ = 0, ζ ≥ 0, ξ ≥ 0, ζ ξ = 0,

which has the unique solution (ξ, η) = (0, 0). Thus, μ̄ is a noncritical multiplier, and
hence, Property 1 holds (which in this case reduces to semistability).

We next show that sSQP subproblems may not be solvable, i.e., Property 2 does
not hold. For a given (x̃, μ̃) ∈ R × R, problem (7) takes the form

minimize(x, μ) −
(

x̃ − 1

2
x̃2

)
(x − x̃) − 1

2
(1 − x̃)(x − x̃)2 + σ(x̃, μ̃)

2
μ2

subject to x + σ(x̃, μ̃)(μ − μ̃) ≥ 0,

where

σ(x̃, μ̃) =
∥∥∥∥∥∥
⎛
⎝−x̃ + 1

2
x̃2 − μ̃

min{μ̃, x̃}

⎞
⎠

∥∥∥∥∥∥ .

One can directly check that for any (x̃, μ̃) �= (0, 0) close enough to (0, 0) and
satisfying μ̃ ≥ 0, the latter problem does not have any stationary points. Indeed, the
KKT system of this problem gives the relations

1

2
x̃2 + (1 − x̃)x + μ = 0, μ ≥ 0, x + σ(x̃, μ̃)(μ − μ̃) ≥ 0,

μ(x + σ(x̃, μ̃)(μ − μ̃)) = 0. (38)

If we suppose that μ = 0 then the first equation in (38) gives

x = − x̃2

2(1 − x̃)
,
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and hence,

x + σ(x̃, μ̃)(μ − μ̃) = − x̃2

2(1 − x̃)
− σ(x̃, μ̃)μ̃ < 0,

which means that the third relation in (38) cannot be satisfied.
On the other hand, if μ > 0 then according to the complementary slackness con-

dition (the last relation in (38)), the third relation in (38) must hold as an equality.
Combined with the first equation in (38), this gives

− x̃2 + 2μ

2(1 − x̃)
+ σ(x̃, μ̃)(μ − μ̃) = 0.

The latter further implies for (x̃, μ̃) close to (0, 0) that

μ = −
1

2
x̃2 + σ(x̃, μ̃)(1 − x̃)μ̃

1 − σ(x̃, μ̃) + σ(x̃, μ̃)x̃
< 0,

which means that the second relation in (38) cannot be satisfied.

We next show that the situation changes if condition (9) holds, i.e., in that case
Property 1 does imply Property 2. The argument is similar to proving that semista-
bility implies hemistability when x̄ is a local solution of problem (1) [2]. That said,
note that semistability implies SMFCQ, and hence MFCQ, so that in that case local
optimality of x̄ implies (9) with the unique associated multiplier (λ̄, μ̄). In our case
optimality of x̄ and Property 1 do not imply (9), in general.

Proposition 4 Suppose that (9) holds for a stationary point x̄ and an associated
Lagrange multiplier (λ̄, μ̄) of problem (1).

Then Property 1 (which is equivalent to saying that (λ̄, μ̄) is a noncritical multi-
plier) is equivalent to SOSC (3), and thus implies Property 2.

Proof As discussed above, SOSC (3) always implies that (λ̄, μ̄) is a noncritical
multiplier.

Suppose now that (λ̄, μ̄) is noncritical but SOSC (3) does not hold. Under the
assumed condition (9), this means that there exists ξ̄ ∈ C\{0} such that the inequality
in (9) holds as an equality for ξ = ξ̄ . Then (9) implies that ξ̄ is a solution of problem
(35), and hence, a stationary point of this problem (due to the linearity of its con-
straints, which is a CQ). However, according to the discussion above, such ξ̄ �= 0 does
not exist in the case of noncritical (λ̄, μ̄), which gives a contradiction. Hence, SOSC
(3) does hold.

