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Abstract We consider a class of decomposition methods for variational inequalities,
which is related to the classical Dantzig–Wolfe decomposition of linear programs. Our
approach is rather general, in that it can be used with certain types of set-valued or
nonmonotone operators, as well as with various kinds of approximations in the sub-
problems of the functions and derivatives in the single-valued case. Also, subproblems
may be solved approximately. Convergence is established under reasonable assump-
tions. We also report numerical experiments for computing variational equilibria of
the game-theoretic models of electricity markets. Our numerical results illustrate that
the decomposition approach allows to solve large-scale problem instances otherwise
intractable if the widely used PATH solver is applied directly, without decomposition.
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1 Introduction

Let F : R
n⇒R

n be a set-valued function from R
n to the subsets of R

n , and let Sh and
Sg be two closed convex sets in R

n . We consider the variational inequality problem
VI(F, Sh ∩ Sg) [14], which means to find

x̄ ∈ Sh ∩ Sg such that 〈w̄, x − x̄〉 ≥ 0 for some w̄ ∈ F(x̄) and all x ∈ Sh ∩ Sg.

(1)

In what follows, we assume that Sh = {x : h(x) ≤ 0} with h : R
n → R

q being convex
and differentiable, and Sg is a generic closed convex set which is easier (in some
sense) to handle than the set Sh and the intersection Sh ∩ Sg . The set Sh is defined by
inequality constraints only for simplicity; affine equality constraints can be introduced
in our developments without any difficulties. We assume that the operator F is either
single-valued and continuous (possibly nonmonotone) or it is maximal monotone, i.e.,
it is monotone (it holds that 〈u −v, x − y〉 ≥ 0 for all x, y ∈ dom F = {z : F(z) 	= ∅}
and all u ∈ F(x), v ∈ F(y)) and its graph is not contained in the graph of any other
monotone operator. We also assume that VI(F, Sh ∩ Sg) has a nonempty solution set,
and that Sg ⊂ int(dom F). We note that the latter assumption could be more general;
we use the stated one for simplicity, as the issue does not seem to be of real importance
in a paper devoted to a computational algorithm.

The setting just described suggests trying to deal with the constraint sets Sh and Sg

separately, i.e., by some type of decomposition of the problem VI(F, Sh ∩ Sg). Many
decomposition techniques (for monotone problems) are explicitly derived from the
proximal point method [29,32] for maximal monotone operators, e.g., [10,41,42,44].
Sometimes the relation to the proximal iterates is less direct, e.g., the methods in
[4,11,17,31,43], which were nevertheless more recently generalized and interpreted in
[37,27] within the hybrid inexact proximal schemes of [39,30]. As some other decom-
position methods, we might mention [22] which employs projection and cutting-plane
techniques for certain structured problems, matrix splitting for complementarity prob-
lems in [6], and the applications of the latter to stochastic complementarity problems in
[35]. The methods cited above typically assume monotonicity and, from the beginning,
some rather specific structure in the mapping F and/or in the constraints defining the
feasible set. In that sense, our setting VI(F, Sh ∩ Sg) and the subsequent developments
are more general, as in the single-valued case F is allowed to be nonmonotone and no
specific structural assumptions are being made about F or about the constraints. That
said, if separable features are present, they can be exploited at the stage of solving the
subproblems.

The decomposition approach in this paper is of the type of the Dantzig–Wolfe
technique for linear programming [8], which we recall next. Given the affine functions
f : R

n → R, h : R
n → R

p and g : R
n → R

q (there is no need to define them here
explicitly), consider the linear program

min f (x) s.t. h(x) ≤ 0, g(x) ≤ 0. (2)
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Note that this problem is equivalent to VI( f ′, Sh ∩ Sg), where f ′ is the gradient of
f , the set Sh is defined above, and Sg = {x : g(x) ≤ 0}. Assuming that the structure
of the problem data is such that linear optimization over the set Sg can be carried
out easily (as compared to minimizing over Sh ∩ Sg), the idea of the Dantzig–Wolfe
method is to perform the Lagrangian relaxation of the h-constraints, and to apply the
cutting-plane algorithm [2, Sec. 9.3.2] for nonsmooth optimization to the Lagrangian
dual

max
μ∈R

q
+

θ(μ),

where

θ(μ) = inf
x∈Sg

{ f (x) + 〈μ, h(x)〉}. (3)

When set in an iterative framework, Dantzig–Wolfe method means the following.
Given the current dual iterate μk

M ∈ R
q
+, the kth subproblem consists of computing

the value of the dual function θ(μk
M ), which means obtaining a minimizer xk+1

S for
the linear program in (3). By construction, xk+1

S ∈ Sg and we have a subgradient
−h(xk+1

S ) ∈ ∂(−θ)(μk
M ) (where ∂(−θ) denotes the subdifferential of the convex

function −θ ). For k ≥ 1, suppose we have computed solutions of the previous sub-
problems {x0

S, . . . , xk
S} ⊂ Sg . Then the kth master problem replaces the set Sg in the

original problem (2) by the approximation conv{x0
S, . . . , xk

S}, where conv D stands for
the convex hull of the set D, and solves the following linear program:

⎧
⎨

⎩

min f (x)

x ∈ conv{x0
S, . . . , xk

S}
x ∈ Sh

⇔

⎧
⎪⎪⎨

⎪⎪⎩

min f
(∑k

i=0 αi x i
S

)
= ∑k

i=0 αi f (xi
S)

α ∈ Ωk+1

h
(∑k

i=0 αi x i
S

)
= ∑k

i=0 αi h(xi
S) ≤ 0,

(4)

where Ωk+1 = {α ∈ R
k+1+ : ∑k

j=0 αi = 1} is the unit simplex in R
k+1. This gives a

solution xk
M and a multiplier μk

M ∈ R
q
+ associated to the h-constraint in (4). Then the

new dual function value θ(μk
M ) is computed, as well as an associated xk+1

S in (3), and
the process is repeated. From the point of view of maximizing the dual function θ , the
dual problem of the master problem (4) corresponds to an iteration of the cutting-plane
method, i.e., to solving the linear programming formulation of

max
μ∈R

q
+

θk(μ) := min
i=0,...,k

{
f (xi

S) + 〈μ, h(xi
S)〉
}

.

The Dantzig–Wolfe approach for linear programs is particularly effective when h
is the coupling constraint without which the minimization in (3) decomposes fur-
ther according to some favorable (block-separable) structure of g. For some large-
scale applications of this type, the resulting method is faster than solving the original
linear program (2) directly, e.g., [7,19]. Stabilization techniques of bundle methods
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[2, Ch. 10] can be used to define stabilized master problems and improve computational
performance of the cutting-plane scheme [1,3].

Let us now go back to the variational problem (1). As is well known, it is equivalent
to the inclusion 0 ∈ F(x̄) + NSh∩Sg (x̄), where by ND(x) we denote the normal cone
to the convex set D at the point x , i.e., ND(x) = {v : 〈v, u − x〉 ≤ 0 ∀u ∈ D} if
x ∈ D and ND(x) = ∅ otherwise. Let x̄ ∈ Sh ∩ Sg . Under appropriate constraint
qualification conditions for the sets Sh and Sg (see, e.g., [14, Chapter 3.2] and [38]),
it holds that NSh∩Sg (x̄) = NSh (x̄) + NSg (x̄) and NSh (x̄) = {u : u = [h′(x̄)]�μ,

μ ∈ R
q
+, μ ⊥ h(x̄)}, where the notation u ⊥ v means that 〈u, v〉 = 0. In particular,

for any solution x̄ of (1), there exists a multiplier μ̄ ∈ R
q
+ such that

0 ∈ F(x̄) + [h′(x̄)]�μ̄ + NSg (x̄), 0 ≤ μ̄ ⊥ h(x̄) ≤ 0.

Hence, solving problem (1) is equivalent to finding (x̄, μ̄) such that

{
(x̄, μ̄) ∈ Sh × R

q
+, μ̄ ⊥ h(x̄),

x̄ solves VI(F(·) + [h′(·)]�μ̄, Sg).
(5)

A natural extension of the ideas of the Dantzig–Wolfe decomposition to this variational
setting is then the following. Using the current multiplier estimate μk

M ∈ R
q
+ (instead

of the unknown “optimal” μ̄), the kth subproblem consists in solving a variational
inequality with the structure in (5), to obtain a new primal point xk+1

S . In particular,
this variational problem is over the simpler set Sg , with the h-constraint dealt with
in a manner similar to the Lagrangian relaxation approach. Using solutions of the
previous subproblems {x0

S, . . . , xk
S} ⊂ Sg , the kth master problem solves a variational

inequality with the structure in (1), except that the set Sg therein is approximated by
conv {x0

S, . . . , xk
S} [recall (4)]. This gives a solution xk+1

M and a new multiplier estimate
μk+1

M ∈ R
q
+ for the h-constraint, and the process is repeated. Thus, we iteratively

generate two sequences of (approximate) solutions of the problems (1) and (5), using
at each iteration the solution of one problem to improve the solution of the other. We
shall postpone the details and various possible options to be discussed later.

