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For the sequential quadratic programming method (SQP), we show that close to a so-
lution satisfying the same assumptions that are required for its local quadratic conver-
gence (namely, uniqueness of the Lagrange multipliers and the second-order sufficient
optimality condition), the direction given by the SQP subproblem using the Hessian
of the Lagrangian is a descent direction for the standard l1-penalty function. We em-
phasize that this property is not straightforward at all, because the Hessian of the
Lagrangian need not be positive definite under these assumptions or, in fact, under
any other reasonable set of assumptions. In particular, this descent property was not
known previously, under any assumptions (even including the stronger linear indepen-
dence constraint qualification, strict complementarity, etc.). We also check the property
in question by experiments on nonconvex problems from the Hock–Schittkowski test
collection for a model algorithm. While to propose any new and complete SQP algo-
rithm is not our goal here, our experiments confirm that the descent condition, and a
model method based on it, work as expected. This indicates that the new theoretical
findings that we report might be useful for full/practical SQP implementations which
employ second derivatives and linesearch for the l1-penalty function. In particular, our
results imply that in SQP methods where using subproblems without Hessian modi-
fications is an option, this option has a solid theoretical justification at least on late
iterations.
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1. Introduction

We consider the constrained optimization problem

minimize f(x)
subject to h(x) = 0, g(x) ≤ 0,

(1)

∗Corresponding author. Email: solodov@impa.br



April 4, 2016 Optimization Methods and Software r

where the objective function f : Rn → R and the constraints mappings h : Rn → Rl

and g : Rn → Rm are smooth enough (precise smoothness assumptions will be
specified later on, as needed).

One of the efficient approaches to solving (1) is that of sequential quadratic pro-
gramming (SQP). As suggested by the name, SQP methods are based on sequen-
tially approximating the original problem (1) by quadratic programs (QP) of the
form

minimize f(xk) + 〈f ′(xk), x− xk〉+
1

2
〈Hk(x− xk), x− xk〉

subject to h(xk) + h′(xk)(x− xk) = 0, g(xk) + g′(xk)(x− xk) ≤ 0,
(2)

where xk ∈ Rn is the current iterate, and Hk is some symmetric n× n-matrix. We
refer to the survey papers [1, 9] for relevant discussions, and to [16, Chapters 4, 6]
for a comprehensive convergence analysis of methods of this class.

One of the important issues in the SQP context is the choice of the matrix Hk in
the subproblem (2). Let L : Rn × Rl × Rm → R be the Lagrangian of problem (1):

L(x, λ, µ) = f(x) + 〈λ, h(x)〉+ 〈µ, g(x)〉.

The basic choice is to take in (2) the Hessian of the Lagrangian:

Hk =
∂2L

∂x2
(xk, λk, µk), (3)

where (λk, µk) ∈ Rl × Rm is the current dual iterate. A common alternative is to
employ some quasi-Newton approximations of the Hessian. As is well understood,
both approaches have advantages and disadvantages, whether practical or theoret-
ical. Without going into any lengthy discussion, it is fair to say that using second-
order derivatives (when they are affordable to compute) is still of interest, even if in
combination with other techniques, or on late iterations only. Some SQP methods
using second derivatives can be consulted in the survey papers [1, 9]. We shall briefly
comment on the more recent proposals in [10, 11, 18] (we also mention that we dis-
cuss here “full-space” methods, and not “composite-step”, as in [12] for example).
The method of [18] first solves a convex QP (thus not based on second derivatives)
to predict the active set, and then solves the resulting equality-constrained QP with
the exact Hessian information. The method in [10, 11] first also solves a convex QP
and then uses the obtained information to solve a second (inequality-constrained)
QP using the exact Hessian. Thus, those (and various other) methods do employ
QP subproblems with the second derivatives information, in one way or another.

The goal of this paper is to draw attention to the new fact established here,
which is the descent property of the l1-penalty function in the direction given by
SQP subproblem using second derivatives (when close to solutions satisfying certain
assumptions). We next discuss some of the issues that arise.

The first comment is that, as is well known and already mentioned above, the
Hessian of the Lagrangian may not be positive definite even close to a solution,
under any reasonable assumptions. Then one issue, of course, is solving a nonconvex
QP itself. Note, however, that our convergence results require computing merely a
stationary point, and not a global solution (although, in the presence of inequality
constraints, an additional proximity property is required if a stationary point is
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not unique). The next difficulty is that it is not automatic that a subproblem’s
stationary point provides a descent direction for the penalty function, as positive
definiteness of Hk in (2) is the key in the standard argument showing that the
obtained direction is of descent; more on this in Section 3. Our main result precisely
shows that, though not automatic because the matrix is indefinite, the descent
property in question actually does hold for a direction given by a stationary point
of the QP with the exact Hessian, when approaching a solution satisfying the same
assumptitons that are required for SQP superlinear convergence. The conditions
in question are the uniqueness of the Lagrange multipliers and the second-order
sufficient condition for optimality (the sharpest combination of assumptions that
is currently known to guarantee fast SQP convergence; see [16, Chapter 4]). That
said, we emphasize that the presented theoretical results are not about improving
anything previously known. The descent property that we report, which is directly
relevant for globalizations using the l1-penalty function, was not known previously
under any assumptions (even including the stronger linear independence constraint
qualification, strict complementarity, etc.).

The rest of the paper is organized as follows. In Section 2 we recall the conditions
needed for local superlinear convergence of the basic SQP method, and provide a new
result demonstrating that under these assumptions, the SQP step yields superlinear
decrease of the distance to the primal solution (note that this is not automatic
simply from superlinear decrease of the distance to the primal-dual solution). This
new result would be required for our subsequent analysis. Section 3 is concerned with
the interplay bewteen the possible choices of the penalty parameters and the descent
properties of SQP directions for the l1-penalty function. In particular, this section
contains our main theoretical result, demonstrating that no modifications of the
Hessian of the Lagrangian are needed for the descent property to hold near a primal-
dual solution satisfying the same assumptions as those for the local superlinear
convergence. In Section 4, we consider the specificities of the case when there are no
inequality constraints (only equality constraints), and further strengthen some of
the results for this case. In particular, in the equality-constrained case no constraints
qualifications are needed for the descent property, and the augmented Lagrangian (in
addition to the Lagrangian) choice for the matrix Hk is possible. Finally, in Section 5
we state a model algorithm, and then report on our computational experiments using
nonconvex problems from the Hock–Schittkowski collection [13]. We note that to
propose here a complete practical SQP method is not our intention; the purpose
is to show that the new property can be used to design a convergent scheme in
principle, and can thus be incorporated as an option to potentially improve SQP
implementations employing second derivatives.

2. On local convergence properties of SQP

We start with stating the local convergence properties of SQP, which in particular
highlight the benefits of using the second-order derivative information. We also prove
a new estimate for the distance to the primal solution, which would be needed for
our subsequent developments. First, some definitions and terminology are in order.

Recall that stationary points of (1) and associated Lagrange multipliers are char-
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acterized by the Karush–Kuhn–Tucker (KKT) system:

∂L

∂x
(x, λ, µ) = 0, h(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0,

in the variables (x, λ, µ) ∈ Rn × Rl × Rm. As is well known, under any of the
appropriate constraint qualifications [21], KKT conditions are necessary for a given
point to be a local solution of (1).