The fact that SOSC (3) implies Property 2 follows from [9, Theorem 3] (the error
bound needed for the latter is implied by Property 1, see Remark 1). ��

To complete the study of relevant relationships, it remains to consider the case when
x̄ is a local solution of problem (1), but condition (9) does not hold. The next example
demonstrates that in this case, Property 1 does not necessarily imply Property 2.
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Example 2 Let n = 1, l = 0, m = 2, f (x) = −x2/2, g(x) = (−x, x3/6). Problem
(1) with this data has the unique feasible point (hence, the unique solution) x̄ = 0.
This point is stationary, and M = {μ ∈ R2+ | μ1 = 0}, C = R+. Consider the
multiplier μ̄ = 0. It can be easily seen that condition (9) does not hold with this mul-
tiplier. At the same time, condition (37) holds. Hence, μ̄ is a noncritical multiplier,
and thus, Property 1 holds (but note that semistability does not hold, since M is not
a singleton!).

For a given (x̃, μ̃) ∈ R × R2, problem (7) takes the form

minimize(x, μ) −x̃(x − x̃) − 1

2
(x − x̃)2 + σ(x̃, μ̃)

2
(μ2

1 + μ2
2)

subject to x + σ(x̃, μ̃)(μ1 − μ̃1) ≥ 0,

−1

3
x̃3 + 1

2
x̃2x − σ(x̃, μ̃)(μ2 − μ̃2) ≤ 0, (39)

where

σ(x̃, μ̃) =

∥∥∥∥∥∥∥

⎛
⎜⎝

−x̃ − μ̃1 + 1

2
x̃2μ̃2

min{μ̃1, x̃}
min{μ̃2, −x̃3/6}

⎞
⎟⎠

∥∥∥∥∥∥∥
.

Take x̃ > 0, μ̃1 > 0, μ̃2 = 0. Then

σ(x̃, μ̃) =
∥∥∥∥∥∥
⎛
⎝ x̃ + μ̃1

min{μ̃1, x̃}
−x̃3/6

⎞
⎠

∥∥∥∥∥∥ ,

and there evidently exists a constant γ > 0 (not depending on x̃ and μ̃1) such that the
inequality

σ(x̃, μ̃) ≥ γ (x̃ + μ̃1) (40)

holds for all such x̃ and μ̃.
The KKT system of problem (39) gives the relations

− x − μ1 + 1

2
x̃2μ2 = 0,

μ1 ≥ 0, x + σ(x̃, μ̃)(μ1 − μ̃1) ≥ 0, μ1(x + σ(x̃, μ̃)(μ1 − μ̃1)) = 0,

μ2 ≥ 0, −1

3
x̃3 + 1

2
x̃2x − σ(x̃, μ̃)μ2 ≤ 0,

μ2

(
−1

3
x̃3 + 1

2
x̃2x − σ(x̃, μ̃)μ2

)
= 0.

(41)
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If we suppose that μ1 = μ2 = 0 then the first equation in (41) gives x = 0, and
hence,

x + σ(x̃, μ̃)(μ1 − μ̃1) = −σ(x̃, μ̃)μ̃1 < 0,

which means that the second relation in the second line of (41) cannot be satisfied.
Furthermore, if μ1 = 0, μ2 > 0 then according to the complementary slackness

condition (the last relation in the last line of (41)), the second relation in the last line
of (41) must hold as an equality. Combined with the first equation in (41), this gives

(
−σ(x̃, μ̃) + 1

4
x̃4

)
μ2 = 1

3
x̃3. (42)

By (40) we derive

−σ(x̃, μ̃) + 1

4
x̃4 ≤ −γ (x̃ + μ̃1) + 1

4
x̃4 < 0

provided x̃ is small enough, which means that (42) may hold only with μ2 < 0. Thus,
the first relation in the last line of (41) cannot be satisfied.

If μ1 > 0, μ2 = 0 then the first equation in (41) gives x = −μ1, and hence,

x + σ(x̃, μ̃)(μ1 − μ̃1) = −(1 − σ(x̃, μ̃))μ1 − σ(x̃, μ̃)μ̃1 < 0

provided x̃ and μ̃1 are small enough. Thus, the second relation in the second line of
(41) cannot be satisfied in this case.

Finally, if μ1 > 0 and μ2 > 0 then employing the first equation in (41) and the
complementary slackness conditions (the last relations in the last two lines of (41))
we obtain the equations

x = −μ1 + 1

2
x̃2μ2, x = −σ(x̃, μ̃)(μ1 − μ̃1), x = 2

3
x̃ + 2σ(x̃, μ̃)

x̃2 μ2 = 0.