A Dantzig–Wolfe method along these lines had been introduced for (single-valued)
variational inequalities in [5,16]. In [16] some restrictive assumptions are employed.
For example, F is required to be either strictly monotone or to be a separable combi-
nation of a strictly monotone part with a gradient of a differentiable convex function.
The subproblems have the specific form VI(F(·)+[h′(xk

M )]�μk
M , Sg). Also, the solv-

ability of all the subproblems is an assumption. Some of the restrictive assumptions
have been alleviated in [5], where also a useful feature of approximating F in the
subproblems is introduced. The latter can be helpful in applications where the sub-
problem VI(F(·) + [h′(xk

M )]�μk
M , Sg) is not decomposable, but using instead of F a

suitable approximation makes it decomposable and thus easier to solve. One possibil-
ity considered in [5] is fixing the value of F at the last master solution, i.e., solving
VI(F(xk

M ) + [h′(xk
M )]�μk

M , Sg). The other possibility uses a Jacobi-like approxi-
mation, where only some components of x are fixed at their values at xk

M . In this
paper, we shall also consider other approximations, for example of the Josephy–
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A class of Dantzig–Wolfe type decomposition methods 181

Newton type [20], which approximates F(·) in the smooth single-valued case by
F(xk

M ) + F ′(xk
M )(· − xk

M ). We shall also allow combinations of various approxima-
tions. In fact, in our numerical results in Sect. 4, we found that the combination of the
Newtonian and Jacobi approximations works best for large problems of the structure
considered there. In addition, and as compared to [5,16], our framework also allows
for approximations to the derivative h′ (including the option of taking the fixed value
h′(xk

M ) as in [5,16] but not limited to it); does not assume solvability of the sub-
problems; allows for inexact solutions of subproblems; gives an option of generating
(cheap) additional cuts by projecting a selection of previous iterates using separation
ideas [24,36]; and can handle the general case of F being set-valued.

The rest of the paper is organized as follows. In Sect. 2 we formally state the
algorithm and discuss the approximation options for F and h′, inexact solution of
subproblems, and other details. Convergence analysis is given in Sect. 3. Numerical
results for computing variational equilibria of game-theoretic models of electricity
markets are presented in Sect. 4. In particular, we show that some specific implemen-
tations of our approach make it possible to solve problem instances which are too
large to be handled by the widely used PATH solver [9,15] applied directly to the full
problem without decomposition. This is also a difference with the methods in [5,16]
where the considered examples were solved faster without decomposition than with
decomposition.

A few words about our notation are in order. For a closed convex set D and a point
x , by PD(x) we denote the projection of x onto D. Given the set Sh defined above
and any polyhedral set D, we say that the (generalized) Slater constraint qualification
holds for the set Sh ∩ D if there exists x ∈ D such that h(x) < 0. The function
F : R

n ⇒ R
n is strictly monotone if 〈u − v, x − y〉 > 0 for all x, y ∈ dom F and

u ∈ F(x), v ∈ F(y) with x 	= y; and it is strongly monotone if there exists c > 0 such
that 〈u − v, x − y〉 ≥ c‖x − y‖2 for any choices above. We say that F : R

n ⇒ R
n is

outer semicontinuous if for any sequences {xk}, {yk} such that {xk} → x̄ and {yk} → ȳ
with yk ∈ F(xk), it holds that ȳ ∈ F(x̄). We say that a family of set-valued functions
{Fk} is equicontinuous on compact sets if for every compact set D and every ε > 0
there exists δ > 0 such that for any x, y ∈ D with ‖x − y‖ < δ, for every k it holds that
dH (Fk(x), Fk(y)) < ε, where dH is the Hausdorff distance between the sets defined
by

dH (A, B) = inf {r > 0 : A ⊂ B + B(0, r) and B ⊂ A + B(0, r)} .

Note that since we assume that F is either continuous or maximal monotone, it is
therefore outer semicontinuous. In addition, since Sg ⊂ int (dom F), it holds that F
is locally bounded on Sg [33].

2 The algorithmic framework

In view of (5), having a current multiplier estimate μk
M for the h-constraint, perhaps

the first natural approach would be to solve the subproblem
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VI
(

F(·) + [h′(·)]�μk
M , Sg

)
. (6)

This is a valid option indeed, but it may have drawbacks, at least for some types of
problem structures. For example, if (6) involves a general nonlinear (and possibly
nonmonotone) mapping F , it may prevent us from taking full advantage of some
special structure of the set Sg (e.g., Sg may be block-separable). The same comment
applies to the nonlinearity of the derivative of h. Another issue is that the set Sg

in (6) may be unbounded (even if Sh ∩ Sg were bounded), in which case (6) is not
guaranteed to have solutions if F is merely continuous/monotone. For these reasons,
we shall consider various approximations to F and h′ that include (6) itself as an
option, possibly regularized by a variable-metric proximal term to induce solvability
of subproblems if needed. The algorithm is as follows.

Algorithm 1 (Dantzig–Wolfe decomposition)

1. Choose x0
S ∈ Sg ∩ Sh , such that h(x0

S) < 0 if h is not affine.
Choose μ0

M ∈ R
q
+ and w0

M ∈ F(x0
M ). Set x0

M = x0
S and k := 0.

2. The Subproblem: Choose an approximation Fk : R
n⇒R

n of F(·), an approx-
imation Hk : R

n → R
q×n of h′(·), a possible modification of μk

M given by
μk : R

n → R
q
+, and a positive (semi)definite matrix Qk ∈ R

n×n . Find xk+1
S , an

approximate solution of the problem

VI
(

F̂k, Sg

)
, (7)

F̂k(x) = Fk(x) +
[

Hk(x)
]�

μk(x)+Qk

(
x − xk

M

)
. (8)

3. The Master Problem: Choose a finite set Xk+1 containing {x0
S, . . . , xk+1

S }. Find
a solution xk+1

M of the problem

VI
(

F, Sh ∩ conv Xk+1
)

, (9)

with the associated wk+1
M ∈ F(xk+1

M ) and a Lagrange multiplier μk+1
M associated

to the h-constraint.
4. Set k := k + 1 and go to Step 2.

Some comments are in order.
In Step 1, choosing a feasible starting point is needed to guarantee that the mas-

ter problems (9) are feasible for all k. When h is not affine, the role of the condition
h(x0

S) < 0 is to ensure that the Slater constraint qualification holds for the master prob-
lems (9) for all k, so that there exist Lagrange multipliers associated to the h-constraint
in (9). If h is affine, then (9) is a linearly constrained problem and the existence of
Lagrange multipliers is automatic. That said, computing a (strictly) feasible starting
point may be nontrivial in some applications. For this reason, Sect. 2.5 below presents
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A class of Dantzig–Wolfe type decomposition methods 183

a modification of the algorithm in which the h-constraints are relaxed by introducing
slack variables, and computing a starting feasible point is required only for the set Sg

(recall that this set is assumed to be simple in our context). Master problems (9) are
solved introducing simplicial parametrization of the convex hull, similarly to (4) in
the case of linear programs.

The options for approximations Fk and Hk in the subproblems, as well as an
augmented-Lagrangian type modification μk of the multiplier estimate μk

M , will be
discussed in Sect. 2.1 below. As for the regularization matrix Qk , it should generally
be taken as zero if F (and then also Fk , for natural choices) is known to be strongly
monotone; if strong monotonicity does not hold then Qk should be positive definite
(e.g., a multiple of the identity; but more sophisticated choices may be useful depending
on the structure [30]). The notion of acceptable approximate solutions of subproblems
is discussed in Sect. 2.2.

The set Xk+1 in the master problem contains previous solutions of subproblems, but
we could also add additional points. Section 2.3 shows that, at least if the projection
onto the simpler set Sg is easy, we can compute explicitly (at negligible computational
cost) points that are improvements over the previous iterates in the sense that they are
closer to the solution set of (1).

Some remarks concerning reasonable stopping rules for Algorithm 1 will be given
in Sect. 2.4.

2.1 Approximating the data in the subproblems

We next discuss the options for approximating the problem data in the subproblems.
Roughly speaking, possible choices range from the simplest ones of taking the fixed
values computed at the previous master solution xk

M , pass through the Newtonian
approximation centered at xk

M , and arrive to taking the functions themselves (“exact
approximation”). Furthermore, different options can be combined. For example, in the
differentiable case, we can fix some components of the functions at xk

M and use New-
tonian approximations for the other components. In fact, we found such combinations
to be the most efficient ones in our numerical results reported in Sect. 4.

To be deemed admissible, approximating objects must satisfy the following four
basic conditions:

wk
M ∈ Fk(xk

M ) ⊂ F(xk
M ), (10a)

Fk(x) +
[

Hk(x)
]�

μk(x) is maximal monotone and its domain contains dom F,

(10b)

Hk(xk
M ) = h′(xk

M ), (10c)

μk(xk
M ) = μk

M . (10d)

The mapping approximations. As already commented, Fk estimates F near xk
M . Some

examples are:
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Fk
const(x) =

{
wk

M

}
, (11a)

Fk
exact(x) = F(x), (11b)

Fk
N(x) = F(xk

M ) + F ′(xk
M )(x − xk

M ) in the single-valued smooth case,

(11c)

where the subscript N above stands for “Newton”. Note that all these approximations
are (maximal) monotone if F is (maximal) monotone, and that Fk

const is maximal
monotone regardless of any assumptions.

We would like to emphasize that even if F is nonmonotone, we can always choose
a maximal monotone approximation Fk . For example, taking Fk

const. Also, for specific
applications there may exist other (more sophisticated options) of choosing a monotone
approximation Fk for a nonmonotone F . One example will be discussed in the sequel
in the context of VI associated to generalized Nash equilibrium problems and in our
numerical results in Sect. 4.