The assumption that there exists the unique Lagrange multiplier (λ̄, µ̄) associated
with a given stationary point x̄, is often referred to as the strict Mangasarian–
Fromovitz constraint qualification (SMFCQ). Note that in general, it is weaker
than linear independence of active constraints’ gradients (LICQ). The following is
the standard second-order sufficient optimality condition (SOSC):〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0}, (4)

where A(x̄) = {i = 1, . . . ,m | gi(x̄) = 0} is the set of inequality constraints active
at x̄, and

C(x̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′A(x̄)(x̄)ξ ≤ 0, 〈f ′(x̄), ξ〉 ≤ 0} (5)

is the usual critical cone of problem (1) at x̄. Here and throughout, by yA we denote
the subvector of vector y comprised by components indexed by i ∈ A.

The following theorem on local convergence of SQP using the exact Hessian (3)
almost literally repeats [16, Theorem 4.14], except for the property (7). The addi-
tional property (7) would be needed for our developments later on; it follows from
the proof in [16, Theorem 3.6], which is used in [16, Theorem 4.14]. Theorem 2.1
can also be derived using [14, Theorem 3.1]. Note also that Theorem 2.1 is stronger
than those results in the SQP literature which employ LICQ instead of SMFCQ.
That said, this difference is not the principal point of our subsequent developments.
As mentioned in the introduction, our key directional descent results are new even
for LICQ or any other assumptions.

Theorem 2.1. Let f : Rn → R, h : Rn → Rl and g : Rn → Rm be twice differen-
tiable in a neighborhood of x̄ ∈ Rn, with their second derivatives being continuous
at x̄. Let x̄ be a local solution of problem (1), satisfying the SMFCQ and the SOSC
(4) for the associated Lagrange multiplier (λ̄, µ̄) ∈ Rl × Rm.

Then there exists δ > 0 such that for any ε0 > 0 small enough and any starting
point (x0, λ0, µ0) ∈ Rn × Rl × Rm satisfying

‖(x0 − x̄, λ0 − λ̄, µ0 − µ̄)‖ ≤ ε0,

the following assertions are valid:

(a) There exists a sequence {(xk, λk, µk)} ⊂ Rn × Rl × Rm such that for each
k = 0, 1, . . ., the point xk+1 is a stationary point of problem (2) with Hk

given by (3), and (λk+1, µk+1) is an associated Lagrange multiplier, satisfying

‖(xk+1 − xk, λk+1 − λk, µk+1 − µk)‖ ≤ δ. (6)
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(b) Any such sequence satisfies

‖(xk − x̄, λk − λ̄, µk − λ̄)‖ ≤ ε0 (7)

for all k, converges to (x̄, λ̄, µ̄), and the rate of convergence is superlinear.

Moreover, the rate of convergence is quadratic provided the second derivatives of f ,
h and g are locally Lipschitz-continuous with respect to x̄.

Remark 1. In the equality-constrained case (i.e., when there are no inequality con-
straints in (1)), the first-order optimality conditions for the SQP subproblem (2) give
a system of linear equations. Under the assumptions of Theorem 2.1, this system has
unique solution (for (xk, λk, µk) in question). The generated iterative sequence is
then uniquely defined and therefore, according to Theorem 2.1, this sequence must
satisfy the “localization condition” (6). In other words, in this case (6) is automatic
and can be dropped. In the general case, (6) defines appropriate “close-by” sta-
tionary points, for which the convergence assertions hold. In principle, if stationary
points violating (6) exist and one of them is returned by the QP solver, for such a
sequence convergence would not be guaranteed.

We emphasize that in the presence of inequality constraints, localization condition
(6) is unavoidable for proving convergence, even under any stronger assumptions.
We refer the reader to a detailed discussion in [17, Section 5.1], and in particular
to [17, Examples 5.1, 5.2] which exhibit that (6) cannot be removed (in the sense
that without it, convergence can be lost) even when LICQ, strict complementarity
and SOSC are all satisfied (and thus also strong SOSC), which is the strongest set
of assumptions possible.

The following Theorem 2.2 is new, though it is related to [7]. It will be used in
the sequel to prove that, when close to a solution, Hessian modifications are not
needed to guarantee the directional descent property. The key difference with [7] is
that the result therein is a posteriori: it assumes that a sequence generated by the
method converges to the given solution. Here, we establish the superlinear decrease
of the distance to the primal solution given by the SQP step from an arbitrary point
close enough to this solution.

Theorem 2.2. Under the assumptions of Theorem 2.1, there exists δ > 0 such that
for any point (xk, λk, µk) ∈ Rn × Rl × Rm close enough to (x̄, λ̄, µ̄), there exists
a stationary point xk+1 of problem (2) with Hk given by (3), with an associated
Lagrange multiplier (λk+1, µk+1) satisfying (6), and for any such xk+1 it holds that

xk+1 − x̄ = o(‖xk − x̄‖) (8)

as (xk, λk, µk)→ (x̄, λ̄, µ̄).

Proof. Let δ > 0 be chosen as in Theorem 2.1. Then, according to its result, for any
(xk, λk, µk) ∈ Rn×Rl×Rm close enough to (x̄, λ̄, µ̄), there exists a stationary point
xk+1 of problem (2) with Hk defined in (3), with an associated Lagrange multiplier
(λk+1, µk+1) satisfying (6), and for any such triple (xk+1, λk+1, µk+1) it holds that
{(xk+1 − xk, λk+1 − λk, µk+1 − µk)} tends to zero as (xk, λk, µk) → (x̄, λ̄, µ̄).
Therefore, it remains to establish (8).

We argue by contradiction: suppose that there exists a sequence {(xk, λk, µk)} ⊂
Rn×Rl×Rm convergent to (x̄, λ̄, µ̄), such that for every k there exists (pk, λ̃k, µ̃k) ∈
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Rn × Rl × Rm satisfying the relations

f ′(xk) +Hkp+ (h′(xk))Tλ+ (g′(xk))Tµ = 0, h(xk) + h′(xk)p = 0,
µ ≥ 0, g(xk) + g′(xk)p ≤ 0, 〈µ, g(xk) + g′(xk)p〉 = 0,

(9)

resulting from the KKT system of the SQP subproblem (2), and such that

{(pk, λ̃k − λk, µ̃k − µk)} → (0, 0, 0) (10)

as k →∞, and

lim inf
k→∞

‖xk + pk − x̄‖
‖xk − x̄‖

> 0. (11)

For each k, using our smoothness assumptions and the boundedness of {(λk, µk)},
we obtain that

∂L

∂x
(xk + pk, λk, µk) + (h′(xk+1))T(λ̃k − λk) + (g′(xk+1))T(µ̃k − µk)

=
∂L

∂x
(xk, λk, µk) +

∂2L

∂x2
(xk, λk, µk)pk

+(h′(xk))T(λ̃k − λk) + (g′(xk))T(µ̃k − µk) + o(‖pk‖)
= f ′(xk) +Hkp

k + (h′(xk))Tλ̃k + (g′(xk))Tµ̃k + o(‖pk‖)
= o(‖pk‖) (12)

as k → ∞, where (10) was used in the first equality, (3) was used in the second,
and the first relation of (9) was used in the last one.

Similarly, using the second relation of (9), we have that

h(xk + pk) = h(xk) + h′(xk)pk + o(‖pk‖) = o(‖pk‖) (13)

as k →∞.
Furthermore, the last line in (9) gives

min{µ̃k, −g(xk)− g′(xk)pk} = 0. (14)

Since

{g{1, ...,m}\A(x̄)(x
k)} → g{1, ...,m}\A(x̄)(x̄) < 0,

this evidently implies that for each k large enough it holds that µ̃k{1, ...,m}\A(x̄) = 0.