Solving this linear system, we obtain

μ2 = −
x̃2

(
2

3
x̃ − σ(x̃, μ̃)μ̃1 − σ(x̃, μ̃)x̃

)

σ(x̃, μ̃)

(
2(1 − σ(x̃, μ̃)) + 1

2
x̃4

) .

Let, e.g., μ̃1 = x̃ . Then

μ2 = −
x̃2

(
2

3
x̃ + o(x̃)

)

σ(x̃, μ̃)

(
2(1 − σ(x̃, μ̃)) + 1

2
x̃4

) < 0
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Local superlinear convergence of sSQP

Property 1 Property 2
(9)
or

ECP

Noncritical multiplier
property

Error bound (8)

Unique zero stationary
point of (35)

R
0
 pair property

SOSC (3)

SOC (37)

SOC (36)

or

Fig. 2 Flowchart of relations between some relevant properties

provided x̃ is small enough, and thus, the first relation in the last line of (41) cannot
be satisfied.

Summarizing, we demonstrated that for x̃ = μ̃1 > 0 small enough, and for μ̃2 = 0,
problem (39) does not have any stationary points.

Recall again that violation of condition (9) for a local solution x̄ of problem (1)
and an associated multiplier (λ̄, μ̄) subsumes that the multiplier is not unique (i.e.,
SMFCQ and, even more so, LICQ do not hold at x̄). But MFCQ may hold, as the latter
does not imply (9) for a given (or even some) multiplier (λ̄, μ̄).

The relationships discussed above are summarized in Fig. 2.

Remark 3 Some words are in order about the relation of Definition 2 with the slightly
different notion of critical multipliers for problems with inequality constraints in [18].

In [18], a multiplier (λ̄, μ̄) ∈ M is called critical with respect to an index set
J ⊂ A if μ̄i = 0 for all i ∈ {1, . . . , m}\J , and the multiplier (λ̄, μ̄J ) associated
with the stationary point x̄ of the equality-constrained problem

minimizex f (x)

subject to h(x) = 0, gJ (x) = 0
(43)

is critical for this problem in the sense of Definition 2.
One can easily check that if a multiplier (λ̄, μ̄) is critical in the sense of Definition 2

then it is critical with respect to the index set J = A+ ∪ J̃ for some J̃ ⊂ A0 in the
sense of [18].

4 Slacks reformulation of inequality constraints

Consider the approach of applying sSQP not directly to (1), but rather to the equality-
constrained reformulation

123



Stabilized SQP revisited 113

minimize(x, s) f (x)

subject to h(x) = 0, g(x) + s2 = 0, (44)

where s ∈ Rm is the vector of slack variables and the square is meant component-
wise. In the context of sSQP this “brute force” reformulation is not unreasonable,
especially since constraint qualifications are not required for convergence. Accord-
ing to Theorem 1, the only assumption needed for local superlinear convergence of
the corresponding version of sSQP consists of having the dual starting point close
to a multiplier which is noncritical for problem (44). Understanding what the latter
means in terms of the original problem (1) leads to assumptions different from [9,
Theorem 5], i.e., different from SOSC (3) for (1). In particular, for a given stationary
point x̄ of problem (1), and for a given (λ̄, μ̄) ∈ M, the needed assumptions do not
even subsume condition (9) for (1), see Example 3 (note again that (9) is not necessary
for optimality of x̄ in problem (1) in the absence of constraint qualifications).

Defining the mapping

h̃ : Rn × Rm → Rl × Rm, h̃(x, s) = (h(x), g(x) + s2),

the problem (44) can be written as

minimize(x, s) f (x)

subject to h̃(x, s) = 0,

and the Lagrangian L̃ : (Rn × Rm) × (Rl × Rm) → R of this problem has the form

L̃((x, s), (λ, μ)) = f (x) + 〈(λ, μ), h̃(x, s)〉
= L(x, λ, μ) + 〈μ, s2〉,

where L is the Lagrangian of (1). Stationary points and Lagrange multipliers of prob-
lem (44) are thus characterized by the Lagrange optimality system

∂ L̃

∂(x, s)
((x, s), (λ, μ)) = 0, h̃(x, s) = 0, (45)

where for any (x, s) ∈ Rn × Rm and (λ, μ) ∈ Rl × Rm it holds that

∂ L̃

∂(x, s)
((x, s), (λ, μ)) =

(
∂L

∂x
(x, λ, μ)

2(diag μ)s

)
.