Approximations of the derivative of the h-constraint. Similarly, the function Hk esti-
mates the derivative h′ near the point xk

M , while preserving the monotonicity property
(of derivatives of convex functions). Some examples are:

Hk
const(x) = h′(xk

M ), (12a)

Hk
exact(x) = h′(x), (12b)

Hk
N(x) = h′(xk

M ) +
q∑

i=1

h′′
i (xk

M )(x − xk
M ). (12c)

Note that for all the cases in (12), because of the convexity of h, the following
monotonicity property holds:

(
Hk(y) − Hk(x)

)
(y − x) ≥ 0, for all x, y ∈ R

n . (13)

Since μk
M ≥ 0, it then follows that [Hk(x)]�μk

M is also monotone. And if Fk is
maximal monotone then (10b) holds if we take μk(x) = μk

M .

Multiplier modifications. Choices of μk(x) different from μk
M are possible if there are

linear equality constraints in the definition of the set Sh (formally, in our setting this
would correspond to taking two inequalities with opposite signs). Suppose that these
equality constraints are given by h̃(x) = Ax − a, where A and a are a matrix and
a vector of appropriate dimensions, respectively. We could then use the augmented
Lagrangian choice for the corresponding multipliers:

μ̃k(x) = μ̃k
M + rk h̃(x) = μ̃k

M + rk A
(

x − xk
M

)
,

where rk > 0 is the penalty parameter, and we took into account that xk
M ∈ Sh and so

h̃(xk
M ) = Axk

M − a = 0. It can be seen that this choice satisfies the conditions in (10).
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Jacobi-type approximations in the block-separable case. To conclude this section, we
consider the important special case where Sg is a product of convex sets. That is, Sg =∏m

i=1 Sgi where Sgi ⊂ R
ni are closed convex, i = 1, . . . , m, n = ∑m

i=1 ni . Having
chosen the approximations Fk and Hk , the matrix Qk , and taking μk(x) = μk

M , we
can write the function F̂k for the subproblem by blocks:

F̂k(x) =
(

F̂k
1 (x), . . . , F̂k

m(x)
)

, with F̂k
i (x) ∈ R

ni ,

and for every i = 1, 2, . . . , m, define the Jacobi-like approximations F̂k
Ji

: R
ni → R

ni ,

F̂k
Ji
(xi ) = F̂k

i (xk
M−i

, xi ),

where (xk
M−i

, xi ) = (xk
M1

, . . . , xk
Mi−1

, xi , xk
Mi+1

, . . . , xk
Mm

) is the vector with all the
blocks of variables, except for the i th, fixed to the master solution. The corresponding
estimate F̂k

J : R
n → R

n for the subproblem is then given by

F̂k
J (x) =

(
F̂k

J1
(x1) , . . . , F̂k

Jm
(xm)

)
.

Accordingly, the objects in (8) take the form

Fk(x) =
(

Fk
1 (x), . . . , Fk

m(x)
)

, with Fk
i (x) ∈ R

ni ,

Hk(x) =
[

Hk
1 (x)| · · · |Hk

m(x)
]
, with Hk

i (x) ∈ R
q × R

ni ,

Qk = [
Qki j

]
, with Qki j ∈ R

ni × R
n j .

And, for each i = 1, 2, . . . , m, we define the Jacobi-like approximations Fk
Ji

: R
ni →

R
ni and Hk

Ji
: R

ni → R
q × R

ni by

Fk
Ji
(xi ) = Fk

i (xk
M−i

, xi ), Hk
Ji
(xi ) = Hk

i (xk
M−i

, xi ).

It is easy to see that

F̂k
Ji
(xi ) = Fk

Ji
(xi ) +

[
Hk

Ji
(xi )

]�
μk

M + Qkii

(
xi − xk

Mi

)
,

and thus

F̂k
J (x) = Fk

J (x) +
[

Hk
J (x)

]�
μk

M + QJ
k

(
x − xk

M

)
,

where

Fk
J (x) =

(
Fk

J1
(x1), . . . , Fk

Jm
(xm)

)
, Hk

J (x) =
[

Hk
J1

(x1)| · · · |Hk
Jm

(xm)
]
,

QJ
k = diag

(
Qk11 , Qk22 , . . . , Qkmm

)
.
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The functions Fk
J and Hk

J (x) satisfy all the properties in (10). Moreover, since for
every i = 1, 2, . . . , m and xi , yi ∈ R

ni it holds that

〈
F̂k

Ji
(yi )− F̂k

Ji
(xi ), yi −xi

〉
=
〈
F̂k(xk

M−i
, yi )− F̂k(xk

M−i
, xi ), (xk

M−i
, yi )−(xk

M−i
, xi )

〉
,

it follows that if F̂k were monotone, strictly monotone or strongly monotone, then F̂k
Ji

would inherit the same property; and therefore so would F̂k
J . We again comment that in

some applications (for example, VI associated to generalized Nash equilibrium prob-
lems, see Sect. 4) the full function F(x) = (F1(x), . . . , Fn(x)) can be nonmonotone
but each component Fi is monotone in the variable xi . So, even if the approximations
Fk

N and Fk
exact could be nonmonotone, the approximations Fk

N−J (where “N–J” stands
for “Newton–Jacobi”) and Fk

exact-Jacobi are monotone in that case.
As we found Fk

N−J particularly useful in our numerical experiments, we shall next
state it formally. By the definition above, we have Fk

Ni
(x) = Fi (xk

M )+F ′
i (xk

M )(x−xk
M ),

and so

Fk
N−Ji

(xi ) := Fk
Ni

(xk
M−i

, xi )

= Fi (xk
M ) + F ′

i (xk
M )((xk

M−i
, xi ) − (xk

M−i
, xk

Mi
))

= Fi (xk
M ) + F ′

i (xk
M )(0, xi − xk

Mi
)

= Fi (xk
M ) + ∇xi Fi (xk

M )(xi − xk
Mi

).

Then if Fi (x) is monotone in the variable xi , we have that Fk
N−Ji

(xi ) is monotone and

so is Fk
N−J(x).

The motivation for the Jacobi approach is that we can take advantage of the sep-
arable structure of Sg when solving the subproblems even when F is not separable.
Specifically, it can be seen that xk+1

S solves the subproblem VI(F̂k
J , Sg) if and only if

the components (xk+1
S )i solve VI(F̂k

Ji
, Sgi ), i = 1, . . . , m. Thus, the subproblems in

Algorithm 1 decompose according to the structure of Sg . Clearly, such decomposition
is also achieved for Fk

N−J(x).

2.2 Inexact solution of subproblems

By approximate solution of subproblem (7) we mean computing some

xk+1
S ∈ Sg such that

〈
vk+1

S + ek, y − xk+1
S

〉
≥ 0

for some vk+1
S ∈ F̂k(xk+1

S ) and all y ∈ Sg, (14)

where ek ∈ R
n is the error term accounting for inexactness. This definition of approx-

imate solutions of variational problems was also employed, e.g., in [28,36]. In our

123



A class of Dantzig–Wolfe type decomposition methods 187

convergence analysis, we shall use the following two approaches to controlling inex-
actness. One is the “relative-error” type:

〈
ek, xk

M − xk+1
S

〉
≤ σ

〈
Qk

(
xk

M − xk+1
S

)
, xk

M − xk+1
S

〉
, σ ∈ [0, 1), (15)

or its stronger version

‖ek‖‖xk
M − xk+1

S ‖ ≤ σ
〈
Qk

(
xk

M − xk+1
S

)
, xk

M − xk+1
S

〉
, σ ∈ [0, 1). (16)

The second rule is the “asymptotically exact” type:

ek → 0 as k → ∞. (17)

The first rule is more constructive, as it essentially means that the relative error
(the ratio between the size of the error term ek and the size of the step xk

M − xk+1
S )

in solving the subproblems needs to be small enough but can be fixed by the value
of the parameter σ (which need not tend to zero); see [30,39] and references therein
for discussions of the advantages of this relative-error approach. That said, verifying
(15) clearly requires the explicit knowledge of ek in (14). Below we explain how ek

can be constructed and the conditions (14) and (15) checked explicitly in the case
of continuous F̂k , if we have access to the iterates of the method applied to solve
VI(F̂k, Sg). Of course, the latter is not the case when a “black-box” solver is used.
In that sense, an advantage of the “asymptotical exactness” rule (17) is that it can
be argued that in this case the explicit knowledge of ek in (14) is not necessary. The
algorithm used to solve subproblems (7) can be truncated according to any suitable
internal criteria, provided the precision is progressively tightened along the iterations
of the outer Algorithm 1. This would generate, at each step, some unknown error term
ek in (14). But as long as the inexactness in solving the subproblems (however it is
measured) asymptotically vanishes, it seems valid that the error written in any other
form, for example (14), must also tend to zero.

Suppose now that F̂k is continuous (single-valued) and strongly monotone (recall
that a monotone approximation Fk of F always exists even if F is nonmonotone, and
strong monotonicity of F̂k can be induced by adding the proximal regularization with
Qk positive definite when needed). Let an Algorithm A (any suitable algorithm for
solving VI(F̂k, Sg)) generate a sequence {yk,i } which, if continued infinitely, is known
to converge to the exact solution x̄ k+1

S of the subproblem VI(F̂k, Sg) as i → ∞. This

solution is unique, because F̂k is strongly monotone. As is well known, it holds that

x̄ k+1
S = PSg

(
x̄ k+1

S − F̂k(x̄ k+1
S )

)
.

Define the auxiliary sequences {zk,i } and {ek,i } by

zk,i = PSg

(
yk,i − F̂k(yk,i )

)
,
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ek,i =
(

zk,i − F̂k(zk,i )
)

−
(

yk,i − F̂k(yk,i )
)

.