Also, since

{g{1, ...,m}\A(x̄)(x
k + pk)} → g{1, ...,m}\A(x̄)(x̄) < 0,

it holds that g{1, ...,m}\A(x̄)(x
k + pk) < 0 for all k large enough. Hence, for such k,

min{µ̃k{1, ...,m}\A(x̄), −g{1, ...,m}\A(x̄)(x
k + pk)} = 0. (15)
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Finally, using again the equality (14) and the nonexpansiveness of the projection
operator onto the set (−∞ , a], a ∈ R, i.e., the property

|min{a, b} −min{a, c}| ≤ |b− c| ∀ a, b, c ∈ R,

we obtain that

|min{µ̃kA(x̄), −gA(x̄)(x
k + pk)}| = |min{µ̃kA(x̄), −gA(x̄)(x

k)− g′A(x̄)(x
k)pk + o(‖pk‖)}

−min{µ̃kA(x̄), −gA(x̄)(x
k)− g′A(x̄)(x

k)pk}|

= o(‖pk‖) (16)

as k →∞, where modulus is applied componentwise.
From (12), (13), (15), and (16), by the primal error bound obtained in [7] under

SOSC (see also [16, Proposition 1.46]) we derive the estimate

xk + pk − x̄ = o(‖pk‖)

as k →∞, which means the existence of a sequence {tk} ∈ R+ such that {tk} → 0,
and for all k it holds that

‖xk + pk − x̄‖ ≤ tk‖pk‖ ≤ tk(‖xk + pk − x̄‖+ ‖xk − x̄‖).

The latter implies that for all k large enough, we have

1

2
‖xk + pk − x̄‖ ≤ (1− tk)‖xk + pk − x̄‖ ≤ tk‖xk − x̄‖,

contradicting (11).

3. On descent directions and penalty parameters

Since the basic SQP scheme (2), as any Newtonian method, is guaranteed to con-
verge only locally, it needs to be coupled with some globalization strategy. One well-
established technique consists of linesearch in the computed direction pk = xk+1−xk
for the l1-penalty function ϕc : Rn → R,

ϕc(x) = f(x) + c(‖(h(x)‖1 + ‖max{0, g(x)}‖1),

where c > 0 is a penalty parameter, and the max-operation is applied component-
wise. The specified direction pk, with some associated Lagrange multipliers (λk+1,
µk+1) ∈ Rl × Rm, satisfies (9).

Our objective is to understand (beyond what is known from previous literature)
when the SQP direction pk obtained using the Hessian of the Lagrangian (3) is of
descent for the penalty function.

As is well-known, the directional derivatives of the penalty function are given by
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the following formula (see, e.g., [16, Proposition 6.1]):

ϕ′c(x; ξ) = 〈f ′(x), ξ〉

+c

 ∑
j∈J0(x)

|〈h′i(x), ξ〉| −
∑

j∈J−(x)

〈h′i(x), ξ〉+
∑

j∈J+(x)

〈h′i(x), ξ〉

+
∑

i∈I0(x)

max{0, 〈g′i(x), ξ〉}+
∑

i∈I+(x)

〈g′i(x), ξ〉

 , (17)

where x, ξ ∈ Rn are arbitrary, and

J−(x) = {j = 1, . . . , l | hj(x) < 0},
J0(x) = {j = 1, . . . , l | hj(x) = 0},
J+(x) = {j = 1, . . . , l | hj(x) > 0},
I0(x) = {i = 1, . . . , m | gi(x) = 0},
I+(x) = {i = 1, . . . , m | gi(x) > 0}.

In particular, for any pk satisfying (9), it can be seen (e.g., [16, Lemma 6.8]) that

ϕ′c(x
k; pk) ≤ 〈f ′(xk), pk〉 − c(‖(h(xk)‖1 + ‖max{0, g(xk)})‖1)

≤ −〈Hkp
k, pk〉

+(‖(λk+1, µk+1)‖∞ − c)(‖(h(xk)‖1 + ‖max{0, g(xk)})‖1). (18)

Accordingly, if Hk is positive definite and pk 6= 0, then taking

ck ≥ ‖(λk+1, µk+1)‖∞ (19)

ensures that

ϕ′ck(xk; pk) ≤ ∆k < 0, (20)

where

∆k = 〈f ′(xk), pk〉 − ck(‖(h(xk)‖1 + ‖max{0, g(xk)})‖1). (21)

In particular, pk is a direction of descent for ϕck at the point xk. Recall, however,
that the Hessian of the Lagrangian (3) cannot be expected to be positive definite.
This is the crucial issue we would like to address.

If (20) holds, it can be seen in a standard way that for any fixed ε ∈ (0, 1), the
following version of the Armijo inequality is satisfied for all α > 0 small enough:

ϕck(xk + αpk) ≤ ϕck(xk) + εα∆k. (22)

Thus, one takes the starting trial value α = 1, and multiplies it by some parameter
θ ∈ (0, 1) until the value α = αk satisfying (22) is obtained. Then, the next primal
iterate is (re)defined as xk+1 = xk +αkp

k. Assuming the sequence of matrices Hk is
bounded and these matrices are uniformly positive definite, reasonable global con-
vergence properties of the outlined algorithm are obtained (e.g., [16, Theorem 6.9]).
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The key issue is that the requirement of positive definiteness of Hk is in contradic-
tion with the Newtonian choice (3), and thus with the potential for fast local con-
vergence. To some extent, this contradiction can be alleviated using quasi-Newton
approximations of the Hessian of the Lagrangian. But this also comes with certain
disadvantages, including somewhat incomplete convergence theory (e.g., bounded-
ness of the quasi-Newton matrices, such as BFGS, had not been proven). In this
work we consider that second derivatives of the problem data (and thus the Hessian
of the Lagrangian) are available and affordable. Then, it is at least natural to ex-
plore using this information to the fullest extent possible. One basic observation is
that positive definiteness of Hk is sufficient but not necessary for the SQP direction
pk to be of descent for ϕck at xk (with appropriate ck). Thus, one may well explore
using the Hessian first, while being aware that this choice of Hk may require mod-
ifications. Of course, this idea is not new; see, e.g., the recent proposal in [5]. As
a matter of theory, we do prove that under some reasonable assumptions Hessian
modifications are, in fact, not necessary to produce descent when close to a solution
(despite the matrix not being positive definite). We also confirm this with some
experiments on the well-established Hock–Schittkowski test collection [13]. But if
the direction given by the Hessian does not work, we consider a model algorithm
which modifies Hk adding to it τkI with some τk > 0 (other strategies that ensure
eventual positive definiteness of Hk can be used [5]). For the new Hk, a new pk is
computed by solving the SQP subproblem (2); this direction is either accepted or
not, etc. Evidently, an appropriate pk will always be obtained after a finite num-
ber of modifications (because Hk becomes positive definite). We emphasize that
the above strategy is not advertised here as an overall practical algorithm. We are
merely interested in tracking the descent property along a trajectory that we know
is convergent to a solution. That said, once the descent property is confirmed, it
has a potential to be incorporated into practical SQP algorithms with second-order
derivatives.

Before proceeding, let us recall the following well-known fact for equality-
constrained problems (see [1] and in [19, p. 542]): for sufficiently large ck, the SQP
direction pk is of descent for ϕck at xk if

〈Hkξ, ξ〉 > 0 ∀ ξ ∈ kerh′(xk) \ {0}. (23)

This is, of course, a much weaker requirement than positive definiteness of Hk. One
question though is for which choice of ck the descent property holds true. The next
example demonstrates that even a strict inequality in (19) is not sufficient.