It is evident that stationarity of x̄ in problem (1) implies stationarity of (x̄, s̄) in
problem (44), with s̄ = √−g(x̄), where the square root is applied componentwise.
Moreover, any (λ̄, μ̄) ∈ M is a Lagrange multiplier of problem (44), associated with
its stationary point (x̄, s̄).
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By a direct computation, for any (x, s) ∈ Rn × Rm and (λ, μ) ∈ Rl × Rm it holds
that

h̃′(x, s) =
(

h′(x) 0
g′(x) 2 diag s

)
,

∂2 L̃

∂(x, σ )2 ((x, s), (λ, μ)) =
⎛
⎝ ∂2L

∂x2 (x, λ, μ) 0

0 2 diag μ

⎞
⎠ .

The sSQP iteration system for problem (44)

⎛
⎝ ∂2 L̃

∂(x, σ )2 ((xk, sk), (λk, μk)) (h̃′(xk, sk))T

h̃′(xk, sk) −σk I

⎞
⎠

⎛
⎜⎜⎝

(
x − xk

s − sk

)
(

λ − λk

μ − μk

)
⎞
⎟⎟⎠

= −
⎛
⎝ ∂ L̃

∂x
((xk, sk), (λk, μk))

h̃(xk, sk)

⎞
⎠

can thus be written in the form

∂2L

∂x2 (xk, λk, μk)(x − xk) + (h′(xk))T(λ − λk) + (g′(xk))T(μ − μk)

= −∂L

∂x
(xk, λk, μk),

2(diag μk)(s − sk) + 2(diag sk)(μ − μk) = −2(diag μk)sk,

h′(xk)(x − xk) − σk(λ − λk) = −h(xk),

g′(xk)(x − xk) + 2(diag sk)(s − sk) − σk(μ − μk) = −g(xk) − (sk)2.

(46)

As before, we take σk = σ((xk, sk), (λk, μk)), with σ : (Rn×Rm)×(Rl×Rm) →
R+ being the residual of the optimality system (45):

σ((x, s), (λ, μ)) =
∥∥∥∥∥∥
⎛
⎝ ∂̃L

∂(x, s)
((x, s), (λ, μ))

h̃(x, s)

⎞
⎠

∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

∂L

∂x
(x, λ, μ)

2(diag μ)s
h(x)

g(x) + s2

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
. (47)

Proposition 5 The Lagrange multiplier (λ̄, μ̄) associated to the stationary point
(x̄,

√−g(x̄)) of problem (44) is critical if and only if either μ̄i = 0 for some i ∈ A,
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or the Lagrange multiplier (λ̄, μ̄A) associated to the stationary point x̄ of the equal-
ity-constrained problem

minimizex f (x)

subject to h(x) = 0, gA(x) = 0
(48)

is critical.

Proof By rearranging the variables (if necessary), we obtain the equalities

h̃′(x̄, σ̄ ) =
⎛
⎝ h′(x̄) 0 0

g′
A(x̄) 0 0

g′
N (x̄) 0 2 diag

√−gN (x̄)

⎞
⎠

and

∂2 L̃

∂(x, σ )2 ((x̄, σ̄ ), (λ̄, μ̄)) =

⎛
⎜⎜⎝

∂2L

∂x2 (x̄, λ̄, μ̄) 0 0

0 2 diag μ̄A 0
0 0 0

⎞
⎟⎟⎠ .