Since, by continuity of F̂k and of the projection operator, {zk,i } also converges to x̄ k+1
S

as i → ∞, it holds that

lim
i→∞ ek,i = 0.

Observe now that

zk,i = PSg

(
yk,i − F̂k(yk,i )

)
= PSg

(
zk,i − (F̂k(zk,i ) + ek,i )

)
,

which means that, at each iteration of Algorithm A, zk,i solves the problem VI(F̂k +
ek,i , Sg). In other words, the condition (14) holds at every iteration i for xk+1

S = zk,i

and ek = ek,i with the known ek,i defined above. Since {ek,i } → 0 as i → ∞, for
any reasonable criterion of measuring approximations Algorithm A would yield in a
finite number of iterations an approximate solution xk+1

S = zk,i for the subproblem

VI(F̂k, Sg) with the known, and thus controllable, error ek = ek,i .
The only computational issue with the presented construction is the projection onto

Sg to construct the auxiliary points zk,i . However, this projection can be explicit for
some problems (e.g., onto a box). Also, it may be already computed by Algorithm A
in the course of its iterative procedure anyhow. For example, one of the most natural
stopping conditions for VI(F̂k, Sg) is precisely to check whether ‖yk,i − zk,i‖ is small
(this is the so-called natural residual of VI [14, Chapter 1.5]; if the natural residual
is zero then yk,i = zk,i = x̄ k+1

S is the exact solution). In particular, most (if not all)
projection methods for VIs (see, e.g., [14, Chapter 12.1], [40]) compute the right-hand
side in the definition of zk,i as part of the iterates update (perhaps scaled with a stepsize,
but this can be easily accounted for) and/or compute the natural residual (yk,i − zk,i )

for the stopping test. Thus, within projection methods, zk,i and then ek,i are readily
available. That said, solving subproblems with increasing accuracy makes iterations
progressively more expensive, of course. An interesting proposal in the context of
projection methods is presented in [22], where a fixed number of projection steps
is performed throughout, with verifiable error bounds. Naturally, this leads to errors
which are bounded but do not tend to zero, and would require a different type of
analysis from the one to be presented below. Given its clear practical importance, the
issue of how to handle in our setting asymptotically nonvanishing inaccuracy in the
subproblem solution is an interesting subject of future research.

2.3 Managing the feasible set of the master problem

The basic choice is to take Xk+1 = {x0
S, . . . , xk+1

S }. As already mentioned, to ensure
feasibility of the master problems (9) it should hold that x0

M = x0
S ∈ Sh ∩ Sg , and for

the existence of Lagrange multipliers h(x0
S) < 0 if h is not affine.

However, when F is monotone and the projection onto Sg is cheap (and this is indeed
the case for many applications of interest), we can generate at negligible computational
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cost some additional “improved” points that are closer to the solution set than the past
iterates. This procedure is based on separation/projection ideas, e.g., [24,36].

In this strategy we explicitly state that Xk ⊂ Xk+1 for all k, i.e., no points are ever
deleted from the feasible set of the previous master problem; points can only be added.
Then since xk

M solves VI(F, Sh ∩ conv Xk) and x j
M ∈ Sh ∩ conv Xk for j ≤ k (since

X j ⊂ X j+1), we have that for the associated wk
M ∈ F(xk

M ) it holds that

〈
wk

M , x j
M − xk

M

〉
≥ 0 for j = 1, . . . , k. (18)

On the other hand, if x̄ is any solution of VI(F, Sh ∩ Sg), since xk
M ∈ Sh ∩ Sg it holds

that 〈w̄, xk
M − x̄〉 ≥ 0 where w̄ ∈ F(x̄). Then monotonicity of F (actually, the weaker

pseudo-monotonicity property is enough here) implies that 〈wk
M , xk

M − x̄〉 ≥ 0. Hence,
for every k, the solution set of VI(F, Sh ∩ Sg) lies in the halfspace

{
x :

〈
wk

M , x − xk
M

〉
≤ 0

}
.

Thus, in view of (18), all the previous master problem solutions are separated from
the solution set of VI(F, Sh ∩ Sg) by the hyperplane {x : 〈wk

M , x − xk
M 〉 = 0}. In fact,

as there seem to be no reasons for the inequality (18) to hold as equality, the separation
should be expected to be strict for most points. It is then clear that projecting onto
the separating hyperplane (can also be with under- or over-relaxation), would move
the previous iterates closer to the solution set, thus giving better approximations to the
solution [36].

In addition, previous solutions of subproblems could be considered too, i.e., the
points with the property

〈
wk

M , x j
S − xk

M

〉
≥ 0 for j = 1, . . . , k such that x j

S ∈ Sh .

If there are such points then they can be projected/improved also. That said, since
x j

S ∈ Sh need not hold in general, the existence of candidates to project of this kind is
not a given (unlike the case with the previous master problem solutions for which the
separation property always holds).

Summarizing, we can choose any subset

Zk ⊂
{

z ∈ Xk ∪
{

x1
M , . . . , xk

M

}
:
〈
wk

M , z − xk
M

〉
> 0

}

and define

Xk+1 = Xk ∪ {xk+1
S } ∪

{

PSg

(

z − βz

〈
wk

M , z − xk
M

〉

‖wk
M‖2

wk
M

)

: z ∈ Zk

}

,

where βz ∈ (0, 2) is over/under relaxation parameter (βz = 1 corresponds to the
projection onto the separating hyperplane). See [36] for formal justifications.
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2.4 Stopping conditions

One reasonable stopping criterion for Algorithm 1 is based on monitoring, after solving
the subproblem VI(F̂k, Kg), the quantity


k =
〈

wk
M +

[
h′(xk

M )
]�

μk
M , xk+1

S − xk
M

〉

. (19)

(This quantity had also been employed in [5,16].)
The motivation for (19) comes from the stopping test of the cutting-plane algorithm

for maximizing the dual function (3) in the original Dantzig–Wolfe method for the
linear program (2) (see [16, Theorem 7]). For this problem, using the linearity of the
data and the fact that μk

M ⊥ h(xk
M ) (since these solve (4)), we have that


k =
〈

f ′(xk
M ) + h′(xk

M )�μk
M , xk+1

S − xk
M

〉

= f (xk+1
S ) − f (xk

M ) +
〈
μk

M , h(xk+1
S ) − h(xk

M )
〉

= f (xk+1
S ) +

〈
μk

M , h(xk+1
S )

〉
− f (xk

M )

= θ(μk
M ) − θk(μk

M ) ≤ 0,

i.e., 
k measures how well the dual function θ is approximated by its cutting-plane
model θk at the current dual iterate μk

M . It is standard to stop the cutting-plane method
when 
k becomes small enough [2, Sec. 9.3.2].

Let us now go back to the variational setting. Suppose xk+1
S is an inexact solution

of the subproblem VI(F̂k, Kg) in the sense of (14). Since xk
M ∈ Sg , it then holds that

〈
vk+1

S , xk+1
S − xk

M

〉
≤
〈
ek, xk

M − xk+1
S

〉
.

We can write

vk+1
S =uk+1

S +Qk

(
xk+1

S −xk
M

)
, where uk+1

S ∈ Fk(xk+1
S )+

[
Hk(xk+1

S )
]�

μk(xk+1
S ).

Then, for the inexactness criterion (15), we have that

〈
uk+1

S , xk+1
S − xk

M

〉
≤
〈
ek, xk

M − xk+1
S

〉
−
〈
Qk

(
xk+1

S − xk
M

)
, xk+1

S − xk
M

〉

≤ −(1 − σ)
〈
Qk

(
xk+1

S − xk
M

)
, xk+1

S − xk
M

〉
.

Now, since Fk(x) + [Hk(x)]�μk(x) is monotone and

wk
M +

[
h′(xk

M )
]�

μk
M ∈ Fk(xk

M ) +
[

Hk(xk
M )
]�

μk(xk
M ),
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it holds that


k =
〈

wk
M +

[
h′(xk

M )
]�

μk
M , xk+1

S − xk
M

〉

≤
〈
uk+1

S , xk+1
S − xk

M

〉

≤ −(1 − σ)
〈
Qk

(
xk+1

S − xk
M

)
, xk+1

S − xk
M

〉
≤ 0. (20)

If Qk is positive definite, then 
k = 0 implies xk+1
S = xk

M , and the latter point is a
solution of VI(F, Sh ∩ Sg) (see Proposition 2 below, which also deals with case when
Qk may be positive semidefinite if F̂k is strictly monotone). A value of 
k close to
zero means that the difference between the points xk+1

S and xk
M is small, which justifies

the stopping test based on 
k .

2.5 Relaxing the constraints in the master problem

We now consider the option of relaxing the h-constraints by introducing slack vari-
ables. This feature can be useful when computing a feasible starting point in Sh ∩ Sg

is nontrivial. A starting point in Sg is still needed, but recall that it is assumed to be a
simple set in our context. A similar technique had been mentioned in [5,16], although
without theoretical analysis.

Suppose that at an iteration k ≥ 0 we have a finite subset Xk+1 of Sg containing
the subproblems solutions {x0

S, . . . , xk+1
S }. We define the relaxed master feasible set

Dk = {(x, z) ∈ conv Xk+1 × R
q : h(x) ≤ z},

and the function Fk
M : R

n × R
q ⇒ R

n × R
q by

Fk
M (x, z) = F(x) × {ζk z},

where ζk > 0 is a scalar parameter. Then the relaxed master problem consists of
solving

VI
(

Fk
M , Dk

)
. (21)

Note that the set Dk is always nonempty and satisfies the Slater constraint qualification
automatically. Also, Fk

M is (strongly) monotone, if so is F .
The new algorithm is given below.