Example 3.1. Let n = 2, l = 1, m = 0, f(x) = (x2
1−x2

2)/2, h(x) = x2. The unique
solution of problem (1) with this data is x̄ = 0, and it satisfies both LICQ and
SOSC (4), with the unique associated Lagrange multiplier λ̄ = 0. Moreover, h′(xk)
and Hk given by (3) do not depend on xk and λk, and always satisfy (23).

Here (1) is a QP, and therefore, the SQP subproblem (2) with Hk from (3) coin-
cides with (1). This implies that pk = −xk, λk+1 = 0. Take any xk ∈ R2 such that
|xk1| < |xk2| (such points exist arbitrarily close to x̄). Then according to (17)

ϕ′ck(xk; pk) = −(xk1)2 + (xk2)2 − ck|xk2| > 0

for every ck ≥ 0 = ‖λk+1‖∞ small enough.
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However, fixing c̄ > 0 and replacing (19) by

ck ≥ ‖(λk+1, µk+1)‖∞ + c̄, (24)

we obtain that in the example above the descent condition (20) would hold for all
xk close enough to x̄. In fact, (24) is exactly the condition on penalty parameters
that is often used in practice.

We next present our main theoretical result. It establishes that choosing the
penalty parameter as in (24) ensures that the SQP direction associated to the Hes-
sian of the Lagrangian (3) is of descent for the corresponding penalty function, when
close to a solution with the most natural set of properties: SMFCQ and SOSC (in
the inequality-constrained case, the computed direction also has to satisfy the local-
ization condition (6), if the subproblem has more than one stationary point). To the
best of our knowledge, there are no comparable results in the literature, including
under any stronger assumptions (e.g., LICQ instead of SMFCQ, even with strict
complementarity in addition, etc.). Moreover, when there are equality constraints
only, in Section 4 below we shall prove an even stronger result. In particular, in
that case no constraint qualifications of any kind are needed to ensure the descent
property, and the localization condition (6) can be dropped; see Remark 1 and
Theorem 4.1 below.

Theorem 3.2. Under the assumptions of Theorem 2.1, for any c̄ > 0 there exist
δ > 0 and γ > 0 such that for any (xk, λk, µk) ∈ Rn × Rl × Rm close enough to
(x̄, λ̄, µ̄), there exists a stationary point xk+1 of problem (2) with Hk given by (3),
with an associated Lagrange multiplier (λk+1, µk+1) satisfying (6), and for any such
xk+1 and any ck satisfying (24), it holds that

ϕ′ck(xk; pk) ≤ ∆k ≤ −γ‖pk‖2, (25)

where pk = xk+1 − xk and ∆k is given by (21).

Proof. Let δ > 0 be defined as in Theorem 2.2. Then for any (xk, λk, µk) close
enough to (x̄, λ̄, µ̄) there exists a triple (xk+1, λk+1, µk+1) satisfying all the re-
quirements specified in the statement of that theorem, and for any such triple it
holds that

xk + pk − x̄ = o(‖xk − x̄‖)

as (xk, λk, µk)→ (x̄, λ̄, µ̄). Then

pk = −(xk − x̄) + o(‖xk − x̄‖),

which implies that {pk} → 0, ‖xk − x̄‖ = O(‖pk‖), and thus

xk − x̄ = −pk + o(‖pk‖) (26)

as (xk, λk, µk)→ (x̄, λ̄, µ̄).
We argue by contradiction. Suppose there exists a sequence {(xk, λk, µk)} ⊂

Rn × Rl × Rm convergent to (x̄, λ̄, µ̄), and a sequence of reals {ck}, such that for
each k a triple (xk+1, λk+1, µk+1) is as specified in the statement of the theorem,

10
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ck satisfies (24), pk 6= 0, and

lim
k→∞

∆k

‖pk‖2
≥ 0 (27)

(the limit can be +∞). Passing to a subsequence if necessary, without loss of gen-
erality we may assume that the sequence {pk/‖pk‖} converges to some ξ ∈ Rn,
‖ξ‖ = 1.

Observe first that for all k the second inequality in (18), (21) and (24) imply the
estimate

∆k ≤ −〈Hkp
k, pk〉 − c̄(‖(h(xk)‖1 + ‖max{0, g(xk)})‖1). (28)

If h′(x̄)ξ 6= 0, then there exists γ̃ > 0 such that for all k large enough

‖h(xk)‖1 = ‖h′(xk)pk‖1 ≥ γ̃‖pk‖,

where the equality is by the the first constraint in (2). Then (28) implies that

∆k ≤ −c̄γ̃‖pk‖+O(‖pk‖2) (29)

as k →∞, which contradicts (27). Therefore,

h′(x̄)ξ = 0. (30)

Passing to a further subsequence if necessary, without loss of generality we may
assume that the index sets I≥ = I0(xk) ∪ I+(xk) and I< = {1, . . . , m} \ I≥ are
constant for all k. Observe that it necessarily holds that I≥ ⊂ A(x̄).

Suppose now that there exists i ∈ I≥ such that 〈g′i(x̄), ξ〉 < 0. Then there exists
γ̃ > 0 such that for all k large enough

max{0, gi(xk)} = gi(x
k)

= gi(x̄) + 〈g′i(x̄), xk − x̄〉+ o(‖xk − x̄‖)
= 〈g′i(x̄), −pk〉+ o(‖pk‖)
≥ γ̃‖pk‖,

where the second equality is by (26). Then (28) again implies (29), contradicting
(27). Therefore,

g′I≥(x̄)ξ ≥ 0. (31)

Furthermore, for any i ∈ I< ∩ A(x̄) in a similar way (employing (26)) we have
that

0 ≥ gi(xk) = gi(x̄) + 〈g′i(x̄), xk − x̄〉+ o(‖xk − x̄‖) = 〈g′i(x̄), −pk〉+ o(‖pk‖)

as k →∞. This evidently implies that

〈g′i(x̄), ξ〉 ≥ 0,

11
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and therefore,

g′I<∩A(x̄)(x̄)ξ ≥ 0. (32)

Combining (31) and (32) we conclude that

g′A(x̄)(x̄)ξ ≥ 0. (33)

For any i ∈ I≥, the second constraint in (2) implies that for all k it holds that

〈g′i(xk), pk〉 ≤ −g′i(xk) ≤ 0,

which evidently implies that

〈g′i(x̄), ξ〉 ≤ 0.

Therefore, taking into account (31),

g′I≥(x̄)ξ = 0. (34)

Note that

−h(xk) = h′(xk)pk = ‖pk‖
(
h′(xk)

pk

‖pk‖

)
,

so that (30) implies that

h(xk) = o(‖pk‖), (35)

as k →∞. Also, for each i ∈ I≥, we have that

0 ≤ gi(xk) ≤ −〈g′i(xk), pk〉 = −‖pk‖
〈
g′i(x

k),
pk

‖pk‖

〉
,

so that (34) implies that

max{0, gI≥(xk)} = o(‖pk‖), (36)

as k →∞, while for all k it holds that

max{0, gI<(xk)} = 0. (37)

From (21), using (35), (36) and (37), we now derive the estimate

∆k = 〈f ′(xk), pk〉+ o(‖pk‖)

as k →∞. Thus, if 〈f ′(x̄), ξ〉 < 0, then there exists γ̃ > 0 such that

∆k = −γ̃‖pk‖+ o(‖pk‖),

12
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again contradicting (27). Therefore,

〈f ′(x̄), ξ〉 ≥ 0. (38)

By (5), (30), (33) and (38) we now conclude that −ξ ∈ C(x̄). Therefore, by SOSC
(4) it follows that there exists γ̃ > 0 such that for all k large enough

〈Hkp
k, pk〉 ≥ γ̃‖pk‖2. (39)

Then (28) implies that

∆k ≤ −γ̃‖pk‖2,

which again contradicts (27).