Hence, the multiplier (λ̄, μ̄) is critical for problem (44) if and only if there exist
(ξ, ζ ) ∈ Rn × Rm, (ξ, ζ ) �= (0, 0), and (y, z) ∈ Rl × Rm such that

ξ ∈ ker h′(x̄) ∩ ker g′
A(x̄), g′

N (x̄)ξ + 2
(

diag
√−gN (x̄)

)
ζN = 0,

∂2L

∂x2 (x̄, λ̄, μ̄)ξ = (h′(x̄))T y + (g′
A(x̄))Tz A

(diag μ̄A)ζA = 0, zN = 0.

(49)

If there exists i ∈ A such that μ̄i = 0, the latter system is evidently satisfied with
ξ = 0, y = 0, z = 0, and with all components of ζ equal to zero, except for the i th
component, which can be arbitrary. Thus, in this case, (λ̄, μ̄) is critical.

Suppose now that μ̄A > 0. Then the first equation in the last line of (49) is equiv-
alent to ζA = 0. Note also that for every ξ ∈ Rn there exists the unique ζN satisfying
the second equation (49), and in particular, ζN = 0 provided ξ = 0. It follows that in
this case, (λ̄, μ̄) is critical for problem (44) if and only if there exist ξ ∈ Rn\{0} and
(y, z A) ∈ Rl × R|A| such that

ξ ∈ ker h′(x̄) ∩ ker g′
A(x̄),

∂2L

∂x2 (x̄, λ̄, μ̄)ξ = (h′(x̄))T y + (g′
A(x̄))Tz A,

which means that the multiplier (λ̄, μ̄A) is critical for problem (48). ��
The next result follows immediately from Proposition 5 and Theorem 1, but some

comments are in order. First, observe that under the strict complementarity condition
μ̄A > 0, the multiplier (λ̄, μ̄A) is noncritical for the equality-constrained problem
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(48) if and only if the multiplier (λ̄, μ̄) is noncritical for the original problem (1)
(in the sense of Definition 2). Note also that even though sSQP is applied here to the
equality-constrained reformulation (44), under the assumptions of Theorem 2 the limit
(λ∗, μ∗) of the dual sequence is a multiplier not only for (44) but also for the original
problem (1). This is because the multiplier sets in (1) and (44) differ only in the lack
of nonnegativity of the μ-part in the latter. But here we have that μ∗ ≥ 0, due to the
proximity of the starting dual point to a multiplier satisfying strict complementarity.
Hence, (λ∗, μ∗) ∈ M.

Theorem 2 Let (λ̄, μ̄) be a Lagrange multiplier associated with a stationary point x̄
of problem (1), and suppose that μ̄A > 0 (strict complementarity), and the Lagrange
multiplier (λ̄, μ̄A) associated to the stationary point x̄ of the equality-constrained
problem (48) is noncritical.

If (x0, λ0, μ0) ∈ Rn × Rl × Rm is close enough to (x̄, λ̄, μ̄), then the sSQP
iterates {((xk, sk), (λk, μk))} given by (46) with s0 = √

max{0, −g(x0)}, and with
σk = σ((xk, sk), (λk, μk)) defined according to (47), are well-defined and con-
verge superlinearly to ((x̄,

√−g(x̄)), (λ∗, μ∗)) for some (λ∗, μ∗) ∈ M such that
(λ∗, μ∗) → (λ̄, μ̄) as (x0, λ0, μ0) → (x̄, λ̄, μ̄).

We next provide an example demonstrating that the assumptions of Theorem 2
may hold when condition (9) (and even more so SOSC (3)) is not satisfied with any
multiplier.

Example 3 Let n = 1, l = 0, m = 2, f (x) = −x2/2, g(x) = (−x3/6, x3/6).
Similarly to Example 2, problem (1) with this data has the unique feasible point
(hence, the unique solution) x̄ = 0; this point is stationary, but unlike in Example 2,
M = R2+, C = R. It can be easily seen that for any μ̄ ∈ M, condition (9) does not
hold. At the same time, the equality-constrained problem (48) has no critical multi-
pliers, and hence, Theorem 2 is applicable with any μ̄ > 0 and guarantees superlinear
convergence of sSQP.