Algorithm 2 (Relaxed Dantzig–Wolfe decomposition)

1. Choose x0
M ∈ Sg , w0

M ∈ F(x0
M ) and μ0

M ∈ R
q
+. Set x0

M = x0
S and k := 0.

2. The Subproblem: Choose the function F̂k as in Algorithm 1 and find xk+1
S , a

solution of the problem VI(F̂k, Sg).
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3. The Master Problem: Choose the set Xk+1 as in Algorithm 1 and the parameter
ζk > 0. Find a solution (xk+1

M , zk+1) of the problem (21), with the associated
wk+1

M ∈ F(xk+1
M ) and a Lagrange multiplier μk+1

M associated to the h-constraint.
4. Set k := k + 1 and go to Step 2.

Note that solutions of the subproblems and of the master problems belong to the set
Sg , but not necessarily to Sh . In Proposition 3 below, we shall see that the z-component
of the master solution is actually uniquely defined and is of the form zk+1 = μk+1

M /ζk .

3 Convergence analysis

We first formalize the arguments that show that the algorithm is well-defined, i.e., that
all the subproblems and all the master problems have solutions.

As discussed above, we can always choose Fk to be maximal monotone (even if F
is not), so that F̂k would be maximal monotone with its domain containing the domain
of F . Moreover, F̂k can always be made strongly monotone by taking the matrix Qk

positive definite when needed. Then maximal monotonicity and strong monotonic-
ity of F̂k ensure the existence of the unique solution to subproblem VI(F̂k, Sg)

(by [34, Theorem 5]). In addition, as already discussed above, our choice of the starting
points in both Algorithm 1 and Algorithm 2 ensures that all the master problems are
always feasible and satisfy constraint qualifications [38], so that there exist Lagrange
multipliers associated to the solutions (if any). Now, the master problems are vari-
ational inequalities either with a continuous mapping or with a maximal monotone
one over nonempty compact feasible sets. Solutions to this type of problems exist, by
[14, Corollary 2.2.5] and [34, Theorem 5], respectively.

We start our convergence analysis by establishing some key properties of the master
problems solutions in Algorithm 1, extending [16, Thm. 4, 5] as well as some results
in the online appendix of [5].

Proposition 1 For a solution xk+1
M of the master problem V I (F, Sh ∩ conv Xk+1) in

Algorithm 1, the following assertions hold:

1. If h is affine or if there exists x̂ ∈ conv Xk+1 such that h(x̂) < 0, then there exists
a Lagrange multiplier μk+1

M ∈ R
q
+ associated to the h-constraint.

2. For any such multiplier μk+1
M it holds that xk+1

M solves VI(F(·) + [h′(·)]�μk+1
M ,

conv Xk+1).
3. If for any x ∈ Sg and any v ∈ [F(xk+1

M )+[h′(xk+1
M )]�μk+1

M ]∩[−Nconv Xk+1(xk+1
M )]

it holds that 〈v, x − xk+1
M 〉 < 0 then x 	∈ conv Xk+1.

4. If xk+1
M is a solution of VI(F(·)+[h′(·)]�μk+1

M , Sg) then xk+1
M solves VI (F, Sg∩Sh).

5. On the next iteration (k := k +1), if xk
M is a solution of the subproblem VI(F̂k, Sg)

then xk
M solves VI (F, Sg ∩ Sh).

Proof 1. Since conv Xk+1 is a polyhedral set, the linearity of h in the first case or
the Slater constraint qualification in the second case guarantee that

NSh∩conv Xk+1(xk+1
M ) = NSh (xk+1

M ) + Nconv Xk+1(xk+1
M )
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and

NSh (xk+1
M ) =

{[
h′(xk+1

M )
]�

μ : μ ∈ R
q
+, μ ⊥ h(xk+1

M )

}

.

Then, since xk+1
M solves VI (F, Sh ∩ conv Xk+1), we have that

0 ∈ F(xk+1
M ) + NSh∩conv Xk+1(xk+1

M )

= F(xk+1
M )+

{[
h′(xk+1

M )
]�

μ : μ ∈ R
q
+, μ ⊥ h(xk+1

M )

}

+Nconv Xk+1(xk+1
M ),

which means the existence of the multiplier μk+1
M in question.

2. From the first part we have, in particular, that

0 ∈ F(xk+1
M ) +

[
h′(xk+1

M )
]�

μk+1
M + Nconv Xk+1(xk+1

M ),

which means that xk+1
M solves VI(F(·) + [h′(·)]�μk+1

M , conv Xk+1), as claimed.
3. Note that any v in question can serve as an element associated to xk+1

M which
verifies that the latter is a solution of VI(F(·) + [h′(·)]�μk+1

M , conv Xk+1). In
other words, it holds that 〈v, x − xk+1

M 〉 ≥ 0 for all x ∈ conv Xk+1. Thus, if this
inequality does not hold for some x ∈ R

n (in particular, for some x ∈ Sg), it must
be the case that x 	∈ conv Xk+1.

4. Suppose now that xk+1
M solves VI (F + [h′(·)]�μk+1

M , Sg), i.e.,

0 ∈ F(xk+1
M ) +

[
h′(xk+1

M )
]�

μk+1
M + NSg (xk+1

M ).

Since μk+1
M is a Lagrange multiplier associated to the h-constraint, we have

[
h′(xk+1

M )
]�

μk+1
M ∈ NSh (xk+1

M ),

and hence,

0 ∈ F(xk+1
M ) + NSh (xk+1

M ) + NSg (xk+1
M ) ⊂ F(xk+1

M ) + NSh∩Sg (xk+1
M ),

which establishes the fourth assertion.
5. Finally, since by (10) it holds that

F̂k(xk
M ) ⊂ F(xk

M ) +
[
h′(xk

M )
]�

μk
M ,

if xk
M solves the subproblem VI(F̂k, Sg), then the previous item implies that it

solves our problem VI(F, Sg ∩ Sh).
��
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Note that, by the third item of Proposition 1, it follows that for the gap defined in
(19) whenever 
k < 0 we have that xk+1

S 	∈ conv Xk . Thus, as long as 
k < 0, the
feasible set of the master problem keeps growing, improving the approximation of the
set Sg . If the subproblems are solved exactly then xk+1

S ∈ conv Xk for some k implies

that 
k ≥ 0 (actually 
k = 0). Then, if F̂k is at least strictly monotone (which can
always be ensured by taking the matrix Qk positive definite if needed) it holds that
xk

M = xk+1
S is a solution of the problem VI(F, Sg ∩ Sh) (see also [16, Thm. 6] and [5]

for some related statements).

Proposition 2 Let F̂k be strictly monotone (e.g., Qk is positive definite). Suppose that
in Algorithm 1 it holds that 
k ≥ 〈ek, xk

M − xk+1
S 〉 for some iteration index k. Then


k = 0 and xk
M = xk+1

S solves VI(F, Sg ∩ Sh).

Proof Since xk+1
S is an approximate solution, with error ek , of the subproblem

VI(F̂k, Sg) in the sense of (14), and since xk
M ∈ Sg , for the associated vk+1

S ∈
F̂k(xk+1

S ) it holds that

〈
ek, xk

M − xk+1
S

〉
≥
〈
vk+1

S , xk+1
S − xk

M

〉
. (22)

Then, by the definition of 
k in (19), by the monotonicity of F̂k , and by the fact
that wk

M + [h′(xk
M )]�μk

M ∈ F̂k(xk
M ), it holds that


k =
〈

wk
M +

[
h′(xk

M )
]�

μk
M , xk+1

S − xk
M

〉

≤
〈
vk+1

S , xk+1
S − xk

M

〉

≤
〈
ek, xk

M − xk+1
S

〉
, (23)

where (22) was also used. But then the assumption that 
k ≥ 〈ek, xk
M − xk+1

S 〉 implies
that


k =
〈
ek, xk

M − xk+1
S

〉
.

Then by substituting the expression for 
k into the left-hand side of (22) we obtain
that

〈

wk
M +

[
h′(xk

M )
]�

μk
M − vk+1

S , xk+1
S − xk

M

〉

≥ 0.

Strict monotonicity of F̂k then implies that xk+1
S = xk

M . Obviously, it then holds

that 
k = 0. Also, since xk+1
S = xk

M solves the subproblem VI(F̂k, Sg), Proposition 1
implies that this point is a solution of VI(F, Sg ∩ Sh). ��

We next establish the properties of solutions of the relaxed master problems.
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Proposition 3 For a solution (xk+1
M , zk+1) of the relaxed master problem VI(Fk

M , Dk)

in Algorithm 2, the following assertions hold:

1. There exists the unique Lagrange multiplier μk+1
M associated to the h-constraint.

Moreover, it holds that

zk+1 = μk+1
M /ζk,

0 ≤ μk+1
M ⊥ h(xk+1

M ) − μk+1
M /ζk ≤ 0.

(24)

2. The point xk+1
M solves VI (F(·) + [h′(·)]Tμk+1

M , conv Xk+1).
3. If for any x ∈ Sg and any v ∈ [F(xk+1

M )+[h′(xk+1
M )]�μk+1

M ]∩[−Nconv Xk+1(xk+1
M )]

it holds that 〈v, x − xk+1
M 〉 < 0, then x 	∈ conv Xk+1.

Proof We have that

0 ∈ F(xk+1
M ) ×

{
ζk zk+1

}
+ NDk (xk+1

M , zk+1).