We next discuss some options for controlling the penalty parameter.
A simple procedure ensuring that (24) holds for all k, and that the parameters are

asymptotically constant when the sequence {(λk, µk)} is bounded, can be as follows.
Fix δ > 0. For k = 0 set c0 = ‖(λ1, µ1)‖∞+ c̄+ δ. For every k = 1, 2, . . . check (24)
for ck = ck−1. If it holds, accept this ck; otherwise, set ck = ‖(λk+1, µk+1)‖∞+ c̄+δ.

Note that with such a rule, penalty parameters are nondecreasing. In practice,
this can be a drawback. Some large value of ck produced on early iterations (and
for a good reason at the time) may be blocking long steps later on, while according
to the rule in question ck cannot be decreased. On the other hand, more moderate
values of this parameter might be acceptable at this stage of the iterative process. Of
course, there are more sophisticated rules for controlling the penalty parameter than
the simple one described above, including those allowing for its decrease, see, e.g.,
[2, p. 295]. More directly relevant for our purposes are the following considerations.

The definition of ∆k in (21) suggests to define ck directly in such a way that (25)
holds for pk at hand. If xk is not feasible in problem (1), one can always take

ck ≥
〈f ′(xk), pk〉+ γ‖pk‖2

‖h(xk)‖1 + ‖max{0, g(xk)}‖1
, (40)

regardless of which matrix Hk was used to compute pk. However, the right-hand
side of this inequality can be unbounded if xk approaches a nonoptimal feasible
point. This makes (40) at least questionable, and certainly not safe. It may be more
promising to combine condition (40) with condition (24). This gives

ck ≥ min

{
‖(λk+1, µk+1)‖∞ + c̄,

〈f ′(xk), pk〉+ γ‖pk‖2

‖h(xk)‖1 + ‖max{0, g(xk)}‖1

}
, (41)

where the second term in the min function is +∞ if xk is feasible and the nominator
therein is positive. Observe that (40), and thus also (41), allow negative values of
ck to produce a descent direction for the penalty function with such a parameter.
Of course, the exotic option of taking negative penalty parameters does not seem

13
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to make a whole lot of sense. In what follows, we replace (41) by the more natural

ck ≥ max

{
0, min

{
‖(λk+1, µk+1)‖∞ + c̄,

〈f ′(xk), pk〉+ γ‖pk‖2

‖h(xk)‖1 + ‖max{0, g(xk)}‖1

}}
.

(42)
It can be easily checked that Theorem 3.2 (as well as Theorem 5.2 further below)

remains valid with (24) replaced by (41) or by (42).
Finally, we consider the following rule for penalty parameters. It goes back to [3],

and was recently used in [18] (its efficiency for equality-constrained problems is also
claimed in [19, p. 542]). The rule is:

ck ≥
〈f ′(xk), pk〉+ smax{0, 〈Hkp

k, pk〉}
(1− ν)(‖h(xk)‖1 + ‖max{0, g(xk)}‖1)

, (43)

where ν ∈ (0, 1), and s ∈ {0, 1/2} is a parameter characterizing two variants.
According to (21), if xk is infeasible then (43) implies the inequality

∆k ≤ −νck(‖h(xk)‖1 + ‖max{0, g(xk)}‖1)− smax{0, 〈Hkp
k, pk〉}. (44)

In particular, if ck > 0 then (20) holds, implying that pk is a direction of descent of
ϕck at xk.

Under the assumption that the matrices Hk are uniformly positive definite, global
convergence proofs for various linesearch SQP algorithms employing (43) with s =
1/2 can be found in [3], [18]. For the equality-constrained problems, a result of
this kind can be found in [4], under the weaker assumption that the matrices Hk

are uniformly positive definite on kerh′(xk). Moreover, the latter assumption was
removed altogether in [5], at the price of using the Hessian modification strategy
when certain tests are violated. In addition, [4] and [5] deal with perturbed versions
of the algorithm, in which the iterative KKT systems (9) may be solved with some
controlled inexactness.

We next obtain a counterpart of Theorem 3.2 for the rule (43) with s = 1/2.
I.e., we establish that when close to a solution with the usual properties, the SQP
direction associated to the exact Hessian of the Lagrangian is of descent for the
penalty function with the parameter satisfying (43) with s = 1/2. Recall again that
in the absence inequality constraints, the localization condition (6) can be dropped
from Theorem 3.3; see Remark 1 and Theorem 4.2 below.

Theorem 3.3. Under the assumptions of Theorem 2.1, for any c̄ > 0 there exist
δ > 0 and γ > 0 such that for any (xk, λk, µk) ∈ Rn × Rl × Rm close enough to
(x̄, λ̄, µ̄) and such that xk is infeasible for problem (1), there exists a stationary point
xk+1 of problem (2) with Hk defined in (3), with an associated Lagrange multiplier
(λk+1, µk+1) satisfying (6), and for any such xk+1 and any ck ≥ c̄ satisfying (43)
with s = 1/2, the inequality (25) is valid, where pk = xk+1 − xk.

Proof. The argument almost literally repeats the steps outlined for Theorem 3.2,
but with (28) replaced by the estimate

∆k ≤ −
1

2
max{0, 〈Hkp

k, pk〉} − νc̄(‖h(xk)‖1 + ‖max{0, g(xk)}‖1).

The latter follows from (44) with s = 1/2, and from the assumption that ck ≥ c̄.

14
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Similarly to (40), the rule (43) can be combined with (24) without any harm for
the theory, with the motivation to possibly reduce the value of ck taken by the
algorithm for a given matrix Hk. In our numerical experiments in Section 5, we
employ the following combination:

ck ≥ max

{
0,min

{
‖(λk+1, µk+1)‖∞ + c̄,

〈f ′(xk), pk〉+ max{0, 〈Hkp
k, pk〉/2}

(1− ν)(‖h(xk)‖1 + ‖max{0, g(xk)}‖1)

}}
.

(45)
Finally, in the more special case of constraints being convex, one may try to com-

bine the considerations above with the strategy in [20]. The latter is aimed at making
sure that both primal and dual sequences stay bounded (and in particular, penalty
parameters stabilize). Also, inexact solution of subproblems using truncation can
be considered along the lines in [15].

4. Equality-constrained problems

In this section we discuss some special features of the problem without inequality
constraints, in particular improving some previous results and extending them in
some directions.

Consider the problem

minimize f(x)
subject to h(x) = 0.

(46)

In this case, the Lagrangian L : Rn × Rl → R is given by

L(x, λ) = f(x) + 〈λ, h(x)〉,

and the SQP subproblem takes the form

minimize f(xk) + 〈f ′(xk), x− xk〉+
1

2
〈Hk(x− xk), x− xk〉

subject to h(xk) + h′(xk)(x− xk) = 0.
(47)

Recall also that for equality constraints, the first inequality in (20) always holds as
equality for pk = xk+1 − xk, for any stationary point xk+1 of problem (47).