5 Consequences for local regularization methods

Two different CQ-free local algorithms for problem (1) with inequality constraints
were developed in [16,27]. Instead of converting inequalities into equalities via slack
variables, both of these methods are based on the following approach: first, identify
the constraints active at the solution (along iterations of some generic globally conver-
gent scheme), and second, apply a regularization or stabilization technique (different
for the two methods) to the resulting equality-constrained problem. For both meth-
ods it was demonstrated that the two stages (identification of active constraints and
the equality-constrained phase) can be constructed and justified under SOSC (3). The
main message of this section is that these conclusions actually remain valid with SOSC
replaced by the weaker assumption that the multiplier in question is noncritical.

Identification of active constraints in [16,27] is based on the error bound (8).
According to Remark 1 and Proposition 3, if (λ̄, μ̄) is a noncritical Lagrange multi-
plier associated with a stationary point x̄ of problem (1), then this error bound holds
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with some L > 0 for all (x̃, λ̃, μ̃) ∈ Rn × Rl × Rm close enough to (x̄, λ̄, μ̄).
According to [6], this in turn implies that for any θ ∈ (0, 1), the set

J = J
(

x0, λ0, μ0
)

=
{

i = 1, 2, . . . , m |
(
σ

(
x0, λ0, μ0

))θ ≥ −gi

(
x0

)}

coincides with A = A(x̄) for any starting point
(
x0, λ0, μ0

) ∈ Rn × Rl × Rm

close enough to (x̄, λ̄, μ̄). Thus, noncriticality of the multiplier takes care of active
constraints identification, (at least) as a matter of theory.

The approach of [27] can essentially be seen as applying sSQP to the equality-
constrained problem (43), starting from

(
x0, λ0, μ0

J

)
. According to Remark 3, since

(λ̄, μ̄) is noncritical, the multiplier
(
λ0, μ0

J

)
associated with the stationary point x̄

of problem (43) is noncritical as well (recall that for
(
x0, λ0, μ0

)
close enough to

(x̄, λ̄, μ̄), it holds that J = A = A+ ∪ A0). Therefore, by Theorem 1, we obtain
local superlinear convergence of the algorithm of [27] under the only assumption that
(λ̄, μ̄) is noncritical.

In [16], instead of applying sSQP, it is suggested to apply the standard Newton
method to the following regularized Lagrange optimality system of problem (43):

f ′(x) + (h′(x))Tλ + (g′
J (x))TμJ = 0,

(
h(x)

gJ (x)

)
+ Π

(
λ − λ0

μJ − μ0
J

)
= 0. (50)

Here Π = Π
(
x0, λ0, μ0

J

)
is a linear operator approximating the orthogonal pro-

jector onto (im Λ(x̄))⊥, where for x ∈ Rn we set

Λ(x) =
(

h′(x)

g′
J (x)

)
.

By “approximating” we mean that Π̄ = Π(x̄, λ̄, μ̄J ) is the specified orthogo-
nal projector, and the mapping

(
x0, λ0, μ0

J

) → Π
(
x0, λ0, μ0

J

)
is continuous at

(x̄, λ̄, μ̄J ). Given (x0, λ0, μ0
J ) close enough to (x̄, λ̄, μ̄), the procedure for com-

puting Π relies on the singular-value decomposition of Λ(x0). We emphasize that
once computed on the first iteration, Π (as well as (λ0, μ0

J )) remains fixed over the
Newton iterations applied to (50). Of course, any globalization strategy when coupled
with this local algorithm may require many singular-value decompositions before the
local phase is activated. We refer the reader to [16] for details, and for a comparison of
this approach with the one from [27]. The procedure for computing Π also requires an
error bound similar to (16), but for problem (43). The latter is further equivalent to the
assumption that (λ̄, μ̄J ) is a noncritical multiplier for problem (43) (see Remark 1),
which is again implied by the assumption that (λ̄, μ̄) is a noncritical multiplier for
problem (1) (see Remark 3).