Since conv Xk+1 is a polyhedral set, it is easy to see that the constraints of Dk satisfy
the Slater constraint qualification. Therefore,

NDk (xk+1
M , zk+1) =

{[[
h′(xk+1

M )
]�

−I

]

μ : μ ∈ R
q
+

0 ≤ μ ⊥ h(xk+1
M ) − zk+1 ≤ 0

}

+
{(

d
0

)

: d ∈ Nconv Xk+1(xk+1
M )

}

.

In particular,

ζk zk+1 − μ = 0,

for any multiplier μ associated to the h-constraints. Hence, μk+1
M is uniquely defined

and satisfies (24).
Also, it holds that

0 ∈ F(xk+1
M ) +

[
h′(xk+1

M )
]�

μk+1
M + Nconv Xk+1(xk+1

M ),

which establishes the second assertion.
The last assertion follows from the same considerations as those used in Proposi-

tion 1 for Algorithm 1. ��
We note that for Algorithm 2 the condition xk+1

S = xk
M no longer implies that

xk
M solves VI(F, Sh ∩ Sg) (although 
k = 0 still implies that xk+1

S = xk
M when

F̂k is strictly monotone). This is the price to pay for the convenience of relaxing the
h-constraint, as the master problem solutions xk

M may no longer belong to Sh . Rather,
the sequence approaches this set asymptotically.
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We are now in position to state the main convergence results for the Dantzig–Wolfe
schemes described above, which extend [16, Thm. 8] and [5, Thm. 10a].

Theorem 1 Let the mapping F be (possibly set-valued) maximal monotone or single-
valued continuous, and let the function h be convex and continuously differentiable.
Suppose the sequence {(xk

M , μk
M , xk+1

S )} generated by Algorithm 1 or Algorithm 2,
with the subproblems (7) solved approximately in the sense of (14) with the associated
error sequence {ek} satisfying (15) or (17), is bounded. In the case of Algorithm 2, let
{ζk} → +∞ as k → ∞.

Then it holds that

1. The sequence {
k} converges to zero.
2. If {F̂k} is strongly monotone uniformly with respect to k and the approximation

rule (17) is used, or if the matrices Qk are uniformly positive definite and either
(15) or (17) is used, then limk→∞ ‖xk+1

S − xk
M‖ = 0.

3. If limk→∞ ‖xk+1
S − xk

M‖ = 0, the sequence {Qk} is bounded, the families of
functions {Fk}, {Hk} and {μk} are equicontinuous on compact sets, and in the
case of the relative-error inexactness rule condition (15) is strengthened to (16),
then for every accumulation point (x̄, μ̄) of the sequence {(xk

M , μk
M )} the point x̄ is

a solution of VI(F, Sh ∩ Sg) while μ̄ is a multiplier associated to the h-constraint.

Proof 1. Using (20) in the case when subproblems are solved inexactly according to
the rule (15), and (23) if the rule (17) is employed, we see that


̄ = lim inf
k→∞ 
k ≤ lim sup

k→∞

k ≤ 0. (25)

Let {k j } be any subsequence of indices such that lim j→∞ 
k j = 
̄. Passing onto

a further subsequence, if necessary, we can assume that {(x
k j
M , μ

k j
M , x

k j +1
S )} →

(x̄, μ̄, x̂). Also, since under the stated assumptions F is locally bounded on Sg ,

the sequence {wk j
M } is bounded and we can assume that {wk j

M } → w̄.
By definition (19), we have that

lim
j→∞ 
k j = 
̄ =

〈
w̄ + [

h′ (x̄)
]�

μ̄, x̂ − x̄
〉
.

Fix any index j . Then for every i > j we have that x
k j +1
S ∈ Xki . As a result, by

the second item of Proposition 1 in case of Algorithm 1 or of Proposition 3 in case
of Algorithm 2, it holds that

〈

w
ki
M +

[
h′(xki

M )
]�

μ
ki
M , x

k j +1
S − xki

M

〉

≥ 0.

Passing onto the limit as i → ∞ in the relation above, we conclude that

〈
w̄ + [

h′(x̄)
]�

μ̄, x
k j +1
S − x̄

〉
≥ 0.
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Now passing onto the limit as j → ∞ in the latter relation, we obtain that

〈
w̄ + [

h′(x̄)
]�

μ̄, x̂ − x̄
〉
≥ 0.

Hence, 
̄ ≥ 0. Together with (25) this proves the first assertion.
2. Since xk+1

S solves approximately VI(F̂k, Sg) in the sense of (14), there exists
vk+1

S ∈ F̂k(xk+1
S ) ∩ [−NSg ](xk+1

S ) such that 〈vk+1
S + ek, xk

M − xk+1
S 〉 ≥ 0. Then

denoting vk
M = wk

M + [h′
2(xk

M )]�μk
M ∈ F̂k(xk

M ) we have that

−
k =
〈
vk+1

S − vk
M , xk+1

S − xk
M

〉
−
〈
vk+1

S , xk+1
S − xk

M

〉

≥
〈
vk+1

S − vk
M , xk+1

S − xk
M

〉
+
〈
ek, xk+1

S − xk
M

〉

≥ c‖xk+1
S − xk

M‖2 +
〈
ek, xk+1

S − xk
M

〉
,

where c > 0 is the modulus of strong monotonicity of F̂k , independent of k. For
the approximation rule (17) (that is {ek} → 0), since 
k → 0 as established
above, it follows that ‖xk+1

S − xk
M‖ → 0 as k → ∞. The same conclusion holds

for the choice of uniformly positive definite Qk , as in that case the approximations
F̂k are uniformly strongly monotone. When the inexactness rule (15) is used, the
assertion follows from (20) and the fact that 
k → 0.

3. Let (x̄, μ̄) be an accumulation point of {(xk
M , μk

M )} and let {(x
k j
M , μ

k j
M )} → (x̄, μ̄)

be any associated convergent subsequence. By construction of the algorithm, the

basic continuity argument implies that x̄ ∈ Sg and μ̄ ∈ R
q
+. Since x

k j +1
S solves

approximately VI(F̂k j , Sg) in the sense of (14), there exists v
k j +1
S ∈ F̂k j (x

k j +1
S )∩

[−NSg (x
k j +1
S )] such that

〈
v

k j +1
S + ek j , x − x

k j +1
S

〉
≥ 0 for all x ∈ Sg. (26)

Since the families {Fk}, {Hk} and {μk} are equicontinuous and the matrices Qk

are bounded, the family {F̂k} remains equicontinuous on compact sets. Then, on

an open ball containing the sequences {x
k j +1
S }, {x

k j
M } and the point x̄ , for every

ε > 0 there is δ > 0 such that ‖x − y‖ < δ implies dH (F̂k(x), F̂k(y)) < ε,

for every k. Since ‖x
k j +1
S − x

k j
M ‖ → 0, there is an index J such that for every

j > J the relation ‖x
k j +1
S − x

k j
M ‖ < δ holds, and thus there exists u

k j
M ∈ F(x

k j
M )

such that ‖u
k j
M + [h′(x

k j
M )]�μ

k j
M − v

k j +1
S ‖ < ε. On the other hand, since under the

stated assumptions F is locally bounded on Sg and outer semicontinuous, we can

assume that the sequence {uk j
M } converges to a point ū ∈ F(x̄). Then

lim
k→∞ v

k j +1
S = ū + [

h′(x̄)
]�

μ̄. (27)
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Next, note that {ek} → 0. In the case of the inexactness rule (17) this is explicit.
In the case of rule (16) it is an obvious consequence since {Qk} is bounded,
‖xk

M − xk+1
S ‖ → 0, and the right-hand side of (16) is quadratic in the latter

quantity while the left-hand side is linear.
Now passing onto the limit in (26) as j → ∞ and using (27), we obtain that

〈ū, x − x̄〉 + 〈[h′(x̄)]�μ̄, x − x̄
〉 ≥ 0 for all x ∈ Sg. (28)

Since μ̄ ≥ 0, the convexity of h implies that

〈μ̄, h(x) − h(x̄)〉 ≥ 〈
μ̄, h′(x̄)(x − x̄)

〉

=
〈[

h′(x̄)
]�

μ̄, x − x̄
〉
.

Then, by (28), we obtain that

〈ū, x − x̄〉 + 〈μ̄, h(x) − h(x̄)〉 ≥ 0 for all x ∈ Sg.

It then holds that

〈ū, x − x̄〉 ≥ 〈μ̄, h(x̄)〉 for all x ∈ Sh ∩ Sg. (29)

For a sequence generated by Algorithm 1, {xk
M } ⊂ Sh ∩ Sg and 〈μk

M , h(xk
M )〉 = 0

for all k. Hence, by continuity, x̄ ∈ Sh ∩ Sg and 〈μ̄, h(x̄)〉 = 0. For a sequence
generated by Algorithm 2, taking the limit in (24) as k → ∞ and recalling the
parameter choice {ζk} → +∞, it again follows that x̄ ∈ Sh∩Sg and 〈μ̄, h(x̄)〉 = 0.
In either case, we have x̄ ∈ Sh ∩ Sg and ū ∈ F(x̄), with (29) yielding

〈ū, x − x̄〉 ≥ 0 for all x ∈ Sh ∩ Sg,

i.e., x̄ is a solution of VI(F, Sh ∩ Sg), as stated. The fact that μ̄ is a Lagrange
multiplier associated to the h-constraint follows from (28).