When applied to problem (46), Theorems 3.2 and 3.3 can be sharpened and
generalized. Specifically, there is no need to assume any constraint qualification
(recall that SMFCQ was assumed previously, which in the current setting is the
same as LICQ). Moreover, the basic choice

Hk =
∂2L

∂x2
(xk, λk) (48)

(cf. (3)) can be replaced by a wider class of appropriate matrices, whose struc-
ture is motivated by replacing the usual Lagrangian by the augmented Lagrangian.
Specifically, instead of (48), one can take

Hk =
∂2L

∂x2
(xk, λ̃k) + c̃(h′(xk))Th′(xk), (49)

15
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where c̃ ≥ 0 is a parameter, and λ̃k is defined by

λ̃0 = λ0, λ̃k = λk − c̃h(xk−1), k = 1, 2, . . . . (50)

Note that taking c̃ = 0, which is allowed, the basic choice (48) is recovered. It is
clear that for c̃ > 0 a matrix of the structure in (49) has a better choice of being
positive definite, at least because the second term in the right-hand side is always
positive semidefinite. We note that this choice of Hk also ensures fast convergence
of the associated SQP method. Its local superlinear convergence, under the same
weak assumptions as in Theorem 2.1, is established in [16, Theorem 4.25].

Let Sn stand for the set of symmetric n× n-matrices. We have the following im-
proved counterpart of Theorem 3.2, now for a much wider (than the basic (48)) pos-
sible choices of the matrices Hk, including in particular the augmented Lagrangian
option (49).

Theorem 4.1. Let f : Rn → R and h : Rn → Rl be twice differentiable in a
neighborhood of x̄ ∈ Rn, with their second derivatives being continuous at x̄. Let x̄
be a stationary point of problem (46), let Λ ⊂ Rl be a compact subset of the set of
Lagrange multipliers associated with x̄, and assume that〈

∂2L

∂x2
(x̄, λ)ξ, ξ

〉
> 0 ∀λ ∈ Λ, ∀ ξ ∈ kerh′(x̄) \ {0}. (51)

Then for any Ω : Rn × Rl × Rl → Sn which is continuous on {x̄} × Λ × Λ and
such that

〈Ω(x̄, λ, λ)ξ, ξ〉 = 0 ∀λ ∈ Λ, ∀ ξ ∈ kerh′(x̄), (52)

and for any c̄ > 0, there exists γ > 0 such that for any triple (xk, λk, λ̃k) ∈
Rn ×Rl ×Rl such that the pair (xk, λk) is close enough to {x̄} ×Λ, and ‖λ̃k − λk‖
is small enough, for any stationary point xk+1 of problem (47) with Hk given by

Hk =
∂2L

∂x2
(xk, λk) + Ω(xk, λk, λ̃k), (53)

for any Lagrange multiplier λk+1 associated with this stationary point, and any ck
satisfying

ck ≥ ‖λk+1‖∞ + c̄, (54)

it holds that

ϕ′ck(xk; pk) ≤ −γ‖pk‖2, (55)

where pk = xk+1 − xk.

Proof. We argue by contradiction. Suppose that there exist sequences {(xk, λk)} ⊂
Rn × Rl convergent to {x̄} × Λ and {λ̃k} ⊂ Rl such that ‖λ̃k − λk‖ → 0, and
a sequence of reals {ck}, such that for all k all the requirements specified in the
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statement of the theorem are satisfied, pk 6= 0, and

lim
k→∞

ϕ′ck(xk; pk)

‖pk‖2
≥ 0 (56)

(the limit can be +∞). Observe that from (18) and (54) it follows that for all k

ϕ′ck(xk; pk) ≤ −〈Hkp
k, pk〉 − c̄‖h(xk)‖1. (57)

Suppose first that

lim sup
k→∞

‖h′(xk)pk‖
‖pk‖

> 0. (58)

Then, passing to a subsequence, if necessary, we obtain the existence of γ̃ > 0 such
that for all k large enough

‖h(xk)‖1 = ‖h′(xk)pk‖1 ≥ γ̃‖pk‖, (59)

where the equality follows from the linearized constraint in (47). Since x̄ is feasible,
we therefore obtain that {pk} → 0, and taking into account continuity of second
derivatives of f and h at x̄, continuity of Ω on {x̄}×Λ×Λ, and relation (53), from
(57) we derive that

ϕ′ck(xk; pk) ≤ −c̄γ̃‖pk‖+O(‖pk‖2)

as k →∞, which contradicts (56).
It remains to consider the case when

lim
k→∞

‖h′(xk)pk‖
‖pk‖

= 0. (60)

Without loss of generality we may assume that the sequence {pk/‖pk‖} converges
to some ξ ∈ kerh′(x̄), ‖ξ‖ = 1. Employing compactness of Λ, continuity of second
derivatives of f and h at x̄, continuity of Ω on {x̄} × Λ × Λ, relation (53), and
conditions (51) and (52), we then conclude that there exists γ̃ > 0 such that (39)
holds for all k large enough. Hence, from (57) it follows that

ϕ′ck(xk; pk) ≤ −γ̃‖pk‖2,

which again contradicts (56).

If for each (x, λ, λ̃) ∈ Rn×Rl×Rl we define Ω(x, λ, λ̃) as the symmetric matrix
of the quadratic form

ξ → 〈λ̃− λ, h′′(x)[ξ, ξ]〉+ c̃‖h′(x)ξ‖2 : Rn → R,

then (52) holds, and Hk defined according to (49) (the augmented Lagrangian op-
tion) satisfies (53). Therefore, Theorem 4.1 demonstrates that under its assumptions
step 4 of Algorithm 5.1 would not result in modification of the matrix Hk defined

17



April 4, 2016 Optimization Methods and Software r

according to (49), (50), provided γ is small enough, (xk, λk) is close enough to
(x̄, λ̄), and provided xk−1 is also close enough to x̄ when c̃ > 0 and k ≥ 1.

Finally, Theorem 3.3 allows for the following counterpart.

Theorem 4.2. Under the assumptions of Theorem 4.1, for any Ω : Rn×Rl×Rl →
Sn which is continuous on {x̄}×Λ×Λ and such that (52) holds, and for any c̄ > 0,
there exists γ > 0 such that for any triple (xk, λk, λ̃k) ∈ Rn × Rl × Rl such that
the pair (xk, λk) is close enough to {x̄} × Λ, h(xk) 6= 0, and ‖λ̃k − λk‖ is small
enough, for any stationary point xk+1 of problem (47) with Hk defined in (53) and
any ck ≥ c̄ satisfying

ck ≥
〈f ′(xk), pk〉+ max{0, 〈Hkp

k, pk〉/2}
(1− ν)‖h(xk)‖1

,

the inequality (55) holds, where pk = xk+1 − xk.