Furthermore, it was demonstrated in [16] that for Π defined above and any
(x0, λ0, μ0

J ) close enough to (x̄, λ̄, μ̄J ), there exists the unique solution of sys-
tem (50) near (x̄, λ̄, μ̄J ). Moreover, this unique solution has the form (x̄, λ̂, μ̂J )

for some multiplier (λ̂, μ̂J ) (depending on (x0, λ0, μ0
J )) associated to the stationary
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point x̄ of problem (43), and (λ̂, μ̂J ) → (λ̄, μ̄J ) as (x0, λ0, μ0
J ) → (x̄, λ̄, μ̄J ). It

remains to show that the Jacobian of system (50) is nonsingular at (x̄, λ̂, μ̂J ), so that
the Newton method applied to this system would converge superlinearly.

Proposition 6 If (λ̄, μ̄J ) is a noncritical multiplier associated with a stationary point
x̄ of problem (43) then for any (x0, λ0, μ0

J ) ∈ Rn × Rl × R|J | close enough to
(x̄, λ̄, μ̄J ), the Jacobian of the corresponding system (50) is nonsingular at its solu-
tion (x̄, λ̂, μ̂J ) (the latter being the unique solution of (50) close to (x̄, λ̄, μ̄J )).

Proof Suppose that there exists a sequence {(xk , λk, μk
J )} convergent to {(x̄, λ̄, μ̄J )}

and such that for each k, the Jacobian of system (50) is singular at (x̄, λ̂, μ̂J ) for the
corresponding (λ̂, μ̂J ) = (λ̂k, μ̂k

J ) (depending on (xk, λk, μk
J )). This means that for

each k, there exists (ξ k, ηk, ζ k
J ) �= 0 such that

f ′′(x̄)ξ k + (h′′(x̄)ξ k)Tλ̂k + (g′′
J (x̄)ξ k)Tμ̂k

J + (Λ(x̄))T
(

ηk

ζ k
J

)
= 0,

Λ(x̄)ξ k + Π

(
ηk

ζ k
J

)
= 0.

Normalizing (ξ k, ηk, ζ k
J ), and passing onto the limit along the appropriate subse-

quence, we obtain the existence of (ξ, η, ζJ ) �= 0 such that

f ′′(x̄)ξ + (h′′(x̄)ξ)Tλ̄ + (g′′
J (x̄)ξ)Tμ̄J + (Λ(x̄))T

(
η

ζJ

)
= 0,

Λ(x̄)ξ + Π̄

(
η

ζJ

)
= 0

(51)

(recall that (λ̂k, μ̂k
J ) → (λ̄, μ̄J ) as {(xk, λk, μk

J )} tends to {(x̄, λ̄, μ̄J )}). Since Π̄

is the orthogonal projector onto (im Λ(x̄))⊥, the second equality in (51) is equivalent
to saying that

Λ(x̄)ξ = 0, Π̄

(
η

ζJ

)
= 0. (52)

If ξ �= 0 then the first equalities in (51) and (52) contradict the assumption that
(λ̄, μ̄J ) is a noncritical multiplier (cf. (19)).

Assuming now that ξ = 0, the first equality in (51) yields

(Λ(x̄))T
(

η

ζJ

)
= 0,

which means that (η, ζJ ) ∈ ker(Λ(x̄))T = (im Λ(x̄))⊥. At the same time, the second
equality in (52) means that (η, ζJ ) ∈ im Λ(x̄). It follows that (η, ζJ ) = 0, which
again gives a contradiction. ��
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The presented argument justifies local superlinear convergence of the algorithm
proposed in [16] under the only assumption that (λ̄, μ̄) is a noncritical multiplier.

6 Concluding remarks

We have put together precise relationships between upper Lipschitzian behavior of
solutions of KKT systems under canonical perturbations, error bounds for KKT sys-
tems, critical Lagrange multipliers, second-order optimality conditions, and solvability
of sSQP subproblems. It has been shown that for problems where inequality constraints
are present, the second-order sufficient optimality condition in [9, Theorem 5] can-
not be replaced by the weaker assumption that the Lagrange multiplier is noncritical
for proving superlinear convergence of sSQP iterations. However, this relaxation of
assumptions is possible for problems with equality constraints only. We have also
established that noncriticality of the multiplier can be used instead of second-order
sufficiency in the regularization methods of [16,27] for achieving superlinear conver-
gence despite nonuniqueness of multipliers. An interesting open question concerns
primal (rather than primal-dual) convergence rate of sSQP iterates; see [8] for details.
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