��
It is clear that the families of functions {Fk

const}, {Hk
const} and {Hk

exact} defined above
are equicontinuous on compact sets. For a bounded sequence {xk

M }, both {Fk
N} and {Hk

N}
are equicontinuous. When F is single-valued and continuous, the family {Fk

exact} is
equicontinuous. Finally, μk(x) = μk

M is always equicontinuous while the augmented
Lagrangian option μ̃k(x) for linear constraints is equicontinuous if the sequence of
penalization parameters {rk} is bounded.

4 Numerical results

In this section, we describe a simplified game-theoretic model for electricity markets,
and present our numerical results for computing the associated variational equilibria.
For more sophisticated but related models we refer to [21–23]. For our purposes of

123



A class of Dantzig–Wolfe type decomposition methods 199

validating the decomposition approach to variational inequalities (rather than solving
the electricity models as such) the version considered here is sufficient.

4.1 Energy markets as generalized Nash games

Let Na agents generate electric energy for sale. The i th agent owns ni plants whose
total generation is represented by a vector qi ∈ R

ni+ . The energy owned by this agent
is the sum of the generation of all of the agent plants:

e(qi ) =
ni∑

k=1

qi
k .

The unitary energy price in the market depends on the total amount of energy
produced by all agents. We model it by a quadratic concave function of one variable,
that is the total energy, so p : R → R. The exogenous coefficients defining this
quadratic function are market-dependent and are given below.

The vector of all the agents’ generation is denoted by q−0 = (q1, q2, . . . , q Na ) ∈
R

n (this peculiar notation will be clear soon). The total amount of energy available in
the market, denoted below by e(q−0), is the sum of the generation of all of the plants
in the market:

e(q−0) =
Na∑

i=1

e(qi ) =
Na∑

i=1

ni∑

k=1

qi
k .

Since the price depends on the total energy, the i th agent will be paid

p
(
e(q−0)

)
e(qi ).

If, to generate the amount qi , the agent incurs an operating (convex) cost ci (qi ), the
agent’s profit is given by

p
(
e(q−0)

)
e(qi ) − ci (qi ).

The profit of each agent depends on the generation level of all the agents in the market.
In turn, each generation level is constrained by technological limitations of the power
plants: for certain sets Qi ⊂ R

ni , the relation qi ∈ Qi must hold. In our simplified
modelling, Qi = [0, Ui ] for some Ui ∈ R

ni+ , noting that in a realistic model the set Qi

is given by complex relations expressing how different technologies (thermal, nuclear,
hydraulic, eolic) generate power.

Remark 1 The core difficulty for solution methods that do not use decomposition
resides precisely in the fact that they handle the set

∏Na
i=1 Qi as a whole. From a

numerical point of view, this usually means dealing simultaneously with mixed-integer
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variables and nonconvex relations. By contrast, a suitable decomposition method han-
dles the difficulties by considering separately each technology (only thermal, only
nuclear, etc.), dealing with each set Qi individually. As a result, an individual sub-
problem becomes “more computationally tractable”; for example, involving only affine
functions and mixed-integer variables, or only nonlinear functions with continuous
variables. Such separation of difficulties considerably simplifies the numerical solu-
tion of large problems. In a somewhat different context, this is also confirmed by our
results below.

An additional constraint for the generation levels qi refers to the fact that agents
are encouraged to satisfy the market demand d > 0. We let q0 ≥ 0 denote a scalar
slack variable, measuring the deficit of energy in the market, sometimes called load
shedding. Then, if for each agent i , the vector

q−i =
(

q0, q1, . . . , qi−1, qi+1, . . . , q Na
)

denotes the generation level of all the other agents, including load shedding, the relation

qi ∈ D(q−i ) = Qi ∩
⎧
⎨

⎩
wi ∈ R

ni : q0 +
Na∑

i 	= j=1

n j∑

k=1

q j
k +

ni∑

k=1

wi
k = d

⎫
⎬

⎭

must hold.
Summing up, the i th agent tries to maximize profit by solving the (concave) problem

max p
(
e(q−0)

)
e(qi ) − ci (qi ) s.t. qi ∈ D(q−i ).

The coordination, or regulation, of the market is done by the independent system
operator (ISO), whose actions in the market are considered as those of an additional
player (this is a so-called bounded rationality model). Accordingly, letting the ISO be
player number 0, if the energy deficit is penalized with a price P > 0, the ISO tries to
maximize the social welfare by solving

max p
(
e(q−0)

)
e(q−0) −

Na∑

i=1

ci (qi ) − Pq0 s.t. q0 ∈ D(q−0),

where, having a maximal allowed level of load shedding U 0,

D(q−0) =
{

w0 ∈ R : 0 ≤ w0 ≤ U 0, w0 + e(q−0) = w0 +
Na∑

i=1

ni∑

k=1

qi
k = d

}

.
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As a result, for i = 0, . . . , Na , the convex functions θi : R
1+n → R given by

θ0(q) = Pq0 −
Na∑

i=1

ci (qi ) − p
(
e(q−0)

)
e(q−0)

θi (q) = ci (qi ) − p
(
e(q−0)

)
e(qi ), i = 1, . . . , Na,

define a generalized Nash game with Na + 1 players (the ISO and the Na agents). In
this game, each player tries to maximize profit by solving

min θi (q
−i , qi ) s.t. qi ∈ D(q−i ).

It is known that finding a generalized Nash equilibrium (GNE) of this game is equiv-
alent to solving a quasi-variational inequality problem, see [12]. Quasi-variational
problems are very hard to solve. Fortunately, in our case, it is possible to compute
some GNE points (not all) by solving a variational inequality instead. These points
are called variational equilibria and have some good/important properties from the
economic point of view, see [13,25]. For our problem, it is shown in [26] that varia-
tional equilibria are solutions to VI(F, Sg ∩ Sh) where

F(q) = (∇q0θ0(q),∇q1θ1(q), . . . ,∇q Na θNa (q)
)
,

Sg =
[
0, U 0

]
×

Na∏

i=1

Qi and Sh =
{

q ∈ R
1+n : q0 + e(q−0) = d

}
.

In our model each function θi (q) is convex and differentiable in the variable qi . So the
function ∇qi θi (q) is monotone in the i th component of the variable q, but in general
it is not monotone on the full variable q. Therefore, the singled-valued function F
defining the variational problem (1) is nonmonotone. Observe that it also couples all
the variables.

Our Dantzig–Wolfe strategy can be applied to nonmonotone single-valued functions
F , simply by taking monotone approximations to F in the subproblems. In particular,
any family Fk

const, Fk
N−J, or Fk

exact-J can be used.
Another specificity of our game is that the demand constraint, that is the set Sh , cou-

ples all variables qi . Without this constraint, the feasible set would be separable. This
makes the considered game particularly suitable for application of our decomposition
schemes.

Remark 2 As discussed above, the model considered here is simplistic in some fea-
tures; it is mostly meant to exhibit the interest of using decomposition schemes for
problems with feasible sets having certain types of structure. In particular, the shared
constraint in our model refers to satisfaction of the (exogenous) demand, but alternative
joint constraints, like the ones in [18], could also be considered.
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4.2 Battery of problems

We implemented Algorithm 1 in Matlab version 7.11(R2010b). The runs were done
on a PC operating under Ubuntu 11.04 with a Core(TM)2 Duo 2.00 GHz processor
and 4 GB of memory.

We created six market configurations of the generalized Nash game, by taking
Na = 5 agents and considering a mix with n power plants, for

n ∈ {100, 250, 1000, 2500, 5000, 10000}.

As n increases, the configurations become harder and harder to solve directly,
without decomposition. Also the subproblems become harder, as we assume that each
agent owns the same number of plants ni = n/5, for i = 1, . . . , Na = 5.

Other values of the model parameters are as follows.

1. The entries of the maximum generation capacity vector Ui are random numbers
in [0, 10] while the maximum allowed deficit is fixed to U 0 = 5.

2. The demand is taken equal to d = 0.8
∑Na

i=1 Ui , corresponding to 80 % of the
market generation capacity.

3. The deficit price is set at P = 120.
4. The unitary price p is a quadratic concave function such that p(0) = P , p′(0) = 0

and p(1.5d) = 0.
5. The operating cost is of the form

ci (qi ) = bi �
qi + 1

2
qi �

Mi q
i

where bi ∈ R
ni and Mi ∈ R

ni ×ni is a diagonal positive definite matrix. The
corresponding values are generated randomly between [30, 60] and [0.4, 0.8],
respectively.

With this data, the simplified model is set up in a manner ensuring that at a variational
equilibrium of the game will have no deficit (q0 = 0) and the price will be equal to
p(d) = P(1 − 1

1.52 ). As a way of ensuring correctness of the implementation, we
checked that these values were obtained in all of our numerical results below.

4.3 Results

For each of the six market configurations, we randomly generated 10 problem
instances. For each instance, we apply Algorithm 1 using five approximations for
F :

Fconst, FN, Fexact = F, FN−J, FJ.

Since the h-constraint is linear, we used the exact family Hexact and likewise for the
multipliers.
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We also tried to solve the problem directly, without decomposition, using PATH
[9,15]. For the two largest configurations (n = 5000, 1000) PATH could no longer be
used, stopping by lack of memory. With our computer and for the considered instances,
when n = 5000 the solver stalled after about 4 h. Also, since the larger configurations
become time consuming, for these we only run the faster decomposition alternatives,
in our case Fconst, FJ and FN−J.

Regarding specifics of the implementation of Algorithm 1, all the subproblems and
master problems are themselves solved using PATH. Our focus here is on comparing
various approximation options; for this reason we do not report on the variants with
inexact solution of subproblems, with generating additional points via projections, or
relaxing the master problems.