Proof. Similarly to the proof of Theorem 3.2, suppose the contrary: that there exist
sequences {(xk, λk)} ⊂ Rn × Rl convergent to {x̄} × Λ and {λ̃k} ⊂ Rl such that
‖λ̃k−λk‖ → 0, and a sequence of reals {ck}, such that for all k all the requirements
specified in the statement of the theorem are satisfied, h(xk) 6= 0 (which combined
with constraints in (47) implies that pk 6= 0), and (56) holds. Note that from (44)
with s = 1/2, and from the assumption that ck ≥ c̄, for all k we have the estimate

ϕ′ck(xk; pk) ≤ −1

2
max{0, 〈Hkp

k, pk〉} − νc̄‖h(xk)‖1. (61)

Suppose first that (58) holds. Then, passing to a subsequence if necessary, we
obtain the existence of γ̃ > 0 such that (59) holds for all k large enough. Since x̄ is
feasible, this implies that {pk} → 0 and, taking into account continuity of second
derivatives of f and h at x̄, continuity of Ω on {x̄}×Λ×Λ, and relation (53), from
(61) we derive

ϕ′ck(xk; pk) ≤ −νγ̃‖pk‖+O(‖pk‖2)

as k →∞, which contradicts (56).
Suppose now that (60) holds, and without loss of generality suppose that the se-

quence {pk/‖pk‖} converges to some ξ ∈ kerh′(x̄), ‖ξ‖ = 1. Employing compactness
of Λ, continuity of second derivatives of f and h at x̄, continuity of Ω on {x̄}×Λ×Λ,
relation (53), and conditions (51) and (52), we then conclude that there exists γ̃ > 0
such that (39) holds for all k large enough, and hence, from (61) we have that

ϕ′ck(xk; pk) ≤ −1

2
γ̃‖pk‖2.

This again contradicts (56).

5. Computational experiments to confirm the descent property

We first state a model algorithm, which has the purpose of using the direction given
by the exact Hessian, without modifications, as often as possible. In other words,
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this option is tried first. As already stated above, we do not necessarily claim that
this is a practical algorithm by itself. In our computational experiments, the goal
would be to analyze the descent properties of the exact Hessian directions, along
the iterations.

In Algorithm 5.1 below, the notation xk+1 is used for the computed stationary
point of the SQP subproblem, and later also for the next iterate obtained after
linesearch; this cannot lead to any ambiguity, however.

Algorithm 5.1. Choose (x0, λ0) ∈ Rn × Rl and set k = 0. Fix the parameters
c̄ > 0, γ > 0 and ε, θ ∈ (0, 1).

(1) Compute the matrix Hk defined by (3). Choose τk > 0.
(2) Compute a stationary point xk+1 of problem (2) and an associated Lagrange

multiplier (λk+1, µk+1). Set pk = xk+1 − xk.
(3) If pk = 0, stop. Otherwise, choose ck satisfying (24).
(4) If (25) is violated, replace Hk by Hk + τkI and go to step 2.
(5) Set α = 1.

(a) If the Armijo inequality (22) holds, set αk = α and go to step 6.
(b) Replace α by θα and go to step 5a.

(6) Reset xk+1 = xk + αkp
k.

(7) Increase k by 1 and go to step 1.

It is clear that any other “convexification” technique (instead of adding multi-
ples of the identity) can be used in Algorithm 5.1, as long as it guarantees that
a sufficiently positive definite matrix is produced eventually; this consideration is
similar to [18]. For example, the modified Cholesky factorization of Hk can be used
[8, Section 4.2], which can be regarded as a “one-step” convexification.

If the technique of adding the identity multiplied by the parameter τk is used,
ideally this parameter should be in agreement with the estimate of the largest by the
absolute value negative eigenvalue of the Hessian of the Lagrangian at (xk, λk, µk).
However, computing reliable estimates of this kind can be too costly. For problems
with nonlinear constraints, we observed that the value in question often strongly
depends on ‖(λk, µk)‖. After some experimentations, in our numerical results below
we employ τk = 2 max{1, ‖(λk, µk)‖}.

Since (pk, λk+1, µk+1) satisfies (9), if pk = 0 for some k (and the algorithm
terminates), then xk is a stationary point of problem (1), while (λk+1, µk+1) is an
associated Lagrange multiplier. When Algorithm 5.1 generates an infinite sequence,
its global convergence properties are characterized by the following theorem. The
main ingredients of its proof are quite standard (e.g., [16, Theorem 6.9]); thus we
merely indicate some steps, for completeness.

Theorem 5.2. Let f : Rn → R, h : Rn → Rl and g : Rn → Rm be twice dif-
ferentiable on Rn, with their second derivatives bounded on Rn. Let a sequence
{(xk, λk, µk)} be generated by Algorithm 5.1, and assume that ck = c for all k large
enough, where c is some constant.

Then as k →∞, it holds that either

ϕck(xk)→ −∞, (62)
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or

{pk} → 0,

{
∂L

∂x
(xk, λk+1, µk+1)

}
→ 0, {h(xk)} → 0,

{max{0, g(xk)}} → 0, µk+1
i gi(x

k)→ 0, i = 1, . . . , m.

In particular, for every accumulation point (x̄, λ̄, µ̄) ∈ Rn × Rl × Rm of the
sequence {(xk, λk, µk)}, it holds that x̄ is a stationary point of problem (1) and
(λ̄, µ̄) is an associated Lagrange multiplier.

Proof. Observe first that (24) combined with the fact that ck = c for all k large
enough, imply that the sequence {(λk, µk)} is bounded. Then by boundedness of
the second derivatives of f , h and g there exists Γ > 0 such that, for all k = 0, 1, . . .,
it holds that

−Γ‖ξ‖2 ≤
〈
∂2L

∂x2
(xk, λk, µk)ξ, ξ

〉
∀ ξ ∈ Rn,

∥∥∥∥∂2L

∂x2
(xk, λk, µk)

∥∥∥∥ ≤ Γ.

In particular, this implies that the number of times the term τkI (with fixed τk > 0)
is added to the Hessian of the Lagrangian within step 4 of the algorithm is finite
uniformly in k (since after a uniformly finite number of such additions Hk becomes
sufficiently positive definite, so that (25) is satisfied). Hence, the sequence {Hk} is
bounded.

Observe that according to the mean-value theorem, boundedness of second deriva-
tives of f , h and g implies Lipschitz continuity of the gradient of f and of the gra-
dients of components of h and g, say with some constant ` > 0. Repeating literally
the argument in [16, Theorem 6.9], one obtains that the sequence {αk} of stepsizes
is bounded away from zero. Then from (22) one deduces that ∆k → 0 as k → ∞,
and all the assertions also follow the same way as in [16, Theorem 6.9].

Recalling Remark 1, we note that while Theorem 5.2 establishes global conver-
gence, the local convergence rate assertion only applies if on late iterations the
computed subproblems’ solutions satisfy the localization condition (6). That said,
and as explained in Remark 1, condition (6) is needed only when subproblems’ so-
lutions are not unique. In particular, under our assumptions it is not needed in the
equality-constrained case. It would also be not needed in the general case under
some stronger but still standard assumptions.

It is clear that instead of assuming in Theorem 5.2 boundedness of the second
derivatives of the problem data, one could require that the sequence {xk} stay in
a compact set (another common assumption in this setting). Similarly, instead of
saying that the penalty parameter is asymptotically unchanged, one could ask for
boundedness of the dual sequence (and be a bit more specific about choosing the
penalty parameter; for example, using (24)).

Due to Theorem 3.3, convergence properties of Theorem 5.2 remain valid for
Algorithm 5.1 with condition (24) replaced by (43) with s = 1/2, combined with the
requirement ck ≥ c̄ for some fixed c̄ > 0. In particular, global convergence properties
of the resulting algorithm are still characterized by Theorem 5.2, the proof of which
remains valid without any modifications. One only has to observe that when xk is
feasible and the numerator in the right-hand side of (43) is positive, ck with the
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needed properties does not exist, in which case one should also modify the Hessian
(in practical implementations this should be done whenever ck exceeds some large
upper limit). In this case from (9) we derive that h′(xk)pk = 0, 〈µk+1, g′(xk)pk〉 =
−〈µk+1, g(xk)〉 ≥ 0, and hence,

〈f ′(xk), pk〉 = −〈Hkp
k, pk〉 − 〈λk+1, h′(xk)pk〉 − 〈µk+1, g′(xk)pk〉 ≤ −〈Hkp

k, pk〉.

This implies that if Hk is modified so that the inequality 〈Hkp
k, pk〉 > 0 would

eventually be satisfied, the numerator in the right-hand side of (43) will become
negative, in which case any ck can be considered as satisfying this inequality.

Next, we present computational experiments with Algorithm 5.1, using various
rules for penalty parameters discussed in Section 3. We stress again that the purpose
of this paper is to report the new properties of the penalty function and of the SQP
subproblem using second derivatives. Accordingly, our sole goal in this section is to
investigate how often the direction given by the exact Hessian of the Lagrangian
can actually be used, and to confirm that usually no Hessian modifications are
needed when close to a solution. In particular, no comparisons with other codes are
in order, for the purposes stated. In any case, by no means we consider our model
algorithm as some final/practical product, though it does work reasonably well (we
did perform some comparisons with other methods, just to have some idea for our
own understanding).

The experiments were performed in Matlab environment (version 7.10.0.499
(R2010a)). The QP subproblems were solved using the quadprog routine of the
Matlab Optimization Toolbox, with default parameters and the “LargeScale” option
set to “off” (thus, it is an active-set algorithm for medium-scale problems). Linear
systems of equations were solved by standard Matlab tools. Our test set includes
nonconvex problems from the Hock–Schittkowski collection [13], which are avail-
able to us in Matlab. This gives 80 problems. We note that for our experiments we
have removed all convex problems from the Hock–Schittkowski collection, because
in that case the Hessian of the Lagrangian is always at least positive semidefinite,
and thus is much more likely to be positive definite, in which case it was already
known that the generated direction would be a descent direction. In the considered
test set with 80 problems, 15 have equality constraints only. Since second derivatives
are not provided in this collection, we compute approximations of the Hessian of
the Lagrangian by finite differences (with the step 10−10). Dual sequence is always
initialized at zero.

We refer to our implementation of Algorithm 5.1 as SQP-modH. Below we report on
the behavior of the three versions of Algorithm 5.1, corresponding to three different
rules of setting the penalty parameters. In all the versions, the other parameters are
as follows: c̄ = δ = 1, γ = ν = 10−9, ε = 0.1, θ = 0.5. At step 3 of Algorithm 5.1,
the version which we call SQP-modH 1 computes the value c̄k in the right-hand
side of (24), the version SQP-modH 2 computes the value in (42), and the version
SQP-modH 3 uses (45). If k = 0 or ck−1 < c̄k, we set ck = c̄k + δ; otherwise we keep
ck = ck−1. In order to avoid too large values of the penalty parameter, at step 4 of
Algorithm 5.1 we check not only (25), but also the inequality ck ≤ 1010, and modify
Hk when at least one of those two conditions is violated. In addition, we also modify
Hk when in the process of backtracking at step 5 the inequality

α‖pk‖ < 10−8 (63)
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Table 1. Runs with Hessian modifications (all the other problems required no such modifications).

Test SQP-modH 1 SQP-modH 2 SQP-modH 3

hs5 7 / 9 (3) 7 / 9 (3) 7 / 9 (3)
hs7 8 / 10 (3) 8 / 9 (1) 7 / 9 (3)
hs9 6 / 7 (1) 6 / 7 (1) 6 / 7 (1)
hs26 17 / 18 (1) 17 / 18 (1) 17 / 18 (1)
hs33 6 / 10 (6) 6 / 10 (6) 6 / 10 (6)
hs39 8 / 9 (1) 8 / 9 (1) 8 / 9 (1)
hs47 17 / 18 (4) 16 / 17 (4) 16 / 17 (4)
hs54 2 / 4 (2) 2 / 4 (2) 2 / 4 (2)
hs56 8 / 9 (1) 38 / 42 (2) 38 / 42 (2)
hs62 6 / 7 (6) 6 / 7 (6) 6 / 7 (6)
hs93 9 / 10 (2) – –
hs111 – 343 / 349 (295) –
hs117 7 / 8 (2) 7 / 8 (2) 7 / 8 (2)

holds true (the primal step is too small), while the stopping criterion

‖Φ(xk, λk+1, µk+1)‖ < 10−6 (64)

is not satisfied for the natural residual of the problem, given by Φ : Rn×Rl×Rm →
Rn × Rl × Rm,

Φ(x, λ, µ) =

(
∂L

∂x
(x, λ, µ), h(x), min{µ, −g(x)}

)
.

Successful runs are those terminated for some k ≤ 1000 because (64) holds, or
because

‖Φ(xk+1, λk+1, µk+1)‖ < 10−6

is satisfied after step 6 of Algorithm 5.1. All other runs are declared failures. Also,
if at some iteration 10 modifications of Hk are not enough to generate a suitable
descent direction, the run is terminated with a failure.

Our principal interest is to examine how often the direction given by the exact Hes-
sian is actually used. Table 1 lists all the test problems for which at least one of the
algorithms (SQP-modH 1, SQP-modH 2, SQP-modH 3) required at least one Hessian
modification, on a successful run. First note that 73 out of 80 problems were success-
fully solved by all the algorithms. Hessian modifications were needed on about 16%
of the problems. In Table 1, for problems where Hessian modifications occurred, we
report on the iteration counts and the numbers of QPs solved (separated by slash),
and also on the latest iterations at which a Hessian modification was performed.
Failures are shown as “–”. Thus, the number of times Hessian modifications were
performed for a given problem and algorithm is the difference between the second
and first number in every column. We see that even for the problems which required
Hessian modifications (which are already not so many), the number of modifications
is really small. Moreover, there are very few cases when Hessian modifications were
needed on late iterations. And we observed that for equality-constrained problems,
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in our set of experiments this never happened. This supports the claims of The-
orems 3.2, 3.3, 4.1, and 4.2. Specifically, modifications on the last iterations were
encountered only for hs33, hs54, and hs62. We examined those problems in more
detail, to get a better insight.

For hs33, the algorithms converge to a nonoptimal stationary point x̄ = (0, 0, 2)
with the unique associated Lagrange multiplier. This primal-dual KKT point vi-
olates even the second-order necessary optimality condition, not only SOSC (4)
required in Theorems 3.2 and 3.3. As a result, for all k large enough the iteration
QPs (2) with the true Hessian of the Lagrangian as Hk are unbounded. This leads
to Hk being modified.

For hs54, Hessian modifications are induced by quadprog failures, apparently
caused by extremely bad scaling of this problem.

For hs62, the Hessian modification occurs for k = 6 because (63) is satisfied
but (64) is violated. With the modified Hessian, (63) remains satisfied, but now
(64) becomes valid as well, and the algorithms successfully terminate. Again, this
behavior does not contradict Theorems 3.2 and 3.3.

To conclude, consistent with the presented theoretical results, the SQP directions
given by the Hessian of the Lagrangian are usually of descent for the l1-penalty
function, when close to a solution. Thus, they can be incorporated into SQP methods
that use second-order derivatives, without the need of modifying the Hessian, at
least on late iterations. A word of caution is that our numerical experiments are, of
course, limited in scope. Problems in the Hock–Schittkowski collection tend to be
fairly well behaved, and it is not necessarily the case that on other types of problems
Hessian modifications would be quite as rare as observed in our experiments.
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