For the cases n = 100, 250, 500, 1000, and the options Fconst, FN−J, and Fexact-J,
subproblems in variables qi followed the decomposition pattern induced by the product
Sg = ∏5

i=0 Sgi , where Sg0 = [0, U 0] ⊂ R and Sgi = Qi ⊂ R
n/5, i ≥ 1. With this

decomposition, decision variables are precisely those of each player. For the larger
configurations we used instead the product Sg = ∏n/250

i=0 Sgi = [0, U 0] × ∏5
i=1 Qi ,

with Sg0 = [0, U 0] ⊂ R and Sgi ⊂ R
250.

We use as stopping rules the following criteria. In PATH the stopping test employs
the residual of the full problem based on the Fischer–Burmeister merit function [14,
Chapter 1.5] with a default 10−6. For the decomposition approaches the stopping
criterion is

|
k |
1 + |
1| < 10−5,

where 
k is defined in (19). As discussed in Sect. 2.4, this is a natural stopping
condition in the decomposition framework, as the access to the full problem, and thus
to its residual, is not presumed.

All results are reported in Table 1, and interpreted in the two comparative Figs. 1
and 2 below. For each configuration, we averaged over the 10 instances the results for
each method. The table reports the average and maximal CPU times in seconds; the
percentage of the total running time spent in the master and subproblem solution; the
mean residual (the infinite-norm of the natural merit function [14, Chapter 1.5] for
VI(F(·) + [h′(·)]�μk

M , Sg) at the master solution xk
M ); and the mean infinite-norm of

the difference between xk
M and xk+1

S at termination. In particular, the latter distance and
the residual are not a part of the decomposition stopping test (as they are not available
within the decomposition scheme anyway); these values were computed a posteriori,
to confirm that an approximate solution of the problem was indeed obtained.

Regarding the running times, the main point we would like to stress is that for the
configurations with n ≥ 5000, applying PATH directly appears no longer possible even
after relaxing the stopping tolerance from the default 10−6 to 10−2. Of course, the exact
threshold depends on the specific computer and implementation, yet there is always a
threshold. On the other hand, some of the approximation options in the decomposition
technique still succeed in solving the larger configurations in reasonable computational
times.

123



204 J. P. Luna et al.

Table 1 Detailed list of all results

Size
and model

CPUMean (s) CPUMax (s) Master
(% time)

SubPbm
(% time)

Residual ||xS − xM ||∞

n = 100

PATH 0.162 0.235 − − − −
Fconst 5.199 8.081 92 8 0.001 3.006

FN 1.170 1.331 72 27 0.016 0.048

F 1.973 2.276 46 53 0.015 0.051

FN−J 2.010 4.923 89 10 0.083 0.069

FJ 8.785 10.027 17 83 0.080 0.068

n = 250

PATH 0.303 0.326 − − − −
Fconst 9.002 12.617 94 6 0.007 6.114

FN 4.397 4.819 23 77 0.016 0.043

F 2.530 2.691 41 59 0.015 0.045

FN−J 1.915 2.274 80 20 0.070 0.125

FJ 9.561 11.107 16 84 0.075 0.123

n = 500

PATH 1.413 1.713 − − − −
Fconst 19.413 30.356 95 5 0.008 8.071

FN 29.079 31.620 6 93 0.017 0.035

F 7.229 8.359 25 75 0.017 0.036

FN−J 3.313 4.067 64 36 0.087 0.099

FJ 14.285 20.401 15 85 0.086 0.100

n = 1000

PATH 13.807 13.962 − − − −
Fconst 54.202 66.884 97 3 0.009 7.641

FN 236.751 250.975 2 98 0.015 0.029

F 47.541 49.154 9 91 0.015 0.030

FN−J 11.263 13.878 40 60 0.067 0.074

FJ 40.398 48.539 11 89 0.066 0.073

n = 2500

PATH 693.439 695.626 − − − −
Fconst 255.843 275.134 98 2 0.025 8.918

FN 4590.224 4919.049 0 100 0.022 0.037

F 923.633 1069.350 2 98 0.022 0.038

FN−J 37.028 42.773 53 47 0.058 0.101

FJ 335.984 383.007 6 94 0.057 0.085

n = 5000

PATH − − − − − −
Fconst 1043.489 1257.464 99 1 0.038 9.535

FN−J 114.774 123.597 83 17 0.032 0.056

FJ 2239.637 2408.383 4 96 0.031 0.055
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Table 1 continued

Size
and model

CPUMean (s) CPUMax (s) Master
(% time)

SubPbm
(% time)

Residual ||xS − xM ||∞

n = 10000

PATH − − − − − −
Fconst 4204.447 4450.205 99 1 0.066 9.857

FN−J 483.478 575.581 72 28 0.029 0.046

FJ 13891.376 14891.010 2 98 0.029 0.045

Fig. 1 Time ratios (decomposition divided by PATH), configurations with n ≤ 2500

The column reporting maximal CPU times in Table 1 gives an estimation on how
the data dispersion affected each method. For n = 2500, for example, the percentage
difference with respect to the mean CPU time was of 0.3, 7.5, 7.2, 15.8, 15.5, and
14.0 %, respectively for PATH and the constant, Newton, Newton-Jacobi, and Jacobi
approximations. As expected, the impact of varying data on the constant approxi-
mation is much smaller than for the other approximations, which incorporate more
information. The situation is similar for n = 10000, where the percentages are 5.8,
19.1, and 7.2 for the only three approaches that could solve such large instances,
respectively Fconst, FN−J, and FJ.

In order to see the benefit of decomposing, we took as reference the CPU time taken
by a direct application of PATH and computed the ratio between the CPU times of each
decomposition method and the reference one. Figure 1 shows the corresponding ratios.
We should remark though that Fig. 1 is intended merely to illustrate the dynamics of
the comparison as the size grows and should not be taken literally. The reason is that,
being a Newton-type method, when PATH works (i.e., for problems not too large), it
provides highly accurate solutions. Generally, a comparable level of accuracy cannot
be expected from the decomposition approach.
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Fig. 2 Scalability of the best decomposition options

The ordinate in Fig. 1 uses a logarithmic scale, for convenience. In the figure,
when for a given method the value represented by a bar lies above the 0-ordinate
(corresponding to 100 in the logarithmic scale), the decomposition method took longer
than the direct approach with PATH. By contrast, when the bar is below the ordinate
100, the decomposition method was faster than PATH. The plot in Fig. 1 shows a natural
behavior. A direct application of PATH is very efficient for the smaller to medium sized
problems. But as the size grows, decomposition becomes more and more competitive.
For n = 1000, the FN−J decomposition already outperforms the direct approach. And
for n = 2500, three of the decomposition approaches become faster than PATH, with
the FN−J approximation being the best one.

When the percentage distribution of time between master and subproblem solution
in Table 1 does not add up to 100 %, this is due to some time spent in intermediate
tasks, such as communicating with PATH mex-interface. We observe that for the
larger configurations in general the best approach (Newton–Jacobi) spends less time
in solving subproblems than in dealing with the master problems. In view of our
comments in Remark 1, we conjecture that if we were to consider difficult sets Qi ,
the percentage distribution of time would result in higher figures for the subproblems.
Since the Jacobi-like approximations are amenable to parallelization (thus making the
subproblem solution quicker), for such decompositions the more CPU time is spent
in solving subproblems in our current serial implementation, the faster would be the
overall procedure in parallel implementation. Moreover, it is also likely that more
intricate sets Qi would make decomposition preferable over a direct solution with
PATH even for the smaller instances (always keeping in mind that this is a problem
dependent issue).

Regarding solution quality, the two last columns in Table 1 report, respectively,
the value of the a posteriori computed residual and of the gap between xS and xM .
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We observe that while the constant approximation gives systematically the most distant
xS and xM ’s, for smaller instances this approximation also has the lowest residual.
This tendency starts changing at n = 2500 and for n ≥ 5000 the Newton–Jacobi
and Jacobi approximations become more accurate, and practically equally so. Since
the approximation FN−J is the fastest one, it appears as the best option for large
configurations, both in terms of speed and accuracy.

We finish this section with an analysis of scalability. Recall once again that PATH
applied to the full problem stalls for n ≥ 5000, while some decomposition approaches
still work in reasonable time. Figure 2 compares the performance of Fconst, FN−J,
FJ, which are the options able to handle the larger configurations. The plot shows
the corresponding mean CPU times in minutes for each configuration, ranging from
n = 100 to n = 10000. We observe that FN−J shows the best scalability with respect
to the problem size, suggesting once more this is the best option for larger models of
the type considered here.

Concluding remarks

We have presented a family of decomposition methods for variational inequalities,
that can be applied with maximal monotone operators (possibly set-valued) or single-
valued continuous operators (possibly nonmonotone). The approach allows for various
kinds of approximations of the problem data and its derivatives in the single-valued
case, as well as inexact solution of subproblems. The resulting algorithmic patterns
are shown to be convergent under reasonable assumptions on the variational problem.

The decomposition scheme is highly versatile and makes it possible to exploit
structural properties of the variational problem, even if the operator therein is not
separable. The benefit of having such a flexible setting is assessed by our numerical
experiments, computing a variational equilibrium for generalized Nash games arising
when modeling strategic interactions in electricity markets.

Our numerical results show that, even with an extremely simplified modeling of
the power system, large instances become intractable with a direct solution method,
and can only be solved by decomposition. In terms of accuracy, speed, and scalability,
among all the considered variants and for our battery of tests, the decomposition
method using a combination of Newton and Jacobi approximations appears to be the
best one.

Acknowledgments We thank the two referees for their constructive comments which helped us to improve
the original version.
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